

FCC SAR TEST REPORT

Applicant: Shenzhen Youmi Intelligent Technology Co., Ltd.

406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan

District, Shenzhen City, China

Product Name: Smart Tablet Computer

FCC ID: 2ATZ4-TG79PA15

Standard(s): 47 CFR Part 2(2.1093)

Report Number: 2402T76732E-20A

Report Date: 2024/08/22

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Mark Jong

Browne LU

Reviewed By: Mark Dong

Approved By: Brave Lu

Title: SAR Engineer

Title: SAR Engineer

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with ★.This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

SAR TEST RESULTS SUMMARY

Mode		Max. Reported SAR Level(s) (W/kg)	Limit (W/kg)
GSM 850	1 g Body SAR	0.51	
GSM 1900	1 g Body SAR	1.18	
WCDMA Band 2	1 g Body SAR	0.87	
WCDMA Band 5	1 g Body SAR	1.02	
LTE Band 2	1 g Body SAR	1.16	
LTE Band 5	1 g Body SAR	0.28	
LTE Band 7	1 g Body SAR	1.02	
LTE Band 12	1 g Body SAR	0.97	1.6
LTE Band 41	1 g Body SAR	0.78	
WIFI 2.4G	1 g Body SAR	0.43	
WIFI 5.2G	1 g Body SAR	0.38	
WIFI 5.8G	1 g Body SAR	0.35	
BT	1 g Body SAR	0.06	
G! II	1g Body SAR	1.59	
Simultaneous	1g Body SAR	1.59 (Hotspot)	

Report No.: 2402T76732E-20A

Applicable Standards	FCC 47 CFR part 2.1093 Radiofrequency radiation exposure evaluation: portable devices IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques IEC 62209-2:2010 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices-Human models, instrumentation, and procedures-Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) KDB procedures KDB 447498 D01 General RF Exposure Guidance v06 KDB 616217 D04 SAR for laptop and tablets v01r02 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D01 3G SAR Procedures v03r01
	KDB 616217 D04 SAR for laptop and tablets v01r02 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
	KDB 941225 D01 3G SAR Procedures v03r01 KDB 941225 D05 SAR for LTE Devices v02r05 KDB 941225 D06 Hotspot Mode v02r01
	KDB 248227 D01 802.11 Wi-Fi SAR v02r02

Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.

The results and statements contained in this report pertain only to the device(s) evaluated.

Report Template Version: FCC SAR-V1.0

Page 2 of 74

CONTENTS

SAR TEST RESULTS SUMMARY ·······	
DOCUMENT REVISION HISTORY	
1. GENERAL INFORMATION ·····	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)······	6
2. REFERENCE, STANDARDS, AND GUIDELINES	7
2.1 SAR LIMITS·····	7
2.2 TEST FACILITY	8
3. DESCRIPTION OF TEST SYSTEM·····	9
4. EQUIPMENT LIST AND CALIBRATION	14
4.1 EQUIPMENTS LIST & CALIBRATION INFORMATION	14
5. SAR MEASUREMENT SYSTEM VERIFICATION	15
5.1 Liquid Verification·····	15
5.2 LIQUID VERIFICATION RESULTS ······	15
5.3 SYSTEM ACCURACY VERIFICATION ·····	18
5.4 SYSTEM ACCURACY CHECK RESULTS·····	18
5.5 SAR SYSTEM VALIDATION DATA ······	19
6. EUT TEST STRATEGY AND METHODOLOGY ······	27
6.1TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	
6.2TEST DISTANCE FOR SAR EVALUATION	27
6.3 SAR EVALUATION PROCEDURE ·····	28
7. CONDUCTED OUTPUT POWER MEASUREMENT······	29
7.1 TEST PROCEDURE ·····	29
7.2 RADIO CONFIGURATION · · · · · · · · · · · · · · · · · · ·	29
7.3 MAXIMUM TARGET OUTPUT POWER·····	35
7.4 TEST RESULTS:	37
8. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	53
8.1 Antennas Location:	
8.2 ANTENNA DISTANCE TO EDGE ·····	53
8.3 SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT	54
9. SAR MEASUREMENT RESULTS	56
9.1 SAR TEST DATA	
10. MEASUREMENT VARIABILITY ······	67
11. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION ······	

Bav	Area	Comp	liance	La	boratories	Corp.	(Dongguan)	
Duy	1 II Cu	Comp	Hullee	Lu	COLUMNITUD	COIP.	(Dongguan)	

11.1 SIMULTANEOUS TRANSMISSION:	68
11.2 SIMULTANEOUS SAR TEST EXCLUSION CONSIDERATIONS:	68
APPENDIX A - MEASUREMENT UNCERTAINTY	69
APPENDIX B - SAR PLOTS ······	71
APPENDIX C - EUT TEST POSITION PHOTOS	72
APPENDIX D - PROBE CALIBRATION CERTIFICATES	73
APPENDIX F DIPOLE CALIBRATION CERTIFICATES	

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision
1.0	2402T76732E-20A	Original Report	2024/08/22

Report Template Version: FCC SAR-V1.0 Page 5 of 74

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

	Equipment under Test (EUT)
EUT Name:	Smart Tablet Computer
EUT Model:	TG4FBG9TA
Multiple Models:	TG4HBG9PA, TG4FBG7TA
Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Body-Worn Accessories:	None
Proximity Sensor:	None
Carrier Aggregation:	None
Operation Modes:	GSM, GPRS/EDGE Data, WCDMA(R99 (Data), HSUPA/HSDPA), FDD-LTE, TDD-LTE,WLAN, Bluetooth
	GSM 850: 824-849 MHz(TX); 869-894 MHz(RX)
	PCS 1900: 1850-1910 MHz(TX); 1930-1990 MHz(RX)
	WCDMA Band 2: 1850-1910 MHz(TX); 1930-1990 MHz(RX)
	WCDMA Band 5: 824-849 MHz(TX); 869-894 MHz(RX)
	LTE Band 2: 1850-1910 MHz(TX); 1930-1990 MHz(RX)
	LTE Band 5: 824-849MHz(TX); 869-894 MHz(RX)
Operation Frequency:	LTE Band 7: 2500-2570 MHz(TX); 2620-2690 MHz(RX)
	LTE Band 12: 699-716 MHz(TX); 729-746 MHz(RX)
	LTE Band 41: 2535-2655 MHz(TX/RX)
	WLAN 2.4G: 2412-2462 MHz/2422MHz-2452 MHz(TX/RX)
	WLAN 5.2G: 5150 -5250 MHz(TX/RX)
	WLAN 5.8G: 5725 -5850 MHz(TX/RX)
	Bluetooth: 2402-2480MHz(TX/RX)
	GSM 850: 32.65 dBm; PCS 1900: 25.12 dBm
	WCDMA Band 2: 15.34 dBm; WCDMA Band 5: 22.58 dBm
	LTE Band 2: 18.49 dBm; LTE Band 5: 21.26 dBm
	LTE Band 7:15.54 dBm; LTE Band 12: 24.91 dBm
	LTE Band 41: 17.03 dBm
Maximum Output Power	WLAN 2.4G: 10.46 dBm
	WLAN 5.2G: 7.73 dBm
	WLAN 5.8G: 7.62 dBm
	Bluetooth(BDR/EDR): 5.76 dBm
	BLE: 0.10 dBm
Dimensions (L*W*H):	257mm (L) *168mm (W) *91mm (H)
Rated Input Voltage:	DC3.85V from Rechargeable Battery
Serial Number:	2LNW-1
Normal Operation:	Body Supported
EUT Received Date:	2024/5/24
Test Date:	2024/07/26~2024/08/21
EUT Received Status:	Good
	ectrically identical with the test model. Please refer to the declaration letter

Report Template Version: FCC SAR-V1.0

for more detail, which was provided by manufacturer.

2. REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Report No.: 2402T76732E-20A

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

2.1 SAR Limits

FCC Limit

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population /	(Occupational /			
	Uncontrolled Exposure	Controlled Exposure			
	Environment)	Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.6	8			
Spatial Peak					
(hands/wrists/feet/ankles	4	20			
averaged over 10 g)					

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that maybe incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) applied to the EUT.

Report Template Version: FCC SAR-V1.0 Page 7 of 74

2.2 Test Facility

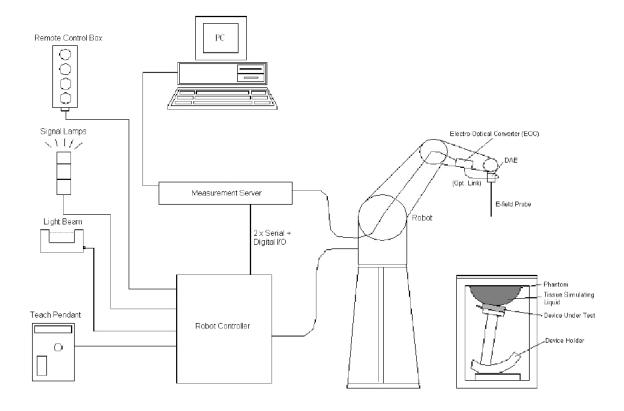
The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

Report No.: 2402T76732E-20A

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. :829273, the FCC Designation No. : CN5044.

Report Template Version: FCC SAR-V1.0 Page 8 of 74

3. DESCRIPTION OF TEST SYSTEM


These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

Report No.: 2402T76732E-20A

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

Report Template Version: FCC SAR-V1.0

Page 9 of 74

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical

Report No.: 2402T76732E-20A

processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

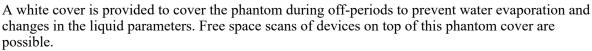
Frequency	4 MHz–10 GHz Linearity: ± 0.2 dB (30 MHz–10 GHz)
Directivity(typical)	\pm 0.1 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g – > 100 mW/g Linearity: \pm 0.2 dB (noise: typically< 1 μW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Applications	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52, DASY6, DASY8, EASY6, EASY4/MRI

Report Template Version: FCC SAR-V1.0

Page 11 of 74

SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness


increases to 6 mm). The phantom has three measurement areas:

- Left Head
- Right Head
- Flat phantom

The phantom table for the DASY systems based on the robots have the size of 100 x 50 x 85 cm (L x W x H). For easy dislocation these tables have fork lift cut outs at the bottom

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the

standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids)

Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

Robots

The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The above mentioned robots are controlled by the Staubli CS7MB robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantomliquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10 mm, with the side length of the 10 g cube is 21.5 mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the

Report No.: 2402T76732E-20A

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

surface is modified in order to conform to the tangent surface.

The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric Parameters for Head liquid

Table A.3 - Dielectric properties of the head tissue-equivalent liquid

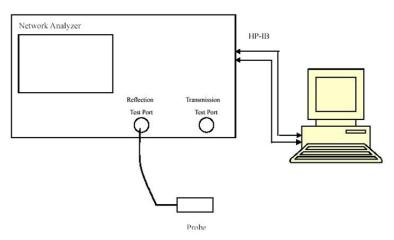
Frequency	Relative permittivity	Conductivity (a)
MHz	$arepsilon_{ m r}$	S/m
300	45,3	0,87
450	43,5	0,87
750	41,9	0,89
835	41,5	0,90
900	41,5	0,97
1 450	40,5	1,20
1 500	40,4	1,23
1 640	40,2	1,31
1 750	40,1	1,37
1 800	40,0	1,40
1 900	40,0	1,40
2 000	40,0	1,40
2 100	39,8	1,49
2 300	39,5	1,67
2 450	39,2	1,80
2 600	39,0	1,96
3 000	38,5	2,40
3 500	37,9	2,91
4 000	37,4	3,43
4 500	36,8	3,94
5 000	36,2	4,45
5 200	36,0	4,66
5 400	35,8	4,86
5 600	35,5	5,07
5 800	35,3	5,27
6 000	35,1	5,48

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.

Report Template Version: FCC SAR-V1.0 Page 13 of 74

4. EQUIPMENT LIST AND CALIBRATION

4.1 Equipments List & Calibration Information


Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52.10	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 4.5.12	1470	NCR	NCR
Data Acquisition Electronics	DAE4	772	2024/1/23	2025/1/22
E-Field Probe	EX3DV4	7839	2023/9/21	2024/9/20
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
Twin SAM	Twin SAM V5.0	1874	NCR	NCR
Dipole, 750 MHz	D750V3	1167	2022/10/31	2025/10/30
Dipole, 835 MHz	D835V2	453	2021/8/31	2024/8/30
Dipole, 1900 MHz	D1900V2	543	2022/11/2	2025/11/1
Dipole, 2450 MHz	D2450V2	971	2024/6/15	2027/6/14
Dipole, 2600 MHz	D2600V2	1132	2022/11/1	2025/10/31
Dipole,5GHz	D5GHzV2	1246	2022/11/1	2025/10/31
Simulated Tissue Liquid Head	HBBL600-10000V6	SL AAH U16 BC(Batch: 220809-1)	Each Time	/
Network Analyzer	8753C	3033A02857	2023/11/18	2024/11/17
Dielectric assessment kit	1253	SM DAK 040 CA	NCR	NCR
synthesized signal generator	8665B	3438a00584	2023/10/18	2024/10/17
EPM Series Power Meter	E4419B	MY45103907	2023/10/18	2024/10/17
USB Wideband Power Sensor	U2022XA	MY54170006	2023/10/18	2024/10/17
Power Amplifier	ZVE-6W-83+	637202210	NCR	NCR
Power Amplifier	ZHL-5W-202-S+	416402204	NCR	NCR
Directional Coupler	441493	520Z	NCR	NCR
Attenuator	20dB, 100W	LN749	NCR	NCR
Attenuator	6dB, 150W	2754	NCR	NCR
Thermometer	DTM3000	3635	2023/8/11	2024/8/10
Thermometer	DTM3000	3635	2024/8/10	2025/8/9
Hygrothermograph	HTC-2	EM072	2023/11/6	2024/11/5
Wireless communication tester	8960	MY50266471	2023/10/18	2024/10/17
Wideband Radio Communication Tester	CMW500	147473	2023/10/18	2024/10/17

Report No.: 2402T76732E-20A

Report Template Version: FCC SAR-V1.0 Page 14 of 74

5. SAR MEASUREMENT SYSTEM VERIFICATION

5.1 Liquid Verification

Report No.: 2402T76732E-20A

5.2 Liquid Verification Results

Frequency	Liouid Temp	Liquid Parameter		Target Value		Delta (%)		Tolerance	
(MHz)	Liquid Type	εr	O' (S/m)	εr	O' (S/m)	Δεr	ΔΟ΄ (S/m)	(%)	
704	Simulated Tissue Liquid Head	42.919	0.884	42.15	0.89	1.82	-0.67	±5	
707.5	Simulated Tissue Liquid Head	42.874	0.886	42.13	0.89	1.77	-0.45	±5	
711	Simulated Tissue Liquid Head	42.83	0.889	42.11	0.89	1.71	-0.11	±5	
750	Simulated Tissue Liquid Head	42.342	0.929	41.9	0.89	1.05	4.38	±5	

^{*}Liquid Verification above was performed on 2024/07/31.

Frequency	Liquid Ton a	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	er	O' (S/m)	εr	O' (S/m)	Δεr	ΔΟ΄ (S/m)	(%)
824.2	Simulated Tissue Liquid Head	41.409	0.929	41.55	0.9	-0.34	3.22	±5
826.4	Simulated Tissue Liquid Head	41.381	0.931	41.54	0.9	-0.38	3.44	±5
829	Simulated Tissue Liquid Head	41.349	0.934	41.53	0.9	-0.44	3.78	±5
835	Simulated Tissue Liquid Head	41.274	0.938	41.5	0.9	-0.54	4.22	±5
836.5	Simulated Tissue Liquid Head	41.255	0.939	41.5	0.9	-0.59	4.33	±5
836.6	Simulated Tissue Liquid Head	41.254	0.939	41.5	0.9	-0.59	4.33	±5
844	Simulated Tissue Liquid Head	41.169	0.946	41.5	0.91	-0.8	3.96	±5
846.6	Simulated Tissue Liquid Head	41.142	0.949	41.5	0.91	-0.86	4.29	±5
848.8	Simulated Tissue Liquid Head	41.119	0.952	41.5	0.91	-0.92	4.62	±5

^{*}Liquid Verification above was performed on 2024/08/02.

Frequency	1''1'	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	εr	O' (S/m)	εr	O' (S/m)	Δεr	ΔΟ (S/m)	(%)
1850.2	Simulated Tissue Liquid Head	39.471	1.336	40	1.4	-1.32	-4.57	±5
1852.4	Simulated Tissue Liquid Head	39.462	1.337	40	1.4	-1.35	-4.5	±5
1860	Simulated Tissue Liquid Head	39.43	1.343	40	1.4	-1.43	-4.07	±5
1880	Simulated Tissue Liquid Head	39.343	1.36	40	1.4	-1.64	-2.86	±5
1900	Simulated Tissue Liquid Head	39.236	1.379	40	1.4	-1.91	-1.5	±5
1907.6	Simulated Tissue Liquid Head	39.212	1.385	40	1.4	-1.97	-1.07	±5
1909.8	Simulated Tissue Liquid Head	39.205	1.387	40	1.4	-1.99	-0.93	±5

^{*}Liquid Verification above was performed on2024/08/01.

Frequency	I ionid Tuno	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	εr	O' (S/m)	εr	O' (S/m)	Δεr	ΔΟ΄ (S/m)	(%)
2402	Simulated Tissue Liquid Head	40.481	1.711	39.3	1.76	3.01	-2.78	±5
2411	Simulated Tissue Liquid Head	40.453	1.722	39.28	1.77	2.99	-2.71	±5
2441	Simulated Tissue Liquid Head	40.363	1.754	39.22	1.79	2.91	-2.01	±5
2450	Simulated Tissue Liquid Head	40.325	1.763	39.2	1.8	2.87	-2.06	±5
2480	Simulated Tissue Liquid Head	40.23	1.796	39.16	1.83	2.73	-1.86	±5

^{*}Liquid Verification above was performed on 2024/08/01.

Frequency	Liquid Tono	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	$\epsilon_{ m r}$	O' (S/m)	$\epsilon_{ m r}$	O' (S/m)	$\Delta \epsilon_{ m r}$	ΔΟ΄ (S/m)	(%)
2510	Simulated Tissue Liquid Head	40.12	1.832	39.12	1.86	2.56	-1.51	±5
2535	Simulated Tissue Liquid Head	40.037	1.862	39.09	1.89	2.42	-1.48	±5
2545	Simulated Tissue Liquid Head	40.137	1.916	39.07	1.9	2.73	0.84	±5
2560	Simulated Tissue Liquid Head	40.274	1.978	39.05	1.92	3.13	3.02	±5
2593	Simulated Tissue Liquid Head	40.173	2.018	39.01	1.95	2.98	3.49	±5
2600	Simulated Tissue Liquid Head	40.149	2.027	39	1.96	2.95	3.42	±5
2645	Simulated Tissue Liquid Head	39.995	2.055	38.94	2.01	2.71	2.24	±5

^{*}Liquid Verification above was performed on 2024/08/02.

l ter	Target	t Value		elta %)	Tolerance
O' S/m)	εr	O' (S/m)	Δεr	ΔΟ (S/m)	(%)

Frequency	Liquid Tung	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	εr	O' (S/m)	εr	O' (S/m)	Δεr	ΔΟ΄ (S/m)	(%)
2412	Simulated Tissue Liquid Head	40.679	1.756	39.28	1.77	3.56	-0.79	±5
2437	Simulated Tissue Liquid Head	40.495	1.772	39.23	1.79	3.22	-1.01	±5
2450	Simulated Tissue Liquid Head	40.432	1.794	39.2	1.8	3.14	-0.33	±5
2462	Simulated Tissue Liquid Head	40.307	1.806	39.18	1.81	2.88	-0.22	±5

^{*}Liquid Verification above was performed on 2024/08/21.

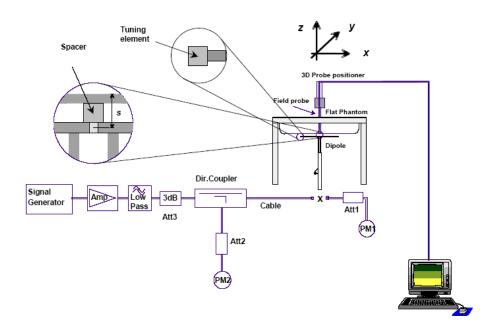
Frequency	Lianid Temp	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	εr	O' (S/m)	εr	O' (S/m)	Δεr	ΔΟ΄ (S/m)	(%)
5180	Simulated Tissue Liquid Head	36.702	4.845	36.02	4.64	1.89	4.42	±5
5200	Simulated Tissue Liquid Head	36.644	4.802	36	4.66	1.79	3.05	±5
5240	Simulated Tissue Liquid Head	36.405	4.764	35.96	4.7	1.24	1.36	±5
5250	Simulated Tissue Liquid Head	36.291	4.717	35.95	4.71	0.95	0.15	±5

^{*}Liquid Verification above was performed on2024/08/21.

Frequency	I ionid Tuno	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz)	Liquid Type	εr	O' (S/m)	εr	O' (S/m)	Δεr	ΔΟ΄ (S/m)	(%)
5745	Simulated Tissue Liquid Head	36.143	5.178	35.36	5.22	2.21	-0.8	±5
5750	Simulated Tissue Liquid Head	35.897	5.234	35.35	5.22	1.55	0.27	±5
5785	Simulated Tissue Liquid Head	35.626	5.419	35.32	5.26	0.87	3.02	±5
5825	Simulated Tissue Liquid Head	35.409	5.507	35.28	5.3	0.37	3.91	±5

^{*}Liquid Verification above was performed on 2024/08/21.

5.3 System Accuracy Verification


Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

Report No.: 2402T76732E-20A

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm} \text{ for } 300 \text{ MHz} \le f \le 1000 \text{ MHz};$
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $1000 \text{ MHz} < f \le 3000 \text{ MHz}$;
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $3~000 \text{ MHz} < f \le 6~000 \text{ MHz}$.

System Verification Setup Block Diagram

5.4 System Accuracy Check Results

Date	Frequency Band (MHz)	Liquid Type	Input Power (mW)	5	asured SAR V/kg)	Normalized to 1W (W/kg)	Target Value (W/Kg)	Delta (%)	Tolerance (%)
2024/07/31	750MHz	Head	100	1g	0.776	7.76	8.48	-8.49	±10
2024/08/02	835MHz	Head	100	1g	0.976	9.76	9.33	4.61	±10
2024/08/01	1900MHz	Head	100	1g	4.08	40.8	40.2	1.49	±10
2024/08/01	2450MHz	Head	100	1g	5.16	51.6	52.7	-2.09	±10
2024/08/21	2450MHz	Head	100	1g	5.07	50.7	52.7	-3.8	±10
2024/08/02	2600MHz	Head	100	1g	5.67	56.7	55.8	1.61	±10
2024/08/21	5250MHz	Head	100	1g	7.51	75.1	77.5	-3.1	±10
2024/08/21	5750MHz	Head	100	1g	7.72	77.2	78.4	-1.53	±10

Note:

All the SAR values are normalized to 1Watt forward power.

5.5 SAR SYSTEM VALIDATION DATA

System Performance 750 MHz Head

DUT: D750V3; Type: 750 MHz; Serial: 1167

Communication System: CW (0); Frequency: 750MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; $\sigma = 0.929$ S/m; $\varepsilon_r = 42.342$; $\rho = 1000$ kg/m³;

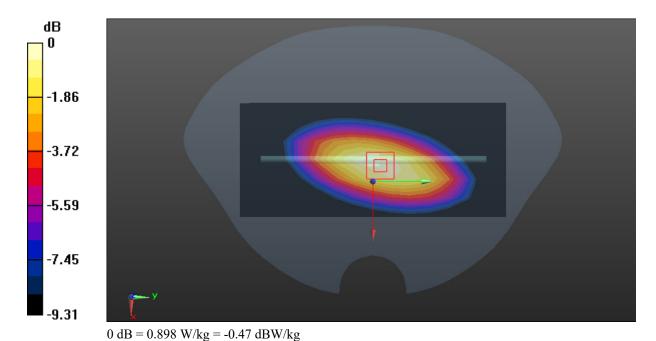
Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7839; ConvF(9.95, 8.96, 8.82) @ 750 MHz; Calibrated: 2023/9/21

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2024/1/23
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(7x15x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.882 W/kg


Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value =30.34 V/m; Power Drift =0.15 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.776 W/kg; SAR(10 g) = 0.531 W/kg

Maximum value of SAR (measured) = 0.898 W/kg

System Performance 835 MHz Head

DUT: D835V2; Type: 835 MHz; Serial: 453

Communication System: CW (0); Frequency: 835MHz; Duty Cycle: 1:1

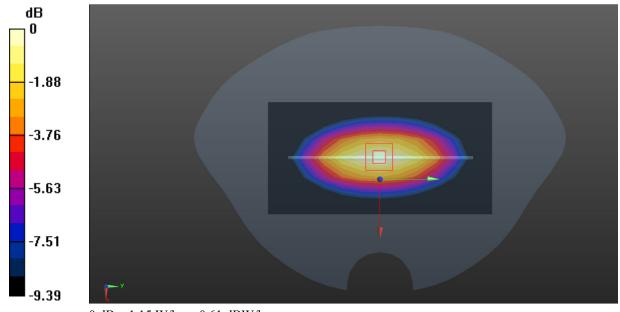
Medium parameters used: f = 835 MHz; $\sigma = 0.938$ S/m; $\varepsilon_r = 41.274$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7839; ConvF(9.55, 8.6, 8.54) @ 835 MHz; Calibrated: 2023/9/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2024/1/23
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(7x13x1):Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.19 W/kg


Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value =37.65 V/m; Power Drift =-0.14 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.976 W/kg; SAR(10 g) = 0.662 W/kg

Maximum value of SAR (measured) = 1.15 W/kg

0 dB = 1.15 W/kg = 0.61 dBW/kg

System Performance 1900 MHz Head

DUT: D1900V2; Type: 1900 MHz; Serial: 543

Communication System: CW (0); Frequency: 1900MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.379$ S/m; $\epsilon_r = 39.236$; $\rho = 1000$ kg/m³;

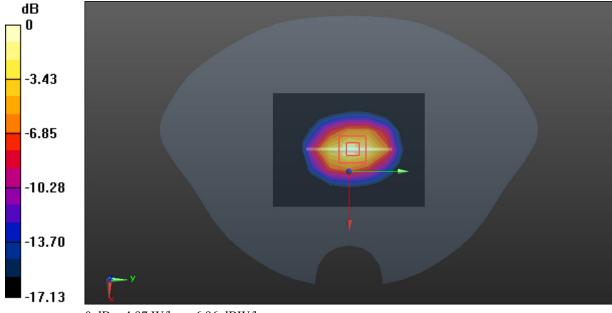
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7839; ConvF(8, 7.27, 7.03) @ 1900 MHz; Calibrated: 2023/9/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2024/1/23
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(7x9x1):Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 4.78 W/kg


Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value =54.32 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 7.02 W/kg

SAR(1 g) = 4.08 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 4.97 W/kg

0 dB = 4.97 W/kg = 6.96 dBW/kg

DUT: D2450V2; Type: 2450 MHz; Serial: 971

Communication System: CW (0); Frequency: 2450MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.763$ S/m; $\varepsilon_r = 40.325$; $\rho = 1000$ kg/m³;

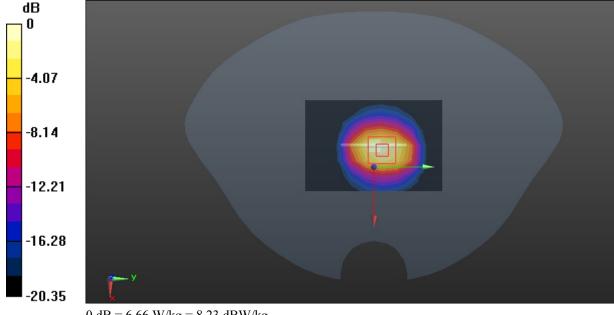
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7839; ConvF(7.49, 6.81, 6.61) @ 2450 MHz; Calibrated: 2023/9/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2024/1/23
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(7x10x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 6.37 W/kg


Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =55.49 V/m; Power Drift =0.14 dB

Peak SAR (extrapolated) = 10.2 W/kg

SAR(1 g) = 5.16 W/kg; SAR(10 g) = 2.48 W/kg

Maximum value of SAR (measured) = 6.66 W/kg

System Performance 2450 MHz Head was performed on 2024/08/21.

DUT: D2450V2; Type: 2450 MHz; Serial: 971

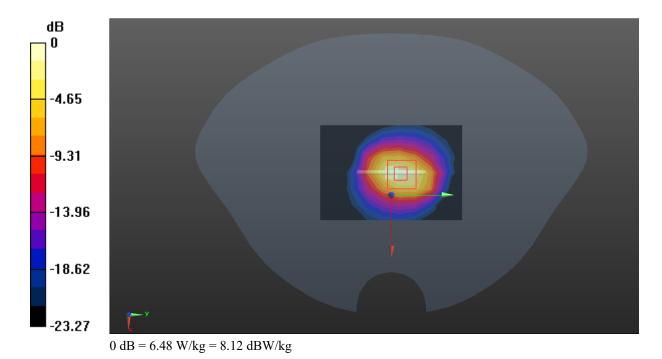
Communication System: CW (0); Frequency: 2450MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.794$ S/m; $\varepsilon_r = 40.432$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7839; ConvF(7.49, 6.81, 6.61) @ 2450 MHz; Calibrated: 2023/9/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2024/1/23
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


Area Scan (7x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 6.39 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.32 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 10.1 W/kg

SAR(1 g) = 5.07 W/kg; SAR(10 g) = 2.41 W/kgMaximum value of SAR (measured) = 6.48 W/kg

System Performance 2600 MHz Head

DUT: D2600V2; Type: 2600 MHz; Serial: 1132

Communication System: CW (0); Frequency: 2600MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 2.027$ S/m; $\varepsilon_r = 40.149$; $\rho = 1000$ kg/m³;

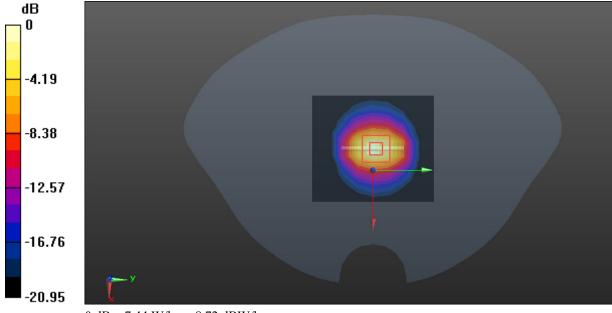
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7839; ConvF(7.61, 6.94, 6.73) @ 2600 MHz; Calibrated: 2023/9/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2024/1/23
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(8x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 5.67 W/kg


Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =60.24 V/m; Power Drift =0.18 dB

Peak SAR (extrapolated) = 11.4 W/kg

SAR(1 g) = 5.67 W/kg; SAR(10 g) = 2.64 W/kg

Maximum value of SAR (measured) = 7.44 W/kg

0 dB = 7.44 W/kg = 8.72 dBW/kg

System Performance 5250 MHz Head

DUT: D5GHzV2; Type: 5250 MHz; Serial: SN:1246;

Communication System: CW (0); Frequency: 5250MHz; Duty Cycle: 1:1

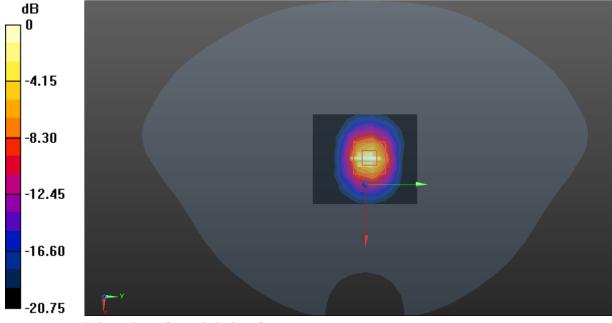
Medium parameters used: f = 5250 MHz; $\sigma = 4.717 \text{ S/m}$; $\varepsilon_r = 36.291$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7839; ConvF(5.62, 5.1, 4.97) @ 5250 MHz; Calibrated: 2023/9/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2024/1/23
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(7x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.7 W/kg


Zoom Scan (8x8x16)/Cube 0:Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value =41.34 V/m; Power Drift =0.11 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

0 dB = 18.5 W/kg = 12.67 dBW/kg

System Performance 5750 MHz Head

DUT: D5GHzV2; Type: 5750 MHz; Serial: SN:1246;

Communication System: CW (0); Frequency: 5750MHz; Duty Cycle: 1:1

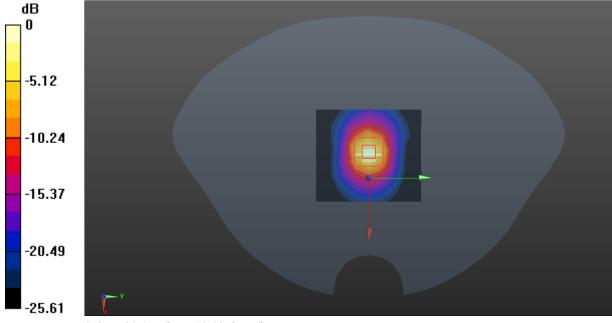
Medium parameters used: f = 5750 MHz; $\sigma = 5.234 \text{ S/m}$; $\varepsilon_r = 35.897$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7839; ConvF(5.04, 4.65, 4.62) @ 5750 MHz; Calibrated: 2023/9/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2024/1/23
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan(8x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 20.3 W/kg


Zoom Scan (8x8x16)/Cube 0:Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value =38.91 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 35.4 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

6. EUT TEST STRATEGY AND METHODOLOGY

6.1Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Report No.: 2402T76732E-20A

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

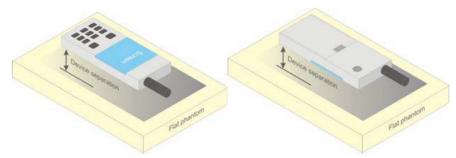


Figure 5 - Test positions for body-worn devices

6.2Test Distance for SAR Evaluation

In this case the EUT(Equipment Under Test) is set 0mm away from the phantom, the test distance is 0mm.

Report Template Version: FCC SAR-V1.0 Page 27 of 74

6.3 SAR Evaluation Procedure

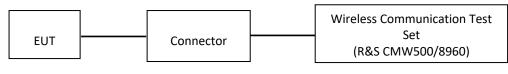
The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Report No.: 2402T76732E-20A

- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points ($10 \times 10 \times 10$) were interpolated to calculate the averages.

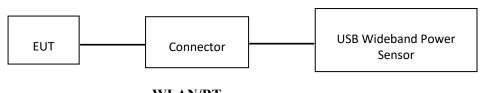
All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.


Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

Report Template Version: FCC SAR-V1.0 Page 28 of 74

7. CONDUCTED OUTPUT POWER MEASUREMENT

7.1 Test Procedure


The RF output of the transmitter was connected to the input of the Wireless Communication Test Set through Connector.

Report No.: 2402T76732E-20A

GSM/WCDMA/LTE

The RF output of the transmitter was connected to the input port of the USB Wideband Power Sensor through Connector.

WLAN/BT

7.2 Radio Configuration

The power measurement was configured by the Wireless Communication Test Set.

GSM/GPRS/EGPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting

- > Slot configuration > Uplink/Gamma
- > 33 dBm for GPRS 850
- > 30 dBm for GPRS 1900
- > 27 dBm for EGPRS 850
- > 26 dBm for EGPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stabe)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test channel) and BCCH channel]

Channel Type > Off

P0 > 4 dB

Slot Config > Unchanged (if already set under MS signal)

TCH > choose desired test channel

Hopping > Off

Main Timeslot > 3

Network Coding Scheme > CS4 (GPRS) and MCS5 (EGPRS)

Bit Stream > 2E9-1 PSR Bit Stream

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input

Connection Press Signal on to turn on the signal and change settings

WCDMA Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP

Report No.: 2402T76732E-20A

TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

	Loopback Mode	Test Mode 1
WCDMA	Rel99 RMC	12.2kbps RMC
General Settings	Power Control Algorithm	Algorithm2
	β_c/β_d	8/15

HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP

TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subset	1	2	3	4				
	Loopback Mode			Test Mode	1				
	Rel99 RMC		-	12.2kbps RM	1C				
	HSDPA FRC			H-Set1					
WCDMA	Power Control Algorithm	Algorithm2							
General	$\beta_{\rm c}$	2/15	15/15						
Settings	β_d	15/15	15/15	8/15	4/15				
	$\beta_d(SF)$	64							
	$\beta_{\rm c}/\beta_{\rm d}$	2/15	12/15	15/8	15/4				
	$eta_{ m hs}$	4/15	24/15	30/15	30/15				
	MPR(dB)	0	0	0.5	0.5				
	DACK			8					
	DNAK			8					
HSDPA	DCQI			8					
Specific	Ack-Nack repetition factor			3					
Settings	CQI Feedback			4ms					
	CQI Repetition Factor			2					
	Ahs=βhs/ βc			30/15					

Report Template Version: FCC SAR-V1.0

HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP

Report No.: 2402T76732E-20A

TS34.121-1 specification.

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA					
	Subset	1	2	3	4	5					
	Loopback Mode		ı	Test Mode 1							
	Rel99 RMC		1.	2.2kbps RM	C						
	HSDPA FRC			H-Set1							
	HSUPA Test		HS	UPA Loopb	ack						
	Power Control			Algorithm2							
WCDMA	Algorithm		t		1	1					
General	$\beta_{\rm c}$	11/15	6/15	15/15	2/15	15/15					
Settings	β_d	15/15	15/15	9/15	15/15	0					
	$\beta_{\rm ec}$	209/225	12/15	30/15	2/15	5/15					
	β_c/β_d	11/15	6/15	15/9	2/15	-					
	$eta_{ m hs}$	22/15	12/15	30/15	4/15	5/15					
	CM(dB)	1.0	3.0	2.0	3.0	1.0					
	MPR(dB)	0	2	1	2	0					
	DACK			8							
	DNAK			8							
	DCQI	8									
HSDPA	Ack-Nack	3									
Specific Softings	repetition factor	4ms									
Settings	CQI Feedback										
	CQI Repetition Factor	2									
				30/15							
	Ahs= β_{hs}/β_{c} DE-DPCCH	6	8	8	5	7					
	DHARQ	0	0	0	0	0					
	AG Index	20	12	15	17	21					
	ETFCI	75	67	92	71	81					
	Associated Max										
	UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9					
	CL Butta Hatte Rops										
		E-TFC	I 11 E	E-TFCI	E-TFC	CI 11 E					
HSUPA		E-TFC		11		CI PO 4					
Specific		E-TF		E-TFCI		CI 67					
Settings		E-TFC1	PO 18	PO4	E-TFC	I PO 18					
C		E-TF	CI 71	E-TFCI	E-TF	CI 71					
	Reference E FCls	E-TFC		92		I PO23					
	_	E-TF		E-TFCI		CI 75					
		E-TFC		PO 18		I PO26					
		E-TF				CI 81					
		E-TFC	1 PO 27		E-IFC	I PO 27					

DC-HSDPA

The following tests were conducted according to the test requirements in Table C.8.1.12 of 3GPP TS 34.121-1

Table C.8.1.12: Fixed Reference Channel H-Set 12

Parameter	Unit	Value				
Nominal Avg. Inf. Bit Rate	kbps	60				
Inter-TTI Distance	TTI's	1				
Number of HARQ Processes	Proces	6				
	ses					
Information Bit Payload (N_{INF})	Bits	120				
Number Code Blocks	Blocks	1				
Binary Channel Bits Per TTI	Bits	960				
Total Available SML's in UE	SML's	19200				
Number of SML's per HARQ Proc.	SML's	3200				
Coding Rate		0.15				
Number of Physical Channel Codes	Codes	1				
Modulation		QPSK				
Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical						
parameters as listed in the table.						

Note 2: Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used.

HSPA+

Sub- test	β _c (Note3)	β _d	βнs (Note1)	β _{ec}	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	(dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	(Note 5)	
1	1	0	30/15	30/15	β _{ed} 1: 30/15	β _{ed} 3: 24/15	3.5	2.5	14	105	105
					β _{ed} 2: 30/15	β _{ed} 4: 24/15					
Note 1	: Δ _{ACK}	, Δ_{NACI}	$_{K}$ and Δ_{CQI}	= 30/15	with eta_{hs} = 30/15	* β_c .					
Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0).											
Note 3: DPDCH is not configured, therefore the β_c is set to 1 and β_d = 0 by default.											
Note 4: Bed can not be set directly: it is set by Absolute Grant Value.											

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1

Report Template Version: FCC SAR-V1.0 Page 32 of 74

FDD-LTE

For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1 due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Report No.: 2402T76732E-20A

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (N _{RB})									
	1.4	3.0	5	10	15	20					
	MHz	MHz	MHz	MHz	MHz	MHz					
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1				
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1				
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2				

For UE Power Class 1 and 3 the specific requirements and identified sub clauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in sub clause 6.2.3.

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)	
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A	
			3	>5	≤ 1	
		2, 4,10, 23, 25,	5	>6	≤1	
NS_03	6.6.2.2.1	2, 4, 10, 23, 25, 35, 36	10	>6	≤ 1	
		33, 30	15	>8	≤1	
			20	>10	≤ 1	
NS_04	6.6.2.2.2	41	5	>6	≤ 1	
			10, 15, 20	Table	6.2.4-4	
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1	
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A	
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table	6.2.4-2	
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3	
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤1 ≤2	
NS 10		20	15, 20	Table	6.2.4-3	
NS_11	6.6.2.2.1	23	1.4, 3, 5, 10, 15, 20	Table	6.2.4-5	
NS_12	6.6.3.3.5	26	1.4, 3, 5	Table	6.2.4-6	
NS_13	6.6.3.3.6	26	5	Table	6.2.4-7	
NS_14	6.6.3.3.7	26	10, 15	Table	6.2.4-8	
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15	1	6.2.4-9 6.2.4-10	
NS_16	6.6.3.3.9	27	3, 5, 10		, Table 6.2.4-12, 6.2.4-13	
NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A	
NS_18	6.6.3.3.11	28	5 10, 15, 20	≥2	≤ 1 ≤ 4	
NS 19	6.6.3.3.12	44	10, 15, 20	Table	6.2.4-14	
NS_20	6.2.2 6.6.2.2.1 6.6.3.2	23	5, 10, 15, 20		6.2.4-15	
NS_32	-	-	-	-	-	

Report Template Version: FCC SAR-V1.0 Page 33 of 74

TDD-LTE

LTE TDD Band 41 supports 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

		lormal cyclic prefix in de	ownlink		xtended cyclic prefix in	ı downlink	
Special subframe	DwPTS	UpF	PTS	DwPTS	Upf	PTS	
configuration		Normal cyclic prefix	Normal cyclic prefix Extended cyclic		Normal cyclic	Extended cyclic	
		in uplink	prefix in uplink		prefix in uplink	prefix in uplink	
0	$6592 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$			
1	$19760 \cdot T_{\rm s}$				2192 · T.	2560-7	
2	$21952 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	2560·T _s	$23040 \cdot T_{\rm s}$	21,72 1,8	2500 1,	
3	$24144 \cdot T_{\rm s}$			$25600 \cdot T_{\rm s}$			
4	26336·T _s			$7680 \cdot T_{\rm s}$			
5	$6592 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	4384 · T.	5120.3	
6	$19760 \cdot T_{\rm s}$			23040 · T _s	4364 · I _s	5120 · T _s	
7	$21952 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_s$	$12800 \cdot T_{s}$			
8	$24144 \cdot T_{\rm s}$			-	-	-	
9	$13168 \cdot T_{s}$			-	-	-	

Table 4.2-2: Uplink-downlink configurations.

Uplink-downlink					Subframe number									
configuration	Uplink Switch- point periodicity	0	1	2	3	4	5	6	7	8	9			
0	5 ms	D	S	U	U	U	D	S	U	U	U			
1	5 ms	D	S	U	U	D	D	S	U	U	D			
2	5 ms	D	S	U	D	D	D	S	U	D	D			
3	10 ms	D	S	U	U	U	D	D	D	D	D			
4	10 ms	D	S	U	U	D	D	D	D	D	D			
5	10 ms	D	S	U	D	D	D	D	D	D	D			
6	5 ms	D	S	U	U	U	D	S	U	U	D			

Calculated Duty Cycle

balcalated Daty	J J C 10											
Uplink-	Downlink-to-		Subframe Number						Calculated			
Downlink Configuration	Uplink Switch- point Periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

We used configuration 0 for LTE Band 41 SAR test, that is 63.33%(1:1.58)for duty cycle.

Report Template Version: FCC SAR-V1.0

7.3 Maximum Target Output Power

Max Target Power(dBm)										
Modo/Dand	Mode/Band Channel									
Mode/Band	Low	Middle	High							
GSM 850	33	33	33							
GPRS 1 TX Slot	32.5	32.5	32.5							
GPRS 2 TX Slot	30.5	30.5	30.5							
GPRS 3 TX Slot	28.5	28.5	28.5							
GPRS 4 TX Slot	26.5	26.5	26.5							
EDGE 1 TX Slot	26	26	26							
EDGE 2 TX Slot	24	24	24							
EDGE 3 TX Slot	22	22	22							
EDGE 4 TX Slot	19.5	19.5	19.5							
GSM 1900	25.5	25.5	25.5							
GPRS 1 TX Slot	25.5	25.5	25.5							
GPRS 2 TX Slot	25	25	25							
GPRS 3 TX Slot	24.5	24.5	24.5							
GPRS 4 TX Slot	23	23	23							
EDGE 1 TX Slot	21	21	21							
EDGE 2 TX Slot	21	21	21							
EDGE 3 TX Slot	21	21	21							
EDGE 4 TX Slot	19.5	19.5	19.5							
WCDMA Band 2	15.5	15.5	15.5							
HSDPA	15.5	15.5	15.5							
HSUPA	15.5	15.5	15.5							
WCDMA Band 5	23	23	23							
HSDPA	22	22	22							
HSUPA	22.5	22.5	22.5							
LTE Band 2(20M)	18.5	18.5	18.5							
LTE Band 5(10M)	21.5	21.5	21.5							
LTE Band 7(20M)	16	16	16							
LTE Band 12(10M)	25	25	25							
LTE Band 41(20M)	17.1	17.1	17.1							
WIFI 2.4G(802.11b)	10	7	10.5							
WIFI 2.4G(802.11g)	10.5	7	10.5							
WIFI 2.4G(802.11n ht20)	10.5	7	10.5							
WIFI 2.4G(802.11n ht40)	10	9	10							
WIFI 5.2G(802.11a)	8	8	8							
WIFI 5.2G(802.11n20)	7.9	7.9	7.9							
WIFI 5.2G(802.11n40)	7.9	/	7.9							
WIFI 5.2G(802.11ac20)	7.9	7.9	7.9							
WIFI 5.2G(802.11ac40)	7.9	/	7.9							
WIFI 5.2G(802.11ac80)	/	7.9	/							
WIFI 5.8G(802.11a)	7.5	7.5	7.5							
WIFI 5.8G(802.11n20)	8	8	8							
WIFI 5.8G(802.11n40)	7.5	/	7.5							
WIFI 5.8G(802.11ac20)	7.9	7.9	7.9							
WIFI 5.8G(802.11ac40)	7.5	/	7.5							

Page 36 of 74

Max Target Power(dBm)								
Mode/Band	Channel							
Mode/Band	Low	Middle	High					
WIFI 5.8G(802.11ac80)	/	7.9	/					
Bluetooth BDR/EDR	4.5	4	6					
BLE 1Mbps	0.5	0.5	0.5					
BLE 2Mbps	0.5	0.5	0.5					

Report Template Version: FCC SAR-V1.0

7.4 Test Results:

GSM

Band	Channel No.	Frequency (MHz)	RF Output Power (dBm)
	128	824.2	32.03
GSM 850	190	836.6	32.65
	251	848.8	32.41
	512	1850.2	24.85
GSM 1900	661	1880	25.04
	810	1909.8	24.45

Report No.: 2402T76732E-20A

GPRS:

Band	Channel	Frequency	RF Output Power (dBn			m)
Danu	No.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	31.23	29.37	27.29	25.23
GSM 850	190	836.6	32.10	29.34	27.46	25.53
	251	848.8	32.11	30.10	28.00	26.04
	512	1850.2	25.08	24.83	24.21	22.52
GSM 1900	661	1880	25.12	24.83	24.49	22.38
	810	1909.8	24.40	24.40	24.30	21.98

EDGE:

Band	Channel	Frequency	RF Output Power (dBm)			m)
Danu	No.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	25.63	23.37	21.56	18.86
GSM 850	190	836.6	24.80	23.16	21.24	18.72
	251	848.8	25.24	23.85	21.03	18.75
	512	1850.2	20.89	20.60	20.33	18.31
GSM 1900	661	1880	20.64	20.79	20.62	18.60
	810	1909.8	20.72	20.69	20.62	19.11

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.25 dB	-3 dB
Crest Factor	8	4	2.66	2

The time based average power for GPRS

D1	Channel	Frequency	RF Output Power (dBm)			
Band	No.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	22.23	23.37	23.04	22.23
GSM 850	190	836.6	23.1	23.34	23.21	22.53
	251	848.8	23.11	24.1	23.75	23.04
	512	1850.2	16.08	18.83	19.96	19.52
GSM 1900	661	1880	16.12	18.83	20.24	19.38
	810	1909.8	15.4	18.4	20.05	18.98

The time based average power for EDGE

Band	Channel	Frequency	RF Output Power (dBm)			
Danu	No.	(MHz)	1 slot	2 slots	3 slots	4 slots
	128	824.2	16.63	17.37	17.31	15.86
GSM 850	190	836.6	15.8	17.16	16.99	15.72
	251	848.8	16.24	17.85	16.78	15.75
	512	1850.2	11.89	14.6	16.08	15.31
GSM 1900	661	1880	11.64	14.79	16.37	15.6
	810	1909.8	11.72	14.69	16.37	16.11

Note:

- 1. Agilent Technologies Communication Tester (8960) was used for the measurement of GSM peak and average output power for active timeslots.
- 2 .For GSM voice, 1 timeslot has been activated with power level 5 (850 MHz band) and 0 (1900 MHz band).
- 3 .For GPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 3(850 MHz band) and 3(1900 MHz band).
- 4. According to KDB941225D01-SAR for EGPRS mode are not required when the source-based time-averaged output power for data mode is lower than that in the normal GPRS mode.

Report Template Version: FCC SAR-V1.0 Page 38 of 74

WCDMA:

WCDMA Band 2::

Test Mode	Conducted Average Output Power(dBm)					
1 est Mode	Lowest Channel	Middle Channel	Highest Channel			
WCDMA	15.09	14.95	15.11			
HSDPA Subset 1	14.72	15.17	14.60			
HSDPA Subset 2	14.55	15.08	14.96			
HSDPA Subset 3	14.62	14.59	14.42			
HSDPA Subset 4	14.91	14.62	14.60			
HSUPA Subset 1	15.20	15.00	14.99			
HSUPA Subset 2	15.08	15.08	15.17			
HSUPA Subset 3	14.74	15.31	15.34			
HSUPA Subset 4	14.75	15.01	15.12			
HSUPA Subset 5	15.17	15.30	14.93			

Report No.: 2402T76732E-20A

WCDMA Band 5::

Took Mada	Conducted Average Output Power(dBm)					
Test Mode	Lowest Channel	Middle Channel	Highest Channel			
WCDMA	21.42	22.10	22.58			
HSDPA Subset 1	21.30	21.07	21.50			
HSDPA Subset 2	21.03	21.25	20.98			
HSDPA Subset 3	20.45	20.72	20.98			
HSDPA Subset 4	20.43	20.94	20.78			
HSUPA Subset 1	22.11	21.99	22.48			
HSUPA Subset 2	22.10	21.97	22.30			
HSUPA Subset 3	21.88	21.34	21.91			
HSUPA Subset 4	22.12	21.95	21.99			
HSUPA Subset 5	22.04	22.09	22.28			

Note:

- 1. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model 1.
- 2. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA when the maximum average output of each RF channel is less than $\frac{1}{4}$ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

LTE Band 2:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	15.21	15.69	16.51
		1@2	15.60	15.98	16.72
		1@5	15.61	15.95	16.58
	QPSK	3@0	15.54	15.94	16.69
		3@1	15.49	16.01	16.83
		3@2	15.59	15.92	16.72
1.4M		6@0	14.54	15.05	15.73
1.41V1		1@0	13.88	14.24	14.75
		1@2	14.51	14.36	14.96
		1@5	14.35	14.30	15.04
	16-QAM	3@0	14.12	14.59	15.35
		3@1	14.33	14.73	15.31
		3@2	14.20	14.61	15.25
		6@0	13.22	13.59	14.27
		1@0	15.08	15.76	16.58
		1@7	15.86	16.07	16.73
	QPSK	1@14	15.97	16.10	16.72
		8@0	14.77	15.01	15.50
		8@4	14.70	14.98	15.43
		8@7	15.10	15.02	15.51
3M		15@0	14.73	15.05	15.61
31VI		1@0	13.90	14.89	14.72
		1@7	14.64	15.14	15.12
		1@14	14.70	14.96	14.97
	16-QAM	8@0	13.17	13.85	14.27
		8@4	13.17	13.84	14.38
		8@7	13.54	13.69	14.42
		15@0	13.44	13.59	14.13
		1@0	15.12	15.60	16.40
		1@12	16.24	16.23	16.85
		1@24	16.21	15.93	16.39
	QPSK	12@0	14.65	14.79	15.31
		12@6	14.60	14.94	15.37
		12@11	14.67	14.79	15.55
5M		25@0	15.06	14.97	15.44
J1 V1		1@0	13.35	14.23	14.58
		1@12	14.77	14.78	15.04
		1@24	14.54	14.49	14.58
	16-QAM	12@0	13.45	13.42	14.09
		12@6	13.44	13.53	14.11
		12@11	13.52	13.41	13.95
		25@0	13.85	13.73	13.95
10M	QPSK	1@0	14.54	15.47	17.27

Report Template Version: FCC SAR-V1.0

Page 40 of 74

50@49

100@0

17.31

17.01

17.05

17.3

17.56

17.93

LTE Band 5:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	20.42	20.74	20.52
		1@2	20.84	20.65	20.63
		1@5	20.61	20.73	20.84
	QPSK	3@0	20.98	20.90	20.88
		3@1	20.89	20.83	21.04
		3@2	20.74	20.54	21.16
1.4M		6@0	20.08	19.69	19.77
1.41V1		1@0	19.53	20.35	19.99
		1@2	19.27	20.56	20.11
		1@5	19.53	19.93	19.81
	16-QAM	3@0	19.55	19.43	19.61
		3@1	19.23	19.59	19.30
		3@2	19.50	19.16	19.76
		6@0	18.78	18.75	18.44
		1@0	20.97	20.55	20.56
		1@7	20.68	20.71	20.57
	QPSK	1@14	20.54	20.65	20.37
		8@0	19.99	19.99	20.09
		8@4	20.02	19.94	20.03
		8@7	19.89	19.77	19.70
23.4		15@0	19.96	19.69	20.10
3M		1@0	20.26	20.90	20.21
		1@7	20.15	20.46	20.30
		1@14	20.38	19.23	20.00
	16-QAM	8@0	18.93	18.99	18.84
		8@4	18.85	19.11	18.84
		8@7	18.76	18.62	18.85
		15@0	18.63	18.51	18.83
		1@0	20.59	20.69	20.58
		1@12	20.56	20.96	20.57
		1@24	20.51	20.60	20.49
	QPSK	12@0	19.67	20.12	20.21
		12@6	19.73	20.04	20.26
		12@11	19.78	20.11	20.19
5M		25@0	19.70	19.63	19.87
J1 V1		1@0	19.67	20.40	19.06
		1@12	19.67	20.06	19.32
		1@24	19.51	20.36	18.64
	16-QAM	12@0	18.53	18.52	18.87
		12@6	18.36	18.61	18.65
		12@11	18.57	18.49	18.97
		25@0	18.63	18.39	18.76
10M	QPSK	1@0	20.95	21.26	20.72

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@24	20.71	20.67	20.7
		1@49	20.91	20.69	20.75
		25@0	19.7	20.23	19.8
		25@12	19.84	20.12	19.82
		25@24	19.7	20.02	19.66
		50@0	19.69	19.92	20.03
		1@0	19.93	20.83	20.38
		1@24	19.82	20.63	20.02
		1@49	19.51	20.56	19.92
	16-QAM	25@0	19.77	19.79	19.85
		25@12	19.59	19.74	19.72
		25@24	19.58	19.85	19.81
		50@0	19.62	19.73	19.75

LTE Band 7:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	14.82	14.5	14.37
		1@12	14.34	14.29	14.36
		1@24	14.86	14.35	14.35
	QPSK	12@0	14.24	14.31	14.58
		12@6	14.29	13.8	14.35
		12@11	14.23	13.39	14.25
5M		25@0	14.34	13.22	14.38
SIVI		1@0	14.02	14.02	14.05
		1@12	14.69	14.3	14.58
		1@24	14.24	13.49	13.97
	16-QAM	12@0	13.17	13.81	13.95
		12@6	13.06	13.8	13.98
		12@11	13.06	13.79	13.9
		25@0	13.1	13.54	13.96
		1@0	14.41	15.14	13.55
		1@24	15	14.72	14.34
	QPSK	1@49	14.7	14.6	14.41
		25@0	13.6	15	14.7
		25@12	13.58	15.05	14.59
		25@24	13.52	15.06	14.59
10M		50@0	14.03	14.81	14.8
TUIVI		1@0	13.3	14.07	13.61
		1@24	13.57	14.3	14.32
		1@49	14.26	14.41	14.14
	16-QAM	25@0	13.77	13.96	13.87
		25@12	13.75	14.11	13.84
		25@24	13.7	13.95	13.93
		50@0	13.05	13.89	13.89
		1@0	14.48	14.63	15.15
		1@37	15.31	14.56	14.3
		1@74	15.13	14.97	14.5
	QPSK	36@0	13.88	15.2	14.81
		36@16	13.84	15.34	14.74
		36@35	13.91	15.28	14.81
15M		75@0	14.37	14.95	14.92
1 3111		1@0	13.55	14.1	14.44
		1@37	14.35	14.25	14.55
		1@74	14.02	14.11	14.42
	16-QAM	36@0	13.07	14.24	13.79
		36@16	13.05	14.22	13.76
		36@35	13.17	14.2	13.92
		75@0	13.59	13.92	14.07
20M	QPSK	1@0	15.34	15.54	15.46

Report Template Version: FCC SAR-V1.0

Page 44 of 74

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@49	15.06	14.92	15.27
		1@99	14.11	14.69	14.39
		50@0	14.75	14.68	14.47
		50@24	14.62	14.77	14.69
		50@49	14.66	14.74	14.66
		100@0	14.2	14.32	14.8
		1@0	14.14	14.55	14.32
		1@49	14.95	14.05	14.05
		1@99	14.01	14.56	14.62
	16-QAM	50@0	14.68	14.55	14.5
		50@24	14.43	14.58	14.34
		50@49	14.43	14.37	14.24
		100@0	14.09	14.96	14.76

Report Template Version: FCC SAR-V1.0

Page 45 of 74

LTE Band 12:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	24.17	24.51	24.82
		1@2	24.05	24.62	24.86
		1@5	24.10	24.51	24.55
	QPSK	3@0	24.23	24.45	24.72
		3@1	24.01	24.72	24.91
		3@2	24.21	24.37	24.86
1.4M		6@0	22.94	24.06	23.80
1.4WI		1@0	22.76	23.19	23.92
		1@2	22.70	23.74	24.04
		1@5	22.61	23.73	24.10
	16-QAM	3@0	22.89	23.37	23.72
		3@1	22.83	23.54	23.70
		3@2	22.67	23.48	23.73
		6@0	21.75	22.83	22.55
		1@0	23.95	24.58	24.61
		1@7	24.38	24.59	24.75
	QPSK	1@14	24.01	24.42	24.88
		8@0	23.09	23.17	23.59
		8@4	23.01	23.51	23.77
		8@7	23.21	23.90	23.82
3M		15@0	23.04	23.91	23.80
3101		1@0	22.58	23.82	23.89
		1@7	22.76	24.40	23.51
		1@14	22.69	24.26	23.60
	16-QAM	8@0	21.86	22.12	22.52
		8@4	21.87	22.14	22.75
		8@7	22.41	22.71	22.80
		15@0	21.95	22.70	22.49
		1@0	23.88	24.15	24.65
		1@12	24.01	24.49	24.63
		1@24	24.10	24.75	24.73
	QPSK	12@0	23.07	23.38	23.56
		12@6	23.08	23.34	23.59
		12@11	22.91	23.36	23.69
5M		25@0	23.19	23.92	23.74
J1 V1		1@0	22.70	22.99	22.57
		1@12	22.30	23.20	22.88
		1@24	22.79	23.20	22.86
	16-QAM	12@0	21.62	21.83	22.28
		12@6	21.67	21.96	22.12
		12@11	21.56	22.11	22.27
		25@0	22.13	22.64	22.57
10M	QPSK	1@0	23.99	24.42	24.37

Report Template Version: FCC SAR-V1.0

Page 46 of 74

LTE Band 41:

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	2569MHz (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@0	15.64	15.66	16.13	15.07
		1@12	16.14	16.24	16.67	15.86
		1@24	15.23	15.29	15.83	15.47
	QPSK	12@0	14.91	14.99	15.43	14.64
		12@6	15.05	15.16	15.41	14.64
		12@11	14.90	15.04	15.49	14.97
5M		25@0	15.00	14.97	15.49	15.03
SIVI		1@0	14.77	14.89	15.04	14.11
		1@12	15.32	15.29	15.36	15.04
		1@24	14.33	14.48	14.74	14.70
	16-QAM	12@0	13.75	13.8	14.34	13.87
		12@6	13.66	13.79	14.36	13.80
		12@11	13.70	13.77	14.42	13.98
		25@0	13.71	13.79	14.34	14.06
		1@0	15.88	15.97	16.51	15.32
		1@24	15.90	15.86	16.63	16.10
	QPSK	1@49	16.11	16.17	16.50	16.58
		25@0	15.24	15.38	15.64	15.11
		25@12	15.26	15.23	15.83	14.97
		25@24	15.36	15.5	15.74	15.04
1014		50@0	15.15	15.11	15.63	15.20
10M		1@0	14.63	14.64	15.71	14.29
		1@24	14.79	14.88	15.82	14.78
		1@49	14.72	14.77	15.67	15.05
	16-QAM	25@0	13.87	13.97	14.46	13.71
		25@12	13.87	13.95	14.40	13.70
		25@24	13.80	13.9	14.50	13.90
		50@0	13.87	13.83	14.42	13.93
		1@0	16.26	16.38	16.95	15.76
		1@37	15.99	16.11	16.63	16.14
		1@74	15.54	15.56	16.00	16.26
	QPSK	36@0	15.21	15.32	15.76	15.10
		36@16	15.28	15.39	15.94	15.19
		36@35	15.20	15.27	15.80	15.24
15M		75@0	14.99	15.09	15.50	15.31
1 31VI		1@0	14.74	14.84	16.05	14.59
		1@37	14.55	14.58	15.61	14.99
		1@74	14.17	14.12	15.24	15.25
	16-QAM	36@0	13.99	14.08	14.60	13.86
		36@16	13.90	13.95	14.79	13.95
		36@35	13.75	13.71	14.79	14.03
		75@0	13.71	13.74	14.28	14.06
20M	QPSK	1@0	16.76	16.85	17.03	15.99

Test Bandwidth	Test Modulation	Resource Block & RB offset	Low Channel (dBm)	2569MHz (dBm)	Middle Channel (dBm)	High Channel (dBm)
		1@49	15.95	15.93	16.4	16.12
		1@99	16.07	16.17	16.11	16.92
	QPSK	50@0	15.42	15.45	16.08	15.13
	VPSK	50@24	15.38	15.45	15.95	15.95
		50@49	15.64	15.76	16.13	15.82
		100@0	15.63	15.68	15.69	16.35
20M		1@0	15.92	16.03	16.25	15.87
		1@49	15.19	15.25	15.76	15.13
		1@99	15.31	15.36	15.14	15.63
	16-QAM	50@0	15.37	15.44	15.8	15.97
		50@24	15.3	15.43	15.94	15.97
		50@49	15.49	15.48	15.76	15.95
		100@0	15.32	15.29	15.48	15.66

WLAN: 2.4G

Mode	Channel frequency (MHz)	Data Rate	Duty cycle (%)	RF Output Power (dBm)
	2412			9.52
802.11b	2437	1Mbps	97.73	6.79
	2462			10.46
	2412			9.98
802.11g	2437	6Mbps	88.82	6.61
	2462			10.24
	2412			10.11
802.11n ht20	2437		87.61	6.75
	2462	MCS0		10.38
	2422	MCSU		9.25
802.11n ht40	2437		77.81	8.66
	2452			9.68

Note: The duty cycle plots, please refer to the radio report: 2401T76732E-RF-00B ▲, *which was issued by Bay Area Compliance Laboratories Corp. (Shenzhen).*

WLAN: 5.2G

Mode	Channel frequency (MHz)	Data Rate	Duty cycle (%)	RF Output Power (dBm)
	5180			7.73
802.11a	5200	6Mbps	89.21	7.56
	5240			7.54
	5180			7.71
802.11n20	5200		87.99	7.53
	5240			7.69
002 11 40	5190		97.40	7.23
802.11n40	5230		87.49	7.52
	5180	MCS0		7.55
802.11ac20	5200		87.99	7.69
	5240			7.51
002.1140	5190		97.40	7.13
802.11ac40	5230		87.49	7.28
802.11ac80	5210		76.45	7.62

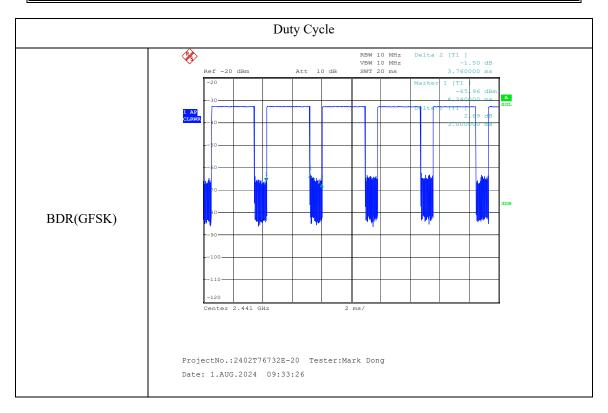
Note: The duty cycle plots, please refer to the radio report: 2401T76732E-RF-00C \blacktriangle , which was issued by Bay Area Compliance Laboratories Corp. (Shenzhen).

Report Template Version: FCC SAR-V1.0 Page 50 of 74

WLAN: 5.8G

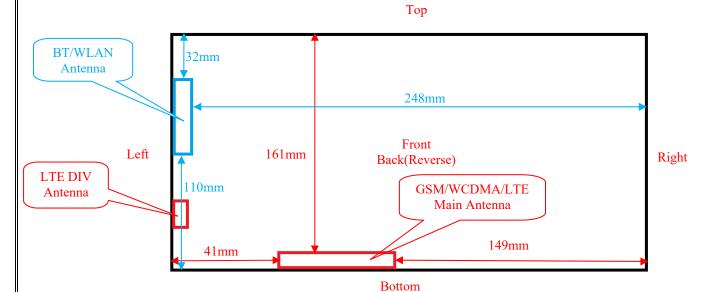
Mode	Channel frequency (MHz)	Data Rate	Duty cycle (%)	RF Output Power (dBm)
	5745			7.12
802.11a	5785	6Mbps	89.21	7.16
	5825			7.48
	5745			7.36
802.11n20	5785		87.99	7.62
	5825			7.27
002 11 40	5755		87.49	7.38
802.11n40	5795			7.41
	5745	MCS0		7.31
802.11ac20	5785		87.99	7.61
	5825			7.19
002 11 40	5755	97.40	7.47	
802.11ac40	5795		87.49	7.49
802.11ac80	5775		76.45	7.55

Note: The duty cycle plots, please refer to the radio report: 2401T76732E-RF-00C ▲, which was issued by Bay Area Compliance Laboratories Corp. (Shenzhen).


Bluetooth:

Mode	Channel frequency (MHz)	RF Output Power (dBm)
	2402	4.39
DDD/CECK)	2411	5.76
BDR(GFSK)	2441	3.83
	2480	5.72
	2402	3.66
EDD(-// DODGE)	2409	4.88
$EDR(\pi/4-DQPSK)$	2441	3.06
	2480	4.53
	2402	4.19
EDD(ODDCV)	2411	5.54
EDR(8DPSK)	2441	3.21
	2480	4.78
	2402	-0.57
BLE 1Mbps	2440	-1.22
	2480	0.10
	2402	-0.71
BLE 2Mbps	2440	-1.62
	2480	0.10

Report Template Version: FCC SAR-V1.0


Page 51 of 74

Test Modes	Ton	Ton+off	Duty cycle	Scaled Factor
	(ms)	(ms)	(%)	(1/duty cycle)
BDR(GFSK)	3.00	3.76	79.8	1.3

8. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS

8.1 Antennas Location:

8.2 Antenna Distance To Edge

Antenna Distance To Edge(mm)								
Antenna	Back	Front	Left	Right	Тор	Bottom		
WWAN Antenna(GSM/WCDMA/LTE)	< 5	< 5	41	149	161	< 5		
WLAN/BT Antenna	< 5	< 5	< 5	248	32	110		

8.3 SAR test exclusion for the EUT edge considerations Result

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Test Exclusion Distance (mm)
GSM 850	848.8	24.5	281.8	71
PCS 1900	1909.8	20.25	105.9	48.7
WCDMA Band 2	1907.6	15.5	35.5	16.3
WCDMA Band 5	846.6	23	199.5	56.4
LTE Band 2	1900	18.5	70.8	32.5
LTE Band 5	844	21.5	141.3	43.2
LTE Band 7	2560	16	39.8	21.2
LTE Band 12	707.5	25	316.2	79.2
LTE Band 41	2645	17.1	51.3	27.8
WLAN 2.4G	2462	10.5	11.2	5.8
WLAN 5.2G	5240	8	6.3	4.8
WLAN 5.8G	5825	8	6.3	5.1
BT	2480	6	4	2.0

Report No.: 2402T76732E-20A

Note: The GSM850/PCS1900 based average power for calculation.

Mode	Back	Front	Left	Right	Тор	Bottom
GSM 850	Required	Required	Required	Exclusion	Exclusion	Required
PCS 1900	Required	Required	Required	Exclusion	Exclusion	Required
WCDMA Band 2	Required	Required	Exclusion	Exclusion	Exclusion	Required
WCDMA Band 5	Required	Required	Required	Exclusion	Exclusion	Required
LTE Band 2	Required	Required	Exclusion	Exclusion	Exclusion	Required
LTE Band 5	Required	Required	Required	Exclusion	Exclusion	Required
LTE Band 7	Required	Required	Exclusion	Exclusion	Exclusion	Required
LTE Band 12	Required	Required	Required	Exclusion	Exclusion	Required
LTE Band 41	Required	Required	Exclusion	Exclusion	Exclusion	Required
WLAN 2.4G	Required	Required	Required	Exclusion	Exclusion	Exclusion
WLAN 5.2G	Required	Required	Required	Exclusion	Exclusion	Exclusion
WLAN 5.8G	Required	Required	Required	Exclusion	Exclusion	Exclusion
BT	Required	Required	Required	Exclusion	Exclusion	Exclusion

Note:

Required: The distance is less than Test Exclusion Distance, the SAR test is required. Exclusion: The distance is large than Test Exclusion Distance, SAR test is not required.

Exclusion*: SAR test exclusion evaluation has been done above.

SAR test exclusion for the EUT edge considerations detail:

Distance < 50mm (To Edges)

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

Report No.: 2402T76732E-20A

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.
- 5. The Time based average Power is used for calculation

Distance > 50mm(To Edges)

At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:

- a) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
- b) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and $\leq 6 \text{ GHz}$.

Report Template Version: FCC SAR-V1.0 Page 55 of 74

9. SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

9.1 SAR Test Data

Temperature:	21.6-22.5 ℃	22.6-23.1°C	22.7-23.3 ℃	22.4-23.1 °C	22.2-22.9 ℃	22.4-23.1 ℃
Relative Humidity:	38%	40%	36%	41%	33%	36%
ATM Pressure:	98.6 kPa	100.0 kPa	100.8 kPa	100.2 kPa	100.8 kPa	100.9 kPa
Test Date:	2024/7/26	2024/7/27	2024/7/31	2024/08/01	2024/08/02	2024/08/21

Report No.: 2402T76732E-20A

Testing was performed by Lily Yang, Petre Ma, Mark Dong.

Report Template Version: FCC SAR-V1.0 Page 56 of 74

GSM 850:

	F	Tr4	Max.	Max.		1g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	824.2	GSM	/	/	/	/	/	/
Body Worn Front (0mm)	836.6	GSM	32.65	33	1.084	0.256	0.28	/
(OIIIII)	848.8	GSM	/	/	/	/	/	/
D 1 W D 1	824.2	GSM	/	/	/	/	/	/
Body Worn Back (0mm)	836.6	GSM	32.65	33	1.084	0.360	0.39	/
(OIIIII)	848.8	GSM	/	/	/	/	/	/
	824.2	GPRS	/	/	/	/	/	/
Body Front (0mm)	836.6	GPRS	29.34	30.5	1.306	0.099	0.13	/
(OIIIII)	848.8	GPRS	/	/	/	/	/	/
	824.2	GPRS	29.37	30.5	1.297	0.373	0.48	/
Body Back (0mm)	836.6	GPRS	29.34	30.5	1.306	0.392	0.51	1#
(OIIIII)	848.8	GPRS	30.1	30.5	1.096	0.373	0.41	/
5 1 7 0	824.2	GPRS	/	/	/	/	/	/
Body Left	836.6	GPRS	29.34	30.5	1.306	< 0.01	0.01	/
(0mm)	848.8	GPRS	/	/	/	/	/	/
	824.2	GPRS	/	/	/	/	/	/
Body Bottom	836.6	GPRS	29.34	30.5	1.306	0.304	0.40	/
(0mm)	848.8	GPRS	/	/	/	/	/	/

Report No.: 2402T76732E-20A

Note:

- 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. The EUT transmit and receive through the same GSM antenna while testing SAR.
- 3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.
- 4. When the maximum output power variation across the required test channels is > 0.5 dB, instead of the middle channel, the highest output power channel must be used.
- 5. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 3DL+2UL is the worst case.

Report Template Version: FCC SAR-V1.0

Page 57 of 74

GSM 1900:

FILE	T.	T	Max.	Max.		1g SAR ((W/kg)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
D 1 W E	1850.2	GSM	/	/	/	/	/	/
Body Worn Front (0mm)	1880	GSM	25.04	25.5	1.112	0.307	0.34	/
(Omm)	1909.8	GSM	/	/	/	/	/	/
D 1 W D 1	1850.2	GSM	/	/	/	/	/	/
Body Worn Back (0mm)	1880	GSM	25.04	25.5	1.112	0.506	0.56	/
(OIIIII)	1909.8	GSM	/	/	/	/	/	/
D 1 E	1850.2	GPRS	24.21	24.5	1.069	0.940	1.00	/
Body Front (0mm)	1880	GPRS	24.49	24.5	1.002	1.03	1.03	/
(OIIIII)	1909.8	GPRS	24.3	24.5	1.047	0.883	0.92	/
D 1 D 1	1850.2	GPRS	24.21	24.5	1.069	0.840	0.90	/
Body Back (0mm)	1880	GPRS	24.49	24.5	1.002	1	1.00	/
(OIIIII)	1909.8	GPRS	24.3	24.5	1.047	0.893	0.93	/
5 1 5 0	1850.2	GPRS	/	/	/	/	/	/
Body Left (0mm)	1880	GPRS	24.49	24.5	1.002	< 0.01	0.01	/
(Omm)	1909.8	GPRS	/	/	/	/	/	/
D 1 D 11	1850.2	GPRS	24.21	24.5	1.069	1.06	1.13	/
Body Bottom (0mm)	1880	GPRS	24.49	24.5	1.002	1.18	1.18	2#
(OIIIII)	1909.8	GPRS	24.3	24.5	1.047	0.942	0.99	/

Note:

- 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. The EUT transmit and receive through the same GSM antenna while testing SAR.
- 3. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.
- 4. When the maximum output power variation across the required test channels is > 0.5 dB, instead of the middle channel, the highest output power channel must be used.
- 5. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 4 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 2DL+3UL is the worst case.

WCDMA Band 2:

DITE	E	T = =4	Max.	Max.		1g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
D 1 E	1852.4	RMC	15.09	15.5	1.099	0.451	0.50	/
Body Front (0mm)	1880	RMC	14.95	15.5	1.135	0.767	0.87	3#
(Ollilli)	1907.6	RMC	15.11	15.5	1.094	0.662	0.72	/
D 1 D 1	1852.4	RMC	/	/	/	/	/	/
Body Back (0mm)	1880	RMC	14.95	15.5	1.135	0.559	0.63	/
(Ollilli)	1907.6	RMC	/	/	/	/	/	/
D 1 D	1852.4	RMC	/	/	/	/	/	/
Body Bottom (0mm)	1880	RMC	14.95	15.5	1.135	0.344	0.39	/
(OIIIII)	1907.6	RMC	/	/	/	/	/	/

Report No.: 2402T76732E-20A

WCDMA Band 5:

EUC	E	Tant	Max.	Max.		1g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
D 1 E /	826.4	RMC	/	/	/	/	/	/
Body Front (0mm)	836.6	RMC	22.1	23	1.230	0.570	0.70	/
(Ollilli)	846.6	RMC	/	/	/	/	/	/
D 1 D 1	826.4	RMC	21.42	23	1.439	0.706	1.02	4#
Body Back (0mm)	836.6	RMC	22.1	23	1.230	0.591	0.73	/
(Ollill)	846.6	RMC	22.58	23	1.102	0.655	0.72	/
D 1 I 6	826.4	RMC	/	/	/	/	/	/
Body Left (0mm)	836.6	RMC	22.1	23	1.230	0.507	0.62	/
(OIIIII)	846.6	RMC	/	/	/	/	/	/
D 1 D	826.4	RMC	/	/	/	/	/	/
Body Bottom (0mm)	836.6	RMC	22.1	23	1.230	< 0.01	0.01	/
(OIIIII)	846.6	RMC	/	/	/	/	/	/

Note:

- 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. The EUT transmit and receive through the same antenna while testing SAR.
- 3. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC(reference measurement Channel) Configured in Test Loop Model.
- 4. KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA when the maximum average output of each RF channel is less than ½ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.
- 5. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

LTE Band 2:

DHID	E	D 1 141	T4	Max.	Max.		1g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	1860	20	1RB	18.29	18.5	1.05	0.844	0.89	/
D . 1 F 4	1880	20	1RB	18.49	18.5	1.002	0.898	0.90	/
Body Front (0mm)	1900	20	1RB	18.48	18.5	1.005	0.893	0.90	/
(Ollilli)	1880	20	50%RB	18.38	18.5	1.028	0.704	0.72	/
	1880	20	100%RB	18.16	18.5	1.081	0.750	0.81	/
	1860	20	1RB	18.29	18.5	1.05	0.761	0.80	/
	1880	20	1RB	18.49	18.5	1.002	0.940	0.94	/
D 1 D 1	1900	20	1RB	18.48	18.5	1.005	0.968	0.97	/
Body Back (0mm)	1860	20	50%RB	18.43	18.5	1.016	0.811	0.82	/
(Ollilli)	1880	20	50%RB	18.38	18.5	1.028	0.832	0.86	/
	1900	20	50%RB	18.46	18.5	1.009	1.15	1.16	5#
	1880	20	100%RB	18.16	18.5	1.081	0.875	0.95	/
	1860	20	1RB	/	/	/	/	/	/
Body Bottom	1880	20	1RB	18.49	18.5	1.002	0.261	0.26	/
(0mm)	1900	20	1RB	/	/	/	/	/	/
	1880	20	50%RB	18.38	18.5	1.028	0.243	0.25	/

Report No.: 2402T76732E-20A

LTE Band 5:

	E	D 1 ' 141-	T4	Max.	Max.		1g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	829	10	1RB	/	/	/	/	/	/
Body Front	836.5	10	1RB	21.26	21.5	1.057	0.154	0.16	/
(0mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	20.23	21.5	1.340	0.119	0.16	/
	829	10	1RB	20.95	21.5	1.135	0.219	0.25	/
Body Back	836.5	10	1RB	21.26	21.5	1.057	0.237	0.25	/
(0mm)	844	10	1RB	20.75	21.5	1.188	0.046	0.05	/
	836.5	10	50%RB	20.23	21.5	1.340	0.209	0.28	6#
	829	10	1RB	/	/	/	/	/	/
Body Left	836.5	10	1RB	21.26	21.5	1.057	< 0.01	0.01	/
(0mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	20.23	21.5	1.340	< 0.01	0.01	/
	829	10	1RB	/	/	/	/	/	/
Body Bottom	836.5	10	1RB	21.26	21.5	1.057	0.073	0.08	/
(0mm)	844	10	1RB	/	/	/	/	/	/
	836.5	10	50%RB	20.23	21.5	1.340	0.029	0.04	/

LTE Band 7:

	E	D 1 '141-	T4	Max.	Max.		1g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	2510	20	1RB	/	/	/	/	/	/
Body Front	2535	20	1RB	15.54	16	1.112	0.683	0.76	/
(0mm)	2560	20	1RB	/	/	/	/	/	/
	2535	20	50%RB	14.77	16	1.327	0.447	0.59	/
	2510	20	1RB	15.34	16	1.164	0.365	0.42	/
D 1 D 1	2535	20	1RB	15.54	16	1.112	0.917	1.02	7#
Body Back (0mm)	2560	20	1RB	15.46	16	1.132	0.565	0.64	/
(Ollilli)	2535	20	50%RB	14.77	16	1.327	0.591	0.78	/
	2535	20	100%RB	14.32	16	1.472	0.527	0.78	/
	2510	20	1RB	/	/	/	/	/	/
Body Bottom	2535	20	1RB	15.54	16	1.112	0.459	0.51	/
(0mm)	2560	20	1RB	/	/	/	/	/	/
	2535	20	50%RB	14.77	16	1.327	0.361	0.48	/

LTE Band 12:

DUT	E	D a u d - u d d h	Ton4	Max.	Max.		1g SAR	(W/kg)	
EUT Position	Frequency (MHz)	Bandwidth (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	704	10	1RB	/	/	/	/	/	/
Body Front	707.5	10	1RB	24.73	25	1.064	0.170	0.18	/
(0mm)	711	10	1RB	/	/	/	/	/	/
	707.5	10	50%RB	24.41	25	1.146	0.143	0.16	/
	704	10	1RB	24.5	25	1.122	0.864	0.97	8#
Body Back	707.5	10	1RB	24.73	25	1.064	0.354	0.38	/
(0mm)	711	10	1RB	24.84	25	1.038	0.598	0.62	/
	707.5	10	50%RB	24.41	25	1.146	0.291	0.33	/
	704	10	1RB	/	/	/	/	/	/
Body Left	707.5	10	1RB	24.73	25	1.064	< 0.01	0.01	/
(0mm)	711	10	1RB	/	/	/	/	/	/
	707.5	10	50%RB	24.41	25	1.146	< 0.01	0.01	/
	704	10	1RB	/	/	/	/	/	/
Body Bottom	707.5	10	1RB	24.73	25	1.064	0.125	0.13	/
(0mm)	711	10	1RB	/	/	/	/	/	/
	707.5	10	50%RB	24.41	25	1.146	0.108	0.12	/

LTE Band 41:

EUT	Eugguenes	Bandwidth	Test	Max. Meas.	Max. Rated		1g SAR	(W/kg)	
Position	Frequency (MHz)	(MHz)	Mode	Power (dBm)	Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot
	2545	20	1RB	/	/	/	/	/	/
D I E .	2569	20	1RB	/	/	/	/	/	/
Body Front (0mm)	2593	20	1RB	17.03	17.1	1.016	0.588	0.6	/
(Ollilli)	2645	20	1RB	/	/	/	/	/	/
	2593	20	50%RB	16.13	17.1	1.25	0.414	0.52	/
	2545	20	1RB	/	/	/	/	/	/
D 1 D 1	2569	20	1RB	/	/	/	/	/	/
Body Back (0mm)	2593	20	1RB	17.03	17.1	1.016	0.772	0.78	9#
(Ollilli)	2645	20	1RB	/	/	/	/	/	/
	2593	20	50%RB	16.13	17.1	1.25	0.546	0.68	/
	2545	20	1RB	/	/	/	/	/	/
D 1 D	2569	20	1RB	/	/	/	/	/	/
Body Bottom (0mm)	2593	20	1RB	17.03	17.1	1.016	0.516	0.52	/
(OIIIII)	2645	20	1RB	/	/	/	/	/	/
	2593	20	50%RB	16.13	17.1	1.25	0.340	0.43	/

Report No.: 2402T76732E-20A

Note:

1. The frequency range of LTE Band 41 is 2535~ 2655MHz. Per KDB 447498 D01, according to the following formula Calculate Nc is 4.

2.KDB procedures the following should be applied to determine the number of required test channels. The test channels should be evenly spread across the transmission frequency band of each wireless mode. $N_c = Round\{ [100(f_{high} - f_{low})/f_c]^{0.5} \times (f_c/100)^{0.2} \},$

where

- N_c is the number of test channels, rounded to nearest integer,
- f_{high} and f_{low} are the highest and lowest channel frequencies within the transmission band,
- f_c is the mid-band channel frequency,
- all frequencies are in MHz.
- 3. The power class 3 used for LTE Band 41 SAR testing.

Note:

- 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices v02.
- 3. KDB941225D05-SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is > 0.5 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg
- 4. KDB941225D05-For QPSK with 100% RB allocation, when the reported SAR measured for the Highest output power channel is <1.45 W/kg, tests for the remaining required test channels are optional.
- 5.KDB941225D05- For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg.
- 6. KDB941225D05- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offset the upper edge, middle and lower edge of each required test channel.
- 7. KDB941225D05- other channel bandwidths SAR test is required when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > 0.5 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.
- 8. Worst case SAR for 50% RB allocation is selected to be tested.

WIFI 2.4G:

			Max.	Max.		1g S	AR (W/kg	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
D I E	2412	802.11b	/	/	/	/	/	/	/
Body Front (0mm)	2437	802.11b	/	/	/	/	/	/	/
(OIIIII)	2462	802.11b	10.46	10.5	1.009	1.02	0.301	0.31	/
D 1 D 1	2412	802.11b	9.52	10	1.117	1.02	0.367	0.42	/
Body Back (0mm)	2437	802.11b	6.79	7	1.05	1.02	0.309	0.33	/
(OIIIII)	2462	802.11b	10.46	10.5	1.009	1.02	0.420	0.43	10#
D 1 I 0	2412	802.11b	/	/	/	/	/	/	/
Body Left (0mm)	2437	802.11b	/	/	/	/	/	/	/
(OIIIII)	2462	802.11b	10.46	10.5	1.009	1.02	0.111	0.11	/

Note: The test data above was performed on 2024/08/21.

Report No.: 2402T76732E-20A

Note:

- 1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.
- 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

WIFI 5.2G:

			Max.	Max.		1g S	AR (W/kg	g)	
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
D 1 E 4	5180	802.11a	/	/	/	/	/	/	/
Body Front (0mm)	5200	802.11a	7.56	8	1.107	1.12	0.077	0.10	/
(Ollilli)	5240	802.11a	/	/	/	/	/	/	/
D 1 D 1	5180	802.11a	7.73	8	1.064	1.12	0.291	0.35	/
Body Back (0mm)	5200	802.11a	7.56	8	1.107	1.12	0.191	0.24	/
(Ollilli)	5240	802.11a	7.54	8	1.112	1.12	0.302	0.38	11#
D 1 I 0	5180	802.11a	/	/	/	/	/	/	/
Body Left (0mm)	5200	802.11a	7.56	8	1.107	1.12	0.177	0.22	/
(OIIIII)	5240	802.11a	/	/	/	/	/	/	/

Report No.: 2402T76732E-20A

Note:

- 1. When the 1-g SAR is≤ 0.8W/kg, testing for other channels are optional.
- 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.
- 3.For 802.11a mode power is the largest among 802.11a/n/ac, 802.11 a mode as initial test configuration is selected to test.
- 4. According 2016 Oct. TCB, for SAR testing of 5G WIFI 802.11a signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

WIFI 5.8G:

			Max. Max.			g)			
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot
D I E	5745	802.11n20	/	/	/	/	/	/	/
Body Front (0mm)	5785	802.11n20	7.62	8	1.091	1.14	0.020	0.02	/
(Ollill)	5825	802.11n20	/	/	/	/	/	/	/
D 1 D 1	5745	802.11n20	7.36	8	1.159	1.14	0.261	0.34	/
Body Back (0mm)	5785	802.11n20	7.62	8	1.091	1.14	0.254	0.32	/
(Ollill)	5825	802.11n20	7.27	8	1.183	1.14	0.258	0.35	12#
Body Left (0mm)	5745	802.11n20	/	/	/	/	/	/	/
	5785	802.11n20	7.62	8	1.091	1.14	0.172	0.21	/
	5825	802.11n20	/	/	/	/	/	/	/

Report No.: 2402T76732E-20A

Note:

- 1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.
- 2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.
- 3.For 802.11n20 mode power is the largest among 802.11a/n/ac, 802.11 n20 mode as initial test configuration is selected to test.
- 4. According 2016 Oct. TCB, for SAR testing of 5G WIFI 802.11a signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".

BT:

			Max. Max.		1g SAR (W/kg)					
EUT Position	Frequency (MHz)	Test Mode	Meas. Power (dBm)	Rated Power (dBm)	Scaled Factor	Duty cycle Factor	Meas. SAR	Scaled SAR	Plot	
	2402	BDR(GFSK)	/	/	/	/	/	/	/	
Body Front	2411	BDR(GFSK)	/	/	/	/	/	/	/	
(0mm)	2441	BDR(GFSK)	3.83	4	1.037	1.3	0.015	0.02	/	
	2480	BDR(GFSK)	/	/	/	/	/	/	/	
	2402	BDR(GFSK)	4.39	4.5	1.026	1.3	0.018	0.02	/	
Body Back	2411	BDR(GFSK)	5.76	6	1.057	1.3	0.042	0.06	13#	
(0mm)	2441	BDR(GFSK)	3.83	4	1.037	1.3	0.018	0.02	/	
	2480	BDR(GFSK)	5.72	6	1.067	1.3	0.023	0.03	/	
	2402	BDR(GFSK)	/	/	/	/	/	/	/	
Body Left	2411	BDR(GFSK)	/	/	/	/	/	/	/	
(0mm)	2441	BDR(GFSK)	3.83	4	1.037	1.3	0.017	0.02	/	
	2480	BDR(GFSK)	/	/	/	/	/	/	/	

Note: The test data above was performed on 2024/08/01.

Report No.: 2402T76732E-20A

Note:

- 1. When the 1-g SAR is less than half of the limit, testing for low and high channel is optional.
- 2. For GFSK mode power is the largest among GFSK, $\pi/4$ -DQPSK and 8DPSK, GFSK mode as initial test configuration is selected to test.

10. MEASUREMENT VARIABILITY

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

Report No.: 2402T76732E-20A

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Body

SAR probe	Frequency	Freq.(MHz)	EUT Position	Meas. SA	Largest to Smallest		
calibration point	libration point Band		Lorrosition	Original	Repeated	SAR Ratio	
750MHz	LTE Band 12	704	Body Back	0.864	0.822	1.05	
1900MHz	PCS 1900	1880	Body Bottom	1.18	1.15	1.03	
2600MHz	LTE Band 7	2535	Body Back	0.917	0.903	1.02	

Note:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.
- 3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.

Report Template Version: FCC SAR-V1.0 Page 67 of 74

11. SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

11.1 Simultaneous Transmission:

Description of Simultaneous Transmit Capabilities					
Transmitter Combination	Simultaneous?	Hotspot?			
WWAN(GSM/WCDMA/LTE)Antenna + WIFI 2.4G	√	V			
WWAN(GSM/WCDMA/LTE)Antenna + WIFI 5G	√	×			
WWAN(GSM/WCDMA/LTE)Antenna + Bluetooth	√	×			
WLAN 2.4G+ Bluetooth	×	×			
WLAN 5G + Bluetooth	×	×			
WLAN 2.4G + WLAN 5G	×	×			

11.2 Simultaneous SAR test exclusion considerations:

Mode(SAR1+SAR2)	Position		orted W/kg)	ΣSAR <	
(2.2.2.2)	1 00101011	SAR1	SAR2	1.6W/kg	
	Body Front	1.03	0.31	1.34	
WWAN(CSM/WCDMA/LTE) Antonno WIEL2 4C	Body Back	1.16	0.43	1.59	
WWAN(GSM/WCDMA/LTE)Antenna + WIFI 2.4G	Body Left	0.62	0.11	0.73	
	Body Bottom	1.18	NA	NA	
	Body Front	1.03	0.10	1.13	
WWANGCM/WODMA/LTE\Agains WIELSC	Body Back	1.16	0.38	1.54	
WWAN(GSM/WCDMA/LTE)Antenna + WIFI 5G	Body Left	0.62	0.22	0.84	
	Body Bottom	1.18	NA	NA	
	Body Front	1.03	0.02	1.05	
WWW.ANI/CCM/WCDMA/LTEVA.stansas Dlustastl	Body Back	1.16	0.06	1.22	
WWAN(GSM/WCDMA/LTE)Antenna + Bluetooth	Body Left	0.62	0.02	0.64	
	Body Bottom	1.18	NA	NA	
	Body Front	1.03	0.31	1.34	
WWAN(GSM/WCDMA/LTE)Antenna + WIFI 2.4G	Body Back	1.16	0.43	1.59	
(Hotspot)	Body Left	0.62	0.11	0.73	
	Body Bottom	1.18	NA	NA	

Conclusion:

Sum of SAR: Σ SAR \leq 1.6 W/kg therefore simultaneous transmission SAR with Volume Scans is **not required**.

Report Template Version: FCC SAR-V1.0 Page 68 of 74

APPENDIX A - MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Report No.: 2402T76732E-20A

Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Uncertainty component	Tolerance/ uncertainty ±%	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
		Measurement	system				_
Probe calibration(k=1)	6.55	N	1	1	1	6.6	6.6
Axial isotropy	4.7	R	√3	√0.5	√0.5	1.9	1.9
Hemispherical isotropy	9.6	R	√3	√0.5	√0.5	3.9	3.9
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Linearity	4.7	R	√3	1	1	2.7	2.7
System detection limits	1.0	R	√3	1	1	0.6	0.6
Modulation response	0.0	R	√3	1	1	0.0	0.0
Readout electronics	0.3	N	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambientconditions-noise	1.0	R	√3	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech.tolerance	0.8	R	√3	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Extrapolation, interpolation, and integrationsalgorithms for max. SAR evaluation	2.0	R	√3	1	1	1.2	1.2
		Test sample r	elated				
Test sample positioning	3.3	N	1	1	1	3.3	3.3
Device holder uncertainty	4.7	N	1	1	1	4.7	4.7
Output power variation –SAR draft measurement	5.0	R	√3	1	1	2.9	2.9
SAR scaling	2.8	R	√3	1	1	1.6	1.6
	Phan	tom and tissue	paramete	rs			
Phantom shell uncertainty– shape, thicknessand permittivity	4.0	R	√3	1	1	2.3	2.3
Uncertainty in SARcorrection for deviationsin permittivity and conductivity	1.9	N	1	1	0.84	1.9	1.6
Liquid conductivity meas.	2.5	N	1	0.78	0.71	2.0	1.8
Liquid permittivity meas.	2.5	N	1	0.23	0.26	0.6	0.7
Liquid conductivity – temperatureuncertainty	1.7	R	√3	0.78	0.71	0.8	0.7
Liquid permittivity – temperatureuncertainty	0.3	R	√3	0.23	0.26	0.0	0.0
Combined standard uncertainty		RSS				12.1	12.0
Expanded uncertainty (95 % confidence interval)		k=2				24.2	24.0

Report Template Version: FCC SAR-V1.0

Page 69 of 74

Measurement uncertainty evaluation for IEC62209-2 SAR test

	Tolerance/	tainty evaluati	011 101 1130			Standard	Standard
Source of uncertainty	Uncertainty value ± %	Probability Distribution	Divisor	ci (1 g)	ci (10 g)	uncertainty ± %, (1 g)	uncertainty ± %, (10 g)
		Measureme	nt system				
Probe calibration	6.55	N	1	1	1	6.6	6.6
Isotropy	4.7	R	√3	1	1	2.7	2.7
Linearity	4.7	R	√3	1	1	2.7	2.7
Probe modulation response	0.0	R	√3	1	1	0.0	0.0
Detection limits	1.0	R	√3	1	1	0.6	0.6
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	Z	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambientconditions – noise	1.0	R	√3	1	1	0.6	0.6
RF ambient conditions–reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. restrictions	0.8	R	√3	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test sampl	e related				
Device holder uncertainty	4.7	Z	1	1	1	4.7	4.7
Test sample positioning	3.3	Ζ	1	1	1	3.3	3.3
Power scaling	4.5	R	√3	1	1	2.6	2.6
Drift of output power (measured SAR drift)	5.0	R	√3	1	1	2.9	2.9
	1	Phantom a	nd set-up	1	1	 	
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3
Algorithm for correcting SAR for deviations in permittivity and conductivity	1.9	N	1	1	0.84	1.9	1.6
Liquid conductivity (meas.)	2.5	N	1	0.78	0.71	2.0	1.8
Liquid permittivity (meas.)	2.5	N	1	0.23	0.26	0.6	0.7
Liquid conductivity – temperatureuncertainty	1.7	R	√3	0.78	0.71	0.8	0.7
Liquid permittivity – temperatureuncertainty	0.3	R	√3	0.23	0.26	0.0	0.0
Combined standard uncertainty		RSS				11.8	11.7
Expanded uncertainty (95 % confidence interval)						23.6	23.4

Report Template Version: FCC SAR-V1.0 Page 70 of 74

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: 2402T76732E-20A
APPENDIX B - SAR PLOTS	
Please refer to the attachment.	

Report Template Version: FCC SAR-V1.0 Page 71 of 74

APPENDIX C - EUT TEST POSITION P	HO108
Please refer to the attachment.	

Report Template Version: FCC SAR-V1.0 Page 72 of 74

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: 2402T76732E-20A
APPENDIX D - PROBE CALIBRATION	CERTIFICATES
Please refer to the attachment.	
rease refer to the attachment.	

Report Template Version: FCC SAR-V1.0 Page 73 of 74

Dat	A roo Compli	iance Laboratories	Com (D	on coulon)	Report No.: 2402T76732E-20A
Day	Alea Combii	lance Laboratories	COID, (D)	ongguani	CEDUIT NO 24021/0/32E-20A

APPENDIX E - DIPOLE CALIBRATION CERTIFICATES

Please refer to the attachment.

==== END OF REPORT ====

Report Template Version: FCC SAR-V1.0 Page 74 of 74