

Report No. : EED32K00141901 Page 1 of 42

TEST REPORT

Product : DIGITAL THERMOMETER

Trade mark : N/A

Model/Type reference : DMT-4735b

Serial Number : N/A

Report Number : EED32K00141901

FCC ID : 2AQVU0001

Date of Issue : Jul. 24, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

JOYTECH HEALTHCARE CO., LTD.
No.365, Wuzhou Road, Yuhang Economic Development Zone,
Hangzhou city, 311100 Zhejiang, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

> > Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Kevin yang (Reviewer)

ReJm (a

Date: Jul. 24, 2018

Peter (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 3177461265

Page 2 of 42

2 Version

Version No.	Date	(6	Description	9
00	Jul. 24, 2018		Original	
	125	12	713	/05
		(c/2)	(6.52)	(6.7)

3 Test Summary

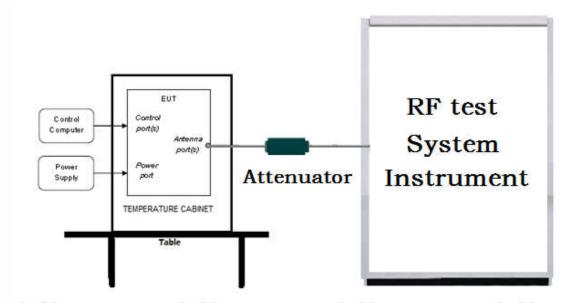
Test Summary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No. : EED32K00141901 Page 4 of 42

4 Content

1 COVER PAGE.	•••••	•••••	•••••	•••••	•••••	•••••	1
2 VERSION	•••••	•••••	•••••		•••••		2
3 TEST SUMMAI	RY	•••••	•••••				3
4 CONTENT		•••••		•••••		•••••	4
5 TEST REQUIR	EMENT	•••••					5
5.1 TEST SETU	P						5
	onducted test se	•					
	adiated Emissio						
	RONMENT DITION						
6 GENERAL INF							
	ORMATION DESCRIPTION OF						
	SPECIFICATION OF						
	ON OF SUPPORT						
	TION						
	FROM STANDARI						
6.7 ABNORMALI	ITIES FROM STAN	NDARD COND	ITIONS				8
	ORMATION REQU						
	ENT UNCERTAIN	200					
7 EQUIPMENT L	IST			•••••	•••••		10
8 RADIO TECHN	IICAL REQUIR	EMENTS SF	PECIFICATIO	N			12
Annondiy A): 6dB Occupied	d Dandwidth					12
Appendix A): Conducted Pe	ak Outnut	Power	•••••		•••••	15
): Band-edge fo						
): RF Conducte						
Appendix E): Power Spectr	al Density			= -		21
): Antenna Requ						
): Restricted ba						
1 2 2 2) Radiated Spu						
PHOTOGRAPHS	OF TEST SET	UP	•••••	•••••	••••••	•••••	33
PHOTOGRAPHS	OF EUT CON	STRUCTION	IAL DETAILS		•••••	•••••	35



Report No.: EED32K00141901 Page 5 of 42

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

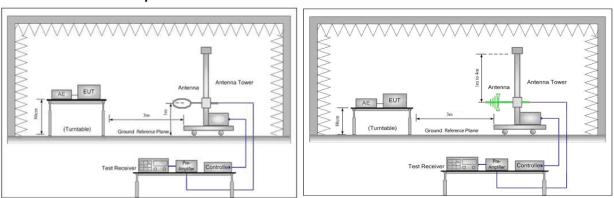


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

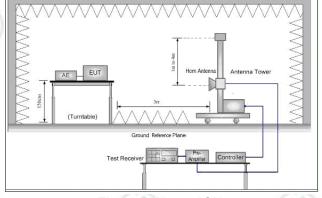


Figure 3. Above 1GHz

5.2 Test Environment

Operating Environment:		
Temperature:	24.8 °C	
Humidity:	57% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
	TX/RX	Low(L)	Middle(M)	High(H)	
GESK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
Grak	2402WH2 ~2460 WH2	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuchannel(s)	uous modulation t	est signal at the	specific	

6 General Information

6.1 Client Information

Applicant:	JOYTECH HEALTHCARE CO., LTD.
Address of Applicant:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China
Manufacturer:	JOYTECH HEALTHCARE CO., LTD.
Address of Manufacturer:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China
Factory:	JOYTECH HEALTHCARE CO., LTD.
Address of Factory:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou city, 311100 Zhejiang, China

6.2 General Description of EUT

Product Name:	DIGITAL THERMOMETER			
Model No.(EUT):	DMT-4735b			200
Trade mark:	N/A			(48)
EUT Supports Radios application:	BT4.0 Single Mode, 2402-2480MHz	0		0
Power Supply:	Button battery (CR 2032) 3V			
Sample Received Date:	Jun. 06, 2018		13	
Sample tested Date:	Jun. 06, 2018 to Jul. 24, 2018		(35)	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		100		
Bluetooth Version:	4.0				(1)
Modulation Technique:	DSSS		(0,		10.
Modulation Type:	GFSK				
Number of Channel:	40				
Sample Type:	Portable production	(3)		100	
Antenna Type and Gain:	Type: PCB Antenna Gain: 0dBi	(0)		(0)	
Test Voltage:	DC 3V				

Report No.: EED32K00141901 Page 8 of 42

				100		705	_
Operation F	requency eac	h of channe	l			(3)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3 Rad	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



Report No. : EED32K00141901 Page 10 of 42

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Attenuator	HuaXiang	SHX370	15040701	03-29-2018	03-28-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(E)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54436035	03-13-2018	03-12-2019
PC-1	Lenovo	R4960d	(3)	03-29-2018	03-28-2019
BT&WI-FI Automatic control	R&S	OSPB157	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-29-2018	03-28-2019

Report No. : EED32K00141901 Page 11 of 42

200	200		107	200	
	3M S	Semi/full-anech	oic Chamber		_
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-617	03-29-2018	03-28-2019
Microwave Preamplifier	Tonscend	EMC051845S E	980380	01-19-2018	01-18-2019
Horn Antenna	ETS-LINDGREN	3117	00057407	07-10-2018	07-08-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029- 4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001	(35)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-10-2018	01-09-2019

Report No.: EED32K00141901 Page 12 of 42

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
est Re	sults List:	(0)

est ivesuits Fist.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6410	1.0571	PASS
BLE	MCH	0.6694	1.0676	PASS
BLE	НСН	0.6710	1.0753	PASS





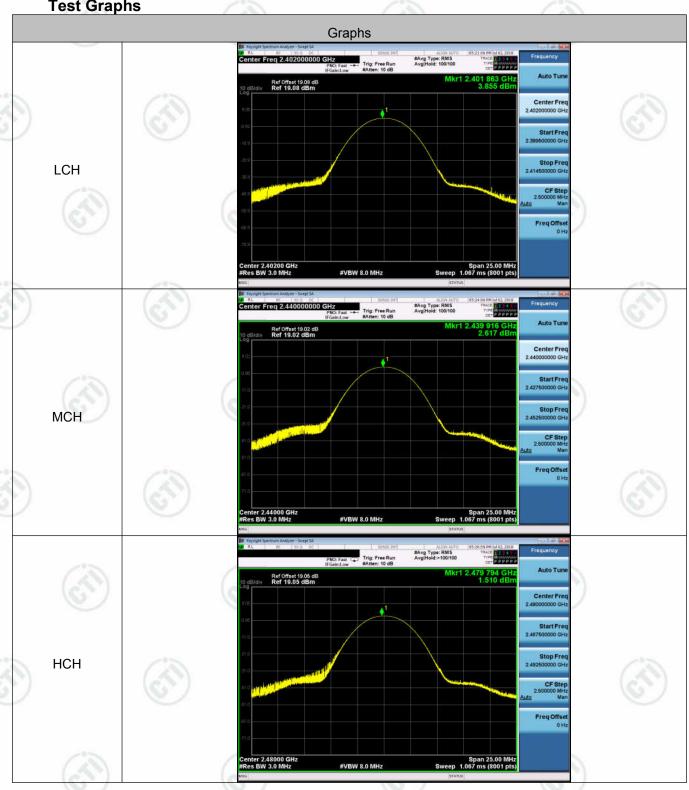
Test Graphs

Page 15 of 42

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	3.855	PASS
BLE	MCH	2.617	PASS
BLE	HCH	1.51	PASS



Test Graphs

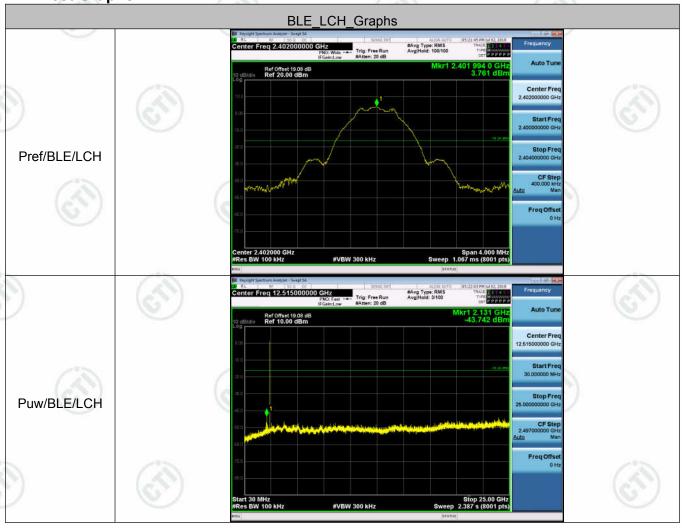
Report No. : EED32K00141901 Page 17 of 42

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Me	ode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
В	LE	LCH	3.798	-55.766	-16.2	PASS
В	LE	НСН	1.773	-48.593	-18.23	PASS

Test Graphs

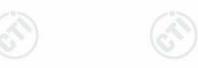


Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	3.761	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	2.506	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	1.384	<limit< td=""><td>PASS</td></limit<>	PASS

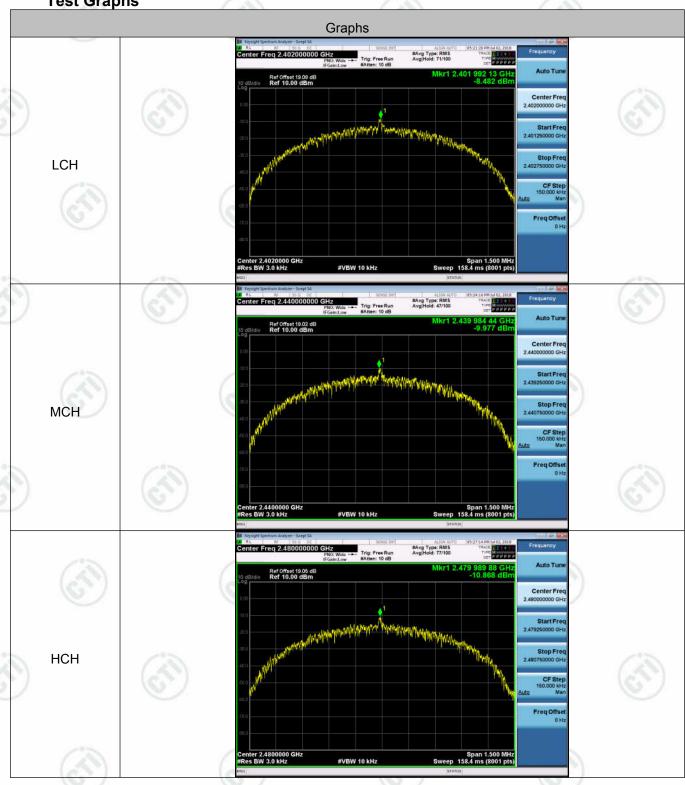
Test Graphs



Appendix E): Power Spectral Density

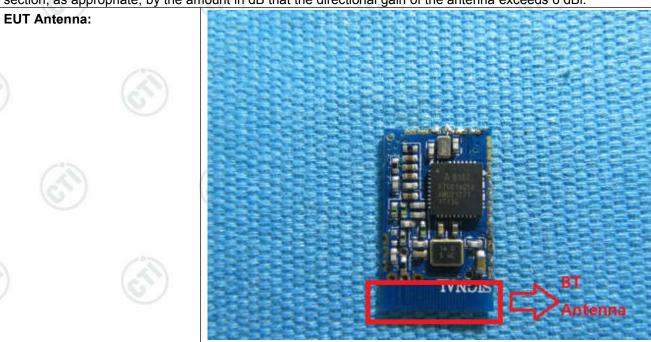
Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	LCH	-8.482	8	PASS
BLE	MCH	-9.977	8	PASS
BLE	НСН	-10.868	8	PASS



Page 22 of 42 Report No.: EED32K00141901

Test Graphs


Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

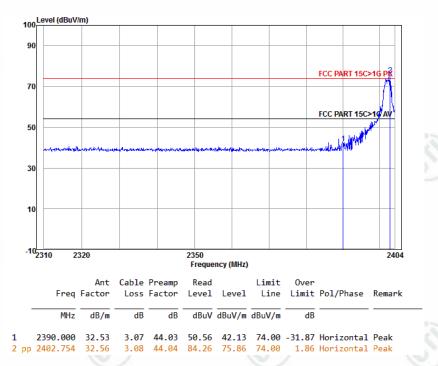
15.247(b) (4) requirement:

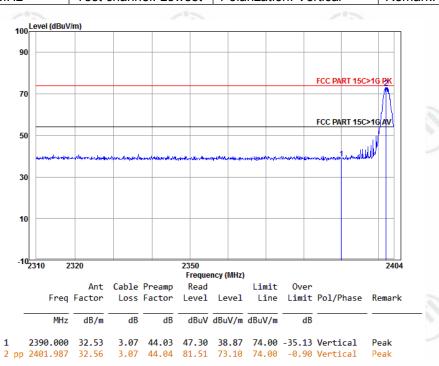
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Appendix G): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ah aug 401 la	Peak	1MHz	3MHz	Peak	105
	Above 1GHz	Peak	1MHz	10Hz	Average	(2)
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the antenna was turned from 0 deg e. The test-receiver systems and be a marker at the or the antenna was turned from 1 deg e. The test-receiver systems and width with Maxim f. Place a marker at the or the surpression of the seminary transfer	on the top of a rotal choic camber. The of the highest radioters away from the op of a variable-heil varied from one man value of the field tenna are set to manission, the EUT was to heights from 1 rees to 360 degrees man was set to Peakum Hold Mode.	table wa lation. e interfere ight anter eter to for d strength ake the m vas arrang meter to es to find k Detect F	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters the maxin function a	rs above the gas of the growth	o, which
	frequency to show con bands. Save the spect for lowest and highest	npliance. Also mea rum analyzer plot.	asure any	emissions	s in the restric	
	bands. Save the spect for lowest and highest Above 1GHz test procede g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, on the change form the 1 meter and table in the owest channel, the ments are perform different to the X axis	change frable 0.8 is 1.5 met e Highest ned in X, Y positionia	om Semi- meter to 1 er). channel Y, Z axis p	s in the restrict ower and mode Anechoic Ch. .5 meter(Abore positioning for t is worse cas	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, an j. Repeat above procedure.	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, on the change form to 1 meter and table in the owest channel, the ments are perform d found the X axis	change frable 0.8 is 1.5 met e Highest ned in X, positionin ncies me	emissions or each por each por semi-meter to 1 er). channel Y, Z axis por grant was a control was a	s in the restrict ower and mode Anechoic Ch. .5 meter(Abore positioning for t is worse cas	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test procede g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, an	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, on the change form the 1 meter and table in the owest channel, the ments are perform different to the X axis	change frable 0.8 is 1.5 met e Highest ned in X, positionin ncies me	emissions or each por each por semi-meter to 1 er). channel Y, Z axis programming which is easured ware reconstructions.	Anechoic Ch. 5 meter(Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test procedured good Different between above to fully Anechoic Chamman 18GHz the distance is how to rest the EUT in the left in the radiation measure the Transmitting mode, an jour Repeat above procedure. Frequency	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, on the change form the change form the compact channel, the ments are performed found the X axis are until all freque Limit (dBµV/m	change frable 0.8 is 1.5 met e Highest ned in X, positionin ncies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rei Quasi-pe	Anechoic Ch. 5 meter (Abo	ambe
imit:	bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the let i. The radiation measure Transmitting mode, an j. Repeat above procedure Frequency 30MHz-88MHz	rum analyzer plot. channel ure as below: ve is the test site, on the change form the change form the compact channel, the ments are performed found the X axis ares until all freque Limit (dBµV/m 40.0)	change frable 0.8 is 1.5 met e Highest ned in X, positionin ncies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rei Quasi-pe	Anechoic Ch. 5 meter(Abo cositioning for t is worse cas as complete. mark eak Value	ambe
Limit:	bands. Save the spect for lowest and highest Above 1GHz test procedured good Different between above to fully Anechoic Chamman 18GHz the distance is hour in the low in the result of the reduction of the reduct	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, on the change form to the second table in the	change frable 0.8 is 1.5 met e Highest ned in X, positionin ncies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rei Quasi-pe Quasi-pe	Anechoic Ch. 5 meter(Aboositioning for t is worse cases complete. mark eak Value eak Value	ambe
Limit:	bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chammat 18GHz the distance is how to fully Anechoic Chammat 18GHz the distance is how the full in the let in the radiation measured that the radiation measured the radiation measured that the radiation measured that the	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, on the change form the change form the control of the change form the change for	change frable 0.8 is 1.5 met e Highest ned in X, positionin ncies me	om Semi- meter to 1 er). channel Y, Z axis p ng which i asured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (Abcoositioning for t is worse cases complete. mark eak Value eak Value	ambe

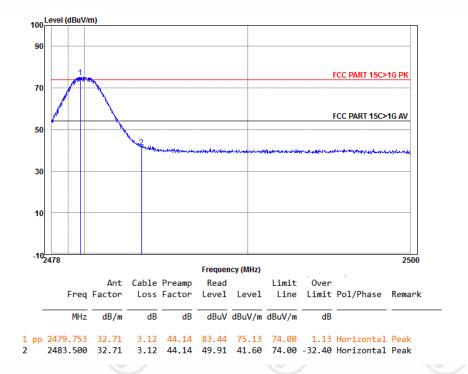


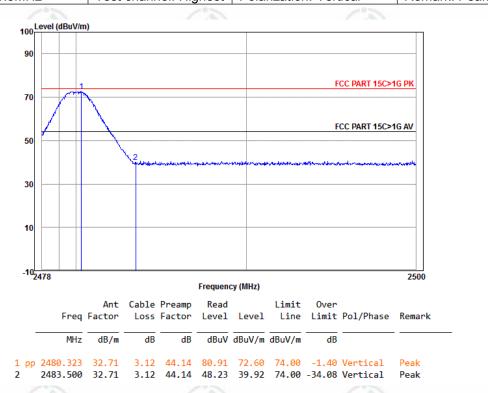


Test plot as follows:

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	





Report No. : EED32K00141901 Page 26 of 42

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Report No. : EED32K00141901 Page 27 of 42

Note:

1)The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix H) Radiated Spurious Emissions

Frequency 0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz	Detector Peak Average	RBW 10kHz 10kHz	VBW 30kHz	Remark Peak	
0.009MHz-0.090MHz				Peak	
	Average	10kHz	20kH=		
0.000MH= 0.110MH=	400	I	30kHz	Average	
U.UBUIVII IZ-U. I TUIVIMZ	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
Ab 4011-	Peak	1MHz	3MHz	Peak	
Above 1GHZ	Peak	1MHz	10Hz	Average	
	0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz	0.110MHz-0.490MHz Peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz -30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 120kHz Above 1GHz	0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz	0.110MHz-0.490MHz Peak 10kHz 30kHz Peak 0.110MHz-0.490MHz Average 10kHz 30kHz Average 0.490MHz -30MHz Quasi-peak 10kHz 30kHz Quasi-peak 30MHz-1GHz Quasi-peak 120kHz 300kHz Quasi-peak Above 1GHz Peak 1MHz 3MHz Peak

Test Procedure:

Limit:

Below 1GHz test procedure as below:

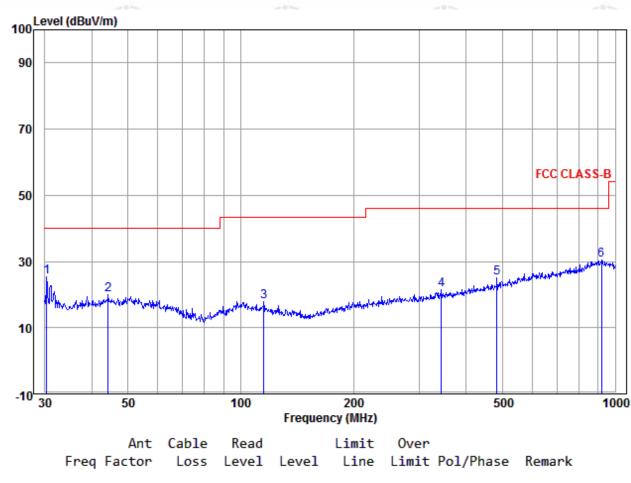
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-	(0.7)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Report No. : EED32K00141901 Page 29 of 42

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)			
Test mode:	Transmitting	Horizontal	

	Freq		Loss					Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB		
1 pp	30.317	11.97	0.09	13.31	25.37	40.00	-14.63	Horizontal	QP
2	44.275	14.16	0.08	5.83	20.07	40.00	-19.93	Horizontal	QP
3	115.321	11.20	0.60	6.10	17.90	43.50	-25.60	Horizontal	QP
4	343.180	14.27	1.29	6.02	21.58	46.00	-24.42	Horizontal	QP
5	483.910	16.68	1.50	6.79	24.97	46.00	-21.03	Horizontal	QP
6	919.287	22.06	2.44	5.82	30.32	46.00	-15.68	Horizontal	OP

Vertical Test mode: **Transmitting** 100 Level (dBuV/m) 90 70 FCC CLASS-B 50 30 3 10 30 100 50 200 500 1000 Frequency (MHz) Ant Cable Read Limit 0ver Limit Pol/Phase Freq Factor Loss Level Level Line Remark MHz dB/m dBuV dBuV/m dBuV/m dB dB 0.09 14.53 40.00 -13.41 Vertical 1 pp 30.317 11.97 26.59 QΡ 2 40.00 -20.27 Vertical QΡ 58.819 13.26 0.20 6.27 19.73 3 43.50 -23.78 Vertical QΡ 111.347 11.52 0.60 7.60 19.72 4 304.610 13.50 1.09 6.59 21.18 46.00 -24.82 Vertical QΡ 5 513.633 17.15 1.53 6.22 24.90 46.00 -21.10 Vertical QΡ 663.473 18.96 1.88 6.90 46.00 -18.26 Vertical QΡ

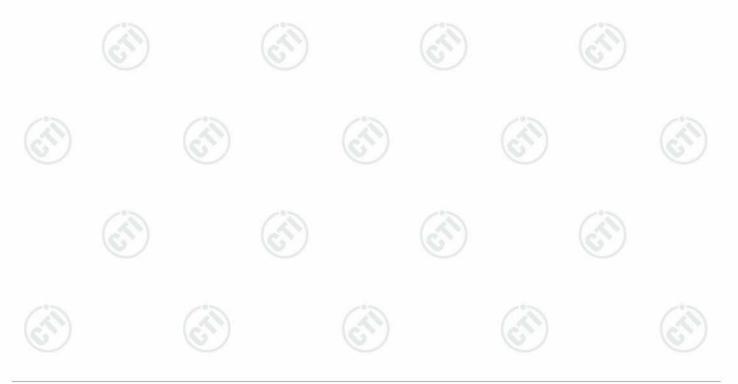
Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1213.441	30.26	1.88	44.37	47.40	35.17	74.00	-38.83	Pass	Н
1609.646	31.07	2.42	43.88	48.72	38.33	74.00	-35.67	Pass	H
3561.636	33.12	3.86	44.64	49.29	41.63	74.00	-32.37	Pass	Н
4804.000	34.69	5.98	44.60	46.75	42.82	74.00	-31.18	Pass	Н
7206.000	36.42	6.97	44.77	47.08	45.70	74.00	-28.30	Pass	Н
9608.000	37.88	6.98	45.58	44.10	43.38	74.00	-30.62	Pass	Н
1147.354	30.10	1.77	44.46	47.34	34.75	74.00	-39.25	Pass	V
1491.300	30.85	2.28	44.01	47.23	36.35	74.00	-37.65	Pass	V
3561.636	33.12	3.86	44.64	49.21	41.55	74.00	-32.45	Pass	V
4804.000	34.69	5.98	44.60	46.81	42.88	74.00	-31.12	Pass	V
7206.000	36.42	6.97	44.77	47.42	46.04	74.00	-27.96	Pass	V
9608.000	37.88	6.98	45.58	45.25	44.53	74.00	-29.47	Pass	V

Worse case	mode:	GFSK	3/11	Test char	nnel:	Middle	Remark: Po	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1182.943	30.18	1.83	44.41	46.10	33.70	74.00	-40.30	Pass	/° #	
1472.440	30.82	2.25	44.03	45.09	34.13	74.00	-39.87	Pass	(NH)	
3160.026	33.46	3.51	44.68	48.89	41.18	74.00	-32.82	Pass	Н	
4880.000	34.85	6.13	44.60	45.85	42.23	74.00	-31.77	Pass	Н	
7320.000	36.43	6.85	44.87	46.32	44.73	74.00	-29.27	Pass	Н	
9760.000	38.05	7.12	45.55	46.15	45.77	74.00	-28.23	Pass	Н	
1182.943	30.18	1.83	44.41	46.17	33.77	74.00	-40.23	Pass	V	
1453.818	30.78	2.23	44.05	45.78	34.74	74.00	-39.26	Pass	V	
3350.560	33.29	3.68	44.66	48.21	40.52	74.00	-33.48	Pass	V	
4880.000	34.85	6.13	44.60	46.07	42.45	74.00	-31.55	Pass	V	
7320.000	36.43	6.85	44.87	46.37	44.78	74.00	-29.22	Pass	V	
9760.000	38.05	7.12	45.55	45.71	45.33	74.00	-28.67	Pass	V	

Page 32 of 42

		1	× 0 0		×100		715		
Worse case	mode:	GFSK		Test chan	nel:	Highest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1147.354	30.10	1.77	44.46	46.38	33.79	74.00	-40.21	Pass	~°₩
1431.782	30.74	2.20	44.08	45.70	34.56	74.00	-39.44	Pass	(H)
1856.261	31.48	2.70	43.63	45.48	36.03	74.00	-37.97	Pass	H
4960.000	35.02	6.29	44.60	46.62	43.33	74.00	-30.67	Pass	Н
7440.000	36.45	6.73	44.97	46.57	44.78	74.00	-29.22	Pass	Н
9920.000	38.22	7.26	45.52	44.21	44.17	74.00	-29.83	Pass	Н
1159.096	30.13	1.79	44.44	47.12	34.60	74.00	-39.40	Pass	V
1537.557	30.94	2.34	43.96	45.92	35.24	74.00	-38.76	Pass	V
1894.450	31.54	2.74	43.59	44.23	34.92	74.00	-39.08	Pass	V
4960.000	35.02	6.29	44.60	47.28	43.99	74.00	-30.01	Pass	V
7440.000	36.45	6.73	44.97	44.72	42.93	74.00	-31.07	Pass	V
9920.000	38.22	7.26	45.52	44.88	44.84	74.00	-29.16	Pass	V


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

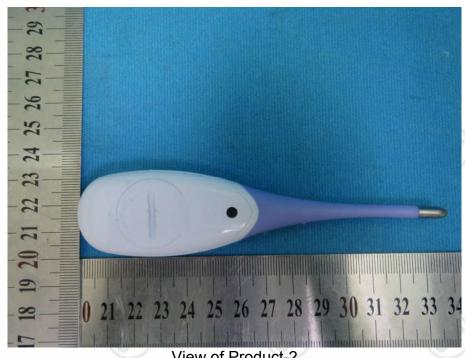
PHOTOGRAPHS OF TEST SETUP

Test model No.: DMT-4735b

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)


Report No.: EED32K00141901 Page 35 of 42

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: DMT-4735b

View of Product-1

View of Product-2

View of Product-3

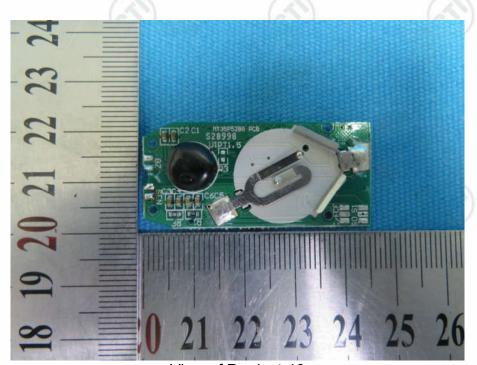
View of Product-4

View of Product-5

View of Product-6

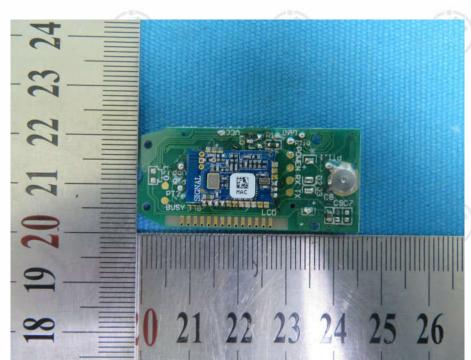
View of Product-7

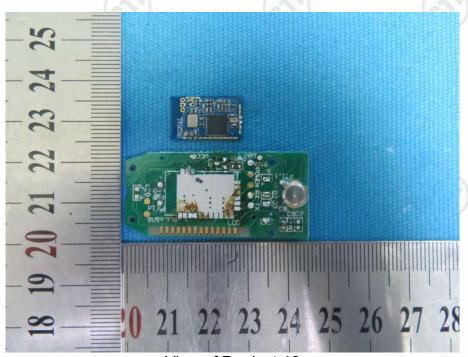
View of Product-8



View of Product-9

View of Product-10

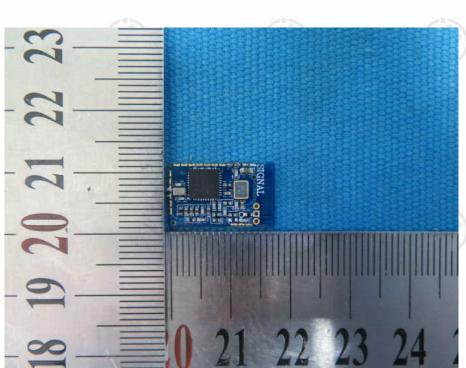




Report No. : EED32K00141901 Page 40 of 42

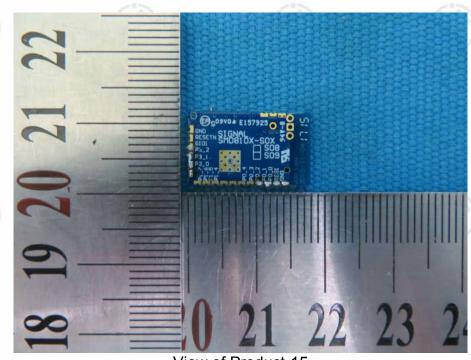
View of Product-11

View of Product-12



View of Product-13

View of Product-14



ort No · FFD32K00141901


Report No. : EED32K00141901 Page 42 of 42

View of Product-15

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

