Annex D Appendix to Test Report No.: 1-2868/21-03-02 ### **Testing Laboratory** #### **CTC advanced GmbH** Untertürkheimer Straße 6 – 10 66117 Saarbrücken/Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com e-mail: mail@ctcadvanced.com #### **Accredited Test Laboratory:** The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01 Appendix with Calibration data, Phantom certificate and system check information ## Table of contents | 1 | Table of contents | | 2 | |----|----------------------|-------------------------------------|----| | 2 | Calibration report | "Probe EX3DV4" | 3 | | 3 | Calibration report ' | "Probe EX3DV4" | 12 | | 4 | Calibration report ' | "450 MHz System validation dipole" | 23 | | 5 | Calibration report ' | "600 MHz System validation dipole" | 32 | | 6 | Calibration report ' | "2450 MHz System validation dipole" | 38 | | 7 | Calibration certific | ate of Data Acquisition Unit (DAE) | 46 | | 8 | Calibration certific | ate of Data Acquisition Unit (DAE) | 47 | | 9 | Certificate of "SAN | // Twin Phantom V4.0 and V5.0" | 48 | | 10 | Application No | ote System Performance Check | 49 | | | 10.1 Purpose o | of system performance check | 49 | | | | erformance check procedure | | | | | ty Budget | | | | | -up for validation | | | | | y reflection | | | | - | l evetam chacke | | ### Calibration report "Probe EX3DV4" Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates tificate No: EX3-7566_Aug21 CTC advanced GmbH CALIBRATION CERTIFICATE EX3DV4 - SN:7566 Object QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure(s) Calibration procedure for dosimetric E-field probes August 16, 2021 Calibration date: The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-960_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID. | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 08-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Function Signature Laboratory Technician echnical Manager Approved by: Issued: August 21, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7566_Aug21 Page 1 of 22 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx.y,z sensitivity in free space ConvF sensitivity in TSL / NORMx.y,z diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 3 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz. R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diods. - CorvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * CorvF whereby the uncertainty corresponds to that given for CorvF. A frequency dependent CorvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7568 Aug21 Page 2 of 22 EX3DV4 - SN:7566 August 16, 2021 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7566 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.66 | 0.47 | 0.52 | ± 10.1 % | | DCP (mV) ⁸ | 99.8 | 99.5 | 99.4 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unce
(k=2) | | |---------------
--|---|---------|-----------|-------|---|----------|---------------|---|----------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 148.5 | ± 3.5 % | ± 4.7 % | | | | | Y | 0,00 | 0.00 | 1.00 | | 138:5 | | | | | | | 2 | 0.00 | 0.00 | 1.00 | | 133.7 | | | | | 10352- | Pulse Waveform (200Hz. 10%) | X | 20.00 | 94.69 | 22.56 | 10.00 | 10.00 | 60.0 | ± 4.0 % | ±9.69 | | AAA | Committee of the Commit | Y | 20.00 | 93.86 | 22.25 | | 60.0 | Secretary Co. | 2000 | | | 205055 | | 2 | 20.00 | 90.26 | 19.67 | | 60.0 | | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 94.63 | 21.71 | 6.99 | 80.0 | ± 2.6 % | ± 9.6 % | | | AAA | | Y | 20.00 | 99.14 | 23.68 | | 80.0 | | | | | | | Z | 20.00 | 92.72 | 19.90 | 14000 | 80.0 | 0.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 99.67 | 23.09 | 3.98 | 95.0 | ± 1.4 % | ± 9.6 % | | | AAA | | Y | 20.00 | 111.56 | 28.12 | | | | 95.0 | 50000000 | | 2504.000 | | Z | 20.00 | 97.27 | 20.95 | | 95.0 | 1 | | | | 10355-
AAA | Pulse Waveform (200Hz, 80%) | X | 20.00 | 109.04 | 26,37 | 2.22 | 120.0 | ±1.0% | ± 9.6 % | | | | | Y | 20.00 | 128.62 | 34.41 | | 120.0 | | | | | | | Z | 20.00 | 109.25 | 25.45 | 0.00 | 120.0 | | in a new const | | | 10387- | QPSK Waveform, 1 MHz | X | 1.93 | 67.59 | 16.27 | 1.00 | 150.0 | ± 1.8 % | ± 9.6 5 | | | AAA | personal expension of the persons | Y | 1.76 | 67.23 | 15.76 | | 150.0 | 3500 5000 | DA 340304 | | | | | Z | 1.95 | 68.16 | 16.53 | | 150.0 | 1 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.61 | 70.19 | 17.03 | 0.00 | 150.0 | ± 1.0 % | 19.65 | | | AAA. | | Y | 2.29 | 68.56 | 16.30 | | 150.0 | | | | | | | Z | 2.64 | 70.57 | 17.27 | e00000 | 150.0 | | 3.014949494 | | | 10396- | 64-QAM Waveform, 100 kHz | X | 3.22 | 72.11 | 19.89 | 3.01 | 150.0 | ± 1.1% | 29.69 | | | AAA | PROPERTY OF STREET, ST | Y | 2.25 | 66.59 | 17.34 | 02000 | 150.0 | C=35100.600 | 1,000,000 | | | encore. | | Z | 2.83 | 70.13 | 19.06 | | 150.0 | 1 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.62 | 67.50 | 16.16 | 0.00 | 150.0 | ±0.9% | ± 9.6 9 | | | AAA | | Y | 3.56 | 67.34 | 16.06 | | 150.0 | - 100 | 2750 | | | | L | Z | 3.66 | 67.74 | 16.31 | | 150.0 | Latinovino. | 1000 | | | 10414- | WLAN CCDF, 84-QAM, 40MHz | Х | 4.94 | 65.63 | 15.64 | 0.00 | 150.0 | ± 1.9 % | ±9.65 | | | AAA | Technological man over control of the control | Y | 4.87 | 65.74 | 15.70 | 200000000000000000000000000000000000000 | 150.0 | | 100000000000000000000000000000000000000 | | | 30000000 | | Z | 4.98 | 65.82 | 15.77 | | 150.0 | 1 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7566_Aug21 Page 3 of 22 The uncertainties of Norm X.Y.Z do not affect the E¹-field uncertainty inside TSL (see Page 5). Numerical finestization parameter: uncertainty not required. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:7566 August 16, 2021 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7566 #### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5 | T6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------|------|------| | X | 52.3 | 388.47 | 35.37 | 20.79 | 0.00 | 5.08 | 1.00 | 0.28 | 1.01 | | Y | 42.0 | 313.34 | 35.55 | 9.65 | 0.19 | 5.06 | 0.00 | 0.28 | 1.00 | | Z | 49.5 | 368.02 | 35.43 | 12.74 | 0.00 | 5.03 | 0.42 | 0.31 | 1.01 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (") | -69.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7566_Aug21 EX3DV4- SN:7566 August 16, 2021 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7566 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ⁵
(mm) | Unc
(k=2) | |----------------------|--------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.23 | 10.23 | 10.23 | 0.50 | 0.80 | ± 12.0 % | | 850 | 41.5 | 0.92 | 9.94 | 9.94 | 9.94 | 0.39 | 0.99 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.77 | 9.77 | 9.77 | 0.39 | 0.97 | ± 12.0 % | | 1750 | 40.1 | 1,37 | 8.58 | 8.58 | 8.58 | 0.27 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.20 | 8.20 | 8.20 | 0.31 | 0.86 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.54 | 7.54 | 7.54 | 0.31 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.40 | 7.40 | 7.40 | 0.38 | 0.90 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.89 | 6.89 | 6.89 | 0.30 | 1.35 | ± 14.0 % | | 3700 | 37.7 | 3.12 | 6.76 | 6.76 | 6.76 | 0.30 | 1.35 | ± 14.0 % | | 5200 | 36.0 | 4.66 | 5.42 | 5.42 | 5.42 | 0.40 | 1.80 | ± 14.0 % | | 5300 | 35.9 | 4.76 | 5.30 | 5.30 | 5.30 | 0.40 | 1.80 | ± 14.0 % | | 5500 | 35.6 | 4.96 | 4.89 | 4.89 | 4.89 | 0.40 | 1.80 | ± 14.0 % | | 5800 | 35.3 | 5.27 | 4.77 | 4.77 | 4.77 | 0.40 | 1.80 | ± 14.0 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is respricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is = 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies up to 6 GHz, the validity of listue parameters (c and a) can be retaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha-Depth are determined during calibration. SPEAS warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe sp disameter from the boundary. Certificate No: EX3-7566_Aug21 Page 5 of 22 EX3DV4- SN:7566 August 16, 2021 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7568_Aug21 Page 6 of 22 EX3DV4- SN:7566 August 16, 2021 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-7566_Aug21 Page 7 of 22 EX3DV4- SN:7566 August 16, 2021 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7566_Aug21 Page 8 of 22 ### Calibration report "Probe EX3DV4" Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS). The Swiss Accreditation Service is one of the signatories to the
EA Multilateral Agreement for the recognition of calibration certificates CTC advanced GmbH Certificate No: EX3-7635_Jan22 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:7635 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: January 14, 2022 This calibration certificate documents the tracestrility to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate: All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | 5N: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN 660 | 13-Oct-21 (No. DAE4-660_Oct21) | Oct-22 | | Reference Probe ES3DV2 | SN: 3013 | 27-Dec-21 (No. ES3-3013_Dec21) | Dec-22 | | Secondary Standards | ID . | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 64-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | in house check: Oct-22 | Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Sven Kühn Deputy Manager Co Issued: January 17: 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No. EX3-7635_Jan22 Page 1 of 24 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space convF sensitivity in TSL / NORMx,y,z diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528. "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f < 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of CorvF. - DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters. Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y.z.* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7635 Jan22 Page 2 of 24 EX3DV4 - SN:7635 January 14, 2022 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7635 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.73 | 0.60 | 0.65 | ± 10.1 % | | DCP (mV) ^{II} | 106.9 | 109.3 | 106.6 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ⁶
(k=2) | | |-------------|--|---|---------|-----------|-------|---------|----------|----------------|---|-------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 145.9 | ± 3.0 % | ±4.7% | | | | | Y | 0.00 | 0.00 | 1.00 | | 167.3 | | | | | | and the second s | Z | 0.00 | 0.00 | 1.00 | | 157.4 | | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 1.37 | 60.00 | 5.86 | 10.00 | 60.0 | ± 3.5 % | ±96% | | | AAA | Marting the coron of dwarf Contracted II | Y | 12.00 | 74.00 | 11.00 | | 60.0 | ARTHUR ADDRESS | 1300000 | | | | | Z | 1.57 | 60.89 | 6.63 | | 60.0 | | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 74.00 | 9.00 | 6.99 | 80.0 | ±30% | ±9.6 % | | | AAA | W W 100 | Y | 10.00 | 72.00 | 9.00 | | 80.0 | | 5000 | | | | A COLOR MAN CONTRACTOR AND CONTRACTOR | Z | 0.82 | 60.00 | 5.04 | | 80.0 | | 1000000 | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 0.21 | 141.98 | 0.07 | 3.96 | 95.0 | ±2.7% | ±969 | | | AAA | I PROFESSIONAL SPENISOR CONTROL SPENISOR SPENISOR CONTROL | Y | 0.52 | 60.00 | 3.85 | | | | 95.0 | -2038000000 | | | | Z | 24.00 | 72.00 | 7.00 | | 95.0 | 1 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 8.41 | 158.73 | 18.06 | 2.22 | 120.0 | ±1.7 % | ±9.6 % | | | AAA | | Y | 11.04 | 157.24 | 7.15 | | 120.0 | | | | | | 100000000000000000000000000000000000000 | Z | 8.54
| 159.18 | 16.18 | | 120.0 | | | | | 10387- | QPSK Waveform, 1 MHz | X | 0.46 | 61.60 | 10.61 | 1.00 | 150.0 | ± 4.4 % | ± 9.6 % | | | AAA | Leaster State Control of the Control | Y | 0.47 | 62.35 | 11.71 | | 150.0 | | | | | | | Z | 0.42 | 61.81 | 10.93 | 1 | 150.0 | | | | | 10388- | QPSK Waveform, 10 MHz | X | 1.19 | 64.25 | 12.81 | 0.00 | 150.0 | ±0.9% | ± 9.6 5 | | | AAA | The second second | Y | 1.24 | 65.27 | 13.41 | 150.0 | 150.0 | 10000000 | E WEEK | | | CHARLES | | Z | 1.15 | 84.75 | 12.73 | 190000 | 150.0 | | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 1.61 | 63.55 | 15.41 | 3.01 | 150.0 | ±1.0 % | ±9.65 | | | AAA | IN INCOME. DESIGNATION DESPRESANT | Y | 1.67 | 64.31 | 15.64 | 55000 | 150.0 | | 100000000000000000000000000000000000000 | | | | | Z | 1.75 | 65.18 | 16.11 | | 150.0 | 1 1 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 2.69 | 65.47 | 14.55 | 0.00 | 150.0 | ±2.5% | ±969 | | | AAA | | Y | 2.72 | 65.99 | 14.85 | | 150.0 | 1000 | 200 | | | 3.0 Trigger | | Z | 2.66 | 65.93 | 14.71 | | 150.0 | 00000000 | 10 000000V | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 3.84 | 66.06 | 15.20 | 0.00 | 150.0 | ±4.2% | ±9.63 | | | AAA | ACCOUNTS OF THE PARTY OF THE SECOND S | Y | 3.79 | 66.35 | 15.31 | | 150.0 | THURSDOON | 1010000000 | | | | | | 3.74 | 66.50 | 15.27 | 1 | 150.0 | 1 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7635_Jan22 Page 3 of 24 A The uncertainties of Norm X,Y,Z do not affect the E7-field uncertainty inside TSL (see Pages 5, 6 and 7). * Numerical linearization parameter: uncertainty not required. * Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX30V4- SN:7635 January 14, 2022 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7635 #### Sensor Model Parameters | 00 | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | T6 | |----|----------|----------|----------|--------------------------|--------------------------|----------|-----------|-----------|------| | X. | 9.9 | 71.91 | 33.60 | 5.08 | 0.00 | 4.91 | 0.00 | 0.08 | 1.00 | | Y | 8.8 | 62.37 | 32.32 | 5.51 | 0.00 | 4.90 | 0.51 | 0.00 | 1.00 | | Z | 8.1 | 57.79 | 32.91 | 3.44 | 0.00 | 4.94 | 0.62 | 0.00 | 1.00 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (") | -179.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1,4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7635_Jan22 Page 4 of 24 EX3DV4- SN:7635 January 14, 2022 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7635 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ⁶ | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 43.5 | 0.87 | 11.76 | 11.76 | 11.76 | 0.16 | 1.30 | ± 13.3 % | | 600 | 42.7 | 0.88 | 11.03 | 11.03 | 11.03 | 0.10 | 1.25 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.73 | 10.73 | 10.73 | 0.51 | 0.80 | ± 12.0 % | | 850 | 41.5 | 0.92 | 10.46 | 10.46 | 10.46 | 0.50 | 0.82 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.37 | 10.37 | 10.37 | 0.47 | 0.80 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.26 | 9.26 | 9.26 | 0.33 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 9.14 | 9.14 | 9.14 | 0.31 | 0.80 | ±1209 | | 1750 | 40.1 | 1.37 | 9.11 | 9.11 | 9.11 | 0.28 | 0.86 | ± 12.0 9 | | 1900 | 40.0 | 1.40 | 8.73 | 8.73 | 8.73 | 0.34 | 0.86 | ± 12 0 9 | | 2150 | 39.7 | 1.53 | 8.48 | 8.48 | 8.48 | 0.33 | 0.86 | ± 12.0 9 | | 2450 | 39.2 | 1.80 | 7.95 | 7.95 | 7.95 | 0.37 | 0.90 | ± 12.0 9 | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to z 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz. Above 5 GHz frequency validity can be extended to ± 10 MHz. *At frequencies below 3 GHz, the validity of tissue parameters is and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of lissue parameters (x and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target issue parameters. *AphanDepth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect effer compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe by diameter from the boundary. Certificate No: EX3-7635_Jan22 Page 5 of 24 EX3DV4- SN 7635 January 14, 2022 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7635 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ⁶
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 56.7 | 0.94 | 11.93 | 11.93 | 11.93 | 0.11 | 1.20 | ± 13.3 % | | 600 | 56.1 | 0.95 | 11.24 | 11.24 | 11.24 | 0.10 | 1.35 | ± 13.3 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is trestricted to ± 50 MHz. The uncertainty is the RSS of five ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 54, 128, 150 and 220 MHz respectively. Validity of ConvF assessment at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessment at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessment at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessment at 30 MHz, and Certificate No: EX3-7635_Jan22 Page 6 of 24 EX3DV4- SN 7635 January 14, 2022 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7635 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^r | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ⁰ | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 6500 | 34.5 | 6.07 | 5.60 | 5.60 | 5.60 | 0.20 | 2.50 | ± 18.6 9 | Certificate No: EX3-7635_Jan22 Frequency validity above 6GHz is ± 700 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies 6-10 GHz, the validity of tissue parameters (i. and iii) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alphat/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz; below ± 2% for frequencies between 3-6 GHz; and below ± 4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN 7635 January 14, 2022 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7635_Jan22 Page 8 of 24 EX3DV4- SN:7635 January 14, 2022 ### Receiving Pattern (φ), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-7635_Jan22 Page 9 of 24 EX3DV4- SN:7635 January 14, 2022 ### Dynamic Range f(SAR_{head}) (TEM cell , feval= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No. EX3-7635_Jan22 Page 10 of 24 EX3DV4- SN:7635 January 14: 2022 ### **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (\$\phi\$, \$\partial\$), f = 900 MHz Certificate No: EX3-7635_Jan22 Page 11 of 24 ### 4 Calibration report "450 MHz System validation dipole" Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTC advanced GmbH Certificate No: D450V3-1060 Jan20 | CALIBRATION (| CERTIFICAT | E | | |---
--|--|--| | Object | D450V3 - SN:10 | 060 | | | Calibration procedure(s) | QA CAL-15.v9 | edure for SAR Validation Source | . VV - 1244 | | | Canbradon 1 100 | sedure for SAK Validation Source | s below 700 MHz | | Calibration date: | January 15, 202 | 0 | | | This calibration cortificate docume
The measurements and the uncer | ents the traceability to na
rtainties with confidence | fional standards, which realize the physical ur
probability are given on the following pages a | nits of measurements (SI). | | | | ary facility: environment temperature (22 ± 3) | | | Calibration Equipment used (M&T | E critical for calibration) | | | | nmary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | ower sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | ower sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | eference 20 dB Attenuator | SN: 6277 (20x) | 04-Apr-19 (No. 217-02894) | Apr-20 | | pe-N mismatch combination | SN: 5047.2706327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | eference Probe EX30V4 | SN: 3877 | 31-Dec-19 (No. EX3-3877 Dec19) | Dec-20 | | AE4 | SN: 654 | 27-Jun-19 (No. DAE4-654_Jun19) | Jun-20 | | | | | | | econdary Standards | ID# | Check Date (in house) | Sobot and Chart | | | ID #
SN: GB41293874 | Check Date (in house) 06-Apr-16 (in house check Jun-18) | Scheduled Check | | ower meter E4419B | 100.11 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | ower meter E4419B
ower sensor E4412A | SN: GB41293874 | 06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18) | In house check: Jun-20
In house check: Jun-20 | | ower meter E4419B
ower sensor E4412A
ower sensor E4412A | SN: GB41293874
SN: MY41498087 | 06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18)
06-Apr-15 (in house check Jun-18) | In house check: Jun-20
In house check: Jun-20
In house check: Jun-20 | | ower meter E4419B
ower sensor E4412A
ower sensor E4412A
F generator HP 8648C | SN: GB41293874
SN: MY41498087
SN: 000110210 | 06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18) | In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Jun-20 | | ower meter E4419B
ower sensor E4412A
ower sensor E4412A
F generator HP 8648C | SN: GB41293874
SN: MY41499987
SN: 000110210
SN: US3842U01700
SN: US41080477 | 06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18)
06-Apr-15 (in house check Jun-18)
04-Aug-99 (in house check Jun-18)
31-Mar-14 (in house check Oct-19) | In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Oct-20 | | ower meter E4419B
ower sensor E4412A
ower sensor E4412A
F generator HP 8648C
etwork Analyzer Aglient E8358A | SN: GB41293874
SN: MY41498087
SN: 000110210
SN: US3642U01700
SN: US41080477
Name | 06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18)
04-Aug-99 (in house check Jun-18)
31-Mar-14 (in house check Oct-19) | In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Jun-20 | | Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Figenerator HP 8648C Setwork Analyzer Aglient E8358A | SN: GB41293874
SN: MY41499987
SN: 000110210
SN: US3842U01700
SN: US41080477 | 06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18)
06-Apr-15 (in house check Jun-18)
04-Aug-99 (in house check Jun-18)
31-Mar-14 (in house check Oct-19) | In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Oct-20 | | Pawer meter E4419B
Power sensor E4412A
Power sensor E4412A
Prigenerator HP 8648C
Setwork Analyzer Aglient E8358A | SN: GB41293874
SN: MY41498087
SN: 000110210
SN: US3642U01700
SN: US41080477
Name | 06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18)
04-Aug-99 (in house check Jun-18)
31-Mar-14 (in house check Oct-19) | In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Oct-20 | | Pawer meter E4419B
Power sensor E4412A
Power sensor E4412A
OF generator HP 8648C
Retwork Analyzer Aglient E8358A | SN: GB41293874
SN: MY41498087
SN: 000110210
SN: US3642U01700
SN: US41080477
Name
Michael Weber | 06-Apr-16 (in house check Jun-18)
06-Apr-16 (in house check Jun-18)
06-Apr-15 (in house check Jun-18)
04-Aug-96 (in house check Jun-18)
31-Mar-14 (in house check Oct-19)
Function
Laboratory Tachhician | In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Jun-20
In house check: Oct-20 | Certificate No: D450V3-1060_Jan20 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL ConvF tissue simulating liquid sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power, - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D450V3-1060_Jan20 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 450 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 43.5 | 0.87 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 44.1 ± 6 % | 0.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | A. | _ | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1,11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.45 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.745 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 2.99 W/kg ± 17.6 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------
--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 56.7 | 0.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.3 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 1 | #### SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 4.59 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.773 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 3.09 W/kg ± 17.6 % (k=2) | Certificate No: D450V3-1060_Jan20 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 59.1 Ω - 1.8 iΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.4 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 55.0 Ω - 8.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.4 dB | ### General Antenna Parameters and Design | FI A CARLO DE LA DEL CARLO DE LA CARLO DE LA CARLO DEL CARLO DE LA | | |--|----------| | Electrical Delay (one direction) | 1.360 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | | The state of s | |-----------------|--| | Manufactured by | SPEAG | Certificate No: D450V3-1060_Jan20 Page 4 of 8 #### DASY5 Validation Report for Head TSL Date: 08.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1060 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.87 \text{ S/m}$; $\epsilon_r = 44.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3877; ConvF(10.58, 10.58, 10.58) @ 450 MHz; Calibrated: 31.12.2019 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn654; Calibrated: 27.06.2019 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ### Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 38.56 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.745 W/kg Ratio of SAR at M2 to SAR at M1 = 64,4% Maximum value of SAR (measured) = 1.50 W/kg Certificate No: D450V3-1060_Jan20 ### Impedance Measurement Plot for Head TSL Certificate No: D450V3-1050_Jan20 ### **Antenna Parameters with Head TSL** | | From cal. data | Measured 2022-04-22 | |--------------------------------------|----------------|---------------------| | Impedance; transformed to feed point | 59.1Ω -1.8jΩ | 56.7Ω -2.4jΩ | | Return Loss | -21.4dB | -23.5dB | ### **DASY5 Validation Report for Body TSL** Date: 15.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1060 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 56.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3877; ConvF(10.58, 10.58, 10.58) @ 450 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn654; Calibrated: 27.06.2019 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ### Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 41.51 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.75 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.773 W/kg Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 1.54 W/kg 0 dB = 1.54 W/kg = 1.88 dBW/kg Certificate No: D450V3-1060_Jan20 ### Impedance Measurement Plot for Body TSL Certificate No: D450V3-1060_Jan20 ### 5 Calibration report "600 MHz System validation dipole" Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Illent CTC advanced GmbH Certificate No: D600V3-1015_May22 | Object | D600V3 - SN: 1015 | | |
---|--|---|---| | Calibration procedure(s) | QA CAL-15.v9
Calibration Proce | edure for SAR Validation Sources | below 700 MHz | | | | | 100 111 12 | | Calibration date: | May 18, 2022 | | | | This calibration certificate docume | nts the traceability to nati | onal standards, which realize the physical uni | tk of measurements (SI) | | The measurements and the uncert | tainties with confidence p | robability are given on the following pages an | d are part of the certificate. | | All calibrations have been conduct | led in the closed laborator | ry facility: environment temperature (22 ± 3)°C | 3 and humidity < 70%. | | Calibration Equipment used (M&TI | | | | | Primary Standards | 10# | Call Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | | | OWN THOSE INTO | | | | | | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23
Apr-23 | | Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 103244
SN: 103245 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | 0.0000000000000000000000000000000000000 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) | Apr-23
Apr-23 | | Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03524) | Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103245
SN: CC2552 (20x) | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: 103245
SN: OC2552 (20x)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23
Apr-23
Apr-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-3877_Dec21) | Apr-23
Apr-23
Apr-23
Apr-23
Dec-22 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-3877_Dec21)
26-Jan-22 (No. DAE4-654_Jan/22) | Apr-23
Apr-23
Apr-23
Apr-23
Dec-22
Jan-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A | SN: 103245
SN: OC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654 | 04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-3877_Dec21)
26-Jan-22 (No. DAE4-654_Jan/22)
Check Date (in house) | Apr-23
Apr-23
Apr-23
Apr-23
Dec-22
Jan-23
Scheduled Check | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A | SN: 103245
SN: OC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654
ID #
SN: GB41293874 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-2; In house check: Jun-2; | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A | SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654
ID #
SN: GB41293874
SN: MY41499087 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan/22) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-2 In house check: Jun-2 In house check: Jun-2 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8649C | SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654
ID #
SN: GB41293874
SN: MY41498087
SN: 000110210 | 04-Apr-22 (No. 217-03624) 04-Apr-22 (No. 217-03625) 04-Apr-22 (No. 217-03627) 04-Apr-22 (No. 217-03628) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-2. In house check: Jun-2. In house check: Jun-2. In house check: Jun-2. | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654
ID #
SN: GB41293874
SN: MY41499087
SN: 000110210
SN: US3642U01700 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan/22) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-2: | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8649C | SN: 103245
SN: OC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654
ID#
SN: GB41293874
SN: MY41499087
SN: 000110210
SN: US3642U01700
SN: US3642U01700 | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec-21) 26-Jan-22 (No. DAE4-654_Jan/22) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Apr-16 (in house check Jun-20) 04-Apr-16 (in house check Jun-20) 04-Apr-16 (in house check Jun-20) 31-Mar-14 (in house check Jun-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-2 In house check: Jun-2 In house check: Jun-2 In house check: Jun-2 In house check: Oct-2 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E835BA | SN: 103245
SN: OC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654
ID #
SN: GB41293874
SN: MY41499087
SN: 000110210
SN: US3642U01700
SN: US41080477
Name | 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-3877_Dec21) 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-89 (in house check Jun-20) 04-Aug-89 (in house check Jun-20) 31-Mar-14 (in house check Cot-20) | Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Jan-23 Scheduled Check In house check: Jun-2: In house check: Oct-2: | Certificate No: D600V3-1015_May22 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB
865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D600V3-1015_May22 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 42.7 | 0.88 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 43.1 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.63 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.31 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.17 W/kg ± 17.6 % (k=2) | Certificate No: D600V3-1015_May22 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 56.9 Ω - 1.7 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | #### General Antenna Parameters and Design | Process of the Control Contro | | |--|----------| | Electrical Delay (one direction) | 1.150 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D600V3-1015_May22 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 18.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1015 Communication System: UID 0 - CW; Frequency: 600 MHz Medium parameters used: f = 600 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 43.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3877; ConvF(10.08, 10.08, 10.08) @ 600 MHz; Calibrated: 31.12.2021 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn654; Calibrated: 26.01.2022 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.36 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.58 W/kg SAR(1 g) = 1.63 W/kg; SAR(10 g) = 1.07 W/kg Smallest distance from peaks to all points 3 dB below = 23.3 mm Ratio of SAR at M2 to SAR at M1 = 63.5% Maximum value of SAR (measured) = 2.22 W/kg 0 dB = 2.22 W/kg = 3.46 dBW/kg Certificate No: D600V3-1015_May22 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: D600V3-1015_May22 #### Calibration report "2450 MHz System validation dipole" 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland - S Schweizerischer Kalibrierdienst Service suisse d'étalonnage - Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTC advanced GmbH Certificate No: D2450V2-710_May22 | Object | D2450V2 - SN:71 | 0 | | |---|---|---|---| | alibration procedure(s) | QA CAL-05.v11
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | May 11, 2022 | | | | The measurements and the unce | tainties with confidence pr | onal standards, which realize the physical unit
obablity are given on the following pages and
y facility: environment temperature (22 ± 3)°C | d are part of the certificate. | | | | | | | | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 d8 Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID#
SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 31982 / 06327
SN: 7349
SN: 801 | Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) | Scheduled Calibration
Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Dec-22
May-23 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: 8H9384 (20k)
SN: 310982 / 06327
SN: 7349
SN: 801 | 04-Apr-22 (No. 217-03525(03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
31-Dec-21 (No. EX3-7349_Dec21)
02-May-22 (No. DAE4-601_May22) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Dec-22
May-23 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: 8H9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 801
ID #
SN: GB39512475
SN: US37292783
SN: WY41093315
SN: 100972
SN: US41080477 | 04-Apr-22 (No. 217-03525(03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-2: | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 d8 Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-05 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 (06327
SN: 7349
SN: 801
ID #
SN: GB39512475
SN: US37292783
SN: MY41003315
SN: 100972 | 04-Apr-22 (No. 217-03525(03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX2-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Dec-22
May-23 | Certificate No: D2450V2-710_May22 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: N/A TSL ConvF tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-710_May22 Page 2 of 8 ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | - | _ | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.5 ± 6 % | 2.02 mha/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | (ARTHE | - | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.7 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.95 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.5 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-710_May22 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.8 Ω + 3.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.9 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.3 Ω + 4.3 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | -27.1 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.159 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-710_May22 Page 4 of 8 ### DASY5 Validation Report for Head TSL Date: 11.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:710 Communication System: UID 0 - CW; Frequency; 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\epsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.1 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.09 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50% Maximum value of SAR (measured) = 21.8 W/kg 0 dB = 21.8 W/kg =
13.38 dBW/kg Certificate No: D2450V2-710_May22 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: D2450V2-710_May22 Page 6 of 8 ### DASY5 Validation Report for Body TSL Date: 11.05.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:710 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 31.12.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid; dx=5mm, dy=5mm, dz=5mm Reference Value = 105.8 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 24.0 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.95 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 54.1% Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg = 13.00 dBW/kg Certificate No: D2450V2-710_May22 Page 7 of 8 # Impedance Measurement Plot for Body TSL Certificate No: D2450V2-710_May22 Page 8 of 8 # Calibration certificate of Data Acquisition Unit (DAE) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multileteral Agreement for the recognition of calibration certificates CTC advanced GmbH Accreditation No.: SCS 0108 S C Certificate No: DAE4-1387 Aug21 # CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1387 QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) August 06, 2021 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 5)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) ID# Primary Standards Scheduled Calibration Keithley Multimeter Type 2001 SN: 0610278 07-Sep-20 (No:28647) Secondary Standards ID# Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-21 (in house check) In house check: Jan-22 Calibrator Box V2.1 SE UMS 006 AA 1002 07-Jan-21 (in house check) In house check: Jan-22 Function. Calibrated by: Adrian Gehring Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: August 6, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1387_Aug21 Page 1 of 5 # Calibration certificate of Data Acquisition Unit (DAE) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 CTC advanced GmbH Client Certificate No: DAE3-413 Jan22 CALIBRATION CERTIFICATE Object DAE3 - SD 000 D03 AA - SN: 413 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) January 07, 2022 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Call Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 31-Aug-21 (No:31368) Aug-22 ID V Check Date (in house) Secondary Standards Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-21 (in house check) In house check: Jan-22 Calibrator Box V2.1 SE UMS 005 AA 1002 07-Jan-21 (in house check) In house check: Jan-22 Name Calibrated by: Adrian Gehring Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: January 7, 2022 Certificate No: DAE3-413_Jan22 Page 1 of 5 This calibration certificate shall not be reproduced except in full without written approval of the laboratory, ## 9 Certificate of "SAM Twin Phantom V4.0 and V5.0" Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ### Certificate of Conformity / First Article Inspection | Item | SAM Twin Phantom V4.0 and V5.0 | | |--------------|--|--| | Type No | QD 000 P40 C | | | Series No | TP-1150 and higher | | | Manufacturer | Untersee Composites Knebelstrasse 8, CH-8268 Mannenbach, Switzerland | | #### Tests Complete tests were made on the pre-series QD 000 P40 A, # TP-1001, on the series first article QD 000 P40 B # TP-1006. Certain parameters are retested on series items. | Test | Requirement | Details | Units tested | |-----------------------------|--|---|---| | Dimensions | Compliant with the geometry according to the CAD model. | IT'IS CAD File * | First article,
Samples | | Material thickness of shell | 2mm +/- 0.2mm in flat section,
other locations: +/- 0.2mm with
respect to CAD file | in flat section,
in the cheek area | First article,
Samples,
TP-1314 ff. | | Material thickness at ERP | 6mm +/- 0.2mm at ERP | | First article, All items | | Material parameters | rel. permittivity 2 – 5,
loss tangent ≤ 0.05, at f ≤ 6 GHz | rel. permittivity 3.5 +/- 0.5 loss tangent ≤ 0.05 | Material samples | | Material resistivity | Compatibility with tissue simulating liquids . | Compatible with SPEAG liquids. ** | Phantoms,
Material sample | | Sagging | Sagging of the flat section in tolerance when filled with tissue simulating liquid. | < 1% for filling height up
to 155 mm | Prototypes,
Sample testing | ^{*} The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents. ### Standards - OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01 IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific - [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003 - [3] IEC 62209-1 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", 2005-02-18 - [4] IEC 62209–2 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", 2010-03-30 Conformity Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of **hand-held** SAR measurements and system performance checks as specified in [1 – 4] and further standards. Date 25.07.2011 S P e a g Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, 8vivxerlan Signature / Stamp Doc No 881 - QD 000 P40 C - H Page 1 (1) ^{**} Note: Compatibility restrictions apply certain liquid components mentioned in the standard, containing e.g. DGBE, DGMHE or Triton X-100. Observe technical note on material compatibility. # 10 Application Note System Performance Check # **10.1 Purpose of system performance check** The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The measurement of the Specific Absorption Rate (SAR) is a complicated task and the result depends on the proper functioning of many components and the correct settings of many parameters. Faulty results due to drift, failures or incorrect parameters might not be recognized, since they often look similar in distribution to the correct ones. The Dosimetric Assessment System DASY incorporates a system performance check procedure to test the proper functioning of the system. The system performance check uses normal SAR measurements in a simplified setup (the flat section of the SAM Twin Phantom) with a well characterized
source (a matched dipole at a specified distance). This setup was selected to give a high sensitivity to all parameters that might fail or vary over time (e.g., probe, liquid parameters, and software settings) and a low sensitivity to external effects inherent in the system (e.g., positioning uncertainty of the device holder). The system performance check does not replace the calibration of the components. The accuracy of the system performance check is not sufficient for calibration purposes. It is possible to calculate the field quite accurately in this simple setup; however, due to the open field situation some factors (e.g., laboratory reflections) cannot be accounted for. Calibrations in the flat phantom are possible with transfer calibration methods, using either temperature probes or calibrated E-field probes. The system performance check also does not test the system performance for arbitrary field situations encountered during real measurements of mobile phones. These checks are performed at SPEAG by testing the components under various conditions (e.g., spherical isotropy measurements in liquid, linearity measurements, temperature variations, etc.), the results of which are used for an error estimation of the system. The system performance check will indicate situations where the system uncertainty is exceeded due to drift or failure. # 10.2 System Performance check procedure ### Preparation The conductivity should be measured before the validation and the measured liquid parameters must be entered in the software. If the measured values differ from targeted values in the dipole document, the liquid composition should be adjusted. If the validation is performed with slightly different (measured) liquid parameters, the expected SAR will also be different. See the application note about SAR sensitivities for an estimate of possible SAR deviations. Note that the liquid parameters are temperature dependent with approximately - 0.5% decrease in permittivity and + 1% increase in conductivity for a temperature decrease of 1° C. The dipole must be placed beneath the flat phantom section of the Generic Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little hole) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for mobile phones can be left in place but should be rotated away from the dipole. The forward power into the dipole at the dipole SMA connector should be determined as accurately as possible. The actual dipole input power level can be between 20mW and several watts. The result can later be normalized to any power level. It is strongly recommended to note the actually used power level in the "comment"-window of the measurement file; otherwise you loose this crucial information for later reference. ### **System Performance Check** The DASY installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks, so you must save the finished validation under a different name. The validation document requires the Generic Twin Phantom, so this phantom must be properly installed in your system. (You can create your own measurement procedures by opening a new document or editing an existing document file). Before you start the validation, you just have to tell the system with which components (probe, medium, and device) you are performing the validation; the system will take care of all parameters. After the validation, which will take about 20 minutes, the results of each task are displayed in the document window. Selecting all measured tasks and opening the predefined "validation" graphic format displays all necessary information for validation. A description of the different measurement tasks in the predefined document is given below, together with the information that can be deduced from their results: - The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above ± 0.1dB) the validation should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below ± 0.02 dB. - The "area scan" measures the SAR above the dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field the peak detection is reliable. If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. - The zoom scan job measures the field in a volume around the peak SAR value assessed in the previous "area" scan (for more information see the application note on SAR evaluation). If the validation measurements give reasonable results, the peak 1g and 10g spatial SAR values averaged between the two cubes and normalized to 1W dipole input power give the reference data for comparisons. The next section analyzes the expected uncertainties of these values. Section 6 describes some additional checks for further information or troubleshooting. # 10.3 Uncertainty Budget Please note that in the following Tables, the tolerance of the following uncertainty components depends on the actual equipment and setup at the user location and need to be either assessed or verified on-site by the end user of the DASY system: - RF ambient conditions - Dipole Axis to Liquid Distance - Input power and SAR drift measurement - Liquid permittivity measurement uncertainty - · Liquid conductivity measurement uncertainty Note: All errors are given in percent of SAR, so 0.1 dB corresponds to 2.3%. The field error would be half of that. The liquid parameter assessment give the targeted values from the dipole document. All errors are given in percent of SAR, so 0.1dB corresponds to 2.3%. The field error would be half of that. # System validation DASY 5/8 and cDASY6 In the tables below, the system validation uncertainty with respect to the analytically assessed SAR value of a dipole source as given in the IEEE1528 standard is given. This uncertainty is smaller than the expected uncertainty for mobile phone measurements due to the simplified setup and the symmetric field distribution. | DASY 5 - Uncertainty Budget for System Validation for the 0.3 - 6 GHz range | | | | | | | | | | | |---|-------------|--------------|------------------------|------|-------|----------------------|---------|------------|----------|--------------------------------| | Source of | Uncertainty | Probability | Divisor C _i | | Ci | Standard Uncertainty | | | ertainty | v _i ² or | | uncertainty | Value | Distribution | | (1g) | (10g) | ± % | 6, (1g) | ± %, (10g) | | V _{eff} | | Measurement System | | | | | | | | | | | | Probe calibration | ± 6.6 % | Normal | 1 | 1 | 1 | ± | 6.6 % | ± | 6.6 % | ∞ | | Axial isotropy | ± 4.7 % | Rectangular | √ 3 | 1 | 1 | ± | 2.7 % | ± | 2.7 % | 8 | | Hemispherical isotropy | ± 9.6 % | Rectangular | √ 3 | 0 | 0 | ± | 0.0 % | ± | 0.0 % | 8 | | Boundary effects | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | | 0.6 % | ± | 0.6 % | 8 | | Probe linearity | ± 4.7 % | Rectangular | √ 3 | 1 | 1 | ± | 2.7 % | ± | 2.7 % | 8 | | System detection limits | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | 8 | | Readout electronics | ± 0.3 % | Normal | 1 | 1 | 1 | ± | 0.3 % | H | 0.3 % | 8 | | Response time | ± 0.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.0 % | ± | 0.0 % | 8 | | Integration time | ± 0.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.0 % | ± | 0.0 % | 8 | | RF ambient conditions | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | 8 | | Probe positioner | ± 0.8 % | Rectangular | √ 3 | 1 | 1 | ± | 0.5 % | ± | 0.5 % | 8 | | Probe positioning | ± 6.7 % | Rectangular | √ 3 | 1 | 1 | ± | 3.9 % | ± | 3.9 % | 8 | | Max. SAR evaluation | ± 2.0 % | Rectangular | √ 3 | 1 | 1 | ± | 1.2 % | ± | 1.2 % | 8 | | Dipole Related | | | | | | | | | | | | Dev. of exp. dipole | ± 5.5 % | Rectangular | √ 3 | 1 | 1 | ± | 3.2 % | ± | 3.2 % | 8 | | Dipole Axis to Liquid Dist. | ± 2.0 % | Rectangular | √ 3 | 1 | 1 | ± | 1.2 % | ± | 1.2 % | 8 | | Input power & SAR drift | ± 3.4 % | Rectangular | √ 3 | 1 | 1 | ± | 2.0 % | ± | 2.0 % | 8 | | Phantom and Set-up | | | | | | | | | | | | Phantom uncertainty | ± 4.0 % | Rectangular | √ 3 | 1 | 1 | ± | 2.3 % | ± | 2.3 % | 8 | | SAR correction | ± 1.9 % | Rectangular | √ 3 | 1 | 0.84 | ± | 1.1 % | ± | 0.9 % | 8 | | Liquid conductivity (meas.) | ± 5.0 % | Normal | 1 | 0.78 | 0.71 | ± | 3.9 % | ± | 3.6 % | 8 | | Liquid permittivity (meas.) | ± 5.0 % | Normal | 1 | 0.26 | 0.26 | ± | 1.3 % | ± | 1.3 % | ∞ | | Temp. unc Conductivity | ± 1.7 % | Rectangular | √ 3 | 0.78 | 0.71 | ± | 0.8 % | ± | 0.7 % | 8 | | Temp. unc Permittivity | ± 0.3 % | Rectangular | √ 3 | 0.23 | 0.26 | ± | 0.0 % | ± | 0.0 % | 8 | | Combined Uncertainty | | | | | | ± 1 | 0.7 % | ± | 10.6 % | 330 | | Expanded Std. | | | | | | | 4.4.0/ | | 24.4.0/ | | | Uncertainty | | | | | | ± Z | 21.4 % | ± | 21.1 % | | Table 1: Measurement uncertainties of the System Validation with DASY5 (0.3-6GHz). The RF ambient noise uncertainty has been reduced to ±1.0, considering input power levels are ≥ 250mW. | cDASY 6 - Uncertainty Budget for System Validation for the 0.3 - 6 GHz range | | | | | | | | | | | |--|-------------
-----------------------|---------|---------------------------|-------|-----------|---------|-------------|-------|--------------------------------| | | | ige
c _i | Ci | c _i Standard U | | | rtainty | 2 | | | | Source of | Uncertainty | Probability | Divisor | | | | | | | v _i ² or | | uncertainty | Value | Distribution | | (1g) | (10g) | ± %, (1g) | | ± %, (10g) | | V _{eff} | | Measurement System | | | | | | | | | | | | Probe calibration | ± 6.6 % | Normal | 1 | 1 | 1 | | 6.6 % | ± | 6.6 % | ∞ | | Axial isotropy | ± 4.7 % | Rectangular | √ 3 | 1 | 1 | ± | 2.7 % | ± | 2.7 % | 8 | | Hemispherical isotropy | ± 9.6 % | Rectangular | √ 3 | 0 | 0 | ± | 0.0 % | ± | 0.0 % | 8 | | Boundary effects | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | 8 | | Probe linearity | ± 4.7 % | Rectangular | √ 3 | 1 | 1 | ± | 2.7 % | ± | 2.7 % | 8 | | System detection limits | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | 8 | | Modulation Response | ± 0.0 % | Rectangular | √ 3 | 1 | 1 | | 0.0 % | ± | 0.0 % | 8 | | Readout electronics | ± 0.3 % | Normal | 1 | 1 | 1 | | 0.3 % | ± | 0.3 % | 8 | | Response time ± 0.0 % | | Rectangular | √ 3 | 1 | 1 | ± | 0.0 % | ± | 0.0 % | 8 | | Integration time | ± 0.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.0 % | ± | 0.0 % | 8 | | RF Ambient Noise | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | 8 | | RF Ambient Reflections | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | 8 | | Probe positioner | ± 0.04 % | Rectangular | √ 3 | 1 | 1 | ± | 0.0 % | ± | 0.0 % | 8 | | Probe positioning | ± 0.8 % | Rectangular | √ 3 | 1 | 1 | ± | 0.5 % | ± | 0.5 % | 8 | | Max. SAR evaluation | ± 0.0 % | Rectangular | √ 3 | 1 | 1 | ± | 0.0 % | ± | 0.0 % | 8 | | Dipole Related | | | | | | | | | | | | Dev. of exp. dipole | ± 5.5 % | Rectangular | √ 3 | 1 | 1 | | 3.2 % | ± | 3.2 % | 8 | | Dipole Axis to Liquid Dist. | ± 2.0 % | Rectangular | √ 3 | 1 | 1 | ± | 1.2 % | ± | 1.2 % | 8 | | Input power & SAR drift | ± 3.4 % | Rectangular | √ 3 | 1 | 1 | ± | 2.0 % | ± | 2.0 % | 8 | | Phantom and Set-up | | | | | | | | | | | | Phantom uncertainty | ± 4.0 % | Rectangular | √ 3 | 1 | 1 | ± | 2.3 % | ± | 2.3 % | 8 | | SAR correction | ± 1.9 % | Normal | 1 | 1 | 0.84 | ± | 1.9 % | ± | 1.6 % | 8 | | Liquid conductivity (meas.) DAK | ± 2.5 % | Normal | 1 | 0.78 | 0.71 | ± : | 2.0 % | ± | 1.8 % | 8 | | Liquid permittivity (meas.) DAK | ± 2.5 % | Normal | 1 | 0.23 | 0.26 | ± | 0.6 % | ± | 0.7 % | 8 | | Temp. unc Conductivity BB | ± 3.4 % | Rectangular | √ 3 | 0.78 | 0.71 | ± | 1.5 % | ± | 1.4 % | ∞ | | Temp. unc Permittivity ^{BB} | ± 0.4 % | Rectangular | √ 3 | 0.23 | 0.26 | ± | 0.1 % | ± | 0.1 % | 8 | | Combined Uncertainty | | | | | | ± | 9.5 % | ± | 9.4 % | | | Expanded Std. Uncertainty | | | | | ± 1 | 9.0 % | ± | 18.8 % | | | Table 2: Uncertainties of a system validation with cDASY6 (0.3-6GHz). The RF ambient noise uncertainty has been reduced to ± 1.0 , considering input power levels are ≥ 250 mW. # Footnote details: ^{BB} if SPEAG's broad-band liquids (BBL) are used that have low temperature coefficients; DAK if SPEAG's high precision dielectric probe kit (DAK) is applied. | Uncertainty Budget for System Validation (Frequency band: 300MHz - 6GHz range) with DASY8 System | | | | | | | | | | |--|-----------------------------|-------------|--------------------------|---------|----------------|----------------|-------------|------------|--| | O: mala al | | Uncertainty | Probability Distribution | | C _i | C _i | Jncertainty | | | | Symbol | Error Description | Value | | Divisor | (1g) | (10g) | ± %, (1g) | ± %, (10g) | | | Measure | nent System Errors | | | - | | | | | | | CF | Probe Calibration Repeat. | ± 13.1 % | Normal | 2 | 1 | 1 | ± 9.3 % | ± 9.3 % | | | CFdrift | Probe Calibration Drift | ± 1.7 % | Rectangular | √3 | 1 | 1 | ± 1.0 % | ± 1.0 % | | | LIN | Probe linearity | ± 4.7 % | Rectangular | √3 | 0 | 0 | ± 0.0 % | ± 0.0 % | | | BBS | Broadband Signal | ± 0.0 % | Rectangular | √3 | 0 | 0 | ± 0.0 % | ± 0.0 % | | | ISO | Probe Isotropy (axial) | ± 4.7 % | Rectangular | √3 | 0 | 0 | ± 0.0 % | ± 0.0 % | | | DAE | Data Acquisition | ± 0.3 % | Normal | 1 | 0 | 0 | ± 0.0 % | ± 0.0 % | | | AMB | RF Ambient | ± 0.6 % | Normal | 1 | 0 | 0 | ± 0.0 % | ± 0.0 % | | | Δ_{sys} | Probe Positioning | ± 0.5 % | Normal | 1 | 0.29 | 0.29 | ± 0.1 % | ± 0.1 % | | | DAT | Data Processing | ± 0.0 % | Normal | 1 | 1 | 1 | ± 0.0 % | ± 0.0 % | | | Phantom | and Device Errors | | | | | | | | | | LIQ(σ) | Conductivity (meas.) DAK | ± 2.5 % | Normal | 1 | 0.78 | 0.71 | ± 2.0 % | ± 1.8 % | | | LIQ(Tσ) | Conductivity (temp.)BB | ± 3.4 % | Rectangular | √3 | 0.78 | 0.71 | ± 1.5 % | ± 1.4 % | | | EPS | Phantom Permittivity | ± 14.0 % | Rectangular | √3 | 0 | 0 | ± 0.0 % | ± 0.0 % | | | DIS | Distance DUT - TSL | ± 1.3 % | Normal | 1 | 2 | 2 | ± 2.6 % | ± 2.6 % | | | MOD | DUT Modulationm | ± 0.0 % | Rectangular | √3 | 1 | 1 | ± 0.0 % | ± 0.0 % | | | TAS | Time-average SAR | ± 0.0 % | Rectangular | √3 | 1 | 1 | ± 0.0 % | ± 0.0 % | | | VAL | Validation antenna | ± 3.2 % | Normal | 1 | 1 | 1 | ± 3.2 % | ± 3.2 % | | | P_{in} | Accepted power | ± 2.0 % | Normal | 1 | 1 | 1 | ± 2.0 % | ± 2.0 % | | | Correction to the SAR results | | | | | | | | | | | C(ε, σ) | Deviation to Target | ± 1.9 % | Normal | 1 | 1 | 0.84 | ± 1.9 % | ± 1.6 % | | | u(ΔSAR) | Combined Uncertainty | | | | | | ± 10.8 % | ± 10.7 % | | | U | Expanded Uncertainty | | | | | | ± 21.7 % | ± 21.5 % | | Table 6.2.1: Uncertainty of a system validation with DASY8 system (300MHz - 6 GHz). The RF ambient noise uncertainty has been reduced to \pm 1.0, considering input power levels are \geq 250mW. All listed error components have veltar equal to ∞ . # Footnote details: ^{BB} if SPEAG's broad-band liquids (BBL) are used that have low temperature coefficients; DAK if SPEAG's high precision dielectric probe kit (DAK) is applied. # 10.4 Power set-up for validation The uncertainty of the dipole input power is a significant contribution to the absolute uncertainty and the expected deviation in interlaboratory comparisons. The values in Section 2 for a typical and a sophisticated setup are just average values. Refer to the manual of the power meter and the detector head for the evaluation of the uncertainty in your system. The uncertainty also depends on the source matching and the general setup. Below follows the description of a recommended setup and procedures to increase the accuracy of the power reading: The figure shows the recommended setup. The PM1 (incl. Att1) measures the forward power at the location of the validation dipole connector. The signal generator is adjusted for the desired forward power at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow a setting in 0.01dB steps, the remaining difference at PM2 must be noted and considered in the normalization of the validation results. The requirements for the components are: - The signal generator and amplifier should be stable (after warm-up). The forward power to the dipole should be above 10mW to avoid the influence of measurement noise. If the signal generator can deliver 15dBm or more, an amplifier is not necessary. Some high power amplifiers should not be operated at a level far below their maximum output power level (e.g. a 100W power amplifier operated at 250mW output can be quite noisy). An attenuator between the signal generator and amplifier is recommended to protect the amplifier input. - The low pass filter after the amplifier reduces the effect of harmonics and noise from the amplifier. For most amplifiers in normal operation the filter is not necessary. - The attenuator after the amplifier improves the source matching and the accuracy of the power head. (See power meter manual.) It can also be used also to make the amplifier operate at its optimal output level for noise and stability. In a setup without directional coupler, this attenuator should be at least 10dB. - The directional coupler (recommended ³ 20dB) is used to monitor the forward power and adjust the signal generator output for constant forward power. A medium quality coupler is sufficient because the loads (dipole and power head) are well matched. (If the setup is used for reflective loads, a high quality coupler with respect to directivity and output matching is necessary to avoid additional errors.) - The power meter PM2 should have a low drift and a resolution of 0.01dBm, but otherwise its accuracy has no impact on the power setting. Calibration is not required. - The cable between the coupler and dipole must be of high quality, without large attenuation and phase changes when it is moved. Otherwise, the power meter head PM1 should be brought to the location of the dipole for measuring. - The power meter PM1 and attenuator Att1 must be high quality components. They should be calibrated, preferably together. The attenuator (310dB) improves the accuracy of the power reading. (Some higher power heads come with a built-in calibrated attenuator.) The exact attenuation of the attenuator at the frequency used must be known; many attenuators are up to 0.2dB off from the specified value. - Use the same power level for the power setup with power meter PM1 as for the actual measurement to avoid linearity and range switching errors in the power meter PM2. If the validation is performed at various power levels, do the power setting procedure at each level. - The dipole must be connected directly to the cable at location "X". If the power meter has a different connector system, use high quality couplers. Preferably, use the couplers at the attenuator Att1 and calibrate the attenuator with the coupler. - Always
remember: We are measuring power, so 1% is equivalent to 0.04dB. # 10.5 Laboratory reflection In near-field situations, the absorption is predominantly caused by induction effects from the magnetic nearfield. The absorption from reflected fields in the laboratory is negligible. On the other hand, the magnetic field around the dipole depends on the currents and therefore on the feed point impedance. The feed point impedance of the dipole is mainly determined from the proximity of the absorbing phantom, but reflections in the laboratory can change the impedance slightly. A 1% increase in the real part of the feed point impedance will produce approximately a 1% decrease in the SAR for the same forward power. The possible influence of laboratory reflections should be investigated during installation. The validation setup is suitable for this check, since the validation is sensitive to laboratory reflections. The same tests can be performed with a mobile phone, but most phones are less sensitive to reflections due to the shorter distance to the phantom. The fastest way to check for reflection effects is to position the probe in the phantom above the feed point and start a continuous field measurement in the DASY multi-meter window. Placing absorbers in front of possible reflectors (e.g. on the ground near the dipole or in front of a metallic robot socket) will reveal their influence immediately. A 10dB absorber (e.g. ferrite tiles or flat absorber mats) is probably sufficient, as the influence of the reflections is small anyway. If you place the absorber too near the dipole, the absorber itself will interact with the reactive near-field. Instead of measuring the SAR, it is also possible to monitor the dipole impedance with a network analyzer for reflection effects. The network analyzer must be calibrated at the SMA connector and the electrical delay (two times the forward delay in the dipole document) must be set in the NWA for comparisons with the reflection data in the dipole document. If the absorber has a significant influence on the results, the absorber should be left in place for validation or measurements. The reference data in the dipole document are produced in a low reflection environment. # 10.6 Additional system checks While the validation gives a good check of the DASY system components, it does not include all parameters necessary for real phone measurements (e.g. device modulation or device positioning). For system validation (repeatability) or comparisons between laboratories a reference device can be useful. This can be any mobile phone with a stable output power (preferably a device whose output power can be set through the keyboard). For comparisons, the same device should be sent around, since the SAR variations between samples can be large. Several measurement possibilities in the DASY software allow additional tests of the performance of the DASY system and components. These tests can be useful to localize component failures: - The validation can be performed at different power levels to check the noise level or the correct compensation of the diode compression in the probe. - If a pulsed signal with high peak power levels is fed to the dipole, the performance of the diode compression compensation can be tested. The correct crest factor parameter in the DASY software must be set (see manual). The system should give the same SAR output for the same averaged input power. - The probe isotropy can be checked with a 1D-probe rotation scan above the feed point. The automatic probe alignment procedure must be passed through for accurate probe rotation movements (optional DASY feature with a robot-mounted light beam unit). Otherwise the probe tip might move on a small circle during rotation, producing some additional isotropy errors in gradient fields.