MA922 Hardware Design Manual

A Global Leading IoT Terminals And Wireless Data Solutions Provider

MA922 Hardware Design Manual

Controlled version: V 1.02 Release date: 2024.6

Meige intelligent product technical data MEIG SMART TECHNOLOGY CO., LTD Add: 3/F. No.68, Qinjiang Road, Xuhui District, Shanghai, China

Tel: 86-21-54278676

E-mail: m2msales@meigsmart.com

Fax: 86-21-54278679 Http://www.meigsmart.com

PDE

IMPORTANT NOTICE

COPYRIGHT NOTICE

Copyright © MeiG Smart Technology Co., Ltd. All rights reserved.

All contents of this manual are exclusively owned by MeiG Smart Technology Co., Ltd (MeiG Smart for short), which is under the protection of Chineselawsandcopyrightlaws in international conventions. Anyone shall not copy, spread, distribute, modify or use in other ways with its contents without the written authorization of MeiG Smart. Those who violated will be investigated by corresponding legal liability in accordance with the law.

NO GUARANTEE

MeiG Smart makes no representation or warranty, either express or implied, for any content in this document, and will not be liable for any specific merchantability and applicable or any indirect,particular and collateral damage.

CONFIDENTIALITY

All information contained here (including any attachments) is confidential. The recipient acknowledges the confidentiality of this document, and except for the specific purpose, this document shall not be disclosed to any third party.

DISCLAIMER

MeiG Smart will not take any responsibility for any property and health damage caused by the abnormal operation of customers. Please develop the product according to the technical specification and designing reference guide which defined in the product manual. MeiG Smart have the right to modify the document according to technical requirement with no announcement to the customer.

EU Conformity Statement

Hereby, [MeiG Smart Technology Co.,Ltd] declares that the radio equipment type [MA922] is in compliance with Directive 2014/53/EU.

RF Exposure Information

This device has been tested and meets applicable limits for Radio Frequency (RF) exposure. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

FCC Statement:

Please take attention that changes or modification not expressly approved by the party res ponsible for compliance could void the user's authority to operate the equipment. This device complies with Part 15 of the FCC Rules. Operation is subject to the following t wo conditions:

(1) This device may not cause harmful interference, and

(2) This device must accept any interference received, including interference that may cau se undesired operation.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

(1)Operational use conditions

Module has professional users use condition limitations, Host product manufacturer please ensure giving such warning like "Product is limited to professional users use" in your prod uct's instruction.

(2) Antenna used

Antenna Type: External antenna Max. Gain: 5.29dBi

(3) Labelling Instruction for Host Product Integrator

Please notice that if the FCC identification number is not visible when the module is install ed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. For FCC, this exterior label sho uld follow "Contains FCC ID: 2APJ4-MA922". In accordance with FCC KDB guidance 78474 8 Labeling Guidelines.

§15.19 and RSS-Gen Labelling requirements shall be complied on end user device. Labell ing rules for special device, please refer to §2.925, § 15.19 (a)(5) and relevant KDB public ations. For E-label, please refer to §2.935.

(4) Installation Notice to Host Product Manufacturer

The OEM integrator is responsible for ensuring that the end-user has no manual instruction n to remove or install module.

The module is limited to installation in mobile application, a separate approval is required f or all other operating configurations, including portable configurations with respect to §2.10 93 and difference antenna configurations.

(5) Antenna Change Notice to Host manufacturer

If you desire to increase antenna gain and either change antenna type or use same antenn a type certified, a Class II permissive change application is required to be filed by us, or yo u (host manufacturer) can take responsibility through the change in FCC ID and IC ID (ne w application) procedure followed by a Class II permissive change application.

(6)FCC other Parts, Part 15B Compliance Requirements for Host prod uct manufacturer

This modular transmitter is only FCC authorized for the specific rule parts listed on our gra nt, host product manufacturer is responsible for compliance to any other FCC rules that ap ply to the host not covered by the modular transmitter grant of certification.

MA922 Hardware Design Manual

MEIG 美格

Host manufacturer in any case shall ensure host product which is installed and operating with the module is in compliant with Part 15B requirements.

Please note that For a Class B or Class A digital device or peripheral, the instructions furni shed the user manual of the end-user product shall include statement set out in §15.105 In formation to the user or such similar statement and place it in a prominent location in the te xt of host product manual. Original texts as following:

For Class B

Note: This equipment has been tested and found to comply with the limits for a Class B dig ital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide rea sonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in a ccordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct.

t the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

-Increase the separation between the equipment and receiver.

-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

-Consult the dealer or an experienced radio/TV technician for help.

For Class A

Note: This equipment has been tested and found to comply with the limits for a Class A dig ital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide rea sonable protection against harmful interference when the equipment is operated in a com mercial environment. This equipment generates, uses, and can radiate radio frequency en ergy and, if not installed and used in accordance with the instruction manual, may cause h armful interference to radio communications. Operation of this equipment in a residential a rea is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Revision History

Serial Number	Revision	Date	Description
1	V1.00	2023-11	First edition
2	V1.01	2024-4	 sheet74, 3.14_SPI: correct SPI I/O type to DIO, add SPI Master and Slave mode Description 3.3 pin Description: correct SPI I/O type to DIO Sheet77, 3.15_RGMII: correct RGMII layout line Tx bus and Rx bus traces at least 2 times trace width. Sheet65, 3.9_I2C\I2S: reflash
			I2C/I2SDescription ,add I2C1&I2S1 default for Audio codec 5. Sheet 56, 3.4.2 Reduce Voltage Drop:pitcure6,correct DC_IN to DC_3.8V
3	V1.02	2024-6	 Reflash 2.2 main performance about PCI Express Base Specification Revision Reflash 3.11 PCIE Interfaces Compliant with PCI Express Base Specification Revision Reflash 3.11 PCIE Interfaces, about PCIE data rate Reflash 3.11 PCIE Interfaces, about PCIE AC coupling capacitance change to 220nF. Reflash 3.11 PCIE Interfaces, about PCIE Bus length change to 300mm. Reflash 5.3 module power consumption,add power off leakage current data and Deep sleep mode minimum current data. Reflash IMPORTANT NOTICE,add EU Conformity Statement and FCC Statement
	Y	<u> </u>	

Content

1. Introduction	7
1.1 Safety Instruction	8
1.2 Document Purpose	
1.3 Content	
2. Product Overview	10
2.1 Basic Description	10
2.2 Main Performance	10
2.3 Functional Block Diagram	15
2.4 Evaluation Board	
3. Application Interface	17
3.1 Basic Description	
3.2 LGA Interface Definition	18
3.3 Pin Description	19
3.4 Power	55
3.4.1 Power Supply	
3.4.2 Reduce Voltage Drop	
3.4.3 VDD_EXT Voltage Output	
3. 5 Power on/off	
3.5.1 PWRKEY Pin Power on	58
3.5.2 Shutdown	60
3. 6 Reset Function	61
3.6.1 Hardware Reset	62
3.6.2 AT Command Reset	
3. 7 USIM/SIM Interface	
3. 8 USB Interface	
3.8.1 USB Pin Description	
3.8.2 USB Reference Circuit	65
3.9 I2S and I2C Interfaces	
3.10 PCM Interfaces	
3.11 PCIE Interfaces	
3.12 WLAN and Bluetooth Application	
3.13 SDIO Interfaces	
3.14 SPI Interfaces	
3.15 RGMI Interfaces	
3.16 SGMI Interfaces	
3.17 RTC	
3.18 DR SYNC	
3.19 IMU Interrupt Interfaces	
3.20 UART Interfaces	
3.21 Low Power Mode	
3.22 ADC Function	
3.23 USB_BOOT Interface	
4. Antenna Interfaces	
4.1 Introduction of Antenna Interface	
4.2 RF Reference Circuit	
4.2.1 Antenna Connection Reference Design	
4.2.2 RF Signal Line Layout	
4.3 Antenna installation	
4.3.1 Antenna Requirements	
4.3.2 RF Output Power	
4.3.3 RF Receive Sensitivity	
4.3.4 Operating Frequency	
5. Electrical Characteristics	
5.1 Limited Voltage Range	
5.2 Ambient Temperature Range	
5.3 Module Power Consumption Range	
5.4 ESD Characteristics	

MEIG 美格	MA922 Hardware D
6. Mechanical Characteristics	115
6.1 Module Mechanical Dimensions	115
6.2 Recommended Package	116
6.3 Module Top View	117
6.4 Module Bottom View	
7. Storage and Production	118
7.1 Storage	
7.2 Production Welding	119
7.3 Package	
8. Appendix A Reference Documents and Term Abbreviations	
8.1 Reference Document	121
8.2 Term Abbreviation	121

1. Introduction

This document introduces MA922 and the air interface and hardware interface between module and customer application.

This document can help customers quickly understand MA922 module interface specifications, electrical characteristics, mechanical specifications and related product information. With the help of this document, combined with our application manual and user guide, customers can quickly apply the MA922 module to wireless applications.

MA922 wireless module is a broadband wireless terminal product suitable for TDD-LTE/FDD-LTEG/5GNR multiple network standards and multiple frequency bands.

Except wireless data access, MA922 can provide functions such as voice and SMS, and can be widely used in M2M fields, such as OTT, CPE, routers, data cards, tablet computers, security and industrial-grade PDAs.

MeiG Smart Technology Co., Ltd.

MEIG 美格_____ 1.1 Safety Instruction

You can ensure personal safety and help protect your product and work environment from potential damage by following the following safety principles:

Driving safety first! When you are driving, do not use a handheld mobile terminal unless it has a hands-free function. Please stop and call again!
Please turn off your mobile terminal device before boarding. The wireless function of the mobile terminal is prohibited to be turned on on the aircraft to prevent interference with the aircraft communication system. Ignoring this reminder may lead to flight safety or even breaking the law.
In hospitals or health care facilities, pay attention to whether there are restrictions on the use of mobile terminal devices. RF interference can cause medical equipment to malfunction, so mobile terminal equipment may need to be turned off.
The mobile terminal device cannot be effectively connected under any circumstances, there is no call charge or the SIM is invalid in the mobile device. When you encounter the above situation in an emergency, please remember to make an emergency call, and make sure your device is turned on and in an area with sufficient signal strength.
Your mobile terminal device receives and transmits radio frequency signals when it is turned on. Radio frequency interference may occur when near televisions, radios, computers or other electronic equipment.
Keep mobile devices away from flammable gases. When you are near gas stations, oil depots, chemical plants or explosive workplaces, please turn off the mobile terminal equipment. Operating electronic equipment in any potentially explosive location is a safety hazard.

MEIG 美格_____ 1.2 Document Purpose

This file elaborates the basic functions, main features, hardware interface and its use method, structural characteristics, power consumption index and electrical characteristics of MA922 wireless module in detail, and guides users to apply MA922 module to various application terminals.

1.3 Content

This article is divided into the following parts:

- Chapter 1 mainly introduces security instructions, document purpose, revision history, etc.;
- D Chapter 2 describes the basic functions and main features of MA922 wireless module;
- Chapter 3 describes the functions, characteristics and usage of each hardware interface in detail;
- Chapter 4 related information and precautions of antenna interfaces ;
- Chapter 5 describes MA922 electrical characteristics in detail;
- Chapter 6 describes in detail the features and precautions of MA922 structure;
- Chapter 7 describes in detail MA922 precautions in storage and production ;
- Chapter 8 Appendix A Reference Documents and Term Abbreviations;

2. Product Overview

2.1 Basic Description

The MA922 is a 5GNR, Sub-6 GHz wireless communication module with 5GNR, LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA, WCDMA, EDGE and GPRS network functions. It also has single/dual frequency, GNSS and voice capabilities for specific applications.

The MA922 module supports the following frequency bands.

FCC

- 5GNR: n2/n5/n12/n25/n41/n66/n71/n77/n78
- D TDD-LTE: B41
- D-LTE: B2/B4/B5/B7/B12/B13/B14/B17/B25/B26/B30RX/B66/B71
- WCDMA: B2/B4/B5
- GNSS (optional)
- ^I Single-frequency GNSS: L1 (GPS, GLONASS, BDS, Galileo, QZSS)
- Dual-frequency GNSS: L1 + L5 (GPS, GLONASS, BDS, Galileo, QZSS)

Module size: 54.5mm x 53.0mm x 3.45mm, which can basically cover all application scenarios of the car. The module is designed to meet the demanding requirements of automotive applications and other harsh conditions, providing premium solutions for safe and reliable connected car solutions and autonomous driving solutions. It is widely used in T-Boxes, TCU, ADAS, C-V2X (V2V, V21, V2P), OBU, RSU, and other automotive/traffic systems.

2.2 Main Performance

The following table shows the performance of MA922 module.

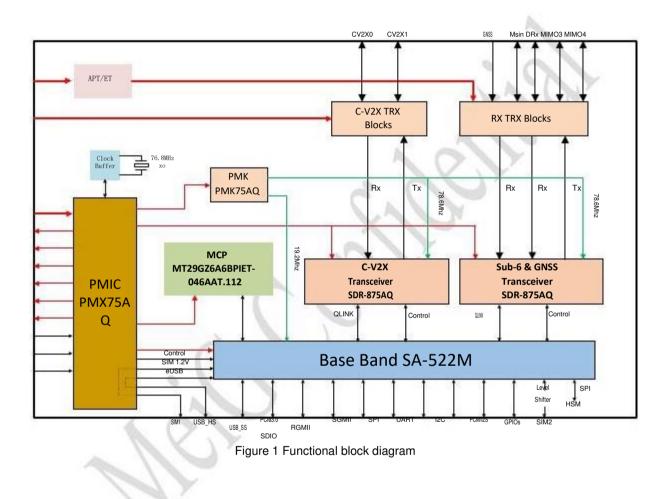
Table 1 List of main features of module

MeiG Smart Technology Co., Ltd.

Parameter	Description
	VBAT_BB/VBAT_RF:
Power	I Supply voltage range: 3.5 V $\sim~$ 4.2 V
FOWEI	Typical supply voltage: 3.8V
	VPH_5V_V2X
	\square Supply voltage range: 4.75 \sim 5.25 V
	Typical supply voltage: 5.0V
	Class 2 (26 dBm +1/-2 dB) for 5G NR TDD HPUE
	n41/n77/n78/n79 bands
Tranamit nawar	Class 3 (23 dBm ±2 dB) for 5G NR FDD bands
Transmit power	Class 3 (23 dBm ±2 dB) for LTE bands
	Class 3 (23 dBm ±2 dB) for WCDMA bands
	Class 4 (33 dBm ±2 dB) for EGSM900
	Class 1 (30 dBm ±2 dB) for DCS1800
	Class E2 (27 dBm ±3 dB) for EGSM900 8-PSK
	Class E2 (26 dBm ±3 dB) for DCS1800 8-PSK
	Support 3GPP Rel-16
	Support modulations:
	Uplink: π/2-BPSK, QPSK, 16QAM, 64QAM and 256QAM
5G NR Features	Downlink: QPSK, 16QAM, 64QAM and 256QAM
	Support 4 × 4 MIMO for MHB bands in DL direction
	Support SCS 15 kHz (FDD) and 30 kHz (TDD)
	Support Option 3x, 3a and Option 2
	Support SA and NSA
	Max. transmission data rates:
	NSA: 2.4 Gbps (DL)/550 Mbps (UL)
	SA: 2.0 Gbps (DL)/450 Mbps (UL)
	Support up to 4CA Cat 16
	Support 1.4/3/5/10/15/20 MHz RF bandwidth
LTE Features	Support 4 × 4 MIMO in DL direction
	Support modulation mode:
	Uplink: QPSK, 16QAM, 64QAM, 256QAM*
	Downlink: QPSK, 16QAM, 64QAM, 256QAM
	LTE-FDD: Max. 1.2 Gbps (DL)/100 Mbps (UL)
	LTE-TDD: Max. 1.0 Gbps (DL)/60 Mbps (UL)
	GPRS:
	Support GPRS multi-slot class 33 (33 by default)
	Coding scheme: CS 1–4
00115	Max. 107 kbps (DL)/85.6 kbps (UL)
GSM Features	EDGE:
	Support EDGE multi-slot class 33 (33 by default)
	Support GMSK and 8-PSK for different MCS (Modulation
	and Coding
	Scheme)
	Downlink coding schemes: MCS 1–9
GSM Features	Support GPRS multi-slot class 33 (33 by default) Coding scheme: CS 1–4 Max. 107 kbps (DL)/85.6 kbps (UL) EDGE: Support EDGE multi-slot class 33 (33 by default) Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme)

	MA922 Hardware Design Manu				
	Support GPS, GLONASS, BDS, Galileo, QZSS				
GNSS Features	Support dual-frequency GNSS (L1 + L5)				
	Agreement: NMEA 0183				
	Update rate: 1 Hz by default, max. up to 10 Hz				
C-V2X Features	Support C-V2X TDD up to 30 Mbps (Tx)/30 Mbps (Rx)				
	Support globally unified ITS @ 5.9 GHz				
Network protocol characteristics	TCPIP/UDP/HTTP(S)/MQTT/FTP/SSL/OneNet				
	Text and PDU mode				
Short message (SMS)	Point-to-point MO and MT				
	Cell broadcast				
USIM Card interface	Support U/SIM1(2) card: 1.8V and 3V				
	Default for external codec configuration				
I2S interface	Supports the master-slave mode				
	Default for external Codec and IMUs				
I2C interface	Complies with I2C 3.0 bus specifications				
	Multiple host modes are not supported				
	Can be used for audio use, requires an external Codec				
	chip				
PCM interface	Default for Bluetooth audio data transmission				
	Supports 16-bit data format				
	 Supports for bit data format Supports long frame synchronization and short frame 				
	synchronization				
	Supports the master-slave mode				
	Conforms to the USB 3.1 Gen 2 and USB 2.0				
	specifications, the maximum theoretical transfer rate of USB				
	3.1 can reach 10Gbps, and the maximum theoretical transfer				
	rate of USB 2.0 can reach 480Mbps				
USB interface	USB 2.0 and USB 3.1 are used for AT command				
	communication, data transfer, software debugging, and GNSS				
	NMEA statement output				
	The firmware can be upgraded by USB 2.0 or USB3.1				
	When USB 2.0 and USB 3.1 are connected to the same				
	host, the USB 3.1 port is used by default				
	USB driver: Support Windows 7/8/8.1/10/11, Linux				
	2.6-5.18 and Android 4.x-12.x				
	DUART1:				
	Used for AT command and data transmission				
	For data transmission				
	Baud rate up to 921600 bps, the default is 115200 bps				
Serial port	Support RTS and CTS hardware flow control				
	Bluetooth UART:				
	 For data transmission; The default value is Bluetooth 				
	Baud rate up to 921600 bps, the default is 115200 bps				
	Support RTS and CTS hardware flow control				
	Debug UART:				
	For Linux console and log output				
	The default baud rate is 115200bps				
	U THE DETAULT DATU TALE IS TTOZUUDUS				

MEIG美格	MA922 Hardware Design Man		
SDIO interface	Comply with SD3.0 protocol		
	Supports eMMC and SD card or DSRC		
SPI interface	Two SPI interfaces are supported by default		
SFIIntenace	Clock frequency Upper limit: 50MHz		
RGMII interface	2.5Gbps Ethernet connection is supported		
USXGMI interface	USB interface		
WLAN and Bluetooth interface	WLAN supports the PCle (Gen 3) interface		
WEAN and Bidelooth Interface	Supports Bluetooth UART and PCM interfaces		
	Supports two groups of PCIE ports		
	Conforms to PCI Express Base Specification Revision 3.0		
PCIe Interface	(PCIE1&2) and Revision 4.0 (PCIE1)		
	Supports one set of 2-lane Pcles with a theoretical		
	maximum speed of 8GT /s x 1-lane		
	 The WLAN function is used by default 		
	Supports one group of 1-lan PCIe with a theoretical		
	maximum rate of 8GT /s		
	GSM: HR/FR/EFR/AMR/AMR-WB		
Audio function	I WCDMA: AMR/AMR-WB		
	🛛 LTE: AMR/AMR-WB		
	Supports echo cancellation and noise suppression		
	© Comply with 3GPP TS 27.007, 27.005, and add MeiG AT		
AT command	command		
	Main antenna interface (ANT_MAIN)		
	 RX- Hierarchical Antenna Interface (ANT_DIV) 		
Antenna interface	Two MIMO antenna interfaces		
	(ANT_MIMO3,ANT_MIMO4)		
	□ Two C-V2X interfaces		
	(ANT_CV2X_TRX0,ANT_CV2X_TRX1)		
	© One GNSS antenna interface (ANT_GNSS)		
C I	Dimensions: (54.5±0.2)×(53.0±0.2)×(3.45±0.2)mm		
Physical characteristics	Weight: TBD		
	□ Normal working temperature: -35°C ~ +75°C		
Temperature range	Extended temperature: -40° ~ $+85^{\circ}$		
	□ Storage temperature: -40° C ~ $+95^{\circ}$ C		
	© USB 2.0/USB 3.1		
Software upgrade			
RoHS	All devices are fully compliant with EU RoHS standards		
Ambient humidity			
Interface	0.524 LGA Pins		
menace	D S24 LGA Pills D Power interface		
	 USIM/SIM card interface (support 3V, 1.8V) I2S interface 		
LGA function interface			
	I2C interface RCM interface		
	PCM interface USP2 0 and USP2 1 interfaces		
	USB2.0 and USB3.1 interfaces		
	SDIO interface		



	SPI interface
	RGMII&SGMII&USXGMII interface
	PCIe interface (can be used for external WLAN&BT
mc	odules)
	ADC interface
	Hardware boot and reset interface
	Dormancy indication interface
	GPIO port
	USB_BOOT Indicates the interface

MEIG 美格 2.3 Functional Block Diagram

The following is the block diagram of MA922, explaining its main function part.

- D Power management unit
- Baseband unit
- Built-in memory
- RF part
- D Peripheral interface

MEIG 美格_____ 2.4 Evaluation Board

For testing and use of MA922, MeiG provides a set of evaluation boards, including USB cables, antennas, and other peripherals.

Please refer to the "MA922_USB_EVB User Manual" for the specific usage of the evaluation board.

Menonina

3. Application Interface

3.1 Basic Description

MA922 adopts 80 pin LCC+64 pin LGA package, providing the following functional interfaces:

- D Power interface
- USIM/SIM interface (support 3V, 1.8V) *2
- I2S port *2
- I2C interface *2
- D PCM interface
- USB2.0 and USB3.1 interfaces
- UART interface *5
- SDIO Interface *2
- SPI interface *2
- B RGMII&SGMII&USXGMII interface
- PCIe port *2 (can be used for external WLAN&BT modules)
- ADC interface *3
- Hardware boot and reset interface
- Dormancy indication interface
- GPIO port *15
- USB_BOOT Indicates the interface

3.2 LGA Interface Definition

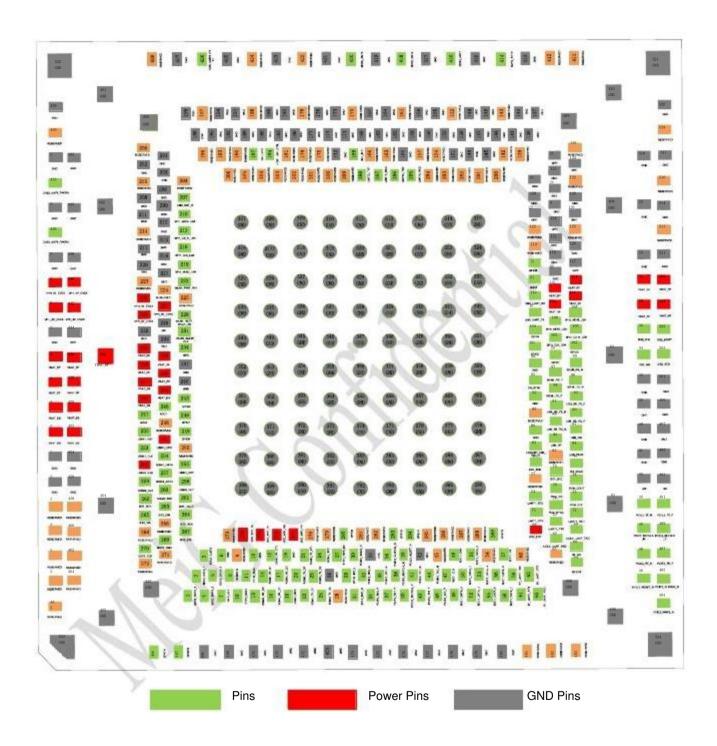


Figure 2 Module serial number pin diagram

Remark:

Module serial number pin diagram is the actual wiring name inside the module;

MEIG 美格 3.3 Pin Description

The following table shows the definition of each pin of MA922 module.

Table 2 IO parameter definition

No.	Name	I/O	Electrical Level	Description	Remark
1	SDC2_DATA_0	DIO		SDIO2 data bit 0	
2	SDC2_DATA_1	DIO	Viнmin = 1.27 V	SDIO2 data bit 1	1.8 V power
3	SDC2_CLKFB	DIO	V⊩max = 2.0 V V⊩max = 0.58 V Vонmin = 1.4 V	SDIO2 data strobe	domain

2

Table 3 Pin Description 4 SDC2 DATA 2

4	n Description SDC2_DATA_2	DIO	CA1	SDIO2 data bit 2	
No.	Name	I/O	Electrical Level	Description	Remark
51	SSG22DDTA30	₽₽₽		SDIO2 data bit 30	
62	GND SDC2_DATA_1	GDIO	V⊩min = 1.27 V	GND SDIO2 data bit 1	1.8 V power
Type 3 IO DI) V⊮m output bid	ax = 2.0 V lireodionaksioonade ∨ Voнmin = 1.4 V	SDIO2 data strobe	domain
DO QD AI BOT	Digital outp SDC2_DATA_2Open-drain Analog sig Bidirection	o gtp uts nalinput	ignal.	SDIO2 data bit 2	
PI PO G	power inpu SDC2_DATA_3 _{Power} Out Ground	ıt.		SDIO2 data bit 3	-
6	GND	G		GND	

Туре	Description
IO	Input and output bidirectional signal.
MgiG Smart Technol	ogy Co., Ltd.Digital input signal.
DO	Digital output signal.
OD	Open-drain output signal.

	、大言	1			dware Design Manual
7	PWR_KEY	DI		Turn on/off the module	Valid low level
8	RESIN_N	DI		Reset the module	Valid low level
9	RESERVED				
10	ETH0_MDIO	DIO	V⊩min = 1.17 V V⊩max = 0.63 V	Ethernet data	Close to external PHY plus pull-up resistor
11	ETH0_MDC	DO	Voнmin = 1.35 V Vo∟max = 0.45 V	Ethernet clock	
12	GND	G		GND	
13	RGMII_RX_D0	DI		RGMII receive data bit 0	
14	RGMII_RX_D1	DI		RGMII receive data bit 1	
15	RGMII_RX_CTL	DI		RGMII receive control	
16	RGMII_RX_D2	DI		RGMII receive data bit 2	
17	RGMII_RX_D3	DI		RGMII receive data bit 3	
18	GND	G		GND	

		r			ware Design Manual
19	RGMII_RXC	DI		RGMII receive clock	
20	RGMII_TX_D0	DO		RGMII transmit data bit 0	
21	RGMII_TX_CTL	DO		RGMII transmit control	
22	RGMII_TX_D1	DO		RGMII transmit data bit 1	
23	RGMII_TX_D2	DO		RGMII transmit data bit 2	
24	RGMII_TXC	DO		RGMII transmit clock	
25	RGMII_TX_D3	DO		RGMII transmit data bit 3	
26	GND	G		GND	
27	ETH1_PWR_EN	DO	Vi⊢min = 1.26 V Vi⊢max = 2.1 V Vi∟max = 0.54 V Vo⊢min = 1.35 V Vo∟max = 0.45 V	Enable external power supply to power Ethernet PHY	
28	RESERVED				Keep pin open
29	ETH0_INT_N	DI	V⊮min = 1.26 V V⊮max = 2.1 V	Ethernet PHY interrupt input	
30	PCIE0_WAKE_N	DIO	Vı∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	PCIe wake up	Input in RC mode, output in EP mode

		1			Ware Design Manual
31	ETH0_RST_N	DO		Reset output for Ethernet PHY	
32	PCIE0_RX0_M	AI		PCIE0_RX0_M	
33	GND	G		GND	
34	PCIE0_RX0_P	AI		PCIE0_RX0_P	
35	PCIE0_RX1_M	AI		PCIE0_RX1_M	
36	PCIE0_CLKREQ_N	DIO	Viнmin = 1.26 V Viнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	PCIe1 clock request	Input in RC mode, output in EP mode
37	PCIE0_RX1_P	AI			
38	PCIE0_REFCLK_M	AIO		PCIE0_REFCLK_ M	Input in RC
39	PCIE0_RESET_N	DIO	Viнmin = 1.26 V Viнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V		mode, output in EP mode
40	PCIE0_REFCLK_P	AIO		PCIE0_REFCLK_ P	
41	PCIE0_TX1_M	AO		PCIE0_TX1_M	
42	GND	G		GND	

		1		11, 1022 11410	Iware Design Manual
43	PCIE0_TX1_P	AO		PCIE0_TX1_P	
44	PCIE0_TX0_M	AO		PCIE0_TX0_M	
45	RESERVED				Keep pin open
46	PCIE0_TX0_P	AO		PCIE0_TX0_P	
47	SDC1_CLK	DO		SDIO1 clock	
48	SDC1_CMD	DIO		SDIO1 command	
49	SDC1_DATA_0	DIO	V⊮min = 1.27 V	SDIO1 data bit	1.8 V power
50	SDC1_DATA_1	DIO	Viнmax = 2.0 V Vi∟max = 0.58 V Voнmin = 1.4 V Vo∟max = 0.45 V	SDIO1 data bit	domain.
51	SDC1_DATA_2	DIO		SDIO1 data bit	
52	SDC1_DATA_3	DIO		SDIO1 data bit	
53	SDC1_DATA_4	DIO		SDIO1 data bit	
54	RESERVED				Keep pin open

MA922 Hardware Design Manual

		r		IN TOLE I HAT	iware Design Manual
55	SDC1_DATA_5	DIO		SDIO1 data bit	
56	SDC1_DATA_6	DIO	Vıнmin = 1.27 V Vıнmax = 2.0 V	SDIO1 data bit	1.8 V power
57	SDC1_DS	DIO	Vı∟max = 0.58 V Vонmin = 1.4 V Vo∟max = 0.45 V	SDIO1 data strobe	domain.
58	SDC1_DATA_7	DIO		SDIO1 data bit	
59	BT_UART_TXD	DO	Vi⊢min = 1.26 V Vi⊢max = 2.1 V Vi∟max = 0.54 V Vo⊢min = 1.35 V Vo∟max = 0.45 V	Bluetooth UART transmit	1.8V power domain, suspended if not used
60	RESERVED				Keep pin open
61	BT_UART_RTS	DI	V⊮min = 1.26 V	Module Bluetooth receive data Receive slave device RTS	1.8V power
62	BT_UART_CTS	DO	Vıнmax = 2.1 V Vı∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	Module Bluetooth receive data Receive slave device CTS	domain, suspended if not used
63	BT_UART_RXD	DI		Bluetooth UART receive	
64	GPIO13	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
65	RESERVED				Keep pin open
66	BT_EN	DO	VIHmin = 1.17 V VILmax = 0.63 V VOHmin = 1.44 V VOLmax = 0.36	Bluetooth enable control	

ÆlG 美格 MA922 Hardware Design Manual VIHmin = 1.26 V LTE & WLAN & $V_{H}max = 2.1 V$ 67 COEX UART RXD DO Bluetooth VILmax = 0.54 V coexistence UART Vонmin = 1.35 V receive $V_{OL}max = 0.45 V$ Power supply VIHnom=1.8V Provide 1.8 V for PO 68 VDD EXT for external $I_{Omax} = 50 \text{ mA}$ external circuits pull up circuits. VIHmin = 1.26 V LTE & WLAN & VIHmax = 2.1 V DO 69 COEX_UART_TXD Bluetooth VILmax = 0.54 V coexistence UART Vонmin = 1.35 V transmit Volmax = 0.45 V 70 DO UART1 TXD UART1 transmit Viнmin = 1.26 V 1.8V power DTE clear to send $V_{IH}max = 2.1 V$ 71 UART1_CTS DO domain, signal from DCE VILmax = 0.54 V (Connects to suspended if Vонmin = 1.35 V DTE's CTS) not used Volmax = 0.45 V 72 DI UART1 RXD **UART1** receive 1.8V power PCM data frame domain, PCM_SYNC 73 DIO master mode sync output, slave mode input VIHmin = 1.26 V DTE request to 1.8V power DI 74 UART1 RTS send signal to domain, DCE (Connects to suspended if $V_{IH}max = 2.1 V$ DTE's RTS) not used Vı∟max = 0.54 V 1.8V power Vонmin = 1.35 V domain, DIO 75 PCM_CLK PCM clock Volmax = 0.45 V master mode output, slave mode input 1.8 V power 76 PCM DIN DI PCM data input domain. 77 RESERVED Keep pin open Viнmin = 1.26 V 1.8 V power $V_{H}max = 2.1 V$ 78 PCM_DOUT DO PCM data output VILmax = 0.54 V domain. Vонmin = 1.35 V Volmax = 0.45 V

MA922 Hardware Design Manual

					iware Design Manual
79	I2C1_SCL	OD	V⊮min = 1.26 V V⊮max = 2.1 V	I2C1 serial clock	External pull-up resistors are required.
80	I2C1_SDA	OD	Vı∟max = 0.54 V Vонmin = 1.35 V Vo∟max = 0.45 V	I2C1 serial data	1.8V power domain, suspended if not used.
81	I2S_MCLK	DO	Viнmin = 1.26 V Viнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	Clock output for codec	12.288 MHz clock output
82	RESERVED				Keep pin open
83	FORCED_USB_BOO T	DI	Viнmin = 1.26 V Viнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	Force download	High level active, recommended to reserve a test point.
84	USB_VBUS	AIO	Vnom=5.0V	USB connection detect	recommended to reserve a test point.
85	USB_DP	AIO		USB 2.0 DP	
86	GND	G		GND	
87	USB_DM	AIO		USB 2.0 DM	
88	USB_SS_RX_M	AI		USB 3.1 Receiving signal cable RX_M	
89	RESERVED				Keep pin open
90	USB_SS_RX_P	AI		USB 3.1 Receiving signal cable RX_P	

		-			wale Design Manual
91	USB_SS_TX_M	AO		USB 3.1 Transmission signal cable TX_M	
92	GND	G		GND	
93	USB_SS_TX_P	AO		USB 3.1 Transmission signal cable TX_P	
94	SGMII_TX_P	AO		SGMII_TX_P	
95	DR_SYNC	DO	Viнmin = 1.26 V VIнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	Dead reckoning sync	
96	SGMII_TX_M	AO		SGMII_TX_M	
97	SGMII_RX_P	AI		SGMII_RX_P	
98	GND	G		GND	
99	SGMII_RX_M	AI		SGMII_RX_M	
100	GPIO1	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
101	GPIO2	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
102	GPIO3	DIO	VILnom=0V VIHnom=1.8V	GPIO	Not support wake-up interrupt.

MEIG	美格			MA922 Har	dware Design Manual
103	SPI2_CLK_LGA	DO	Viнmin = 1.26 V Viнmax = 2.1 V Vi∟max = 0.54 V Vo⊦min = 1.35 V Vo∟max = 0.45 V	SPI2 clock	Supports SPI Master and Slave mode .
104	GPIO4	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
105	SPI2_CS_N_LGA	DO		SPI2 chip select	Supports SPI Master and Slave mode .
106	SPI2_MISO_LGA	DI	Vıнmin = 1.26 V	SPI2 master-in slave-out	Supports SPI Master and Slave mode .
107	DBG_UART_TX	DO	VIHmax = 2.1 V VILmax = 0.54 V VoHmin = 1.35 V VoLmax = 0.45 V	Debug UART transmit	1.8V power domain, suspended if not used.recomme nded to reserve a test point.
108	SPI2_MOSI_LGA	DO		SPI2 master-out slave-in	Supports SPI Master and Slave mode .
109	VBAT_RF	ΡI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for the module's RF part	
110	DBG_UART_RX	DI	Vi⊢min = 1.26 V Vi⊢max = 2.1 V Vi∟max = 0.54 V Vo⊢min = 1.35 V Vo∟max = 0.45 V	Debug UART receive	1.8V power domain, suspended if not used.recomme nded to reserve a test point.
111	VBAT_RF	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for the module's RF part	
112	VBAT_RF	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for the module's RF part	
113	ADC2	AI	Voltage range: 0–1.875 V	General-purpose ADC interface	

	人言	-		NII IOZZ TIAIA	ware Design Manual
114	VBAT_RF	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for the module's RF part	
115	GND	G		GND	
116	GPIO5	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
117	GND	G		GND	
118	GND	G		GND	
119	RESERVED				Keep pin open
120	GND	G		GND	
121	GND	G		GND	
122	RESERVED				Keep pin open
123	RESERVED				Keep pin open
124	GND	G		GND	
125	GND	G		GND	

				wale Design Manual
126	GND	G	GND	
127	GND	G	GND	
128	GND	G	GND	
129	GND	G	GND	
130	GND	G	GND	
131	GND	G	GND	
132	RESERVED			Keep pin open
133	GND	G	GND	
134	GND	G	GND	
135	GND	G	GND	
136	RESERVED			Keep pin open
137	GND	G	GND	

		1		Wale Beelgir Mariaa
138	GND	G	GND	
139	RESERVED			Keep pin open
140*	GND	G	GND	
141	GND	G	GND	
142	RESERVED			Keep pin open
143	RESERVED			Keep pin open
144-151	GND	G	GND	
152	RESERVED			Keep pin open
153	GND	G	GND	
154	RESERVED			Keep pin open
155	GND	G	GND	
156	GND	G	GND	

157	RESERVED			Keep pin open
158	GND	G	GND	
159	GND	G	GND	
160	GND	G	GND	
161	RESERVED			Keep pin open
162	GND	G	GND	
163	RESERVED			Keep pin open
164	GND	G	GND	
165	GND	G	GND	
166	RESERVED			Keep pin open
167	GND	G	GND	
168	GND	G	GND	

		r		100 1022 11410	Iware Design Manual
169	IMU_INT1	DI	Viнmin = 1.26 V VIнmax = 2.1 V Vi∟max = 0.54 V Vo⊦min = 1.35 V Vo∟max = 0.45 V	IMU interrupt 1	
170	RESERVED				Keep pin open
171	GND	G		GND	
172	GND	G		GND	
173	GND	G		GND	
174	GND	G		GND	
175	RESERVED				Keep pin open
176	GND	G		GND	
177	GND	G		GND	
178	RESERVED				Keep pin open
179	RESERVED				Keep pin open
180	GND	G		GND	

181	RESERVED				Keep pin open
182	GND	G		GND	
183	GND	G		GND	
184	HOST_SW_CTRL	DI	VIHmin = 1.17 V VILmax = 0.63 V VOHmin = 1.44 V VOLmax = 0.36	Switch control	
185	GND	G		GND	
186	GND	G		GND	
187	IMU_INT2	DI	VIHmin = 1.26 V VIHmax = 2.1 V VILmax = 0.54 V VOHmin = 1.35 V VOLmax = 0.45 V	IMU interrupt 2	
188	RESERVED				Keep pin open
189	GND	G		GND	
190	RESERVED				Keep pin open
191	GND	G		GND	
192	GND	G		GND	

193	RESERVED			Keep pin open
194	GND	G	GND	
195	GND	G	GND	
196	RESERVED			Keep pin open
197	RESERVED			Keep pin open
198	GND	G	GND	
199	GND	G	GND	
200	RESERVED			Keep pin open
201	GND	G	GND	
202	GND	G	GND	
203	GND	G	GND	
204	RESERVED			Keep pin open

205	RESERVED				Keep pin open
206	GND	G		GND	
207	HSM_RST_N	DO	Vi⊢min = 1.26 V VI⊢max = 2.1 V Vi∟max = 0.54 V Vo⊢min = 1.35 V Vo∟max = 0.45 V	Reset output to external HSM	
208	GND	G		GND	
209	GND	G		GND	
210	SPI1_MOSI_LGA	DO	Viнmin = 1.26 V Viнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	SPI1 master-out slave-in	Supports SPI Master and Slave mode .
211	GND	G		GND	
212	GND	G		GND	
213	SPI1_CS_N_LGA	DO	Vi⊢min = 1.26 V Vi⊢max = 2.1 V Vi∟max = 0.54 V Vo⊢min = 1.35 V Vo∟max = 0.45 V	SPI1 chip select	Supports SPI Master and Slave mode .
214	RESERVED				Keep pin open
215	GND	G		GND	
216	SPI1_CLK_LGA	DO	Viнmin = 1.26 V Viнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	SPI1 clock	Supports SPI Master and Slave mode .

		1			iware Design Manual
217	GND	G		GND	
218	GND	G		GND	
219	SPI1_MISO_LGA	DI	Viнmin = 1.26 V Viнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	SPI1 master-in slave-out	Supports SPI Master and Slave mode .
220	GND	G		GND	
221	GND	G		GND	
222	WLAN_PWR_EN1	DO	VIHmin = 1.17 V VILmax = 0.63 V VOHmin = 1.44 V VOLmax = 0.36	WLAN power supply enable control 1	Used for Quectel AF50T VDD_RF power control.
223	RESERVED				Keep pin open
224	RESERVED				
225	RESERVED				Keep pin open
226	VPH_5V_CV2X	PI	Vmax = 5.25 V Vmin = 4.75 V Vnom = 5.0 V	Power supply for the module's C-V2X part	
227	VPH_5V_CV2X	PI	Vmax = 5.25 V Vmin = 4.75 V Vnom = 5.0 V	Power supply for the module's C-V2X part	
228	WLAN_HSTP_WLAN _EN	DO		WLAN function enable control	

		1		MA922 Hardware Design Manual
229	VPH_5V_CV2X	PI	Vmax = 5.25 V Vmin = 4.75 V Vnom = 5.0 V	Power supply for the module's C-V2X part
230	GND	G		GND
231	WLAN_SLEEP_CLK	DO		WLAN 32 kHz sleep clock
232	GND	G		GND
233	GND	G		GND
234	GND	G		GND
235	VPH_PWR1_RF	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for the module's RF
236	VPH_PWR1_RF	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	part
237	GND	G		GND
238	VPH_PWR1_RF	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for the module's RF
239	VPH_PWR1_RF	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	part
240	GND	G		GND

		1			Ware Design Manual
241	VBAT_BB	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for	
242	VBAT_BB	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	the module's baseband part	
243	GPIO6	DIO	VILnom=0V VIHnom=1.8V	GPIO	Not support interrupt wake-up
244	VBAT_BB	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for the module's baseband part	
245	ADC1	AI	Voltage range: 0–1.875 V	General-purpose ADC interface	
246	GPIO7	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
247	ADC0	AI	Voltage range: 0–1.875 V	General-purpose ADC interface	
248	RESERVED				Keep pin open
249	GPIO8	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
250	USIM1_RST	DO	For 1.8 V VIHmin = 1.26 V VILmax = 0.36 V VOHmin = 1.44 V VOLmax = 0.4 V For 3.0 V (U)SIM: VIHmin = 2.1 V VILmax = 0.6 V VOHmin = 2.4 V VOLmax = 0.4 V	(U)SIM1 reset signal	
251	USIM1_VDD	PO	For 1.8 V (U)SIM: VOmax = 1.95 V VOmin = 1.65 V VOnom = 1.8 V For 3.0 V (U)SIM: VOmax = 3.05 V VOmin = 2.7 V	(U)SIM1 card power supply	Either 1.8 V or 3.0 V is supported by the module automatically.

	大言		1	101/02211010	dware Design Manual
			VOnom = 2.95 V		
252	RESERVED				Keep pin open
253	USIM1_CLK	DO	For 1.8 V VIHmin = 1.26 V VILmax = 0.36 V VOHmin = 1.44 V VOLmax = 0.4 V For 3.0 V (U)SIM: VIHmin = 2.1 V VILmax = 0.6 V VOHmin = 2.4 V VOLmax = 0.4 V	(U)SIM1 clock data	
254	USIM1_DATA	DIO	For 1.8 V VIHmin = 1.26 V VILmax = 0.36 V VOHmin = 1.44 V VOLmax = 0.4 V For 3.0 V (U)SIM: VIHmin = 2.1 V VILmax = 0.6 V VOHmin = 2.4 V VOLmax = 0.4 V	(U)SIM1 card data	
255	USIM1_DET	DI	VIHmax = 2.1 V VIHmin = 1.26 V VILmax = 0.54 V	(U)SIM1 card hotplug detect	1.8 V power domain.If unused, keep them open
256	USIM2_VDD	PO	For 1.8 V (U)SIM: VOmax = 1.95 V VOmin = 1.65 V VOnom = 1.8 V For 3.0 V (U)SIM: VOmax = 3.05 V VOmin = 2.7 V VOnom = 2.95 V	(U)SIM2 card power supply	Either 1.8 V or 3.0 V is supported by the module automatically.
257	USIM2_DATA	DIO	For 1.8 V VIHmin = 1.26 V VILmax = 0.36 V VOHmin = 1.44 V VOLmax = 0.4 V For 3.0 V (U)SIM: VIHmin = 2.1 V VILmax = 0.6 V VOHmin = 2.4 V VOLmax = 0.4 V	(U)SIM2 data signal	
258	USIM2_DET	DI	VIHmax = 2.1 V VIHmin = 1.26 V VILmax = 0.54 V	(U)SIM2 card hotplug detect	1.8 V power domain.If unused, keep them open

MEIG	MA922 Hardware Design Manu					
259	USIM2_CLK	DO	For 1.8 V VIHmin = 1.26 V VILmax = 0.36 V VOHmin = 1.44 V VOLmax = 0.4 V For 3.0 V (U)SIM: VIHmin = 2.1 V VILmax = 0.6 V VOHmin = 2.4 V VOLmax = 0.4 V	(U)SIM2 clock signal		
260	USIM2_RST	DO	For 1.8 V VIHmin = 1.26 V VILmax = 0.36 V VOHmin = 1.44 V VOLmax = 0.4 V For 3.0 V (U)SIM: VIHmin = 2.1 V VILmax = 0.6 V VOHmin = 2.4 V VOLmax = 0.4 V	(U)SIM2 reset signal		
261	I2S1_DOUT	DO	V⊮min = 1.26 V	I2S data out	1.8 V power domain.	
262	I2S1_SCK	DIO	Viнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	I2S1 clock	1.8 V power domain.Serve as output signals in master mode. Serve as input signals in slave mode.	
263	I2S1_DIN	DI		I2S data in	1.8 V power domain.	
264	I2C2_SDA	OD	Viнmin = 1.26 V Viнmax = 2.1 V Vi∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	I2C2 serial data	External pull-up resistors are required. 1.8 V power domain.If unused, keep them open.	
265	I2S1_WS	DIO	Viнmin = 1.26 V Viнmax = 2.1 V Vilmax = 0.54 V Voнmin = 1.35 V Volmax = 0.45 V	I2S1 word select	1.8 V power domain.Serve as output signals in master mode. Serve as input signals in slave mode.	
266	RESERVED					

MEIG	美格			MA922 Hard	dware Design Manual
267	I2C2_SCL	OD	Viнmin = 1.26 V Viнmax = 2.1 V Vilmax = 0.54 V Voнmin = 1.35 V Volmax = 0.45 V	I2C2 serial clock	External pull-up resistors are required. 1.8 V power domain.lf unused, keep them open.
268	RESERVED				
269	SDC2_CMD	DO	Vıнmin = 1.27 V Vıнmax = 2.0 V Vı∟max = 0.58 V	SDIO2 command	1.8 V power
270	SDC2_CLK	DO	Vo⊦max = 0.56 V Vo⊦min = 1.4 V Vo∟max = 0.45 V	SDIO2 clock	domain
271	RESERVED				Keep pin open
272	RESERVED				Keep pin open
273	RESERVED				Keep pin open
274	VDD_WIFI_VL	PO	lomax = 1.7 A	Low-voltage power supply for Wi-Fi & Bluetooth modules	
275	VDD_WIFI_VL	PO	lomax = 1.7 A	Low-voltage power supply for Wi-Fi & Bluetooth modules	
276	VDD_WIFI_VM	PO	lomax = 450mA	Medium-voltage power supply for Wi-Fi & Bluetooth Modules	
277	VDD_WIFI_VH	PO	lomax = 450mA	High-voltage power supply for Wi-Fi & Bluetooth Modules	

Mell 美脳

MEIG	美給		1	MA922 Hard	ware Design Manual
278	RESERVED				Keep pin open
279	RESERVED				Keep pin open
280	GPIO9	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
281	RESERVED				Keep pin open
282	RESERVED				Keep pin open
283	GPIO10	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
284	GPIO11	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
285	RESERVED				Keep pin open
286	RESERVED				Keep pin open
287	RESERVED				Keep pin open
288	RESERVED				Keep pin open
289	GPIO12	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.

MEIG	美格	1	1	MA922 Harc	lware Design Manual
290	RESERVED				Keep pin open
291	RESERVED				Keep pin open
292	RESERVED				Keep pin open
293	RESERVED				Keep pin open
294	RESERVED				Keep pin open
295	UART4_RXD	DI		Receive signal	
296	UART4_TXD	DO	Vıнmin = 1.26 V Vıнmax = 2.1 V	Transmit signal	1.8 V power domain.
297	UART3_RXD	DI	Vı∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	Receive signal	If unused, keep these pins open.
298	UART3_TXD	DO		Transmit signal	
299-306	RESERVED				Keep pin open
307-402	GND	G		GND	
403	VBAT_RF	PI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for the module's RF part	

				Ware Design Manual
404	GND	G	GND	
405	GND	G	GND	
406	GND	G	GND	
407	GND	G	GND	
408	GND	G	GND	
409	GND	G	GND	
410	GND	G	GND	
411	RESERVED			Keep pin open
412	RESERVED			Keep pin open
413	GND	G	GND	
414	SDR0_ANT0	AIO	Main antenna interface	50 Ω impedance
415	GND	G	GND	

		1		wale Design Manual
416	SDR0_ANT1	AIO	Main antenna interface	50 Ω impedance
417	GND	G	GND	
418	SDR0_ANT2	AI	MIMO2 antenna interface	
419	GND	G	GND	
420	SDR0_ANT3	AI	MIMO3 antenna interface	
421	GND	G	GND	
422	RESERVED			Keep pin open
423	GND	G	GND	
424	RESERVED			Keep pin open
425	GND	G	GND	
426	SDR_GNSS_ANT4	AI	GPS antenna interface	
427	GND	G	GND	

428	RESERVED				Keep pin open
429	GND	G		GND	
430	RESERVED				Keep pin open
431	GND	G		GND	
432	GND	G		GND	
433	CV2X_ANT5_FAKRA	AIO		CV2X_ANT5 antenna interface	
434	GND	G		GND	
435	GND	G		GND	
436	CV2X_ANT6_FAKRA	AIO		CV2X_ANT6 antenna interface	
437	GND	G		GND	
438	GND	G		GND	
439	VPH_5V_CV2X	PI	Vmax = 5.25 V Vmin = 4.75 V Vnom = 5.0 V	Power supply for the module's C-V2X part	

	大同	-		100,022 110,0	ware Design Manual
440	VPH_5V_CV2X	PI			
441	VPH_5V_CV2X	PI			
442	VPH_5V_CV2X	PI			
443	GND	G		GND	
444	GND	G		GND	
445	VBAT_RF	PI			
446	VBAT_RF	PI	Vmax = 4.3 V Vmin = 3.3 V	Power supply for the module's RF	
447	VBAT_RF	PI	Vnom = 3.8 V	part	
448	VBAT_RF	PI			
449	VBAT_BB	PI	Vmax = 4.3 V Vmin = 3.3 V	Power supply for the module's	
450	VBAT_BB	PI	Vnom = 3.8 V	baseband part	
451	VBAT_BB	ΡI	Vmax = 4.3 V Vmin = 3.3 V Vnom = 3.8 V	Power supply for the module's baseband part	

				ware besign manual
452	VBAT_BB	ΡI		
453	GND	G	GND	
454	GND	G	GND	
455	GND	G	GND	
456	GND	G	GND	
457	RESERVED			Keep pin open
458	RESERVED			Keep pin open
459	RESERVED			Keep pin open
460	RESERVED			Keep pin open
461	RESERVED			Keep pin open
462	RESERVED			Keep pin open
463	RESERVED			Keep pin open

|--|

					Wale Beelgir Mariaa
464	RESERVED				Keep pin open
465	RESERVED				Keep pin open
466	GPIO14	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
467	GPIO15	DIO	VILnom=0V VIHnom=1.8V	GPIO	Support wake-up interrupt.
468	GND	G		GND	
469	GND	G		GND	
470	GND	G		GND	
471	GND	G		GND	
472	GND	G		GND	
473	GND	G		GND	
474	GND	G		GND	
475	GND	G		GND	

					Iwale Design Manual
476	GND	G		GND	
477	GND	G		GND	
478	GND	G		GND	
479	GND	G		GND	
480	GND	G		GND	
481	RESERVED				Keep pin open
482	RESERVED				Keep pin open
483	RESERVED				Keep pin open
484	PCIE2_WAKE_N	DIO	Vінтіп = 1.26 V	PCIe wakeup	Only used in RC mode and
485	PCIE2_CLKREQ_N	DIO	Vi⊦max = 2.1 V Vi∟max = 0.54 V Vo⊦min = 1.35 V Vo∟max = 0.45 V	PCIe clock request	serve as input signals in RC mode.
486	PCIE2_RESET_N	DIO	. othat = 0.40 V	PCIe reset	Only used in RC mode and serve as Output signals in RC mode.
487	PCIE2_RX_P	AI		PCIE2_RX_P	

			1		iware Design Mariua
488	PCIE2_RX_M	AI		PCIE2_RX_M	
489	PCIE2_REFCLK_P	AO		PCIE2_REFCLK_ P	Only used in RC mode and
490	PCIE2_REFCLK_M	AO		PCIE2_REFCLK_ M	serve as Output signals in RC mode.
491	PCIE2_TX_P	AO		PCIE2_TX_P	
492	PCIE2_TX_M	AO		PCIE2_TX_M	
493	GND	G		GND	
494	GND	G		GND	
495	GND	G		GND	
496	GND	G		GND	
497	GND	G		GND	
498	GND	G		GND	
499	GND	G		GND	

			[iware Design Manual
500	GND	G		GND	
501	GND	G		GND	
502	GND	G		GND	
503	I2S2_SCK	DO		I2S1 clock signal	1.8 V power domain.Serve as output signals in
504	I2S2_WS	Ю	Viнmin = 1.26 V Viнmax = 2.1 V	I2S1 select signal	master mode. Serve as input signals in slave mode.
505	I2S2_DOUT	DO	Vı∟max = 0.54 V Voнmin = 1.35 V Vo∟max = 0.45 V	I2S data out	1.8 V power
506	I2S2_DIN	DI		I2S data in	domain.
507	VBAT_RF	ΡI			
508	VBAT_RF	PI	Vmax = 4.3 V Vmin = 3.3 V	Power supply for the module's RF	
509	VBAT_RF	ΡI	Vnom = 3.8 V	part	
510	VBAT_RF	PI			
511	GND	G		GND	

512	GND	G	GND	
513	RESERVED			Keep pin open
514	GND	G	GND	
515	GND	G	GND	
516	RESERVED			Keep pin open
517	GND	G	GND	
518	GND	G	GND	
519	RESERVED			Keep pin open
520-524	GND	G	GND	

Remark:


1. * means that the function is under development;

2. The above interface functions are not supported at the same time, some pins are multiplexed

functions, please pay attention when choosing!

3. MA922 pin multiplexing see "MA922 _GPIO function multiplexing"

.

Table 4 MA922 module power interface description

Pin Name	I/O	Pin	Description
		109, 111, 112, 114,	Module power
VBAT_RF	PI	235, 236, 238, 239,	supply,3.3~4.3V,
		445, 446, 447, 448, 507, 508, 509, 510	nominal value
		403	3.8V
			Module power
VBAT_BB	PI	241, 242, 244,	supply, 3.3~4.3V,
		449, 450, 451, 452	nominal value
			3.8V
			Module C-V2X
VBAT CV2X	PI	226, 227, 229,	power supply,
		439, 440, 441, 442	4.75~5.25V,
		+33, +40, +41, +42	nominal value
			5.0V
VDD_EXT	PO		Voltage output,
_			1.8V
GND	G	6,12,18,26,33,42,86,92,98,115,117,118,120,121, 124,125,126,127,128,129,130,131,133,134,135,137,138,140, 141,144,145,146,147,148, 149, 150,151,153,155,156,158, 159,160,162,164,165, 167, 168, 171, 172, 173, 174, 176, 177, 180, 182, 183, 185, 186, 189, 191, 192, 194, 195, 198, 199, 201, 202, 203, 206,208, 209, 211, 212, 215, 217, 218, 220, 221, 230, 232, 233, 234, 237, 240, 307, 308,309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325,326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342,343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359,360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376,377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393,394, 395, 396, 397, 398, 399, 400, 401, 402, 404, 405, 406, 407, 408, 409, 410, 413,415, 417, 419, 421, 423, 425, 427, 429, 431, 432, 434, 435, 437, 438, 443, 444, 453,454, 455, 456, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 493,494, 495, 496, 497, 498, 499, 500, 501, 502, 511, 512, 514, 515, 517, 518, 520, 521,522, 523, 524	

The following figure 3 shows a reference design for +12/+24 V input power source when applying the module to 5G + C-V2X solution. The designed outputs are 5.0 V and 3.8 V, and the maximum rated current is 5 A.

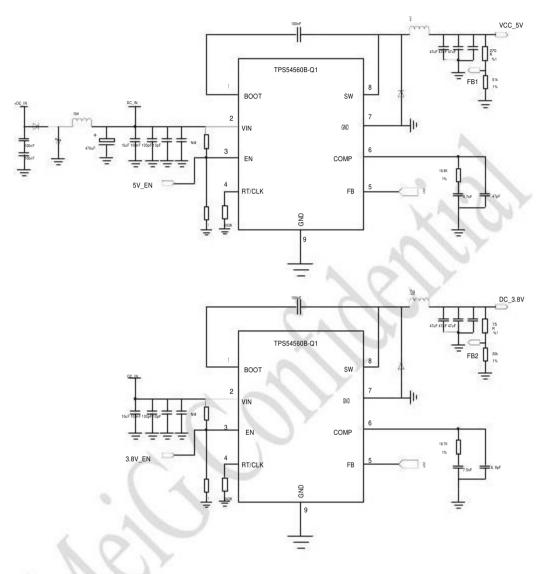


Figure 3 Module power supply circuit

The following figure shows another reference design for +12/+24 V input power source when applying the module to 5G + C-V2X solution. The designed outputs are 5.0 V (with maximum rated current of 5 A) and 3.8 V (with maximum rated current of 3 A).

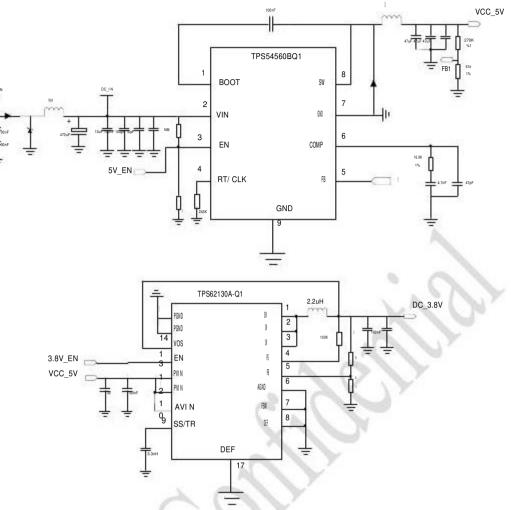


Figure 4 Module power supply circuit

3.4.2 Reduce Voltage Drop

The power supply range of VBAT_BB and VBAT_RF is 3.3–4.3 V. The power supply range of VBAT_CV2X is 4.75–5.25 V. Ensure that the input voltage of VBAT_BB and VBAT_RF never drops below 3.3 V, and the input voltage of VBAT_CV2X never drops below 4.75 V. The following figure shows the voltage drop during burst transmission in GSM and 5G (NSA) networks. The voltage drop will be less in 3G, 4G and 5G (SA) networks.

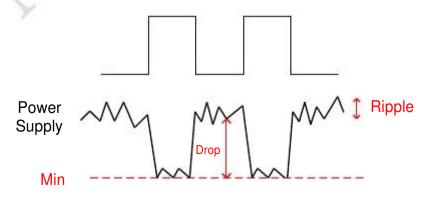
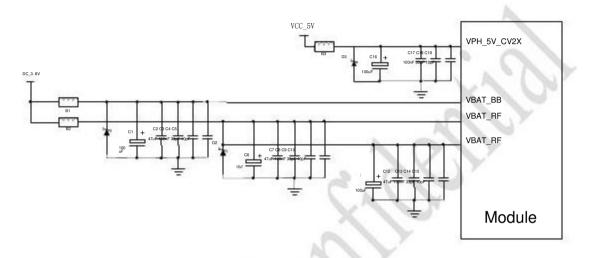



Figure 5 Burst transfer power requirements

To reduce voltage drop, VBAT_RF and VPH_5V_V2X use bypass capacitors with at least 100uF and low ESR, and VBAT_BB uses bypass capacitors with at least 220uF and retains multi-layer ceramic chip capacitor (MLCC) arrays due to their low ESR. It is recommended that at least three ceramic capacitors (100nf, 33pf, 10pf) be used to form the MLCC array and that these capacitors be placed close to the VBAT pins. When the module is connected to an external 3.8V power supply, the VBAT_BB and VBAT_RF cables are in a star structure. VBAT_BB cable width should not be less than 1.5 mm. The VBAT_RF cable width of the main power cable is not less than 3mm, and the branch cable width is not less than 2mm. VPH_5V_V2X Cable width should not be less than 1.6 mm. In principle, the longer the VBAT line, the wider the line width.

In addition, in order to make the power supply stable, it is recommended to use a TVS diode to prevent EOS and place it as close to the VBAT pin as possible. The recommended circuit diagram is as follows:

Figure 6 Power supply design

3.4.3 VDD_EXT Voltage Output

When the MA922 module is powered on normally, Pin68 output voltage is 1.8V and current load is 50mA. This output voltage can be used as an external pull-up source, such as level reference.

3. 5 Power on/off

3.5.1 PWRKEY Pin Power on

When the module is in power down mode, it can be turned on by driving the PWRKEY pin low for at least 500 ms. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

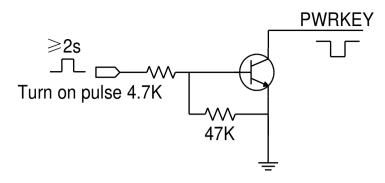


Figure 7 Open collector driver reference boot circuit

Another way to control the PWRKEY pin is to directly use a button switch. A TVS should be placed near the button for ESD protection. The reference circuit is as follows:

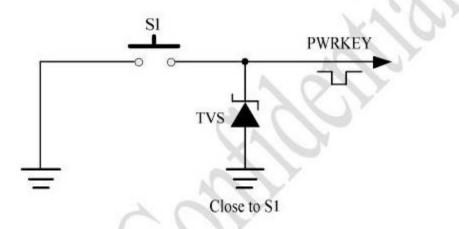
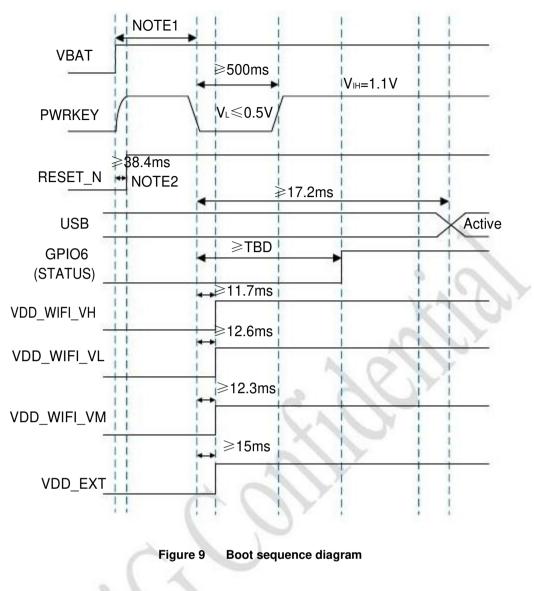



Figure 8 Button boot reference circuit

The boot timing (to be tested) is shown in the following figure:

Note:

Before pulling down the PWRKEY pin, make sure that the VBAT voltage is stable. It is recommended that the time interval between powering up VBAT and pulling the PWRKEY pin low is no less than 30ms. If the module needs to be powered on automatically, the PWRKEY pin can be directly connected to the ground. The maximum resistance to ground cannot exceed 1k, and 0R is recommended. In this way, shutdown can only be done by direct powered off.

3.5.2 Shutdown

Table 5 Three shutdown modes:

Shutdown method	Step	Applicable scene
Low voltage shutdown	When VBAT voltage is too low or power down, the module will shutdown	At this time, the module does not perform the normal shutdown process, and does not go through the process of logging out from the base station.

Hardware shutdown	Pull down PWRKEY (greater than 3s), then release	Normal shutdown
AT shutdown	AT+CPOF	Software shutdown

Driving PWRKEY low for at least 2 s and then releasing it will enable the module to execute power-off procedure. The power-down scenario is illustrated in the following figure.

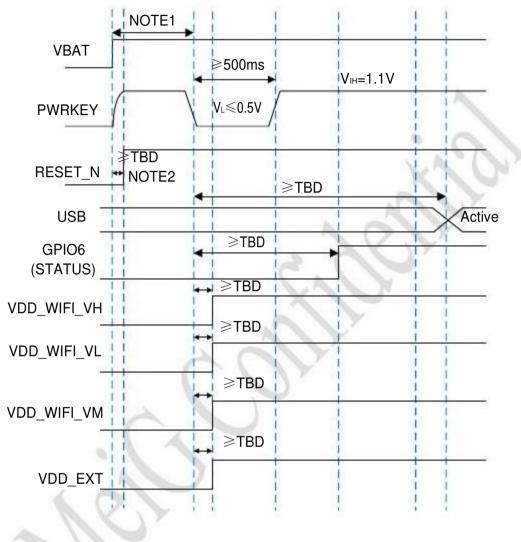


Figure 10 Power-down Timing

Remark:

1. When the module is working normally, do not cut off the power of the module immediately to avoid damaging the Flash data inside the module. It is strongly recommended to turn off the module through the AT command before disconnecting the power.

2. When using the AT command to shut down, make sure that PWRKEY is always in a high level state after the shutdown command is executed, otherwise the module will automatically restart after shutting down.

3.6 Reset Function

There are two reset methods for MA922: hardware reset and AT command reset.

MeiG Smart Technology Co., Ltd.

MEIG美格____ 3.6.1 Hardware Reset

When the module is working, pull down the RESET_N pin for at least 250-550ms to reset the module. The RESET_N signal is sensitive to interference, so it is recommended that the traces on the module interface board should be as short as possible, and should be handled with the ground.

The reference circuit is similar to the PWRKEY control circuit, and customers can use an open-collector drive circuit or a button to control the RESET_N pin.

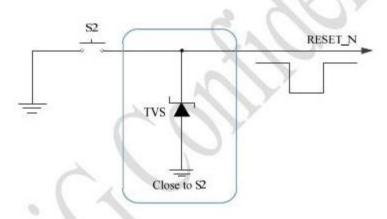
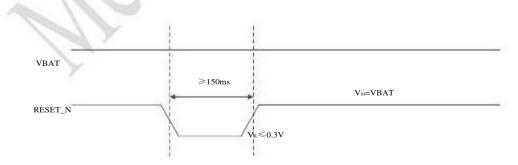



Figure 12 RESET_N reset button reference circuit

The reset timing diagram is as follows:

3.6.2 AT Command Reset

Input AT+TRB command through MA922 UART or USB AT port to reset and restart MA922.

MA922 supports 1.8V and 3.0V SIM cards.

Table 6 USIM/SIM interface description

Pin name	I/O	Pin	Pin description	
USIM1_VDD	PO	251	USIM1/SIM card power supply	
USIM1_CLK	DO	253	USIM1/SIM card clock	
USIM1_RESET	DO	250	USIM1/SIM card reset	
USIM1_DATA	DIO	254	USIM1/SIM card data	
USIM1_PRESENCE	DI	255	USIM1/SIM card hot-plug detect	
USIM2_VDD	PO	256	USIM2/SIM card power supply	
USIM2_CLK	DO	259	USIM2/SIM card clock	
USIM2_RESET	DO	260	USIM2/SIM card reset	
USIM2_DATA	DIO	257	USIM2/SIM card data	
USIM2_PRESENCE	DI	258	USIM2/SIM card hot-plug detect	

AT command MA922 module supports (U)SIM card hot-plug Via USIM_DET pins, and either low-level or high-level

detection is supported. The function is disabled by default, Brodenubet seatiled and swap by related software command. is enabled, and the module detects whether the SIM AT+PENDING=1 open

The SIM card hot-plug function can be configured through the "AT+SIMHOTSWAP" command. The AT command description is shown in the following table: command description is shown in the following table:

The SIM card hot swap detection function is disabled,

AT+PENDING= 0 close Table 7 SIM card hot swap function setting description module reads the SIM card when powering on, and does not detect the USIM PRESENCE state

Pin name	I/O	Pin	Pin description
USIM1_VDD	PO	251	USIM1/SIM card power supply
USIM1_CLK	DO	253	USIM1/SIM card clock
USIM1_RESET	DO	250	USIM1/SIM card reset
USIM1_DATA	DIO	254	USIM1/SIM card data
USIM1_PRESENCE	DI	255	USIM1/SIM card hot-plug detect
USIM2_VDD	PO	256	USIM2/SIM card power supply
USIM2_CLK	DO	259	USIM2/SIM card clock
USIM2_RESET	DO	260	USIM2/SIM card reset
USIM2 DATA	DIO	257	USIM2/SIM card data

USIM2 PRESENCE DI 258 USIM2/SIM card hot-plug detect

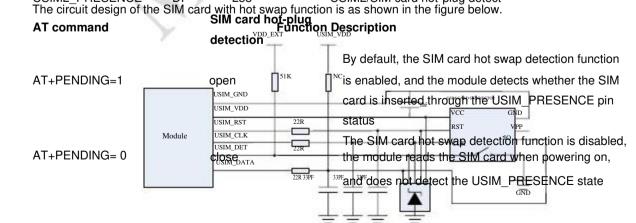
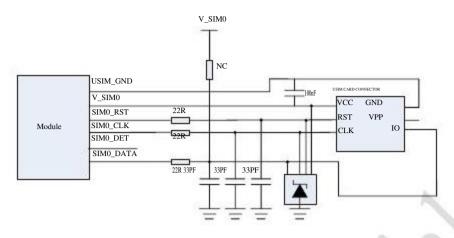



Figure 14 Reference design of card holder with hot-swap function

MeiG Smart Technology Co., Ltd.

If you do not need to use the USIM card hot swap detection function, please keep the USIM_DET pin

floating. The reference circuit is as follows:

Figure 15 Reference design of card holder without hot-swap function

In the circuit design of the USIM card interface, in order to ensure the good performance and reliability of the USIM card, it is recommended to follow the following design principles in the circuit design:

- A 22Ω resistor is connected in series on the USIM_DATA, USIM_CLK and USIM_RST lines to suppress stray EMI, enhance ESD protection, and facilitate debugging;
- In order to improve the anti-static ability, add TVS tubes to the USIM_VDD, USIM_DATA, USIM_CLK and USIM_RST lines, and the parasitic capacitance is not more than 30Pf ESD protection device;
- Connect 33pF capacitors in parallel on the USIM_VDD, USIM_DATA, USIM_CLK and USIM_RST lines to filter out GSM900 interference; the peripheral devices of the USIM card should be placed as close as possible to the USIM card holder;
- The USIM card holder is placed close to the module, try to ensure that the wiring length of the USIM card signal line does not exceed 100mm;
- The wiring of the USIM card signal line is far away from the RF line and the VBAT power line;
- In order to prevent crosstalk between USIM_CLK signal and USIM_DATA, the wiring of the two should not be too close, and a ground shield should be added between the two traces;

3.8 USB Interface

The MA922 provides a USB interface. This interface is used for AT command interaction, data transfer, software debugging and version upgrading. Provides a USB interface, USB interface follows USB 3.1 Gen 2 and USB2.0 standards, USB 3.1 theoretically supports 10Gbps ultra-high speed, USB2.0 theoretically supports high-speed 480Mbps and full speed 12Mbps.

USB 2.0 and USB 3.1 share a hardware controller, so USB 2.0 and USB 3.1 cannot be used simultaneously. When USB 2.0 and USB 3.1 are connected to the same host, the default USB 3.1 interface is used.

3.8.1 USB Pin Description

Table 8 USB interface description

Pin name	I/O	Pin	Description	
USB_VBUS	DI	84	USB insertion detection, Maximum current: 0.1 mATypical 5.0 V.Test points must be reserved.	
USB_DP	AIO	85	USB 2.0 Differential Data+,90Ω impedance	
USB_DM	AIO	87	USB 2.0 Differential Data -,90Ω impedance	
USB_SS_TX_P	AO	93	USB 3.1_TX_P, USB3.1 differential 70-100Ω impedance, 85Ω recommended	
USB_SS_TX_M	AO	91	USB 3.1_TX_M	
USB_SS_RX_P	AI	90	USB 3.1_RX_P	
USB_SS_RX_M	AI	88	USB 3.1_RX_M	

3.8.2 USB Reference Circuit

It is recommended to use USB 2.0 for firmware upgrading in application designs, and test points must be reserved for debugging purposes. USB 2.0 interface reference circuit is presented below.

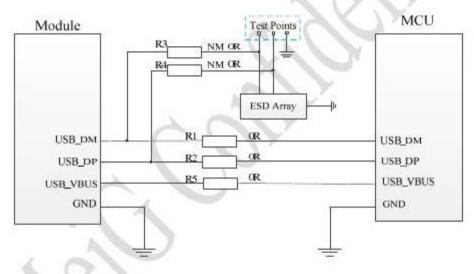
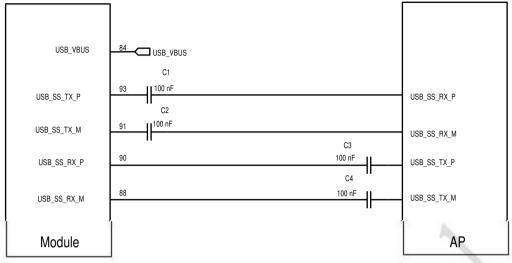



Figure 16 USB2.0 interface reference design diagram

In order to meet the signal integrity requirements of the USB 2.0 data cable, resistors R1/R2/R3/R4 must be placed close to the module, and the resistors need to be placed close to each other. The branch of the connection test point must be as short as possible.

The USB 3.1 interface reference circuit is shown in the following figure.

Figure 17 Reference design of USB 3.1 Application

In USB 3.1 applications, place C1 and C2 near the module, and place C3 and C4 near the AP. The extra

stubs of trace must be as short as possible.

In the design of the USB interface circuit, in order to ensure the USB performance, it is recommended to follow the following principles in the circuit design:

- The module USB_VBUS is not used to supply power to the module, but is used to detect the insertion and removal of USB;
- In order to reduce the signal interference during USB high-speed data transmission, connecting R1 and R2 in series on the USB_DM and USB_DP interface circuits can improve the accuracy of data transmission. It is recommended to use 0Ω for both R1 and R2;
- USB 2.0 and 3.1 signal differential routing packet ground processing. USB 2.0 recommends a differential impedance of 90Ω , and USB 3.1 recommends a differential impedance of 85Ω .
- The USB 2.0 wiring error should be less than 2.0mm, and the USB 3.1 wiring error should be less than 0.7mm.
- Do not line the crystal, oscillator, magnetic device, PCIE and RF signal. Differential wiring in the inner layer of the PCB, and three-dimensional package processing. The RF signal operates at 2.4 GHz with maximum isolation from the USB_SS_TX/RX trace.
- In order to improve the anti-static performance of the USB interface, it is recommended to add ESD protection devices to the USB_DP and USB_DM interface circuits, and it is recommended to use ESD devices with a junction capacitance of less than 1pF; the USB ESD protection devices should be placed as close to the USB interface as possible;
- In order to improve the anti-static performance of the USB interface, it is recommended to add ESD protection devices on the USB_DP and USB_DM interface circuits. USB 2.0 is recommended to use ESD devices with junction capacitance less than 1pF, and USB 3.1 is recommended to use parasitic capacitance less than 0.3pF. The USB ESD protection device should be placed as close as possible to the USB interface.
- Do not route USB cables under crystal oscillators, oscillators, magnetic devices, and RF signals. It is recommended to route the inner layer differential cables and wrap the ground on the top, bottom, left, and right sides.

- 1. The module supports master mode, but works in slave mode by default.
- 2. The high-speed PHY and SuperSpeed PHY share the same USB 3.1 Gen 2 controller inside baseband chipset, so USB 2.0 and USB 3.1 cannot be used simultaneously.
- 3. As for the AC coupling capacitors C1–C4, the recommended value is 220 nF for USB 3.1 Gen 2 and 100 nF for USB 3.1 Gen 1.

3.9 I2S and I2C Interfaces

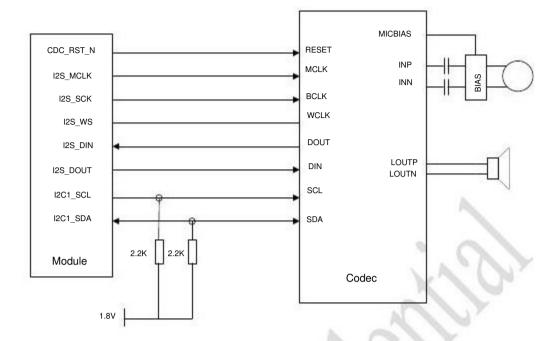
The module provides one I2S interface and one I2C interface for external audio codec design. The module can provide a second I2C interface through pin multiplexing. (I2C1&I2S1 default for Audio codec)

The following table shows the pin definition of I2S and I2C interfaces.

Table 9: Pin Definition of I2S Interface

Pin name	I/O	Pin	Describe
I2S_MCLK	DO	81	Clock output for codec, 12.288MHz
I2S1_WS	DIO	265	I2S1 word select, Serve as output signals in master mode.Serve as input signals in slave mode.
I2S1_SCK	DIO	262	I2S1 clock, Serve as output signals in master mode.Serve as input signals in slave mode.
I2S1_DIN	DI	263	I2S1data in
I2S1_DOUT	DO	261	I2S1data out
12S2_WS	DIO	504	I2S2 word select, Serve as output signals in master mode.Serve as input signals in slave mode.
I2S2_SCK	DIO	503	I2S2 clock, Serve as output signals in master mode.Serve as input signals in slave mode.
I2S2_DIN	DI	506	I2S2 data in
I2S2_DOUT	DO	505	I2S2 data out

Pin name I/O Table 10: Pin Definition of I2C Interface


Describe

Pin

	menace			
			I2C1 serial data, Require external pull-up to 1.8 V.If	
I2C1_SDA	OD	80	unused keep them open.	
Pin name	I/O	Pin		
I2C1_SCL	OD	79	I2C1 serial clock, Require external pull-up to 1.8 V.If	
I2S MCLK	DO	81	unused,Clasepoutent ppen.codec, 12.288MHz	
I2C2 SDA	OD	264	I2C2 serial data, Require external pull-up to 1.8 V.If	
			unused, keep them open. I2S1 word select,	
1282-88L	BIP	265	I2C2 setence ask, output signals in master mode. Serve	
			unusedastweepsigenisapen.slave mode.	
			I2S1 clock,	
I2S1_SCK	DIO	262	Serve as output signals in master mode.Serve	
			as input signals in slave mode.	
I2S1_DIN	DI	263	I2S1data in	
MeiG Smart Technology Co.,	Ltgo	261	I2S1data out	67/119
_			I2S2 word select,	
12S2_WS	DIO	504	Serve as output signals in master mode.Serve	

The following figure shows a reference design of I2S and I2C interfaces with an external codec IC.

Figure 18 Reference design of I2C and I2S Interfaces with External Audio Codec

Remark:

- 1. It is recommended to reserve an RC circuit on the I2S signal traces, especially for I2S_SCK and I2S_MCLK.
- 2. The module works as a master device in I2C applications.

3.10 PCM Interfaces

The module provides one PCM interface for Bluetooth audio transmission by default. See *Chapter 4.7* for details. The PCM interface supports primary (short frame sync) and auxiliary (long frame sync) modes.

Table 11: Pin D	efinition of	PCM	Interface
-----------------	--------------	-----	-----------

Pin name	I/O	Pin	Description
PCM_SYNC	DIO	73	PCM data frame sync, Serve as output signals in master mode.Serve as input signals in slave mode.
PCM_CLK	DIO	75	PCM clock, Serve as output signals in master mode.Serve as input signals in slave mode.
PCM_DIN	DI	76	PCM data input
PCM_DOUT	DO	78	PCM data output

The module supports 16-bit linear data format. Clock and mode can be configured, and the default configuration is primary mode using short frame sync format with 2048 kHz PCM_CLK and 8 kHz PCM_SYNC. For more details, see document [6].

Remark:

1. When using Bluetooth, PCM_SYNC and PCM_CLK can only be used as output signals.

MeiG Smart Technology Co., Ltd.

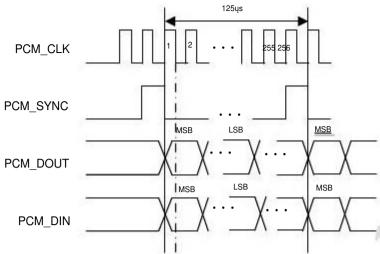


Figure 19 PCM timing diagram (Short frame synchronization)

3.11 PCIE Interfaces

The module provides two PCIe interface.

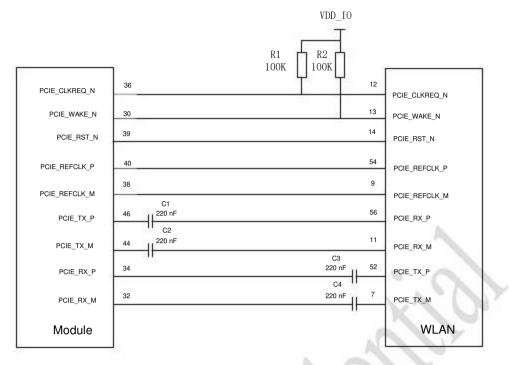
- □ The PCIe 1 interface supports RC and EP modes, works in RC mode by default
- □ The PCIe 2 interface only supports RC mode, default for WLAN&BT module.
- \Box The PCIe 1 Compliant with PCI Express Base Specification Revision 3.0 (2-lines) and Revision 4.0 (1-line)

□ The PCIe 2 Compliant with PCI Express Base Specification Revision 3.0

□ Maximum rate: 8 Gbps for PCIE gen3.0 and 16 Gbps for PCIE gen4.0

Backward compatible

□ Can be used to connect to an external WLAN chip or application processor


Table 12: Pin Definition of PCIe Interface

Pin name	I/O	Pin	Description	Remark
PCIE1_REFCLK_P	AIO	40	PCIe1reference clock (+), Serve as output signals in RC mode. Serve as input signals in EP mode.	If PCIE_TX1 and PCIE_RX1
PCIE1_REFCLK_M	DIO	38	PCIe1reference clock (-), Serve as output signals in RC mode. Serve as input signals in EP mode.	are unused, keep these pins unconnected.
PCIE1_TX0_M	AO	44	PCIe1 transmit 0 (-)	Require differential impedance
PCIE1_TX0_P	AO	46	PCIe1 transmit 0 (+)	of 70–110 $\Omega,$ and 85 Ω is
PCIE1_TX1_M	AO	41	PCIe1 transmit 0 (-)	recommended
PCIE1_TX1_P	AO	43	PCIe1 transmit 0 (+)	
PCIE1_RX0_M	AI	32	PCIe1 receive 0 (-)	
PCIE1_RX0_P	AI	34	PCIe1 receive 0 (+)	
PCIE1_RX1_M	AI	35	PCIe1 receive 0 (-)	

PCIE1_RX1_P	AI	37	PCIe1 receive 0 (+)	
PCIE1_CLKREQ_N	DIO	36	PCIe1 clock request	Serve as input signals in RC mode. Serve as output signals in EP mode.
PCIE1_WAKE_N	DIO	30	PCIe1 wake up	Require a 100 kΩ pull-up to VDD_EXT. 1.8 V power domain.
PCIE1_RST_N	DO	39	PCIe1 reset	Serves as an output signal in RC mode. Serves as an input signal in EP mode.
PCIE2_REFCLK_P	AO	489	PCIe2 reference clock (+),	Only used in RC mode and serve as an output signal in RC mode.
PCIE2_REFCLK_M	AO	490	PCIe2 reference clock (-),	Require differential impedance of 72.5–97.5 Ω , and 85 Ω is recommended
PCIE2_TX_P	AO	491	PCIe2 transmit 0 (+)	
PCIE2_TX_M	AO	492	PCIe2 transmit 0 (-)	Require differential impedance of 72.5–97.5 Ω and 85 Ω is
PCIE2_RX_P	AI	487	PCIe2 receive 0 (+)	recommended
PCIE2_RX_M	AI	488	PCle2 receive 0 (-)	-
PCIE2_CLKREQ_N	DI/DO	485	PCIe2 clock request	Only used in RC mode and
PCIE2WAKE_N	DI/DO	484	PCle2 wake up	serve as input signals in RC
PCIE2_RST_N	DI/DO	486	PCIe2 Reset	mode.
	\mathcal{D}	3	1	1

Figure 20 PCIe interface reference design

To meet PCIe specifications and enhance the reliability of applications, follow the criteria below in the PCIe interface circuit design:

- It is important to route the PCIe signal traces as differential pairs with ground surrounded. The differential impedance is 70–110 Ω and 85 Ω is recommended for PCIe Tx/Rx/REFCLK traces.
- PCIe signals must be protected from noisy signals (clocks, DC-DC, RF and so forth). All other sensitive/high-speed signals and circuits must be routed far away from PCIe traces.
- □ For each differential pair, the intra-lane length match should be less than 0.7 mm, while the inter-lane
- I length match, that is, the trace length matching between the Tx, Rx and reference clock pairs is not required. Do not stagger the capacitors, as this can affect the differential integrity of the design and can create EMI.
- To reduce the probability for layer-to-layer manufacturing variation, minimize layer transitions for the main route on the PCB (that is, apply layer transitions only at break in and break out regions). When the differential signal traces changes layers, create ground vias near signal vias, and create at least 1–3 ground vias for each differential pair.
- Avoid bending of the traces to avoid common mode noise to the system. When bending is required, maintain a bend angle greater than 135°as shown in the figure below, and the shortest trace caused by bending should be at least 1.5 times the trace width (1.5W). The spacing between Tx and Rx pairs, and the spacing between PCIe lanes and all other signals, should exceed 4 times the trace width (4W).

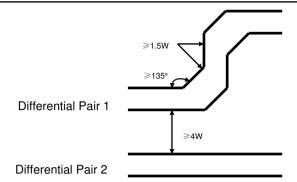


Figure 21 Schematic diagram of differential routing

□ PCIe Tx AC coupling capacitors can be anywhere along the line, but better to be placed close to the source or the receiver side to keep good signal integrity of main route on PCB. Use a serpentine to keep the difference pairs equal in the break out region as much as possible, to ensure that the traces stay differential thereafter. The length of each serpentine section should be at least 3 times the trace width (≥ 3W), and the maximum spacing between the serpentine section and the other differential trace should be less than twice of the normal differential trace spacing (S1 < 2S).</p>

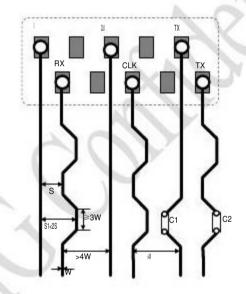


Figure 22 Schematic diagram of PCIe cabling requirements

- PCIe Tx AC coupling capacitors should be 220 nF.
- ¹ The maximum trace length of each differential pair for PCIe should be less than 300 mm.

3.12 WLAN and Bluetooth Application

The module provides one PCIe interface for WLAN function (see Chapter 4.6 for more details), and Bluetooth UART and PCM interfaces for Bluetooth function (see Chapter 4.3 and Chapter 4.5 for more details).

The following table shows the pin definition of WLAN and Bluetooth application interfaces.

Table 13: Pin Definition of WLAN and Bluetooth Application Interfaces

I/O	Pin	Description
PO	68	Provide 1.8 V for external circuits.This pin can be used to connect with VDD_IO of Quectel WLAN module, it also can be used as power supply for external pull up circuits.
PO	274,275	0.95 V low-voltage power supply for Wi-Fi & Bluetooth modules
PO	276	1.35 V medium-voltage power supply for Wi-Fi & Bluetooth modules
PO	277	1.95 V high-voltage power supply for Wi-Fi & Bluetooth modules
се		
DO	69	LTE & WLAN & Bluetooth UART coexistence transmit
DI	67	LTE & WLAN & Bluetooth UART coexistence receive
DO	222	WLAN power supply enable control 1.Used for Quectel AF50T VDD RF power control.
DO	228	WLAN function enable control
DO	66	Bluetooth enable control
DI	184	Switch control
DO	231	WLAN 32 kHz sleep clock.lf unused, keep it open.
	PO PO PO PO PO DO DO DO DO DO DO DO DO DO	PO 68 PO 274,275 PO 276 PO 276 PO 277 CC 277 DO 69 DI 67 DO 222 DO 228 DO 66 DI 184

Remark:

When WLAN or Bluetooth function is intended to be used, the coexistence UART interface must be used simultaneously. The coexistence UART interface cannot be used as general-purpose UART interface.

The following figure shows a reference design of WLAN and Bluetooth application interfaces. For more details, see document [7].

PCIE_CLKREQ_N	36 12	PCIE_CLKREQ_N
PCIE_WAKE_ N	30 13	PCIE_WAKE_N
PCIE_RST_N	39 14	PCIE_RST_N
PCIE_REFCLK_P	40 54	PCIE_REFCLK_P
PCIE_REFCLK_M	38 9	PCIE_REFCLK_M
PCIE_TX_P	46 C1 56 56	PCIE_RX_P
PCIE_TX_M	C2 44 220 nF	PCIE_RX_M
PCIE_RX_P	C3 1 34 22 0 nF	PCIE_TX_P
PCIE_RX_M	C4 32 220 nF	PCIE_TX_M
COEX_UAR T_RXD	87 1	COEX_TXD
COEX_UAR T_TXD	69	COEX_RXD
BT_UART_TXD	59 Å	BT_RXD
BT_UART_RXD	63 5	BT_TXD
BT_UART_RTS	61 8	BT_RTS
BT_UART_CTS	62	BT_CTS
PCM_SYNC	73	PCM_SYNC
PCM_CLK	75 1	PCM_CLK
PCM_IN	78	PCM_OU T
PCM_OU T	22.8	PCM_IN
WLAN_EN		WLAN_EN
BT_EN	66 0	BT_EN
WLAN_SLP_CL K	23 1	WLAN_SLP_CLK
HOST_SW_CTRL	18.4	SW_CTRL
WLAN_PWR_EN1	22 2 WLAN_PWR_EN1	
VDD_WIFI_VL	27 4, 275 79, 85, 86	VDD_C OR E_VL
VDD_WIFI_VM	27.6 89	VDD_C OR E_ VM
VDD_WIFI_VH	27 7 77.83	VDD_C OR E_ VH
VDD_EXT	68 71	VDD_IO

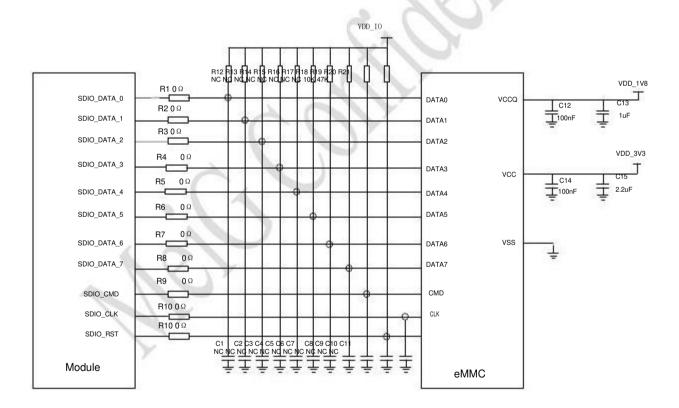
Figure 23 WLAN and Bluetooth Application interface Reference design (AF67E)

3.13 SDIO Interfaces

MEIG美格

The module provides two SDIO interfaces: SDIO1 can be used for eMMC functions; SDIO2 can be used to connect external SD cards or DSRC modules.

The following table shows the pin definitions for the SDIO interface.


Table 14: Pin Definition of SDIO Interface

Pin name	I/O	Pin	Description
SDIO1_DATA_0	DIO	49	SDIO1data bit 0
SDIO1_DATA_1	DIO	50	SDIO1data bit 1
SDIO1_DATA_2	DIO	51	SDIO1data bit 2
SDIO1_DATA_3	DIO	52	SDIO1data bit 3
SDIO1_CMD	DIO	48	SDIO1 command

SDIO1_CLK	DO	47	SDIO1 clock
SDIO1_DS	DIO	57	SDIO1_DS
SDIO1_DATA_4	DIO	53	SDIO1data bit 4
SDIO1_DATA_5	DIO	55	SDIO1data bit 5
SDIO1_DATA_6	DIO	56	SDIO1data bit 6
SDIO1_DATA_7	DIO	58	SDIO1data bit 7
SDIO2_DATA_0	DIO	1	SDIO2 data bit 0
SDIO2_DATA_1	DIO	2	SDIO2 data bit 1
SDIO2_DATA_2	DIO	4	SDIO2 data bit 2
SDIO2_DATA_3	DIO	5	SDIO2 data bit 3
SDIO2_CMD	AO	269	SDIO2 command
SDIO2_CLK	AO	270	SDIO2 clock
SDIO2_DS	DIO	3	SDIO2_DS
SDIO2_DATA_2 SDIO2_DATA_3 SDIO2_CMD SDIO2_CLK	DIO DIO AO AO	4 5 269 270	SDIO2 data bit 2 SDIO2 data bit 3 SDIO2 command SDIO2 clock

3.13.1 Reference Design for eMMC Application

Figure 24 Reference design for eMMC application

Follow the principles below in eMMC circuit design:

To avoid jitter of bus, it is recommended to reserve R12–R19 (10–100 kΩ) to pull up SDIO signals to an external 1.8 V VDD. The resistors are not mounted by default, and the recommended value is 100 kΩ.

- To improve signal quality, it is recommended to add resistors R1–R10 in series between the module and eMMC. Resistor R10 should be 20–30 Ω and the other resistors are 0 Ω by default. The bypass capacitors C1–11 are reserved and not mounted by default. All resistors and bypass capacitors should be placed close to the module.
- It is important to route the SDIO signal traces with total grounding. The impedance of SDIO data trace is 50 Ω (±10 %).
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DC-DC signals, etc.
- It is recommended to keep the trace length difference between SDIO_CLK and SDIO_DATA[0:7]/SDIO_CMD less than 1 mm and the total routing length less than 50 mm. The total trace length inside the module is 17 mm, so the exterior total trace length should be less than 33 mm.
- Keep the spacing between SDIO and other signal traces at least twice the trace width and the load capacitance of SDIO bus less than 30 pF.

3.14 SPI Interfaces

The module provides two SPI interfaces by default. The maximum clock frequency is up to 50 MHz.The following tables show the pin definition of SPI interfaces.The two SPI interfaces are in the 1.8V power domain and supports SPI Master and Slave mode .

Pin name	I/O	Pin	n Description	
SPI1_CLK	DIO	216	SPI1clock	
SPI1_CS	DIO	213	SPI1 chip select	
SPI1_MISO	DIO	219	SPI1 master-in slave-out	
SPI1_MOSI	DIO	210	SPI1 master-out slave-in	
SPI2_CLK	DIO	103	SPI2 clock	
SPI2_CS	DIO	105	SPI2 chip select	
SPI2_MISO	DIO	106	SPI2 master-in slave-out	
SPI2_MOSI	DIO	108	SPI2 master-out slave-in	

Table 15: Pin Definition of SPI Interfaces.

The following figure shows the timing relationship of SPI interface.

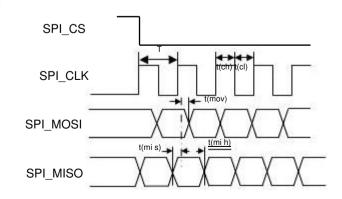


Figure 25 SPI Timing

_

ns

The related parameters of SPI timing are shown in the table below.

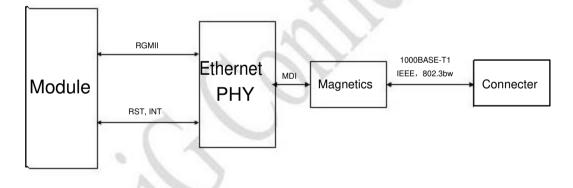
Table 16: Parameters of SPI Interface Timing

Pin name	I/O	Pin	Description	Remark				
ETH_MDIO	DIO	10	Ethernet management data	It generally rec resistor close t end.		· .		
ETH_MDC	DO	11	Ethernet management	Do not add any pull-up resistor to this pin, or it may cause higher current consumption during sleep				
NOTE:			clock	mode.	inpuon duning	sleep		
Parameter	Des ock period	cription	ed with a 3.3 V processor or devi Min. T	ce interface. yp. -	Max. -	Unit ^{ns} ns		
					-	ns		
			thernet MAC with a RGMII interfa	ice which also su	pports EAVE	3. ns		
Keys)featureshef SPCIMI			below:	-	-	ns		
t(mih) SPI master data input hold time ns								
Supports 10/100/1000 Mbps operation								
	Supports protocols such as IEEE 1722.A (AVTP), 802.1Qav (FQTSS), 802.1Qat (SRP), 802.1AS							
(gPTP)								
Support connectin Support 1.8 I/O sta	•	ternal Etherne	t PHY or switch					
Support 1.8 I/O sta	Support 1.8 I/O standards							

The following table shows the pin definition of RGMII interface.

SPI clock high-level time

t(ch)


Table 17: Pin Definition of RGMII Interface

Pin name	I/O	Pin	Description	Remark		
ETH_MDIO	DIO	10	Ethernet management data	-	ly requires a pull- lose to the extern	
ETH_MDC	DO	11	Ethernet management clock	this pin, c	dd any pull-up res r it may cause hig onsumption during	gher
ETH_PWR_EN	D0	27	Enable external power			
Parameter MeiG Smart Technolog T SPI cl			Min.	Typ.	Max.	Unit 77/119 ns

			supply to power Ethernet	
			PHY	
ETH INT	DI	29	Ethernet PHY interrupt	
			input	
ETH RST	DO	31	Reset output for Ethernet	
			PHY	
RGMII_CK_RX	DI	19	RGMII receive clock	
RGMII_CTL_RX	DI	15	RGMII receive control	
RGMII_RX_0	DI	13	RGMII receive data bit 0	
RGMII_RX_1	DI	14	RGMII receive data bit 1	The single-ended impedance
RGMII_RX_2	DI	16	RGMII receive data bit 2	
RGMII_RX_3	DI	17	RGMII receive data bit 3	
RGMII_CK_TX	DO	24	RGMII transmit clock	requires 50 Ω.
RGMII_CTL_TX	DO	21	RGMII transmit control	
RGMII_TX_0	DO	20	RGMII transmit data bit 0	
RGMII_TX_1	DO	22	RGMII transmit data bit 1	
RGMII_TX_2	DO	23	RGMII transmit data bit 2	
RGMII_TX_3	DO	25	RGMII transmit data bit 3	

The following figure shows the simplified block diagram for Ethernet application.

Figure 26Simplified block diagram of automotive Ethernet application

The following is the RGMII interface reference design for the PHY application.

	VDD_IO	
	- - - -	
	Ų Ų Ų	
ETH_MDIO	10	MDIO
	11	MDC
ETH_MDC ETH_INT	29	
		INT N
ETH_RST_N	31	RESETN
	¹³ R1 0 Ω	
RG MII _RX_0		RXD0
RG MII_RX_1	¹⁴ R2 0 Ω	RXD1
	¹⁶ R3 0 Ω	
RG MII_RX_2		RXD2
RG MII_RX_3	17 R4 0 Q	RXD3
	¹⁵ R5 0 Ω	J Ch.
RG MII_CT L_RX	19 R6 0 Ω	RXC
RG MII_CK_RX		RCLK
RG MII_TX_0	¹ Β7 0 Ω	TXD0
NG MII_TA_0	1 B800	
RG MII_TX_1	⁴ R8 0 Ω	TXD1
RG MII_TX_2	⁸ R9 0 Ω_	TYDO
		TXD2
RG MII_TX_3	^δ R10 0Ω	TXD3
RG MIL_CT L_TX	² R11 0 Ω	тхс
	_μ R12 0 Ω	170
RGMII_CK_TX		TCLK
	3.3V/1.8V/0.9V	
RGMII_PWR_EN	EPHY_PWR_EN Power	VDDO/VDD
	Distribution	Ethernet PHY
Module		
	DC 3.3V	

Figure 27 RGMII interface and PHY application reference circuit

To enhance the reliability and availability of application designs, follow the criteria below in the Ethernet

PHY circuit design:

MEIG 美格

- Keep RGMII data and control signals away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DC-DC signals, etc.
- $\square \qquad \text{The single-ended impedance of RGMII data traces is 50 } \Omega \pm 20 \%.$
- ^I The length matching between Tx signals (RGMII_CK_TX, RGMII_CTL_TX and RGMII_TX_[0:3]) or Rx signals (RGMII_CK_RX, RGMII_CTL_RX and RGMII_RX_[0:3]) is less than 2 mm.
- Keep the spacing between Tx bus traces (RGMII_CK_TX to RGMII_TX_[0:3]/RGMII_CTL_TX) or that between Rx bus traces (RGMII_CK_RX to RGMII_RX_[0:3]/RGMII_CTL_RX) at least 2 times thetrace width.
- I Keep the spacing between Tx bus and Rx bus traces at least 2 times trace width.
- ^I Keep the spacing between RGMII and other signal traces at least 3 times trace width.

MeiG Smart Technology Co., Ltd.

- Resistors R7–R12 should be placed near the module. Resistors R1–R6 should be placed near the Ethernet PHY. The value of R1–R15 varies with the selection of PHY.
- RGMII_INT and RGMII_RST_N are always 1.8 V power domain. A voltage-level translator should be used when the module I/O level does not match with PHY.

3.16 SGMI Interfaces

The module includes an integrated Ethernet MAC with a SGMII interface. Key features of the SGMII

interface are shown below:

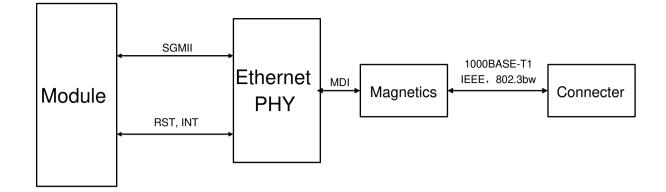

- □ Supports 1000/2500 Mbps operation
- B RGMII and SGMII can not operate concurrently

Table 18: Pin Definition of SGMII Interface

Pin name	I/O	Pin	Description	Remark
ETH_MDIO	DIO	10	Ethernet management data	It generally requires a pull-up resistor close to the external PHY end.
ETH_MDC	DO	11	Ethernet management clock	Do not add any pull-up resistor to this pin, or it may cause higher current consumption during sleep mode.
ETH_PWR_EN	D0	27	Enable external power supply to power Ethernet PHY	
ETH_INT	DI	29	Ethernet PHY interrupt input	
ETH_RST	DO	31	Reset output for Ethernet PHY	
RGMII_TX_P	DO	94	RGMII transmit(+)	
RGMII_TX_M	DO	96	RGMII transmit(-)	Require differential impedance of
RGMII_RX_P	DI	97	RGMII receive(+)	70–100 Ω , and 90 Ω is recommended.
RGMII_RX_M	DI	99	RGMII receive(-)	

The following figure shows the simplified block diagram for Ethernet application.

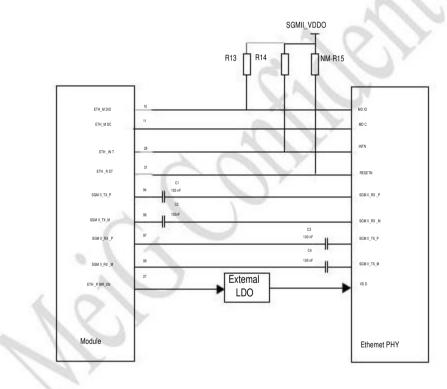


Figure 28 Simplified block diagram of automotive Ethernet application

The following figure shows a reference design of SGMII interface with PHY application. For more details,

see document.

Figure 29 SGMII interface and PHY application reference circuit

To enhance the reliability and availability of application designs, follow the criteria below in the Ethernet

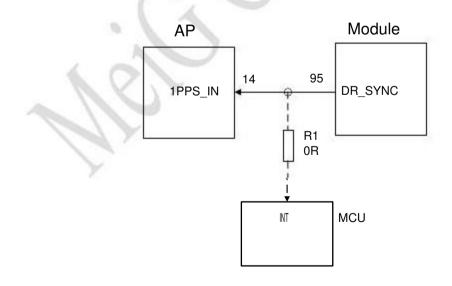
PHY circuit design:

- It is important to route the SGMII signal traces as differential pairs with ground surrounded. The differential impedance is 70–100 Ω and 90 Ω is recommended for SGMII Tx/Rx traces.
- SGMII signals must be protected from noisy signals (clocks, DC-DC, RF and so forth). All other sensitive/high-speed signals and circuits must be routed far away from SGMII traces.

- For each differential pair, the intra-lane length match should be less than 0.7 mm, while the inter-lane length match, that is, the trace length matching between the Tx, Rx and reference clock pairs is not required.
- The spacing between Tx and Rx pairs, and the spacing between SGMII lanes and all other signals, should exceed 4 times the trace width (4W).

3.17 RTC

The module has a real time clock within the PMIC, but has no dedicated RTC power supply pin. The RTC is powered by VBAT_BB. If VBAT_BB is removed, the RTC will not maintain. If RTC is needed, then VBAT_BB must be powered.


3.18 DR_SYNC

The module obtains time through GNSS positioning and outputs 1PPS signal for clock synchronization. The DR_SYNC pin usually connects to an external AP and a MCU to maintain the local time consistencybetween the three.

Table 19: Pin Definition of DR_SYNC Interface

Pin name	I/O	Pin	Description
DR_SYNC	DO	95	Dead reckoning sync

A reference design of DR_SYNC interface for clock synchronization application is shown as below:

Figure 30 DR SYNC clock synchronization application reference design

Remark:

Pay attention to the level matching of the signal shown in dotted line between the module and the MCU.

MEIG 美格_____ 3.19 IMU Interrupt Interfaces

The module realizes DR (dead-reckoning) function through an external IMU (inertial measurement unit). For more details about QDR, see document [9].

Table 20: Pin Definition of IMU Interrupt Interface

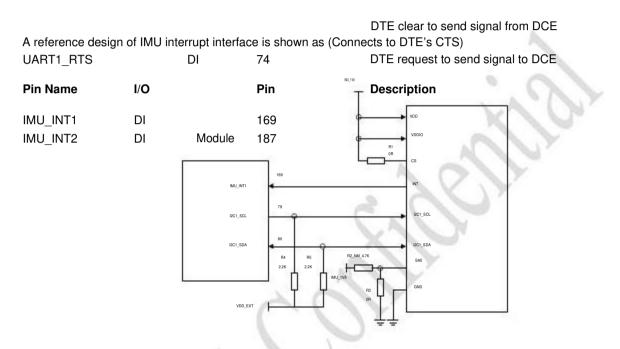


Figure 31 IMU reference design circuit

3.20 UART Interfaces

The MA922 module has 5 serial ports:UART1,UART2,UART3,UART4 and debug UART.

The main features of the main serial port and debug serial port are described below.

- The main serial port supports 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps, 921600bps baud rate, the default baud rate is 115200bps, used for data transmission and AT command transmission.
- $\hfill\square$ The debugging serial port supports 115200bps baud rate for R&D debugging.

Table 21 Main serial port pin description

Pin name	I/O	Pin	Description
UART1_TXD	DO	70	Module sends data
UART1_RXD	DI	72	Module accepts data
UART1_CTS	DO	71	DTE clear to send signal from DCE (Connects to DTE's CTS)
UART1_RTS	DI	74	DTE request to send signal to DCE
Pin Name I/O MeiG Smart Technology Co.	Ltd.	Pin	Description 83/119
IMU_INT1 DI		169	IMU interrupt signal, suspended if not used.
IMU_INT2 DI		187	IMU interrupt signal, suspended if not used.

Pin name	I/O	Pin	Description
UART1_TXD	DO	70	Module sends data
UART1_RXD	DI	72	Module accepts data
UART1_CTS	DO	71	bolow

below:

IAM-20680HT

IMU interrupt signal, suspended if not used. IMU interrupt signal, suspended if not used.

Unit

			(Connects to DTE's RTS)
UART2_TXD	DO	59	Module sends data
UART2_RXD	DI	63	Module accepts data
UART2_CTS	DO	62	DTE clear to send signal from DCE (Connects to DTE's CTS)
UART2_RTS	DI	61	DTE request to send signal to DCE (Connects to DTE's RTS)
UART3_TXD	DO	298	Module sends data
UART3_RXD	DI	297	Module accepts data
UART4_TXD	DO	296	Module sends data
UART4_RXD	DI	295	Module accepts data
DBG_TXD	DO	107	Module sends data, It is recommended to reserve test points for debug UART
DBG_RXD	DI	110	Module accepts data. It is recommended to reserve test points for debug UART

Parameter Minimum Table 22 Serial port logic levels

Maximum value

VIL_	-0.3		(Connects to DTE's RTS)	
VH UART2 TXD	1.2 DO	59	V Module sends data	
VOL UART2 RXD	Bi	63	Module accepts data	
VOH_ UART2_CTS	1.35 DO	62	DTE clear to send signal from DCE (Connects to DTE's CTS)	
UART2_RTS	DI	61	DTE request to send signal to DCE (Connects to DTE's RTS)	
UART3_TXD The module provides 1	DO I.8 V UART interfa	298 Ices. Use a volta	Module sends data age-level translator if your application is	

Ine module provides 1.8 V UART interfaces. Use a voltage-level translator if your application is UART3_RXD DI 297 Module accepts data equipped with a 3.3 V UART interface. The following figure shows a reference design. It is UART4_TXD DO 296 Module sends data recommended that the enable pin of the translator is controlled by VDD_EXT, then its built-in pull-ups will UART4_RXD DI 295 Module accepts data not influence the module normal operation. Module sends data It is recommended to

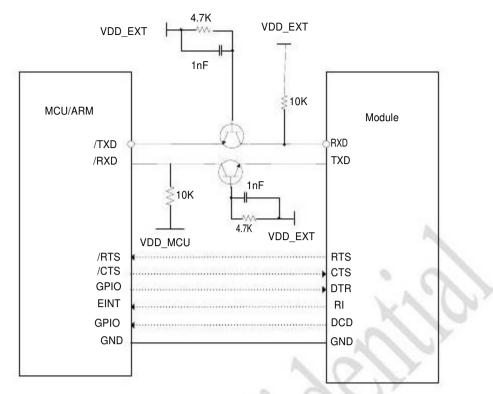

DBG_TXD		107		ata,It is recommended to its for debug UART	
		OVCCA	Module accepts VCCBerve test poir	data.It is recommended to VDD_M	ICU
Parameter	Minimum	OE	Maximum value	0. 1uF Unit	
VIL_ 0.1uF	· -0.3		0.6	V	1011
VIH RI DCD	1.2	A2 Pransia	ator B2		ACU MCU
VOL_ CTS RTS	0	A3 B3 0.45		v CTS [_]	MCU MCU
VOH_ DTR	1.35	A4 B4 A5 B5 1.8		V DTR_	MCU
TXD RXD		A6 B6 A7 B7			MCU MCU
DSR		A8 B8		DSR_	MČŬ

Figure 32 Level conversion chip reference circuit

. 1

Another level shifting circuit is shown in the figure below. The input and output circuit design of the dotted line part below can refer to the solid line part, but pay attention to the connection direction. At the same time, this level conversion circuit is not suitable for applications with baud rate exceeding 460Kbps.

Remark:

When designing, it is recommended to reserve 0R resistors and parallel capacitors on the main serial port and debug serial port lines, which can be added on the bottom plate to prevent RF interference.

3.21 Low Power Mode

3.21.1 Flight Mode

The MA922 module supports entry into airplane mode:

Table 23: Airplane mode Settings description

1 AT command control	AT+CFUN=4Enter airplane mode AT+CFUN=1Enter normal mode
----------------------	--

3.21.2 Sleep Mode

The module can activate sleep mode in the following ways:

AT to be determined

3.21.3 Ultra-low Power ModeT

Use the following AT instructions to put the module into ultra-low power mode (can be used for power testing)

AT to be determined

3.22 ADC Function

The module provides two analog-to-digital converter (ADC) interfaces. To improve the accuracy of ADC, the traces of ADC interfaces should be surrounded by ground.

Table 24 ADC pin description

Pin name	I/O	Pin	Description
ADC0	1	247	Voltage range:0–1.875 V
ADC1	I	245	
ADC2	1	113	

Remark:

1. The input voltage for each ADC interface must not exceed its corresponding voltage range.

- 2. It is prohibited to supply any voltage to ADC pins when VBAT is removed.
- 3. It is recommended to use resistor divider circuit for ADC application.

3.23 USB_BOOT Interface

MA922 supports USB_BOOT function . Customers can short- circuit USB_BOOT and VDD_EXT before

MEIG 美格

the module is turned on, and the module will enter the forced download mode when the module is turned on. In this mode, the module can be upgraded through the USB interface.

Table 25 USB_BOOT pin definition

Pin name	I/O	Pin	Description
USB_BOOT	DI	83	It is recommended to reserve test points.
VDD_EXT	PO	68	

MEIG 美格 4. Antenna Interfaces

The MA922 module is designed with three antenna interfaces, and the impedance of the antenna interface is 50Ω .

Table 26 Antenna interface pin definition

Pin name	Pin number	Description	I/O	Remark
ANT_MAIN	49	main antenna interface	Ю	50Ω impedance
BT_ANT	35	WIFI/BT antenna interface	Ю	50Ω impedance
ANT_GNSS	47	GPS antenna interface	IO	50Ω impedance

MEIG 美格_____ 4.1 Introduction of Antenna Interface

MA922 provides three antenna pins: ANT_MAIN, BT-ANT, ANT_GNSS to improve the TDD-LTE/ FDD-LTE, WIFI/BT, GNSS transceiver performance of the product. It is recommended that users use an antenna with an impedance of 50Ω that matches the RF connector on the module end.

Remark:

To ensure communication capability in all frequency bands, please connect all antennas .

It is recommended that the RF adapter cable be carefully selected on the application side. It is necessary to choose an RF patch cord with as little loss as possible. It is recommended to use RF patch cables with the following RF loss requirements:

- □ GSM900 < 0.6 dB;
- □ DCS1800 < 1.0 dB;
- I TDD- LTE< 1.2dB;</p>
- I FDD-LTE < 1.2dB ;</p>
- WIFI/BT<1.2dB;</p>
- GNSS<1.0dB.

The RF Connectors are recommended:

Product name		MHF ILK	MHF I	MHF I	MHF. III		
Appearance		1/10	20 0		-		
		MHF Lwith mechanical lock	Best Insertion Loss	Most Cable C.D. options	low profile 1.60mm		
Plug part nur	nber	2	20767-001R	20278-112R-**	20600-002R		
Receptacle part	number		20279-001E-++(3 pads) 20441-001E-01(4 pads)		20360-0015-++		
Maximun heigh	s (mm)	2.0	3.0	2.5	1.6		
Outside dimension of n	eceptacie(mm)		30×30		20×20		
	2.00 mm(26)		•				
	1.30 mm(30)	•		•			
	1.37 mm(30)	•		•			
	1.32 mm(32)	•		•			
Coax O.D.	1.13 mm(32)	•		•			
(Center Conductor AWG)	0.95 mm(33)						
	0.81mm (33)						
	0.81 mm(36)	•	2	•	•		
	0.64 mm(36)				•		
	0.48 mm(38)						
Frequenc	y		DC - 0GHz		DC - 8GHz		
	DC-3GHz	1	13 max.				
	3GHz-6GHz	1	1.5 max.(PLUG)/1.4 max.(RECE)				
VSWR (L=100mm)	6GHz-0GHz	1.0 max(PLUG)/	÷				
	0GHz-12GHz						
	12GHz-15GHz						
Service temp (C	(elsius)	-40 degree - 90degree					
Characteristic Im	pedance		50oh	m			
Rated volta	9=		AC60	9V:			
Contact resist	ance		20m ohn	n max.			
Withstand vol	tage	AC200V/min					
Insulation resis	itance.		500M ohm min / DC100V				

Figure 34. The RF Connector

MEIG 美格_____ 4.2 RF Reference Circuit

4.2.1 Antenna Connection Reference Design

The SDR0_ANT0, SDR0_ANT1, SDR0_ANT2, SDR0_ANT3, CV2X_ANT5, CV2X_ANT6, SDR_GNSS_ANT4 antenna connection reference design circuit is shown in the figure below. In order to obtain better RF performance, the following four points should be paid attention to in schematic design and PCB layout:

1. Schematic design, a π -type matching circuit is reserved near the RF port of the module, and the capacitor is not pasted by default;

2. Schematic design, redundant RF connectors between the module RF port and the antenna are used for certification testing, and the RF connectors may not be attached after mass production and delivery; (Reference: RF Connector-1P-H176);

3. Schematic design, a π -type matching circuit is reserved near the antenna end, and the capacitor is not pasted by default;

4. PCB layout, the wiring between the module RF port and the antenna is as short as possible, and the board factory needs to do 50Ω impedance control on the RF wiring.

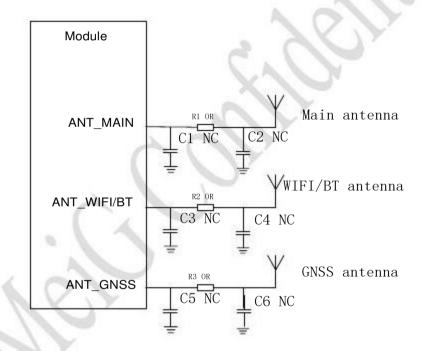


Figure 35 RF Reference Circuit

4.2.2 RF Signal Line Layout

For the user PCB, the characteristic impedance of all the RF signal lines shall be controlled at 50 Ω . Generally, the impedance of the RF signal line is determined by the dielectric constant of the material, the wiring width (W), the ground gap (S), and the height (H) of the reference ground plane. The control of PCB property impedance usually adopts microband line and coplanar waveguide. To reflect the design principles, the following pictures show the structural design of the microstrip line and the coplanar waveguide when the impedance line controls the 50 Ω waveguide.

W1: Maximum line width W2: minimum line width T1: copper thickness H1: plate medium thickness ERI: plate dielectric constant.

I Microband line complete structure

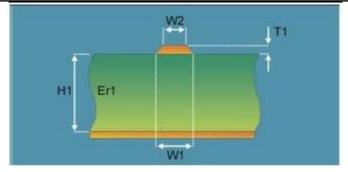


Figure 36 Microband line structure of two-layer PCB plates

Complete structure of the coplanar waveguide

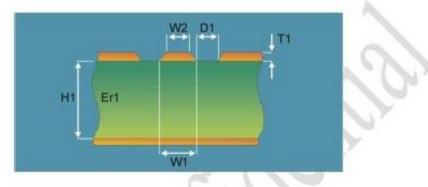


Figure 37 Co-planar waveguide structure of two-layer PCB plates

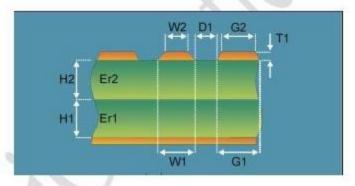


Figure 38 Multi-layer PCB board common-planar waveguide structure (reference for the third layer)

In the circuit design of RF antenna interface, the following design principles are recommended to ensure the good design and reliability of RF signal:

 $\hfill Precise 50\ \Omega$ impedance control of the RF signal lines shall be performed using impedance simulation calculation tools.

GND pins adjacent to RF pins do not make hot pads and make full contact with the ground.

I The distance between the RF pin and the RF connector should be as short as possible; also avoid a recommended alignment angle of 135.

□ When the connection device package is established, the signal foot should keep a certain distance from the ground.

☐ The ground plane of the RF signal line reference shall be complete; adding a certain amount of ground holes around the signal line and the reference ground may help improve the RF

performance; the distance between the ground hole and the signal line shall be at least 2 times the line width (2 W).

I RF signal lines must be away from interference sources and avoid crossing or parallel to any signal lines in adjacent layers.

4.3 Antenna installation

4.3.1 Antenna Requirements

Antenna The requirements for the receiving antenna are shown in the table below:

Antenna me requirements for the receiving antenna are shown in the table below.					
Table 27 Antenna requirements					
Туре	Requirement				
	VSWR: < 2				
	Gain (dBi): 1				
	Maximum input power (W): 2W				
GSM/TDD-LTE/FDD-LTE/NR	Input Impedance (ohm): 50				
	Polarization Type: Vertical				
	Cable insertion loss: < 1.5dB				
	(GSM 900 / 18 00 ; LTE B 1 /B 3 /B 5 /B 8 /B 34 / B39)				
	Cable Insertion Loss: < 2dB				
	(LTE B38/B40/B41)				
	Frequency range: 5855–5925 MHz				
	Gain: Min. 4 dBi				
	VSWR: ≤ 2				
C-V2X	efficiency: > 30 %				
	Maximum output power: 10 W				
	Recommended antenna pattern: ±10–15°(Azimuth Beamwidth:				
	360°				
	Elevation beamwidth: ±10–15°)				
	Input Impedance (ohm): 50 Ω				
	Cable insertion loss:				
	< 2 dB: C-V2X TDD B47				
	VSWR: < 2				
CNICO	Gain (dBi): 1				
GNSS	Maximum input power (W): 0.1 W				
	Input Impedance (ohm): 50				
	Polarization Type: Vertical				
	Cable insertion loss: < 1.5dB				

4.3.2 RF Output Power

The RF output power of the MA922 is shown in the table below.

Table 28 MA922 RF transmit power

Froquency	Receiving Sensitivity (Typical BW) -10M					
Frequency	Main episode	Separation	Main episode + Diversity	3GPP (Main + Diversity)		
EGSM900	-108dBm	NA	NA	-102.4dBm		
DCS1800	-108dBm	NA	NA	-102.4dBm		
LTE-FDD B1	-97dBm	NA	NA	-96.3dBm		
LTE-FDD B3	-97dBm	NA	NA	-93.3dBm		
LTE-FDD B5	-98dBm	NA	NA	-94.3dBm		
LTE-FDD B8	-98dBm	NA	NA	-93.3dBm		
LTE-FDD B28A	-98dBm	NA	NA	-93.3dBm		
LTE-TDD B34	-97.5dBm	NA	NA	-96.3dBm		
LTE-TDD B38 -9 4.3.3 RF Receive LTE-TDD B39 -9	7.5dBm Sensitivity	NA	NA	-96.3dBm		
		NA	NA	-96.3dBm		
LTE-TDD B40 Table 29 MA922 modul			NA	-96.3dBm		
LTE-TDD B41	-97.5dBm	NA	NA	-94.3dBm		
WCDMA B1	Receiving Sensi	NA tivity (Typical BW) -10	-106.7			
FrequencyWCDMA B8 5G NR FDD n1	<u>-106 7</u> <u>95.8</u> Main episode	NA Separation	-103.7 Main episode + NA	3GPP (Main +		
		-	Diversity	Diversity)		
EGSM900	-108dBm	NA	NA	-102.4dBm		
DCS1800	-108dBm	NA	NA	-102.4dBm		
LTE-FDD B1	-97dBm	NA	NA	-96.3dBm		
LTE-FDD B3	-97dBm	NA	NA	-93.3dBm		
LTE-FDD B5	-98dBm	NA	NA	-94.3dBm		
LTE-FDD B8	-98dBm	NA	NA	-93.3dBm		
LTE-FDD B28A	-98dBm	NA value	NA Minimum	-93.3dBm		
LTE-TDD B34	-97.5dBm	NA	NA	-96.3dBm		
	-97.5dBm	NA	NA 5dBm+5dB	-96.3dBm		
	-97.5dBm	NA	NA 0dBm+5dB	-96.3dBm		
LTE-TDD B40	-97.5dBm	NA IdBm +2 dB (Class 3)	NA WCDMA	-96.3dBm		
WCDMA LTE-TDD B41		3 dBm ±2 dB (Class 3) NA	NA	-94.3dBm		
WCDMA B1	-106.7	NA	NA	-106.7		
WCDMA B8	-106.7		NA 40 dDm	-103.7		
5G NR FDD n1	00.0	B dBm ±2 dB (Class 3)	NA < -40 dBm	-95.8		
SG NR FDD n3	-92.8	NA	NA	-92.8		
5G NR FDD n8	-92.8 26	dBmNA +1/-2 dB (Class	2)NA < -40 dBm	-92.8		
5G NR FDD n28A	-90.1	NA	NA	-90.1		
5G NR FDD n41	-86.7	NA	NA	-86.7		
5G NR FDD n78	-86.8	NA	NA	-86.8		
5G NR FDD n79	-86.8	NA	NA	-86.8		
5G NR FDD n77	-86.3	NA	NA	-86.3		
Frequency Remark: EGSM000mation on oth		ximum value RenegdB bandsnwilld	Minimum ⊋eifadBm±5dBsubseque	nt editions of the		
DCS1800	300	dBm±2dB	0dBm±5dB			
₩eiGISphart Technolog	y Co., Ltd. 23	dBm ±2 dB (Class 3)	WCDMA	93/1		
TE						

23dBm±2dB(Class 3)

LTE

MEIG 美格

4.3.4 Operating Frequency

Table 30 MA922 operating frequency

3GPP frequency band	Send	Take over	Unit
EGSM900	880~915	925~960	MHz
DCS1800	1710~1785	1805~1880	MHz
WCDMA B1	1920–1980	2110–2170	MHz
WCDMA B8	880–915	925–960	MHz
LTE-FDD B1	1920~1980	2110~2170	MHz
LTE-FDD B3	1710~1785	1805~1880	MHz
LTE-FDD B5	824~849	869~894	MHz
LTE-FDD B8	880~915	925~960	MHz
LTE-FDD B28A	703–733	758–788	MHz
LTE-TDD B34	2010~2025	2010~2025	MHz
LTE-TDD B38	2570~2620	2570~2620	MHz
LTE-TDD B39	1880~1920	1880~1920	MHz
LTE-TDD B40	2300~2400	2300~2400	MHz
LTE-TDD B41	2555~2655	2555~2655	MHz
C-V2X B47	5855–5925	5855–5925	MHZ
5G NR FDD n1	1920–1980	2110–2170	MHZ
5G NR FDD n3	1710~1785	1805~1880	MHZ
5G NR FDD n8	880~915	925~960	MHZ
5G NR FDD n28A	703–733	758–788	MHZ
5G NR FDD n41	2496–2690	2496–2690	MHZ
5G NR FDD n77	3300–4200	3300–4200	MHZ
5G NR FDD n78	3300–3800	3300–3800	MHZ
5G NR FDD n79	4400–5000	4400–5000	MHZ
GPS	/	L1:1575.42±1	MHZ
		L5: 1176.45±1	
BDS	/	1559~1563	MHZ
Glonass	1	1597~1606	MHZ

1

5. Electrical Characteristics

5.1 Limited Voltage Range

The limit voltage range refers to the module power supply voltage and the maximum voltage range that the digital and analog input/output interfaces can withstand. Working outside this range may result in damage to the product.

The limit voltage range of MA922 is shown in the table below.

Table 31 The limit working voltage range of the module					
Parameter	Description	Minimum	Typical value	Maximum value	Unit
VBAT_BB, VBAT_RF	VBAT_BB and VBAT_RF	-0.3	3.8	6.0	V
USB_VBUS	USB connection detect	-0.3	5.0	5.5	v
VBAT_CV2X	Power supply for the module's C-V2X part	-0.5	5.0	5.3	v
Voltage at Digital Pins	Digital I/O supply voltage	-0.3		2.13	V
Voltage at ADC0		0		4.8	V
Voltage at ADC1		0		4.8	V

parameter

Operating temperature

minimum

+25

-35

Typical value

+75

+ 85

maximum value unit °С

°C

5d2nded Ambient Temperature Range Range

MA922 module is recommended to work in the environments of -30~+70 °C of tis recommended that the application side consider temperature control measures under harsh environmental conditions. At the same time, the extended operating temperature range of the module is provided. When used under extended temperature, the function is normal, but some RF indicators may deteriorate. At the same time, it is recommended that the module application terminal be stored under certain temperature conditions. Modules beyond this range may not work properly or may be damaged.

Table 32 Module temperature range

Parameter	Description	Minimum	Typical value	Maximum value	Unit
VBAT_BB, VBAT_RF	VBAT_BB and VBAT_RF	-0.3	3.8	6.0	V
USB_VBUS	USB connection detect	-0.3	5.0	5.5	V
₩ġĠŢSæəzŢechnology Co.,supply for the module's C-V2X part		-0.5	5.0	5.3	V 95/120
Voltage at	Digital I/O supply voltage	-0.3		2.13	V

state

MA922 Hardware Design Manual

Test case projects

Shutdown 5.3 Module Bower Contais normal 10 Range power supply in case of power failure

TBD

Result (mA)

current Table 33 Power consumption

Module state	Bottom Pilot current projects	Power on, no sim c Test case current value in flig	ard, no T card, test the minimum ht mode.	TBD Result (mA)
Shutdown	Shutdown leakage current	Maintain normal vol Insert the mobile ca ATpowercommandfail	TBD TBD	
	Real Bottom current network		ard, no T card, test the minimum icom card, wait for the actual network. commandin flight mode.to query and register on the	TBD TBD
	sleep Real	AT command to que network, use the A	ard, wait for the actual network, use the nunication card, wait for the actual ery the registration on the network, and command to query and register on current for 10 minutes. cord the average current for 10	TBD TBD
Hibernate	network sleep	use the AT comman	icom card, wait for the actual network, GSM850 CH190 nd to query and register on the 1) The module under test is powered on d the average current for 10 minutes.	TBD
		network, use the A	nunication card, wait for the actual data network; F command to query and register on 2) The module is set to sleep state cord the average current for 10 through AT commands (USB is in the	TBD TBD
Hibernate	GSM850 GSM850	powered on , and the USB is in a suspended state the module is powered on , and the USB is in a	GSM850 CH190 3) The module under test remains in the 1) The module under test is powered on state of no data transmission for 10 and successfully registered with the minutes, and records Average current data network: for 10 minutes. 2) The module is set to sleep state GSM850 CH128 through AT commands (USB is in the 1) The module under test is powered on suspended state): and successfully registered with the 3) The module under test remains in the data network; state of no data transmission for 10 2) The module is set to sleep state minutes, and records Average current through AT commands (USB is in the for 10 minutes.	TBD TBD
Temperature		suspended state	GSM850 CH128 3) The module under test remains in the 1) The module under test is powered on state of no data transmission for 10 and successfully registered with the minutes, and records Average current data network;	TBD
Storage		-40 -	 2) The module is set to sleep state + 95 °C through AT commands (USB is in the suspended state); 3) The module under test remains in the state of no data transmission for 10 minutes, and records Average current 	

-

°C

96/120

		· · · · · · · · · · · · · · · · · · ·
	for 10 minutes.	
	GSM850 CH251	
	1) The module under test is powered on	
	and successfully registered with the	
	data network;	
	2) The module is set to sleep state	TBD
	through AT commands (USB is in the	
	suspended state);	
	3) The module under test remains in the	
	state of no data transmission for 10	
	minutes, and records Average current for 10 minutes.	
	GSM900 CH62	
	1) The module under test is powered on	
	and successfully registered with the	
	data network;	TBD
	2) The module is set to sleep state	
	(USB is suspended) through AT	
	commands;	
	3) The module under test remains in the	
	state of no data transmission for 10	
	minutes, and records Average current	
GSM900	for 10 minutes.	
	GSM900 CH1	
	1) The module under test is powered on	
	and successfully registered with the	
	data network;	TBD
	2) The module is set to sleep state	
	(USB is in the suspended state) through	
	AT commands;	
	3) The module under test remains in the	
	state of no data transmission for 10	
	minutes, and records Average current	
	for 10 minutes.	
	GSM900 CH124	
	1) The module under test is powered on	
	and successfully registered with the	
	data network;	TBD
	2) The module is set to sleep state	
	through AT commands (USB is in the	
	suspended state);	
	3) The module under test remains in the	
	state of no data transmission for 10	
	minutes, and records Average current	
	for 10 minutes.	

			are Beergin Mariaa
		DCS CH698	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
	DCS	for 10 minutes.	
		DCS CH512	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	100
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		DCS CH885	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	100
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		PCS CH661	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	100
	PCS	(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		PCS CH512	
		1) The module under test is powered on	TBD
		and successfully registered with the	
		data network;	
	I	1	

	1		are beergin manual
		2) The module is set to sleep state	
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		PCS CH810	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	
		through AT command (USB is in the	
		suspended state);	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band1 CH18300	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	
	The module is	through AT command (USB is in the	
		suspended state);	
		3) The module under test remains in the	
		state of no data transmission for 10	
FDD	powered on,	minutes, and records Average current	
	registered in	for 10 minutes.	
	the network idle	Band1 CH18050	
	state, the DRX	1) The module under test is powered on	
	monitoring	and successfully registered with the	
	period is 1.28s	data network;	TBD
	, no data	2) The module is set to sleep state	
	transmission,	(USB is suspended) through AT	
	and the USB is	commands;	
	in the	3) The module under test remains in the	
	suspended	state of no data transmission for 10	
	state	minutes, and records Average current	
	olulo	for 10 minutes.	
		Band1 CH18550	
		1) The module under test is powered on	
		and successfully registered with the	TBD
		data network;	
		2) The module is set to sleep state	
		through AT command (USB is in the	
		suspended state);	
		3) The module under test remains in the	

	1		are besign Manual
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band3 CH19575	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	100
		through AT command (USB is in the	
		suspended state);	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band3 CH19250	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	
		through AT command (USB is in the	
		suspended state);	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band3 CH19900	
		1) The module under test is powered on	
		and successfully registered to the data	
		network;	TBD
		2) The module is set to sleep state	
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band5 CH20525	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	
		through AT command (USB is in the	
		suspended state);	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
1	1		1

	MA922 Haldw	are Design Manual
	Band5 CH20450	
	1) The module under test is powered on	
	and successfully registered with the	
	data network;	TBD
	2) The module is set to sleep state	
	(USB is suspended) through AT	
	commands;	
	3) The module under test remains in the	
	state of no data transmission for 10	
	minutes, and records Average current	
	for 10 minutes.	
	Band5 CH20600	
	1) The module under test is powered on	
	and successfully registered with the	
	data network;	TBD
	2) The module is set to sleep state	
	(USB is suspended) through AT	
	commands;	
	3) The module under test remains in the	
	state of no data transmission for 10	
	minutes, and records Average current	
	for 10 minutes.	
	Band8 CH21625	
	1) The module under test is powered on	
	and successfully registered with the	
	data network;	TBD
	2) The module is set to sleep state	
	through AT command (USB is in the	
	suspended state);	
	3) The module under test remains in the	
	state of no data transmission for 10	
	minutes, and records Average current	
	for 10 minutes.	
	Band8 CH21500	
	1) The module under test is powered on	
	and successfully registered with the	
	data network;	TBD
	2) The module is set to sleep state	
	(USB is suspended) through AT	
	commands;	
	3) The module under test remains in the	
	state of no data transmission for 10	
	minutes, and records Average current	
	for 10 minutes.	
	Band8 CH21750	
	1) The module under test is powered on	TBD
	and successfully registered with the	
	data network;	
 1		I

	1	W/ WZZ Haław	are Design Manual
		2) The module is set to sleep state	
		through AT command (USB is in the	
		suspended state);	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band34 CH36275	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
	-	state of no data transmission for 10	
	The module is	minutes, and records Average current	
		for 10 minutes.	
		Band34 CH36250	
TDD		1) The module under test is powered on	
		and successfully registered with the	
	powered on,	data network;	TBD
	registered in	2) The module is set to sleep state through AT commands (USB is in the	
	the network idle	suspended state);	
	state, the DRX	3) The module under test remains in the	
	monitoring	state of no data transmission for 10	
	period is 1.28s	minutes, and records Average current	
	, no data	for 10 minutes.	
	transmission,	Band34 CH36300	
	and the USB is	1) The module under test is powered on	
	in the	and successfully registered with the	
	suspended	data network;	TBD
	state	2) The module is set to sleep state	
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band38 CH38000	
		1) The module under test is powered on	
		and successfully registered with the	TBD
		data network;	
		2) The module is set to sleep state	
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	

	dware Design Mandai
state of no data transmission for 10	
minutes, and records Average current	
for 10 minutes.	
Band38 CH38250	
1) The module under test is powered on	
and successfully registered with the	
data network;	TBD
2) The module is set to sleep state	100
through AT command (USB is in the	
suspended state);	
3) The module under test remains in the	
state of no data transmission for 10	
minutes, and records Average current	
for 10 minutes.	
Band38 CH38300	
1) The module under test is powered on	
and successfully registered with the	
data network;	700
2) The module is set to sleep state	TBD
(USB is suspended) through AT	
commands;	
3) The module under test remains in the	
state of no data transmission for 10	
minutes, and records Average current	
for 10 minutes.	
Band39 CH38450	
1) The module under test is powered on	
and successfully registered with the	
data network;	TRD
2) The module is set to sleep state	TBD
(USB is suspended) through AT	
commands;	
3) The module under test remains in the	
state of no data transmission for 10	
minutes, and records Average current	
for 10 minutes.	
Band39 CH38300	
1) The module under test is powered on	
and successfully registered with the	
data network;	TBD
2) The module is set to sleep state	
through AT command (USB is in the	
suspended state);	
3) The module under test remains in the	
state of no data transmission for 10	
minutes, and records Average current	
for 10 minutes.	

 WA322 1 lai	rdware Design Manual
Band39 CH38600	
1) The module under test is powered on	
and successfully registered with the	
data network;	TBD
2) The module is set to sleep state	
through AT command (USB is in	
suspended state);	
3) The module under test remains in the	
state of no data transmission for 10	
minutes, and records Average current	
for 10 minutes.	
Band40 CH39150	
1) The module under test is powered on	
and successfully registered to the data	
network;	TBD
2) The module is set to sleep state	
(USB is suspended) through AT	
commands;	
3) The module under test remains in the	
state of no data transmission for 10	
minutes, and records Average current	
for 10 minutes.	
Band40 CH38700	
1) The module under test is powered on	
and successfully registered with the	
data network;	TBD
2) The module is set to sleep state	UBD
(USB is suspended) through AT	
commands;	
3) The module under test remains in the	
state of no data transmission for 10	
minutes, and records Average current	
for 10 minutes.	
Band40 CH39600	
1) The module under test is powered on	
and successfully registered with the	
data network;	700
2) The module is set to sleep state	TBD
(USB is suspended) through AT	
commands;	
3) The module under test remains in the	
state of no data transmission for 10	
minutes, and records Average current	
for 10 minutes.	
Band41 CH40620	
1) The module under test is powered on	TBD
and successfully registered with the	
data network;	

			are Design Manual
		2) The module is set to sleep state	
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band41 CH40290	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band41 CH41190	
		1) The module under test is powered on	
		and successfully registered with the	
		data network;	TBD
		2) The module is set to sleep state	
		(USB is suspended) through AT	
		commands;	
		3) The module under test remains in the	
		state of no data transmission for 10	
		minutes, and records Average current	
		for 10 minutes.	
		Band1 CH18300	
		module under test is kept for 10 minutes	TBD
	The module is	without data transmission, and the	
		average current for 10 minutes is	
	powered on	recorded.	
FDD	and registered	Band1 CH18050	
TUU	in the network	module under test is kept for 10 minutes	TBD
	idle state. The	without data transmission, and the	
	DRX	average current for 10 minutes is	
	monitoring	recorded.	
	period is 1.28s	Band1 CH118550	
	, no data	module under test is kept for 10 minutes	TBD
	transmission,	without data transmission, and the	
	and the USB is	average current for 10 minutes is	
	active.	recorded.	
		Band3 CH19575	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	

		NI, GEE HA	dware Design Mandal
		recorded.	
		Band3 CH19250	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band3 CH19900	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band5 CH20600	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band5 CH20450	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band5 CH20525	TBD
		module under test is kept for 10 minutes	
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band8 CH21750	TBD
		module under test is kept for 10 minutes	
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band8 CH21625	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		The Band8 CH21500	
		module under test remains in the state	TBD
		of no data transmission for 10 minutes,	
		and the average current for 10 minutes	
		is recorded.	
	The module is	Band34 CH436275	
TDD	powered on,	module under test is kept for 10 minutes	TBD
	registered in	without data transmission, and the	
	-		

	1	WINGEE HAIGH	are Design Manual
	state, the DRX	recorded.	
	monitoring		
	period is 1.28s		
	, no data	Band34 CH36250	
	transmission,	module under test is kept for 10 minutes	TBD
	and the USB is	without data transmission, and the	
	in the	average current for 10 minutes is	
	suspended	recorded.	
	state	Band34 CH36300	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band38 CH38300	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band38 CH37800	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band38 CH38200	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band39 CH38450	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is recorded.	
		Band39 CH38300	
		module under test is kept for 10 minutes without data transmission, and the	TBD
		average current for 10 minutes is	
		recorded.	
		Band39 CH38600	
		module under test is kept for 10 minutes	
		without data transmission, and the	TBD
		average current for 10 minutes is	
		recorded.	
		Band40 CH39150	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
l	1		

		WINGEE HARW	are Design Manual
		recorded.	
		Band40 CH38700	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is recorded.	
		Band40 CH39600	
		module under test is kept for 10 minutes	755
		without data transmission, and the	TBD
		average current for 10 minutes is	
		recorded.	
		Band41 CH40620	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded.	
		Band41 CH40209	
		module under test is kept for 10 minutes	TBD
		without data transmission, and the	
		average current for 10 minutes is	
		recorded. Band41 CH41190	
		module under test is kept for 10 minutes	
		without data transmission, and the	TBD
		average current for 10 minutes is	
		recorded.	
Real		Keep the data connection and send a	
network	Unicom/Mobile	256-byte packet every 5 minutes. The	TBD
data		server returns a 256-byte packet	
hibernation		Band1 0dBm	
		module under test for data transmission	твр
	1) Indoor room	and hold for 5 minutes, record the	100
		average current for 5 minutes	
	temperature	Band1 10dBm	
FDD	state;	module under test conducts data	TBD
	2) Use DC	transmission and keeps it for 5 minutes,	
	power supply to	and records the average current for 5	
	supply the	minutes	
	module, the	Band1 23dBm CH18300	
	voltage is set to	module under test conducts data	TBD
	3.8V;	transmission and keeps it for 5 minutes,	
		and records the average current for 5	
		minutes	
		Band1 23dBm CH18050	TBD

 	dware Design Manual
module under test conducts data	
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band1 23dBm CH18550	
module under test performs data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band3 0dBm	
module under test for data transmission	TBD
and hold for 5 minutes, record the	
average current for 5 minutes	
Band3 10dBm	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band3 23dBm CH19575	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band3 23dBm CH19250	
module under test conducts data	
transmission and keeps it for 5 minutes,	TBD
and records the average current for 5	
minutes	
Band3 23dBm CH19900	
module under test conducts data	
	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band5 0dBm	
module under test for data transmission	TBD
and hold for 5 minutes, record the	
average current for 5 minutes	
Band5 10dBm	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	-
and records the average current for 5	
minutes	
Band5 23dBm CH20525	
module under test conducts data	TDD
transmission and keeps it for 5 minutes,	TBD
and records the average current for 5	

Band5 23dBm CH20450	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band5 23dBm CH20600	
module under test conducts data	TOD
transmission and keeps it for 5 minutes,	TBD
and records the average current for 5	
minutes	
Band8 0dBm	
module under test for data transmission	TBD
and hold for 5 minutes, record the	
average current for 5 minutes	
Band8 10dBm	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band8 23dBm CH21625	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band8 23dBm CH21500	
module under test conducts data	ТВД
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band8 23dBm CH21750	
module under test conducts data	TOO
transmission and keeps it for 5 minutes,	TBD
and records the average current for 5	
minutes	
Band34 0dBm	
module under test for data transmission	TBD
and hold for 5 minutes, record the	
average current for 5 minutes	
Band34 10dBm	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band34 23dBm CH36275	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	

TDD

	-
Band34 23dBm CH36250	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band34 23dBm CH36300	
module under test conducts data	твр
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band38 0dBm	
module under test for data transmission	твр
and hold for 5 minutes, record the	
average current for 5 minutes	
Band38 10dBm	
module under test conducts data	
	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band38 23dBm CH38000	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band38 23dBm CH37800	
module under test conducts data	твр
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band38 23dBm CH38200	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band39 0dBm	
module under test for data transmission	твр
and hold for 5 minutes, record the	
average current for 5 minutes	
Band39 10dBm	
module under test conducts data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	
Band39 23dBm CH38450	
module under test performs data	TBD
transmission and keeps it for 5 minutes,	
and records the average current for 5	
minutes	

	-
Band39 23dBm CH38300 module under test conducts data transmission and keeps it for 5 minutes,	TBD
and records the average current for 5 minutes	
Band39 23dBm CH38600 module under test conducts data transmission and keeps it for 5 minutes, and records the average current for 5	TBD
minutes Band40 0dBm	
module under test for data transmission and hold for 5 minutes, record the average current for 5 minutes	TBD
Band40 10dBm module under test conducts data transmission and keeps it for 5 minutes, and records the average current for 5 minutes	TBD
Band40 23dBm CH39150 module under test conducts data transmission and keeps it for 5 minutes, and records the average current for 5 minutes	TBD
Band40 23dBm CH38700 module under test conducts data transmission and keeps it for 5 minutes, and records the average current for 5 minutes	TBD
Band40 23dBm CH39600 module under test conducts data transmission and keeps it for 5 minutes, and records the average current for 5 minutes	TBD
Band41 0dBm module under test for data transmission and hold for 5 minutes, record the average current for 5 minutes	TBD
Band41 10dBm module under test conducts data transmission and keeps it for 5 minutes, and records the average current for 5 minutes	TBD
Band41 23dBm CH40620 module under test conducts data transmission and keeps it for 5 minutes, and records the average current for 5 minutes	TBD

		÷
	Band41 23dBm CH40290	
	module under test performs data	TBD
	transmission and keeps it for 5 minutes,	
	and records the average current for 5	
	minutes	
	Band41 23dBm CH41190	
	module under test performs data	TBD
	transmission and keeps it for 5 minutes,	
	and records the average current for 5	
	minutes	
	n41A CH509202 @ 23. 30 dBm	
	n41A CH518598 @ 23.49 dBm	
	n41A CH528000 @ 23.42 dBm	
	n77A CH623334 @ 26.01 dBm	
	n77A CH650000 @ 26.06 dBm	
	n77A CH676666 @ 26.00 dBm	
50.04	n78A CH623334 @ 25.97 dBm	
5G SA	n78A CH636666 @ 25.99 dBm	TBD
	n78A CH650000 @ 26.21 dBm	
	n1A CH426000 @ 23.05 dBm	
	n1A CH428000 @ 23.29 dBm	
	n1A CH430000 @ 23.33 dBm	
	n3A CH364000 @ 23.30 dBm	
	n3A CH368500 @ 23.26 dBm	
	n3A CH373000 @ 23.08 dBm	
	n8A CH364000 @ 23.30 dBm	
	n8A CH368500 @ 23.26 dBm	
	n8A CH373000 @ 23.08 dBm	
	n28A CH154600 @ 22.99 dBm	
	The module under test transmits data	
	and holds it for 5 minutes, recording the	
	average current for 5 minutes	
	1A n78A CH623334 @ 22.85 dBm	
	1A n78A CH636666 @ 22.85 dBm	
	1A n78A CH650000 @ 22.78 dBm	
	3A n78A CH623334 @ 25.71 dBm	
	3A_n78A CH636666 @ 25.67 dBm	
5G NSA	3A_n78A CH650000 @ 25.60 dBm	TBD
	5A_n78A CH623334 @ 22.98 dBm	
	5A n78A CH636666 @ 22.56 dBm	
	5A_n78A CH650000 @ 22.95 dBm	
	7A n78A CH623334 @ 23.07 dBm	
	7A_n78A CH636666 @ 22.94 dBm	
	7A n78A CH650000 @ 22.04 dBm	
	8A n78A CH623334 @ 22.92 dBm	
	8A_n78A CH636666 @ 22.51 dBm	
	8A_n78A CH650000 @ 22.91 dBm	
	38A_n78A CH623334 @ 23.17 dBm	

MEIG 美格	MA922 Hardware Design Manual
	38A_n78A CH636666 @ 23.15 dBm
	38A_n78A CH650000 @ 23.23 dBm
	40A_n78A CH623334 @ 22.97 dBm
	40A_n78A CH636666 @ 22.94 dBm
	40A_n78A CH650000 @ 23.06 dBm
	1A_n77A CH623334 @ 22.90 dBm
	1A_n77A CH650000 @ 22.80 dBm
	1A_n77A CH676666 @ 22.92 dBm
	3A_n77A CH623334 @ 25.75 dBm
	3A_n77A CH650000 @ 25.68 dBm
	3A_n77A CH676666 @ 25.68 dBm
	5A_n77A CH623334 @ 22.98 dBm
	5A_n77A CH650000 @ 23.03 dBm
	5A_n77A CH676666 @ 22.99 dBm
	7A_n77A CH623334 @ 23.08 dBm
	7A_n77A CH650000 @ 23.04 dBm
	7A_n77A CH676666 @ 23.15 dBm
	8A_n77A CH623334 @ 22.87 dBm
	8A_n77A CH650000 @ 23.02 dBm
	8A_n77A CH676666 @ 23.08 dBm
	The module under test transmits data
	and holds it for 5 minutes, recording the
	average current for 5 minutes

5.4 ESD Characteristics

The module is not specifically protected against electrostatic discharge. Therefore, users must pay attention to electrostatic protection when producing, assembling and operating modules.Refer to the table below for .

6. Mechanical Characteristics

This chapter describes the mechanical dimensions of the module, all dimensions are in millimeters, and all dimensions without tolerances are ± 0.05 mm.

6.1 Module Mechanical Dimensions

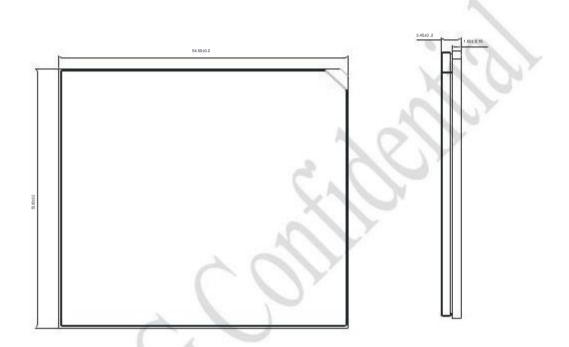


Figure 39 Top view and side view dimension drawing (unit: mm)

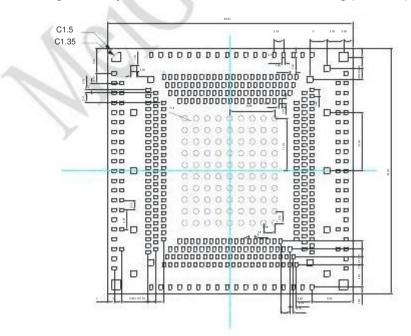
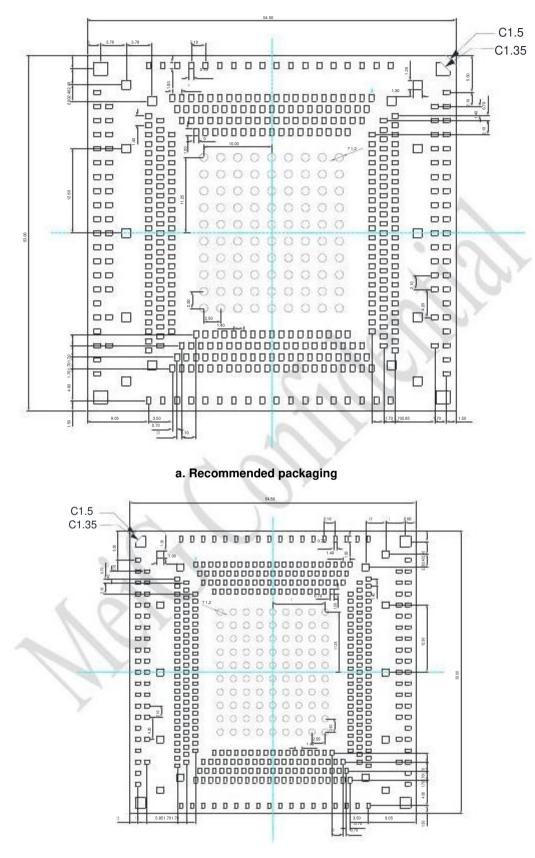



Figure 40 Bottom view dimension drawing (unit: mm)

6.2 Recommended Package

MEIG 美格

b. Recommended packaging

Figure 41 Recommended package (top view) (unit: mm)

MEIG 美格_____ 6.3 Module Top View

Figure 42 Module top view

6.4 Module Bottom View

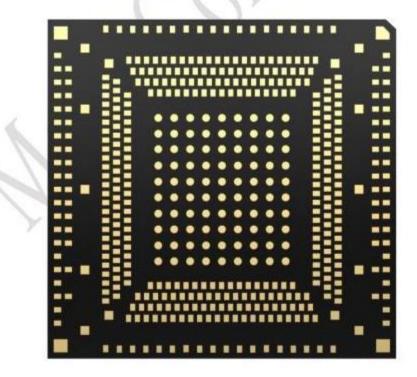


Figure 43 Bottom view of the module

MEIG美格

7. Storage and Production

7.1 Storage

The MA922 ships in a vacuum-sealed bag. The storage of modules must comply with the following conditions:

1. When the ambient temperature is lower than 40 degrees Celsius and the air humidity is lower than 90%, the module can be stored in a vacuum-sealed bag for 12 months;

2. After the vacuum-sealed bag is opened, the module can be directly reflowed or other high-temperature processes if the following conditions are met:

I Module storage air humidity is less than 10%;

The ambient temperature of the module is lower than 30 degrees Celsius, the air humidity is less than 60%, and the factory can complete the patch within 72 hours.

3. If the module is under the following conditions, it needs to be baked before placement:

When the ambient temperature is 23 degrees Celsius (the fluctuation of 5 degrees Celsius is allowed), the humidity displayed by the humidity indicator card is greater than 10%;

^I When the vacuum seal bag is opened, the ambient temperature of the module is lower than 30 degrees Celsius, and the air humidity is less than 60%, but the factory failed to complete the patch within 168 hours;

When the vacuum-sealed bag is opened, the module storage air humidity is greater than 10%.

4. bake it for 8 hours at 125°C (allow 5°C fluctuations up and down).

Remarks :

The mod's packaging cannot withstand such high temperatures, please remove the mod's packaging before the mod is baked.

MeiG Smart Technology Co., Ltd.

MEIG 美格_____ 7.2 Production Welding

Figure 44 Reflow Soldering Temperature Curve

The MA922 is packaged in a tray. The packaging size of the tray is 310*200*20mm (**PCS) and placed as follows:

Figure 45 Pallet Packaging(undetermined)

Heilen

8. Appendix A Reference Documents and Term Abbreviations

8.1 Reference Document

- I MA922 module specifications;
- I MA922 AT command set;
- I MA922 EVB User Manual;
- MA922 reference design circuit;
- I MA922 Application Business Process Manual.

8.2 Term Abbreviation

Table 34 Abbreviations of terms

Abbreviation	English description	Chinese description
AMR	Adaptive Multi-rate	自适应多速率
BER	Bit Error Rate	误码率
BTS	Base Transceiver Station	基站收发信台
PCI	Peripheral Component Interconnect	外设部件互连
CS	Circuit Switched (CS) domain	电路域
CSD	Circuit Switched Data	电路交换数据
DCE	Data communication equipment	数据电路终端设备
DTE	Data terminal equipment	数据终端设备
DTR	Data Terminal Ready	数据终端就绪
EDGE	Enhanced Data rates for GSM Evolution	增强型GPRS
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型GSM
EMC	Electromagnetic Compatibility	电磁兼容性
ESD	Electrostatic Discharge	静电释放
FR	Frame Relay	帧中继
GMSK	Gaussian Minimum Shift Keying	高斯最小移频键控
GPIO	General Purpose Input Output	通用输入/输出
GPRS	General Packet Radio Service	通用分组无线系统
GSM	Global Standard for Mobile Communications	全球标准移动通信系统
HR	Half Rate	半速
HSDPA	High Speed Downlink Packet Access	高速下行分组接入
HSUPA	High Speed Uplink Packet Access	高速上行分组接入
HSPA	HSPA High-Speed Packet Access	高速分组接入
HSPA+	HSPA High-Speed Packet Access+	增强型高速分组接入

MEIG 美格

	<u>_</u>
International Electro-technical Commission	国际电工技术委员会
International Mobile Equipment Identity	国际移动设备标识
Mobile Equipment Identifier	CDMA终端的身份识别码
Input/Output	
International Standards Organization	国际标准化组织
International Telecommunications Union	国际电信联盟
bits per second	比特每秒
Light Emitting Diode	发光二极管
Machine to machine	机器到机器
Mobile Originated	移动台发起的
Mobile Terminated	移动台终止的
Negative Temperature Coefficient	负温度系数
	个人计算机
Printed Circuit Board	印制电路板
Personal Cellular System	个人蜂窝系统
Pulse Code Modulation	脉冲编码调制
	GSM1900
Packet Data Unit	分组数据单元
	点到点协议
	分组交换
	正交相位移频键控
	用户识别模组
	通用异步收/发器(机)
	通用用户识别模组
	通用移动通信系统
	通用串行总线
	宽带码分多址
	时分同步码分多址
	时分长期演进
	频分长期演进
	典型电压值
	最小电压值
	输入高电平的最大电压
	输入高电平的最小电压
	输入低电平的最大电压
	输入低电平的最小电压
· ·	输出高电平的最大电压
	输出高电干的最小电压
Minimum Output High Level Voltage Value	1 田同七 町取小七匹
Maximum Output Low Level Voltage Value	输出低电平的最大电压
	International Mobile Equipment IdentityMobile Equipment IdentifierInput/OutputInternational Standards OrganizationInternational Telecommunications Unionbits per secondLight Emitting DiodeMachine to machineMobile OriginatedMobile TerminatedNegative Temperature CoefficientPersonal ComputerPrinted Circuit BoardPulse Code ModulationPersonal Communication SystemPersonal Communication System