

# FCC Test Report

# Report No.: AGC07434250348FR02

| FCC ID                | : | 2ARXB-B1C                                                         |
|-----------------------|---|-------------------------------------------------------------------|
| APPLICATION PURPOSE   | : | Original Equipment                                                |
| PRODUCT DESIGNATION   | : | Label Printer                                                     |
| BRAND NAME            | : | NIIMBOT                                                           |
| MODEL NAME            | : | NIIMBOT B1, B1 SE, NIIMBOT B1_X, NIIMBOT B1_A                     |
| APPLICANT             | : | Wuhan Jingchen Intelligent Identification Technology Co.,<br>Ltd. |
| DATE OF ISSUE         | : | May 08, 2025                                                      |
| STANDARD(S)           | : | FCC Part 15 Subpart C §15.247                                     |
| <b>REPORT VERSION</b> | : | V1.0                                                              |







# **Report Revise Record**

| Report Version | Revise Time | Issued Date  | Valid Version | Notes           |
|----------------|-------------|--------------|---------------|-----------------|
| V1.0           | /           | May 08, 2025 | Valid         | Initial Release |



# **Table of Contents**

| 1. General Information                                 | 5  |
|--------------------------------------------------------|----|
| 2. Product Information                                 | 6  |
| 2.1 Product Technical Description                      | 6  |
| 2.2 Test Frequency List                                | 6  |
| 2.3 Related Submittal(S) / Grant (S)                   | 7  |
| 2.4 Test Methodology                                   | 7  |
| 2.5 Special Accessories                                | 7  |
| 2.6 Equipment Modifications                            | 7  |
| 2.7 Antenna Requirement                                | 7  |
| 3. Test Environment                                    |    |
| 3.1 Address of the Test Laboratory                     |    |
| 3.2 Test Facility                                      |    |
| 3.3 Environmental Conditions                           | 9  |
| 3.4 Measurement Uncertainty                            | 9  |
| 3.5 List of Equipment Use                              |    |
| 4.System Test Configuration                            |    |
| 4.1 EUT Configuration                                  |    |
| 4.2 EUT Exercise                                       |    |
| 4.3 Configuration of Tested System                     |    |
| 4.4 Equipment Used in Tested System                    |    |
| 4.5 Summary of Test Results                            |    |
| 5. Description of Test Modes                           |    |
| 6. Duty Cycle Measurement                              |    |
| 7. RF Output Power Measurement                         |    |
| 7.1 Provisions Applicable                              |    |
| 7.2 Measurement Procedure                              |    |
| 7.3 Measurement Setup (Block Diagram of Configuration) |    |
| 7.4 Measurement Result                                 |    |
| 8. 6dB Bandwidth Measurement                           |    |
| 8.1 Provisions Applicable                              | 21 |
| 8.2 Measurement Procedure                              | 21 |
| 8.3 Measurement Setup (Block Diagram of Configuration) | 21 |
| 8.4 Measurement Results                                |    |
| 9. Power Spectral Density Measurement                  |    |
| 9.1 Provisions Applicable                              |    |
| 9.2 Measurement Procedure                              |    |
| 9.3 Measurement Setup (Block Diagram of Configuration) |    |
| 9.4 Measurement Results                                |    |
| 10. Conducted Band Edge and Out-of-Band Emissions      |    |
| 10.1 Provisions Applicable                             |    |



| 10.2 Measurement Procedure                                 |    |
|------------------------------------------------------------|----|
| 10.3 Measurement Setup (Block Diagram of Configuration)    |    |
| 10.4 Measurement Results                                   | 30 |
| 11. Radiated Spurious Emission                             |    |
| 11.1 Measurement Limit                                     |    |
| 11.2 Measurement Procedure                                 |    |
| 11.3 Measurement Setup (Block Diagram of Configuration)    | 39 |
| 11.4 Measurement Result                                    | 40 |
| 12. AC Power Line Conducted Emission Test                  | 54 |
| 12.1 Measurement Limit                                     | 54 |
| 12.2 Measurement Setup (Block Diagram of Configuration)    | 54 |
| 12.3 Preliminary Procedure of Line Conducted Emission Test | 55 |
| 12.4 Final Procedure of Line Conducted Emission Test       |    |
| 12.5 Measurement Result                                    | 55 |
| Appendix I: Photographs of Test Setup                      |    |
| Appendix II: Photographs of Test EUT                       | 60 |



# **1. General Information**

| Applicant                    | Wuhan Jingchen Intelligent Identification Technology Co., Ltd.                                       |
|------------------------------|------------------------------------------------------------------------------------------------------|
| Address                      | No. 5, Creative Workshop, Creative World, Yezhihu West Road, Hongshan<br>District, Wuhan, China      |
| Manufacturer                 | Wuhan Jingchen Intelligent Identification Technology Co., Ltd.                                       |
| Address                      | No. 5, Creative Workshop, Creative World, Yezhihu West Road, Hongshan<br>District, Wuhan, China      |
| Factory                      | Dongxihu branch of Wuhan Jingchen Intelligent Identification Technology Co., Ltd.                    |
| Address                      | No. 20, Xincheng eighteen Road, Changqing Street, Dongxihu District, Wuhan,<br>Hubei Province, China |
| Product Designation          | Label Printer                                                                                        |
| Brand Name                   | NIIMBOT                                                                                              |
| Test Model                   | NIIMBOT B1                                                                                           |
| Series Model                 | B1 SE, NIIMBOT B1_X, NIIMBOT B1_A                                                                    |
| Declaration of Difference    | All the same except for the model name.                                                              |
| Date of receipt of test item | Mar. 25, 2025                                                                                        |
| Date of Test                 | Apr. 07, 2025~May 08, 2025                                                                           |
| Deviation from Standard      | No any deviation from the test method                                                                |
| Condition of Test Sample     | Normal                                                                                               |
| Test Result                  | Pass                                                                                                 |
| Test Report Form No          | AGCER-FCC-BLE-V1                                                                                     |
|                              |                                                                                                      |

Note: The test results of this report relate only to the tested sample identified in this report.

TCI Li Prepared By Cici Li May 08, 2025 (Project Engineer) Bibo zhang **Reviewed By** Bibo Zhang May 08, 2025 (Reviewer) Approved By

Angela Li (Authorized Officer)

May 08, 2025



# 2. Product Information

#### **2.1 Product Technical Description**

| Technology Type                   | Bluetooth Low Energy                                    |
|-----------------------------------|---------------------------------------------------------|
| Frequency Band                    | 2400MHz-2483.5MHz                                       |
| Operation Frequency Range         | 2402MHz-2480MHz                                         |
| Bluetooth Version                 | V5.0                                                    |
| Modulation Type                   | BLE GFSK 1Mbps GFSK 2Mbps                               |
| Number of channels                | 40                                                      |
| Carrier Frequency of Each Channel | 40 Channels (37 Data channels + 3 Advertising channels) |
| Channel Separation                | 2 MHz                                                   |
| Maximum Transmitter Power         | -4.532dBm                                               |
| Hardware Version                  | V6.01                                                   |
| Software Version                  | V6.10                                                   |
| Antenna Designation               | PCB Antenna                                             |
| Antenna Gain                      | -1.028dBi                                               |
| Power Supply                      | DC 7.4V by battery or DC 5V by adapter                  |

#### 2.2 Test Frequency List

| Frequency Band                                                                                       | Channel Number | Test Frequency |  |  |
|------------------------------------------------------------------------------------------------------|----------------|----------------|--|--|
|                                                                                                      | 0              | 2402 MHz       |  |  |
|                                                                                                      | 1              | 2404 MHz       |  |  |
|                                                                                                      | :              | :              |  |  |
| 2400~2483.5MHz                                                                                       | 19             | 2440MHz        |  |  |
|                                                                                                      | :              | :              |  |  |
|                                                                                                      | 38             | 2478 MHz       |  |  |
|                                                                                                      | 39             | 2480 MHz       |  |  |
| Note: f = 2402 + 2*k MHz, k = 0,, 39 f is the operating frequency (MHz); k is the operating channel. |                |                |  |  |



#### 2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2ARXB-B1C**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

#### 2.4 Test Methodology

The tests were performed according to following standards:

| No. | Identity                                         | Document Title                                                                                                                                                                                  |  |  |
|-----|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | FCC 47 CFR Part 2                                | Frequency allocations and radio treaty matters; general rules and regulations                                                                                                                   |  |  |
| 2   | FCC 47 CFR Part 15                               | Radio Frequency Devices                                                                                                                                                                         |  |  |
| 3   | ANSI C63.10-2013                                 | American National Standard for Testing Unlicensed Wireless Devices                                                                                                                              |  |  |
| 4   | KDB 558074<br>D01 15.247 Meas<br>Guidance v05r02 | Guidance for compliance measurements on Digital Transmission Systems,<br>Frequency Hopping Spread Spectrum system, and Hybrid system devices<br>operating under Section 15.247 of the FCC rules |  |  |

#### 2.5 Special Accessories

Not available for this EUT intended for grant.

#### **2.6 Equipment Modifications**

Not available for this EUT intended for grant.

#### 2.7 Antenna Requirement

Standard Requirement

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

# 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

#### EUT Antenna

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is -1.028dBi.



### 3. Test Environment

#### 3.1 Address of the Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

#### 3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

#### A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

#### FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

#### IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.



#### **3.3 Environmental Conditions**

|                         | Normal Conditions                        |
|-------------------------|------------------------------------------|
| Temperature range (°C)  | 15 - 35                                  |
| Relative humidity range | 20 % - 75 %                              |
| Pressure range (kPa)    | 86 - 106                                 |
| Power supply            | DC 7.4V by battery of DC 5V from adapter |

#### **3.4 Measurement Uncertainty**

The reported uncertainty of measurement y  $\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Item                                          | Measurement Uncertainty    |  |  |
|-----------------------------------------------|----------------------------|--|--|
| Uncertainty of Conducted Emission for AC Port | $U_c = \pm 2.9 \text{ dB}$ |  |  |
| Uncertainty of Radiated Emission below 1GHz   | $U_c = \pm 3.9 \text{ dB}$ |  |  |
| Uncertainty of Radiated Emission above 1GHz   | $U_c = \pm 4.9 \text{ dB}$ |  |  |
| Uncertainty of total RF Power, Conducted      | $U_c = \pm 0.8 \text{ dB}$ |  |  |
| Uncertainty of RF Power Density, Conducted    | $U_c = \pm 2.6 \text{ dB}$ |  |  |
| Uncertainty of Spurious Emissions, Conducted  | $U_c = \pm 2 \%$           |  |  |
| Uncertainty of Occupied Channel Bandwidth     | U <sub>c</sub> = ±2 %      |  |  |
| Uncertainty of Dwell Time                     | U <sub>c</sub> = ±2 %      |  |  |



#### 3.5 List of Equipment Use

| • F         | RF Conducted Test System |                        |               |               |            |                              |                              |  |
|-------------|--------------------------|------------------------|---------------|---------------|------------|------------------------------|------------------------------|--|
| Used        | Equipment No.            | Test Equipment         | Manufacturer  | Model No.     | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |
| $\boxtimes$ | AGC-ER-E036              | Spectrum Analyzer      | Agilent       | N9020A        | MY49100060 | 2024-05-24                   | 2025-05-23                   |  |
| $\boxtimes$ | AGC-ER-E062              | Power Sensor           | Agilent       | U2021XA       | MY54110007 | 2025-01-14                   | 2026-01-13                   |  |
| $\boxtimes$ | AGC-ER-E063              | Power Sensor           | Agilent       | U2021XA       | MY54110009 | 2025-01-14                   | 2026-01-13                   |  |
| $\boxtimes$ | AGC-ER-A007              | 6dB Fixed Attenuator   | Mini circuits | BW-S6-2W263A+ | N/A        | 2025-01-30                   | 2026-01-29                   |  |
|             | AGC-ER-E083              | Signal Generator       | Agilent       | E4421B        | US39340815 | 2024-05-23                   | 2025-05-22                   |  |
| $\boxtimes$ | N/A                      | RF Connection<br>Cable | N/A           | 1#            | N/A        | Each time                    | N/A                          |  |
| $\boxtimes$ | N/A                      | RF Connection<br>Cable | N/A           | 2#            | N/A        | Each time                    | N/A                          |  |

| • F         | Radiated Spurious Emission |                                  |              |            |            |                              |                              |  |
|-------------|----------------------------|----------------------------------|--------------|------------|------------|------------------------------|------------------------------|--|
| Used        | Equipment No.              | Test Equipment                   | Manufacturer | Model No.  | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |
| $\boxtimes$ | AGC-EM-E046                | EMI Test Receiver                | R&S          | ESCI       | 10096      | 2025-01-14                   | 2026-01-13                   |  |
| $\boxtimes$ | AGC-EM-E061                | Spectrum Analyzer                | Agilent      | N9010A     | MY53470504 | 2024-05-28                   | 2025-05-27                   |  |
| $\boxtimes$ | AGC-EM-E086                | Loop Antenna                     | ZHINAN       | ZN30900C   | 18051      | 2024-03-05                   | 2026-03-04                   |  |
| $\boxtimes$ | AGC-EM-E001                | Wideband Antenna                 | SCHWARZBECK  | VULB9168   | D69250     | 2023-05-11                   | 2025-05-10                   |  |
| $\boxtimes$ | AGC-EM-E029                | Broadband Ridged<br>Horn Antenna | ETS          | 3117       | 00034609   | 2025-03-27                   | 2026-03-26                   |  |
| $\boxtimes$ | AGC-EM-E082                | Horn Antenna                     | SCHWARZBECK  | BBHA 9170  | #768       | 2023-09-24                   | 2025-09-23                   |  |
| $\boxtimes$ | AGC-EM-E146                | Pre-amplifier                    | ETS          | 3117-PA    | 00246148   | 2024-07-24                   | 2026-07-23                   |  |
| $\boxtimes$ | AGC-EM-A119                | 2.4G Filter                      | SongYi       | N/A        | N/A        | 2024-05-23                   | 2025-05-22                   |  |
| $\boxtimes$ | AGC-EM-A138                | 6dB Attenuator                   | Eeatsheep    | LM-XX-6-5W | N/A        | 2023-06-09                   | 2025-06-08                   |  |
|             | AGC-EM-A139                | 6dB Attenuator                   | Eeatsheep    | LM-XX-6-5W | N/A        | 2023-06-09                   | 2025-06-08                   |  |

| • A         | AC Power Line Conducted Emission          |                   |                      |            |                              |                              |            |  |  |
|-------------|-------------------------------------------|-------------------|----------------------|------------|------------------------------|------------------------------|------------|--|--|
| Used        | Equipment No. Test Equipment Manufacturer |                   | Model No. Serial No. |            | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |            |  |  |
| $\boxtimes$ | AGC-EM-E116                               | EMI Test Receiver | R&S                  | ESCI       | 100034                       | 2024-05-24                   | 2025-05-23 |  |  |
| $\boxtimes$ | AGC-EM-A130                               | 6dB Attenuator    | Eeatsheep            | LM-XX-6-5W | DC-6GZ                       | 2024-02-01                   | 2026-01-31 |  |  |
| $\square$   | AGC-EM-E023                               | AMN               | R&S                  | 100086     | ESH2-Z5                      | 2024-05-28                   | 2025-05-27 |  |  |



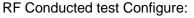
| Test Software |               |                     |              |                      |                     |  |  |  |
|---------------|---------------|---------------------|--------------|----------------------|---------------------|--|--|--|
| Used          | Equipment No. | Test Equipment      | Manufacturer | Model No.            | Version Information |  |  |  |
|               | AGC-EM-S001   | CE Test System      | R&S          | ES-K1                | V1.71               |  |  |  |
|               | AGC-EM-S003   | RE Test System      | FARA         | EZ-EMC               | VRA-03A             |  |  |  |
| $\boxtimes$   | AGC-ER-S012   | BT/WIFI Test System | Tonscend     | JS1120-2             | 2.6                 |  |  |  |
| $\square$     | AGC-EM-S011   | RSE Test System     | Tonscend     | TS+-Ver2.1(JS36-RSE) | 4.0.0.0             |  |  |  |

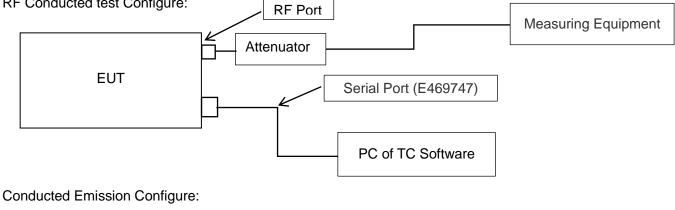


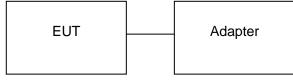
# 4.System Test Configuration

#### **4.1 EUT Configuration**

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.


#### 4.2 EUT Exercise


The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.


#### 4.3 Configuration of Tested System

Radiated Emission Configure:

EUT (Powered by battery)









#### 4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement: Test Accessories Come From The Laboratory

|     |                  |                                                      | •                            |                                                                |                    |
|-----|------------------|------------------------------------------------------|------------------------------|----------------------------------------------------------------|--------------------|
| No. | Equipment        | Manufacturer                                         | Model No.                    | Specification Information                                      | Cable              |
| 1   | Adapter          | Huawei                                               | HW-200440C00                 | Input(AC):100V-240V<br>50/60Hz 2.4A<br>Output(DC):USB-C(5V/3A) | 1.0m<br>unshielded |
| 2   | Control Box      |                                                      | E469747                      |                                                                |                    |
|     | Test Accessories | Come From The Manu                                   | facturer                     |                                                                |                    |
| No. | Equipment        | Manufacturer                                         | Model No.                    | Specification Information                                      | Cable              |
| 1   | Battery 1#       | GuangDong JinLu<br>New Energy Co., Ltd.              | JL-B201-1500mAh              | DC 7.4V 1500mAh                                                |                    |
| 2   | Battery 2#       | GUANGDONG<br>BERON ENERGY<br>TECHNOLOGY CO.,<br>LTD. | BL-2S1P18650-7.4V<br>1500mAh | DC 7.4V 1500mAh                                                |                    |



#### 4.5 Summary of Test Results

| Item | FCC Rules            | Description of Test                           | Result |
|------|----------------------|-----------------------------------------------|--------|
| 1    | §15.203&15.247(b)(4) | Antenna Equipment                             | Pass   |
| 2    | §15.247 (b)(3)       | RF Output Power                               | Pass   |
| 3    | §15.247 (a)(2)       | 6 dB Bandwidth                                | Pass   |
| 4    | §15.247 (e)          | Power Spectral Density                        | Pass   |
| 5    | §15.247 (d)          | Conducted Band Edge and Out-of-Band Emissions | Pass   |
| 6    | §15.209              | Radiated Emission& Band Edge                  | Pass   |
| 7    | §15.207              | AC Power Line Conducted Emission              | Pass   |

Note: The prototype has two types of batteries (Battery 1#:JL-B201-1500mAh and Battery 2#: BL-2S1P18650-7.4V 1500mAh). In response to this difference, both prototypes were tested for AC Power Line Conducted Emission and Radiated Spurious Emission.



#### 5. Description of Test Modes

|                                    | Summary Table of Test Cases                                                                                                                            |  |  |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Item                          | Data Rate / Modulation                                                                                                                                 |  |  |  |  |  |
| iest nem                           | Bluetooth–LE(1Mbps/2Mbps)/GFSK                                                                                                                         |  |  |  |  |  |
|                                    | Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps(Battery powered or AC/DC adapter)                                                                             |  |  |  |  |  |
| Radiated & Conducted<br>Test Cases | Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps(Battery powered or AC/DC adapter)                                                                             |  |  |  |  |  |
|                                    | Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps(Battery powered or AC/DC adapter)                                                                             |  |  |  |  |  |
| AC Conducted Emission              | Mode 1: Bluetooth Link + Battery1# + USB Cable (Charging from AC Adapter)<br>Mode 2: Bluetooth Link + Battery2# + USB Cable (Charging from AC Adapter) |  |  |  |  |  |

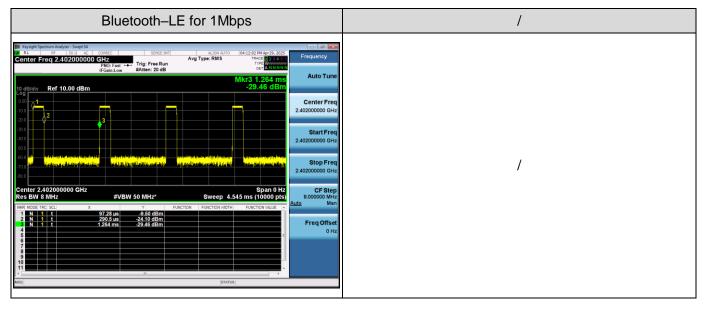
Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. 3. The battery is full-charged during the test.
- For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 4. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

| Software | Setting | Diagram |
|----------|---------|---------|
|----------|---------|---------|

| 그지국부부가 구선 전기                                                   | Select INI | Frequen           | CY 2402MHZ 💌        | SELECT |
|----------------------------------------------------------------|------------|-------------------|---------------------|--------|
| Select ROM Download 可以直接拖动ini文件和下                              | 双回忤判程序     | ModulationRa      | te GFSK 💌           | SELECT |
| ROM Path: C:\Users\Administrator\Desktop\Fcc_test_tool\program | n\24MH     | TX/I              | X TX -              | SELECT |
|                                                                |            | BT/BLE/BLE 2M/2.4 | IG BLE 💌            | SELECT |
| [                                                              |            | Carrier/da        | ta Data 💌           | SELECT |
| downloading<br>e hu success!                                   |            | Data Leng         | th dh1 💌            | SELECT |
| download finish<br>set [download rom file] success!            |            | Freq hop/         | fix hop 💌           | SELECT |
| set [freq] success!                                            |            | Frequency Offs    | et                  | SET    |
| set [tx/rx] success!                                           |            | Pow               | er 0 💌              | SELECT |
| set [bt/ble] success!                                          |            | 发包切换 othe         | r ▼ selec           |        |
| set [data] success!                                            |            | 频偏调试 Ox8          |                     |        |
| set [select] success!                                          |            |                   | 4 <u>     selec</u> |        |
| set [select] success!                                          |            |                   |                     |        |
|                                                                |            |                   |                     |        |
|                                                                |            |                   |                     |        |
|                                                                |            |                   |                     |        |
|                                                                |            |                   |                     |        |




# 6. Duty Cycle Measurement

The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

| Operating mode | Operating mode T(µs) Duty C |       | Duty Cycle Factor (dB) | 1/ T Minimum VBW (kHz) |  |  |
|----------------|-----------------------------|-------|------------------------|------------------------|--|--|
| BLE_1Mbps      | 193.22                      | 16.56 | -7.81                  | 5.18                   |  |  |

Remark:

- 1. Duty Cycle factor =  $10 * \log (1 / \text{Duty cycle})$
- 2. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value
- The test plots as follows:

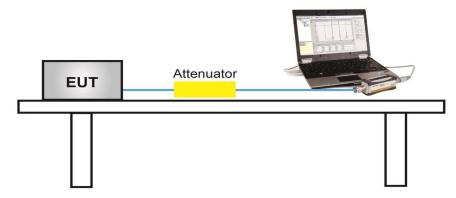




# 7. RF Output Power Measurement

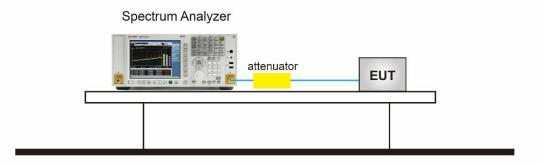
#### 7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.


#### 7.2 Measurement Procedure

For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.1 Method Max peak power:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the RBW≥DTS bandwidth
- 3. Set the VBW≥[3 × RBW].
- 4. Span≥[3 × RBW].
- 5. Sweep= auto couple.
- 6. Detector Function= Peak.
- 7. Trace mode= Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.
- For Average power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G:
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 2. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.


#### 7.3 Measurement Setup (Block Diagram of Configuration)

For Average power test setup





#### For peak power test setup



#### 7.4 Measurement Result

| Test Data of Conducted Output Power |                         |                     |                 |              |  |  |  |  |
|-------------------------------------|-------------------------|---------------------|-----------------|--------------|--|--|--|--|
| Test Mode                           | Test Frequency<br>(MHz) | Peak Power<br>(dBm) | Limits<br>(dBm) | Pass or Fail |  |  |  |  |
|                                     | 2402                    | -4.639              | ≪30             | Pass         |  |  |  |  |
| GFSK_1Mbps                          | 2440                    | -4.532              | ≪30             | Pass         |  |  |  |  |
|                                     | 2480                    | -5.079              | ≤30             | Pass         |  |  |  |  |





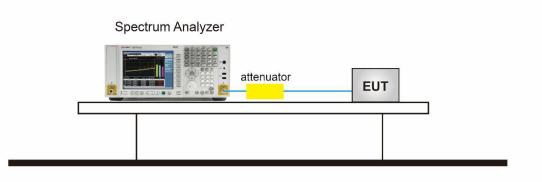
#### **Test Graphs of Conducted Output Power**



| 🎉 Keysight Spectrum Analyzer - Swept SA                      |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
|--------------------------------------------------------------|----------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| RF         50 Ω         AC           Center Freq 2.480000000 | CORREC SENSE:INT                                         | ALIGN AUTO<br>Avg Type: Log-Pwr | 04:20:06 PM Apr 29, 2025<br>TRACE 1 2 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frequency               |
|                                                              | PNO: Fast +++ Trig: Free Run<br>IFGain:Low #Atten: 40 dB | Avg Hold: 100/100               | DET PNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
|                                                              |                                                          | Mkr1                            | 2.479 972 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Auto Tune               |
| 10 dB/div Ref 30.00 dBm                                      |                                                          |                                 | -5.079 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| Log                                                          |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| 20.0                                                         |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center Freq             |
| 20.0                                                         |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.480000000 GHz         |
| 10.0                                                         |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
|                                                              |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Start Freq              |
| 0.00                                                         | <b>1</b>                                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.477500000 GHz         |
|                                                              |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| -10.0                                                        |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stop Freq               |
| a second second                                              |                                                          |                                 | mon and a second s | 2.482500000 GHz         |
| -20.0                                                        |                                                          |                                 | and all all all all all all all all all al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| -30.0                                                        |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CF Step                 |
| -30.0                                                        |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500.000 kHz<br>Auto Man |
| -40.0                                                        |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auto Man                |
|                                                              |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| -50.0                                                        |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Freq Offset<br>0 Hz     |
|                                                              |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 H2                    |
| -60.0                                                        |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
|                                                              |                                                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |
| Center 2.480000 GHz                                          |                                                          |                                 | Span 5.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| #Res BW 1.5 MHz                                              | #VBW 5.0 MHz                                             | Sweep 1                         | .066 ms (1000 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| MSG                                                          |                                                          | STATUS                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| Test_G                                                       | Graph_LE1M_ANT1                                          | _2480_1Mbps_                    | Peak Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |



### 8. 6dB Bandwidth Measurement

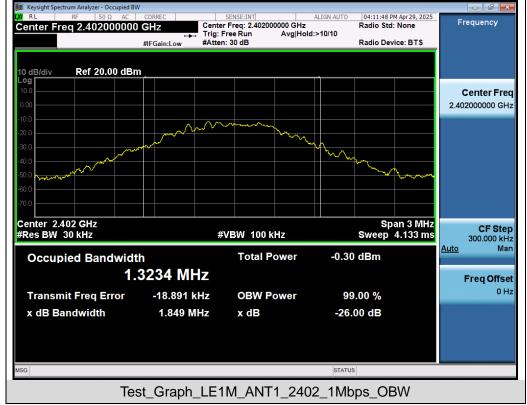

#### 8.1 Provisions Applicable

The minimum 6dB bandwidth shall be 500 kHz.

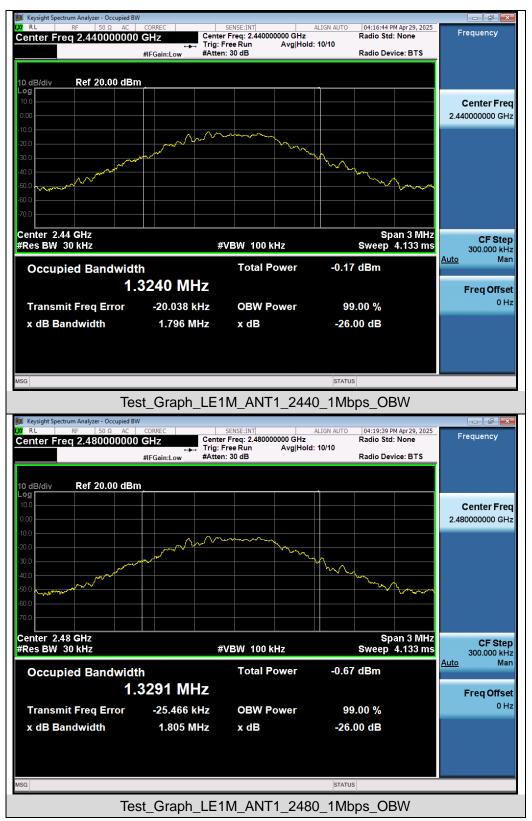
#### 8.2 Measurement Procedure

- The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 \* RBW.
- 5. Measure and record the results in the test report.

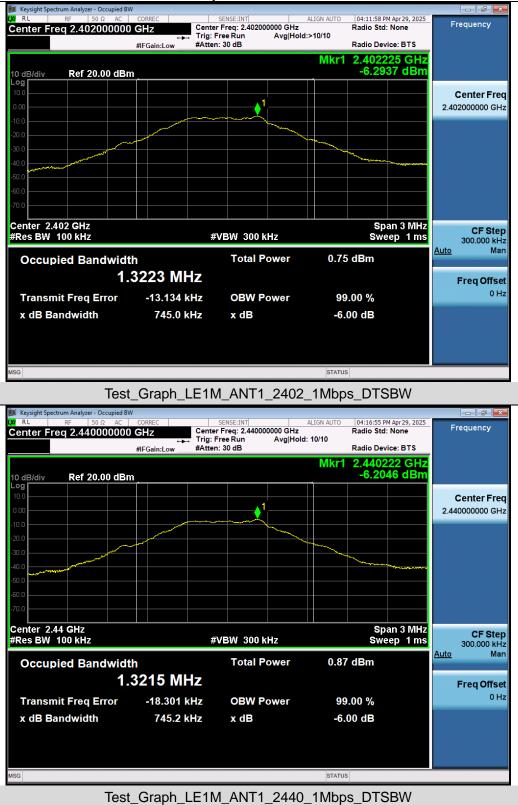
#### 8.3 Measurement Setup (Block Diagram of Configuration)







#### **8.4 Measurement Results**

| Test Data of Occupied Bandwidth and DTS Bandwidth |      |                             |                 |                  |              |  |  |  |
|---------------------------------------------------|------|-----------------------------|-----------------|------------------|--------------|--|--|--|
| Test Mode Test Frequency (MHz)                    |      | Occupied Bandwidth<br>(MHz) | DTS BW<br>(MHz) | DTS BW<br>Limits | Pass or Fail |  |  |  |
| GFSK_1Mbps                                        | 2402 | 1.323                       | 0.745           | ≥0.5             | Pass         |  |  |  |
|                                                   | 2440 | 1.324                       | 0.745           | ≥0.5             | Pass         |  |  |  |
|                                                   | 2480 | 1.329                       | 0.746           | ≥0.5             | Pass         |  |  |  |


# Test Graphs of Occupied Bandwidth









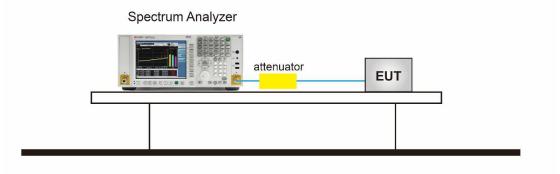




|             | trum Analyzer - Occupied B                                                                                      |                                                                              |          |                           | 1                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | _       |                      |
|-------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|---------------------------|------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|----------------------|
| Center Fre  | RF 50 Ω AC<br>eq 2.480000000                                                                                    | CORREC<br>GHz                                                                | Center F | INSE:INT<br>Freq: 2.48000 |                  | ALIGN AUTO | 04:19:51 F<br>Radio Std                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M Apr 29, 2025<br>I: None | Freq    | uency                |
|             |                                                                                                                 | Trig: Free Run Avg Hold: 10/10<br>#FGain:Low #Atten: 30 dB Radio Device: BTS |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
|             |                                                                                                                 |                                                                              |          |                           |                  | Mkr1       | 2.4802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 225 GHz                   |         |                      |
| 10 dB/div   | Ref 20.00 dBr                                                                                                   | n                                                                            |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82 dBm                    |         |                      |
| Log<br>10.0 |                                                                                                                 |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
| 0.00        |                                                                                                                 |                                                                              |          | <u>1</u>                  |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         | nter Freq            |
| -10.0       |                                                                                                                 |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 2.40000 | 0000 0112            |
| -20.0       |                                                                                                                 |                                                                              |          |                           | man and a second |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
| -30.0       |                                                                                                                 |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
| -40.0       | the second se |                                                                              |          |                           |                  |            | and the second s | Mary Mary Mary Martin     |         |                      |
| -50.0       |                                                                                                                 |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
| -60.0       |                                                                                                                 |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
| -70.0       |                                                                                                                 |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
| Center 2.4  | L8 GH7                                                                                                          |                                                                              |          |                           |                  |            | Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an 3 MHz                  |         |                      |
| #Res BW     |                                                                                                                 |                                                                              | #V       | BW 300 k                  | Hz               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eep 1 ms                  | 30      | CF Step<br>0.000 kHz |
| 0           |                                                                                                                 | 11a                                                                          |          | Total Power 0.36 dBm      |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto                      | Man     |                      |
| Occup       | ied Bandwid                                                                                                     |                                                                              |          | Totarr                    | OWGI             | 0.50       | ubm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |         |                      |
|             | 1.                                                                                                              | 3248 M                                                                       | ĦΖ       |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Fre     | eq Offset            |
| Transm      | it Freq Error                                                                                                   | -20.756                                                                      | kHz      | OBW P                     | ower             | 99         | 9.00 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |         | 0 Hz                 |
| x dB Ba     | ndwidth                                                                                                         | 745.8                                                                        | kHz      | x dB                      |                  | -6.        | 00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |         |                      |
|             |                                                                                                                 |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
|             |                                                                                                                 |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
|             |                                                                                                                 |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
| MSG         | ASG STATUS                                                                                                      |                                                                              |          |                           |                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |         |                      |
|             | Test                                                                                                            | _Graph_                                                                      | I F1M    | ANT1                      | 2480             | 1Mbp       | S DTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBW                       |         |                      |
|             | 100                                                                                                             |                                                                              |          |                           |                  |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |         |                      |



# 9. Power Spectral Density Measurement

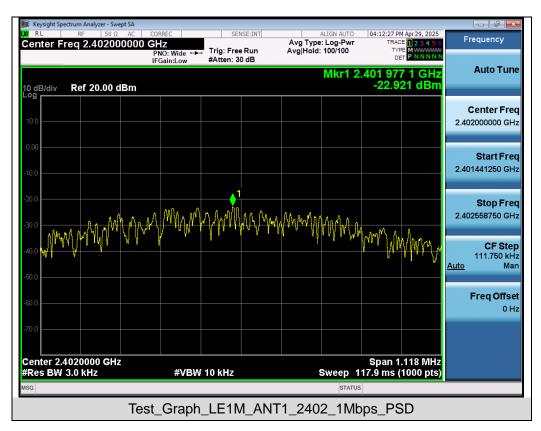

#### 9.1 Provisions Applicable

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

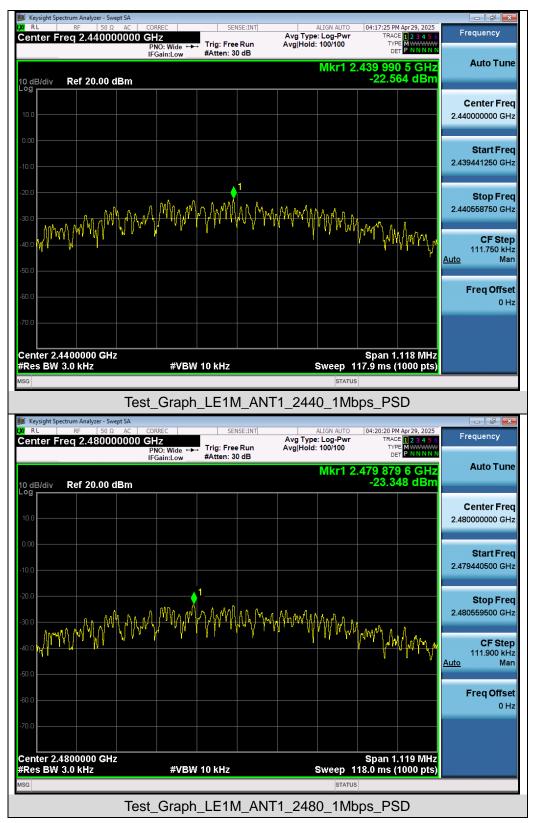
#### 9.2 Measurement Procedure

- The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz in order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the results in the test report.
- 6. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

#### 9.3 Measurement Setup (Block Diagram of Configuration)







#### 9.4 Measurement Results

| Test Data of Conducted Output Power Spectral Density |                         |                             |                     |              |  |  |
|------------------------------------------------------|-------------------------|-----------------------------|---------------------|--------------|--|--|
| Test Mode                                            | Test Frequency<br>(MHz) | Power density<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Pass or Fail |  |  |
| GFSK_1Mbps                                           | 2402                    | -22.921                     | ≪8                  | Pass         |  |  |
|                                                      | 2440                    | -22.564                     | ≪8                  | Pass         |  |  |
|                                                      | 2480                    | -23.348                     | ≪8                  | Pass         |  |  |

#### Test Graphs of Conducted Output Power Spectral Density

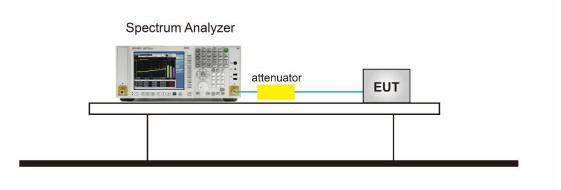








# 10. Conducted Band Edge and Out-of-Band Emissions


#### **10.1 Provisions Applicable**

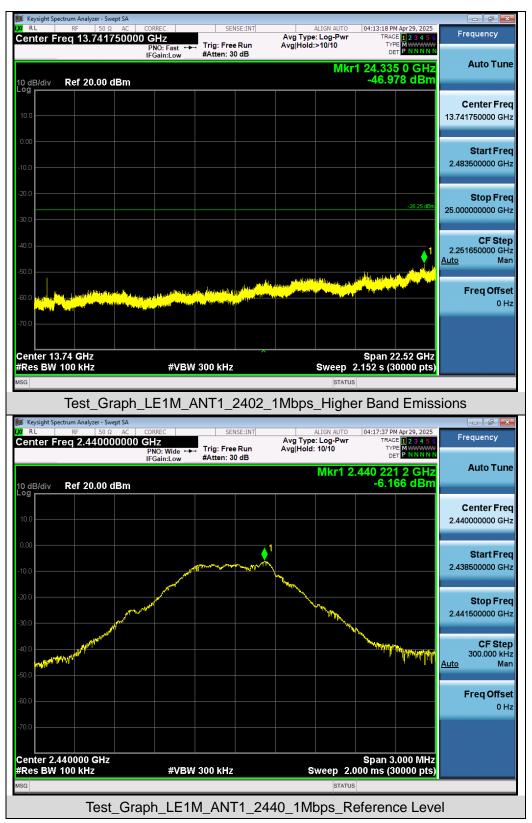
The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure.

#### **10.2 Measurement Procedure**

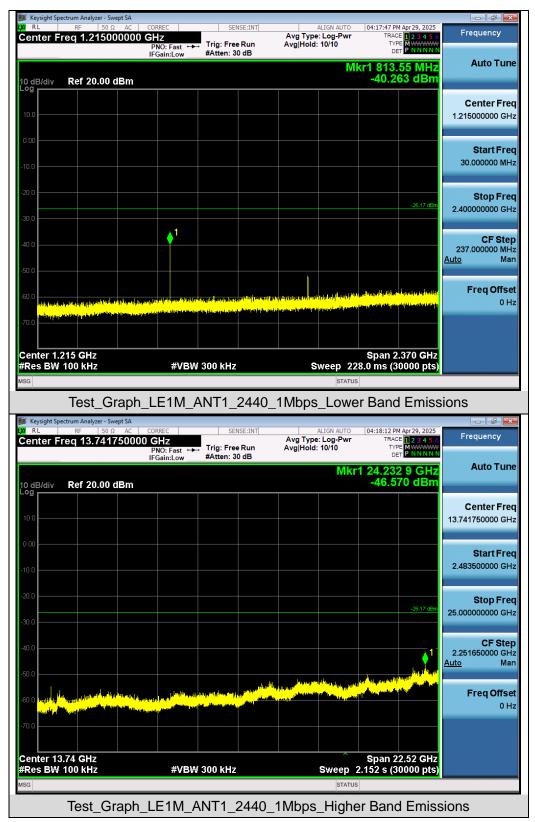
- Reference level measurement
- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to  $\geq$  1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW  $\ge$  3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize
- Emission level measurement
- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

#### 10.3 Measurement Setup (Block Diagram of Configuration)

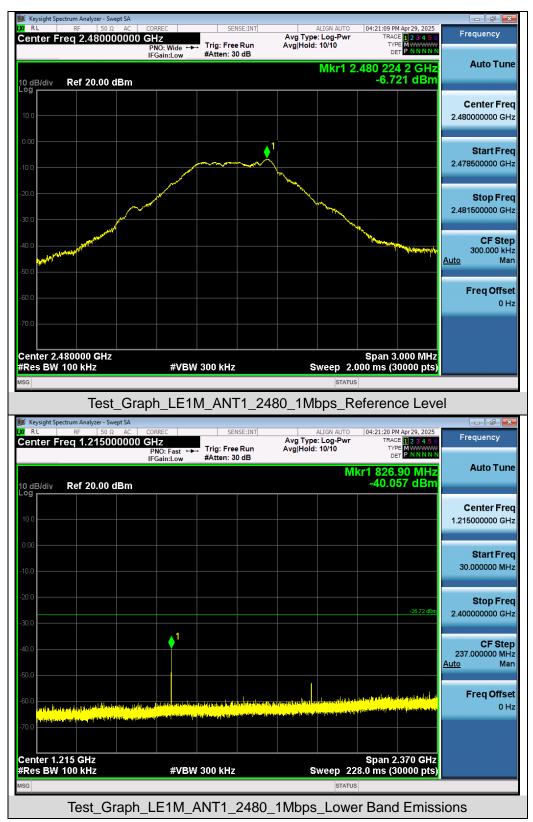





#### **10.4 Measurement Results**




#### Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands
















| 🗊 Keysight Spectrum Analyzer - Swept SA 👘 🛃                                       |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|
| X         RL         RF         50 Ω         AC           Center Freq 13.75000000 |                                                                                                                | SE:INT AL<br>Avg Type:                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Apr 29, 2025<br><b>1 2 3 4 5 6</b> Frequency |  |  |
|                                                                                   | PNO: Fast +++ Trig: Free<br>IEGain:Low #Atten: 30                                                              |                                                                                                                 | 0/10 TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |  |  |
|                                                                                   | IFGalli:Low #/ttell: or                                                                                        |                                                                                                                 | Mkr1 24.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auto Tune                                    |  |  |
| 10 dB/div Ref 20.00 dBm                                                           |                                                                                                                |                                                                                                                 | -47.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67 dBm                                       |  |  |
| Log                                                                               |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |
|                                                                                   |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Center Freq                                  |  |  |
| 10.0                                                                              |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.750000000 GHz                             |  |  |
| 0.00                                                                              |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |
| 0.00                                                                              |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start Freq                                   |  |  |
| -10.0                                                                             |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.500000000 GHz                              |  |  |
|                                                                                   |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |
| -20.0                                                                             |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop Freq                                    |  |  |
|                                                                                   |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -26.72 dBm 25.000000000 GHz                  |  |  |
| -30.0                                                                             |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |
|                                                                                   |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CF Step                                      |  |  |
| -40.0                                                                             |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2.25000000 GHz                             |  |  |
| -50.0                                                                             |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Auto Man                                     |  |  |
| -30.0                                                                             |                                                                                                                | and the later of the | Andrea A state and the state of |                                              |  |  |
| -60.0                                                                             | an the state projection of the state of the state                                                              | A DESCRIPTION OF THE OWNER OF THE | With the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Freq Offset                                  |  |  |
| Alashi panakana ana ana ana ana ana ana ana ana                                   | The second s |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 Hz                                         |  |  |
| -70.0                                                                             |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |
|                                                                                   |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |
| Center 13.75 GHz                                                                  |                                                                                                                |                                                                                                                 | Snap 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.50 GHz                                     |  |  |
| #Res BW 100 kHz                                                                   | #VBW 300 kHz                                                                                                   | 5                                                                                                               | Sweep 2.152 s (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000 pts)                                    |  |  |
| MSG STATUS                                                                        |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |
| Test_Graph_LE1M_ANT1_2480_1Mbps_Higher Band Emissions                             |                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |  |  |



#### Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands



# **11. Radiated Spurious Emission**

#### 11.1 Measurement Limit

• FCC Part 15.209 Limit in the below table to be followed

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(kHz)                          | 300                              |
| 0.490~1.705          | 24000/F(kHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

#### **11.2 Measurement Procedure**

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.



- 8. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 9. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 10. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 11. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum ParameterSettingStart ~Stop Frequency9kHz~150kHz/RB 200Hz for QPStart ~Stop Frequency150kHz~30MHz/RB 9kHz for QPStart ~Stop Frequency30MHz~1000MHz/RB 120kHz for QPStart ~Stop Frequency1GHz~26.5GHz<br/>1MHz/3MHz for Peak, 1MHz/3MHz for Average

The following table is the setting of spectrum analyzer and receiver.

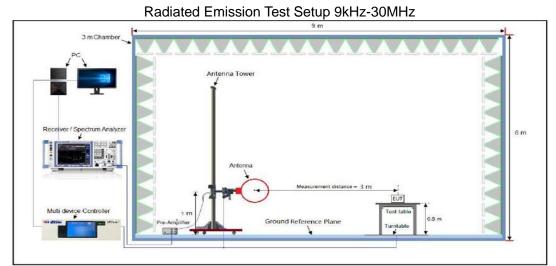
| Receiver Parameter    | Setting                        |
|-----------------------|--------------------------------|
| Start ~Stop Frequency | 9kHz~150kHz/RB 200Hz for QP    |
| Start ~Stop Frequency | 150kHz~30MHz/RB 9kHz for QP    |
| Start ~Stop Frequency | 30MHz~1000MHz/RB 120kHz for QP |



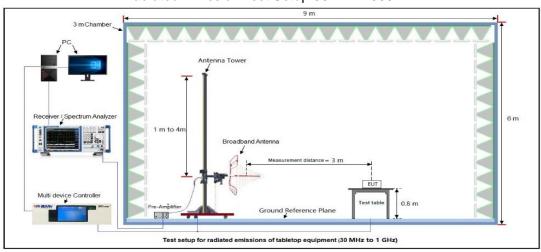
### Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

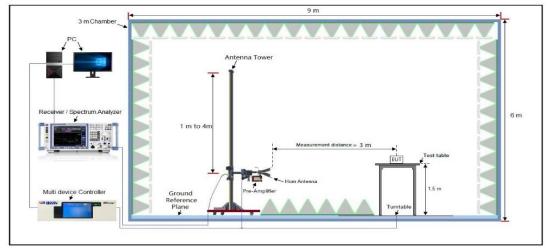
#### • Peak Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

### • Average Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3.  $VBW \ge [3 \times RBW]$
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- 8. The applicable correction factor is [10\*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.




### 11.3 Measurement Setup (Block Diagram of Configuration)



Radiated Emission Test Setup 30MHz-1000MHz



#### Radiated Emission Test Setup Above 1000MHz





#### **11.4 Measurement Result**

#### Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

|        |                |        | Radia             | ted Emiss      | ion Test Res                           | ults at 30MHz  | 2-1GHz         |                       |            |  |
|--------|----------------|--------|-------------------|----------------|----------------------------------------|----------------|----------------|-----------------------|------------|--|
| EUT N  | lame           | Labe   | l Printer         |                |                                        | Model Na       | me             | NIIMBOT               | B1         |  |
| Tempo  | erature        | 20.2°  | С                 |                |                                        | Relative H     | lumidity       | 53.5%                 |            |  |
| Press  | ure            | 960h   | Pa                |                |                                        | Test Volta     | ige            | DC 7.4V by battery1#  |            |  |
| Test N | lode           | Mode   | e 1               |                |                                        | Antenna I      | Polarity       | Horizontal            |            |  |
|        | 72.0           | dBu¥/m |                   |                |                                        | ·              |                | •                     |            |  |
|        | -8 30.00       | 0 40   |                   | 80             | ************************************** | 300            | 55             | Limit:<br>Margin:<br> |            |  |
| Final  | Data List      | 0 40   | 30 00 10          | 00             | (1112)                                 | 300            | 400 300 00     | 0 100 1000.00         |            |  |
| NO.    | Freq.<br>[MHz] |        | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m]                      | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°]          | Polarity   |  |
| 1      | 44.743         | 3      | 19.88             | 13.57          | 40.00                                  | 20.12          | 100            | 190                   | Horizontal |  |
| 2      | 104.170        | 01     | 24.90             | 16.24          | 43.50                                  | 18.6           | 100            | 270                   | Horizontal |  |
| 3      | 192.418        | 36     | 26.04             | 13.63          | 43.50                                  | 17.46          | 100            | 100                   | Horizontal |  |
| 4      | 303.543        | 37     | 26.34             | 16.50          | 46.00                                  | 19.66          | 100            | 260                   | Horizontal |  |
| 5      | 545.182        | 26     | 33.02             | 23.98          | 46.00                                  | 12.98          | 100            | 170                   | Horizontal |  |
|        |                |        |                   |                |                                        |                |                |                       |            |  |



|          |                | Radia                                                                                                                | ted Emiss      | ion Test Res                              | ults at 30MH            | z-1GHz                                                                                                          |                       |          |  |
|----------|----------------|----------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|----------|--|
| EUT Na   | me             | Label Printer                                                                                                        |                |                                           | Model Na                | ame                                                                                                             | NIIMBOT               | 31       |  |
| Temper   | ature          | <b>20.2℃</b>                                                                                                         |                |                                           | Relative I              | Humidity                                                                                                        | 53.5%                 |          |  |
| Pressu   | re             | 960hPa                                                                                                               |                |                                           | Test Volta              | age                                                                                                             | DC 7.4V by battery1#  |          |  |
| Test Mo  | de             | Mode 1                                                                                                               |                |                                           | Antenna                 | Polarity                                                                                                        | Vertical              |          |  |
|          | 72.0 df        | 3uV∕m                                                                                                                |                |                                           | ·                       |                                                                                                                 |                       |          |  |
|          |                |                                                                                                                      |                |                                           |                         |                                                                                                                 | Limit: —<br>Margin: — |          |  |
|          |                |                                                                                                                      |                |                                           |                         |                                                                                                                 |                       |          |  |
|          |                |                                                                                                                      |                |                                           |                         |                                                                                                                 |                       |          |  |
|          |                |                                                                                                                      |                |                                           |                         |                                                                                                                 | 6                     |          |  |
|          | 32             |                                                                                                                      |                |                                           |                         | all and a second                                                                                                | with Hallow N         |          |  |
|          |                | 2<br>Value and a second a | 3<br>X         | hanna an | West a lot of the party | when he was a factor of the second |                       |          |  |
|          |                |                                                                                                                      |                |                                           |                         |                                                                                                                 |                       |          |  |
|          |                |                                                                                                                      |                |                                           |                         |                                                                                                                 |                       |          |  |
|          | -8             |                                                                                                                      |                |                                           |                         |                                                                                                                 |                       |          |  |
|          | 30.000         | 40 50 60 70                                                                                                          | 80             | (MHz)                                     | 300                     | 400 500 60                                                                                                      | 0 700 1000.00         | 10       |  |
| Final Da | ata List       |                                                                                                                      |                |                                           |                         |                                                                                                                 |                       |          |  |
| NO.      | Freq.<br>[MHz] | Level<br>[dBµV/m]                                                                                                    | Factor<br>[dB] | Limit<br>[dBµV/m]                         | Margin<br>[dB]          | Height<br>[cm]                                                                                                  | Angle<br>[°]          | Polarity |  |
| 1        | 32.6340        | 23.93                                                                                                                | 14.47          | 40.00                                     | 16.07                   | 100                                                                                                             | 190                   | Vertical |  |
| 2        | 40.5591        | 25.48                                                                                                                | 16.91          | 40.00                                     | 14.52                   | 100                                                                                                             | 110                   | Vertical |  |
| 3        | 103.442        | 1 24.14                                                                                                              | 14.80          | 43.50                                     | 19.36                   | 100                                                                                                             | 100                   | Vertical |  |
| 4        | 309.997        | 7 26.45                                                                                                              | 19.60          | 46.00                                     | 19.55                   | 100                                                                                                             | 260                   | Vertical |  |
| 5        | 444.851        | 4 30.77                                                                                                              | 25.88          | 46.00                                     | 15.23                   | 100                                                                                                             | 180                   | Vertical |  |
| 6        | 945.439        | 9 36.12                                                                                                              | 30.78          | 46.00                                     | 9.88                    | 100                                                                                                             | 170                   | Vertical |  |



|        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Radia                 | ited En           | niss | ion Test Res | sult       | s at 3           | 0MHz                                      | -1GH | Ιz                   |           |                |           |                            |            |
|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|-------------------|------|--------------|------------|------------------|-------------------------------------------|------|----------------------|-----------|----------------|-----------|----------------------------|------------|
| EUT N  | lame               | Label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Printe | Model Name            |                   |      |              | NIIMBOT B1 |                  |                                           | 1    |                      |           |                |           |                            |            |
| Tempe  | erature            | 20.2°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C      |                       | Relative Humidity |      |              |            | 53.5%            |                                           |      |                      |           |                |           |                            |            |
| Press  | ure                | 960hF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⊃a     |                       |                   |      | Test Voltage |            |                  |                                           |      | DC 7.4V by battery2# |           |                | battery2# |                            |            |
| Test M | lode               | Mode 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                       |                   |      |              |            | Antenna Polarity |                                           |      |                      |           | Hori           | zonta     | al                         |            |
|        | 72.0               | dBu∀/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                       |                   |      |              |            |                  |                                           |      |                      |           |                |           |                            |            |
|        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                       |                   |      |              |            |                  |                                           |      |                      | Lir<br>Ma | nit:<br>argin: | _         |                            |            |
|        | -8                 | petrological and the second se |        | 4 www.yweshy<br>60 70 | 80                | 3    | (MHz)        | 3X         | -tople           | 4<br>//////////////////////////////////// | 400  | 500                  | 600       | 700            | 1000      | -<br>-<br>-<br>-<br>-<br>- |            |
|        | Data List<br>Freq. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leve   | el                    | Fact              | or   | Limit        | <u> </u>   | Marg             | in                                        | H    | eigh                 | t         | Ar             | ngle      |                            | Deleritu   |
| NO.    | [MHz               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [dBµV  | -                     | [dB               | •    | [dBµV/m]     |            | [dB              | ]                                         | [    | cm]                  |           | [              | °]        |                            | Polarity   |
| 1      | 43.353             | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.2   | 26                    | 13.6              | 57   | 40.00        |            | 20.7             | 4                                         | -    | 100                  |           | 1              | 80        |                            | Horizontal |
| 2      | 106.38             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23.0   | )7                    | 16.2              | 26   | 43.50        |            | 20.4             | 3                                         | -    | 100                  |           | 2              | 80        |                            | Horizontal |
| 3      | 216.78             | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.5   | 50                    | 14.4              | 2    | 46.00        |            | 21.5             | 5                                         |      | 100                  |           | 1              | 60        |                            | Horizontal |
| 4      | 322.18             | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.4   | 17                    | 16.5              | 7    | 46.00        |            | 15.5             | 3                                         | -    | 100                  |           | 2              | 10        |                            | Horizontal |
| 5      | 545.18             | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.1   | 4                     | 23.9              | 8    | 46.00        |            | 13.8             | 6                                         | -    | 100                  |           | 1              | 20        |                            | Horizontal |
| 6      | 903.30             | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.0   | 00                    | 31.3              | 84   | 46.00        |            | 9.0              |                                           |      | 100                  |           | 1              | 00        |                            | Horizontal |



|          |                                                  | Radia        | ted Emiss | ion Test Res         | ults at 30MHz | -1GHz      |                       |          |  |
|----------|--------------------------------------------------|--------------|-----------|----------------------|---------------|------------|-----------------------|----------|--|
| EUT Na   | me La                                            | abel Printer |           |                      | Model Na      | me         | NIIMBOT B1            |          |  |
| Tempera  | ature 2                                          | <b>0.2</b> ℃ |           | Relative Humidi      |               |            | 53.5%                 |          |  |
| Pressur  | r <b>e</b> 90                                    | 60hPa        | ige       | DC 7.4V by battery2# |               |            |                       |          |  |
| Test Mo  | ode     Mode 1     Antenna Polarity     Vertical |              |           |                      |               |            |                       |          |  |
|          | 72.0 dBu                                         | W/m          |           |                      |               |            |                       |          |  |
|          |                                                  |              |           |                      |               |            | Limit: —<br>Margin: — |          |  |
| Final Da | -8                                               | 40 50 60 70  | 80        | (MHz)                | 300           | 400 500 60 |                       | 0        |  |
| NO.      | Freq.                                            | Level        | Factor    | Limit                | Margin        | Height     | Angle                 | Polarity |  |
|          | [MHz]                                            | [dBµV/m]     | [dB]      | [dBµV/m]             | [dB]          | [cm]       | [°]                   | -        |  |
| 1        | 32.1795                                          | 25.29        | 14.32     | 40.00                | 14.71         | 100        | 210                   | Vertical |  |
| 2        | 64.6594                                          | 23.14        | 17.05     | 40.00                | 16.86         | 100        | 100                   | Vertical |  |
| 3        | 143.8295                                         | 23.81        | 18.20     | 43.50                | 19.69         | 100        | 190                   | Vertical |  |
| 4        | 323.3204                                         | 31.00        | 20.18     | 46.00                | 15.0          | 100        | 210                   | Vertical |  |
| 5        | 699.3046                                         | 33.84        | 28.09     | 46.00                | 12.16         | 100        | 160                   | Vertical |  |
| 6        | 948.7610                                         | 36.39        | 30.65     | 46.00                | 9.61          | 100        | 120                   | Vertical |  |
| DECUIT   |                                                  |              | 1         |                      |               |            | 1                     |          |  |

**Note:** 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 1 is the worst case and recorded in the report.



| EUT Name                                                                                                                  | I                                                                                         | abel Printer                                                                  |                                                 | Model Name                                                                                                              | NIIMBOT                                                              | B1                                           |  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|--|
| Temperature                                                                                                               | . 2                                                                                       | 2 <b>0.2</b> °C                                                               |                                                 | Relative Humidity                                                                                                       |                                                                      |                                              |  |
| Pressure                                                                                                                  | ç                                                                                         | 960hPa                                                                        |                                                 | Test Voltage                                                                                                            | DC 7.4V b                                                            | y battery1#                                  |  |
| Test Mode                                                                                                                 | I                                                                                         | lode 1 Antenna Polarity                                                       |                                                 |                                                                                                                         | Horizontal                                                           |                                              |  |
|                                                                                                                           |                                                                                           |                                                                               |                                                 |                                                                                                                         |                                                                      |                                              |  |
| Frequency                                                                                                                 | Meter<br>Reading                                                                          | Factor                                                                        | Emission<br>Level                               | Limits                                                                                                                  | Margin                                                               | Value                                        |  |
| (MHz)                                                                                                                     | (dBµV)                                                                                    | (dB)                                                                          | (dBµV/m)                                        | (dBµV/m)                                                                                                                | (dB)                                                                 | — Туре                                       |  |
| 4804.000                                                                                                                  | 50.15                                                                                     | 0.08                                                                          | 50.23                                           | 74.00                                                                                                                   | -23.77                                                               | peak                                         |  |
| 4804.000                                                                                                                  | 40.77                                                                                     | 0.08                                                                          | 40.85                                           | 54.00                                                                                                                   | -13.15                                                               | AVG                                          |  |
| 7206.000                                                                                                                  | 49.21                                                                                     | 2.21                                                                          | 51.42                                           | 74.00                                                                                                                   | -22.58                                                               | peak                                         |  |
| 7206.000                                                                                                                  | 41.36                                                                                     | 2.21                                                                          | 43.57                                           | 54.00                                                                                                                   | -10.43                                                               | AVG                                          |  |
| Remark:                                                                                                                   | enna Facto                                                                                | r + Cable Loss – P                                                            | re-amplifier.                                   |                                                                                                                         |                                                                      |                                              |  |
| Remark:                                                                                                                   |                                                                                           | or + Cable Loss – P<br>Label Printer                                          | re-amplifier.                                   | Model Name                                                                                                              | NIIMBOT                                                              | B1                                           |  |
| Remark:<br>Factor = Ant                                                                                                   | l                                                                                         |                                                                               | re-amplifier.                                   | Model Name<br>Relative Humidity                                                                                         | NIIMBOT<br>53.5%                                                     | B1                                           |  |
| Remark:<br>Factor = Ant<br>EUT Name                                                                                       |                                                                                           | abel Printer                                                                  | re-amplifier.                                   |                                                                                                                         | 53.5%                                                                | B1                                           |  |
| Remark:<br>Factor = Ant<br>EUT Name<br>Temperature                                                                        |                                                                                           | Label Printer<br>20.2℃                                                        | re-amplifier.                                   | Relative Humidity                                                                                                       | 53.5%                                                                |                                              |  |
| Remark:<br>Factor = Ant<br>EUT Name<br>Temperature<br>Pressure                                                            |                                                                                           | Label Printer<br>20.2°C<br>960hPa<br>Mode 1                                   | re-amplifier.                                   | Relative Humidity<br>Test Voltage                                                                                       | 53.5%<br>DC 7.4V b                                                   | y battery1#                                  |  |
| Remark:<br>Factor = Ant<br>EUT Name<br>Temperature<br>Pressure<br>Test Mode                                               | l<br>2<br>3<br>4<br>1<br>Meter                                                            | Label Printer<br>20.2°C<br>960hPa<br>Mode 1                                   | Emission                                        | Relative Humidity<br>Test Voltage<br>Antenna Polarity                                                                   | 53.5%<br>DC 7.4V b<br>Vertical                                       | by battery1#                                 |  |
| Remark:<br>Factor = Ant<br>EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency                                  | Meter<br>Reading                                                                          | Label Printer<br>20.2℃<br>960hPa<br>Mode 1<br>Factor                          | Emission                                        | Relative Humidity         Test Voltage         Antenna Polarity         Limits                                          | 53.5%<br>DC 7.4V b<br>Vertical<br>Margin                             | y battery1#                                  |  |
| Remark:<br>Factor = Ant<br>EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency<br>(MHz)                         | Meter<br>Reading<br>(dBµV)                                                                | Label Printer<br>20.2°C<br>060hPa<br>Mode 1<br>Factor<br>(dB)                 | Emission<br>Level<br>(dBµV/m)                   | Relative Humidity         Test Voltage         Antenna Polarity         Limits       (dBµV/m)                           | 53.5%<br>DC 7.4V b<br>Vertical<br>Margin<br>(dB)                     | vy battery1#<br>Value<br>Type                |  |
| Remark:<br>Factor = Ant<br>EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4804.000             | Meter<br>Reading<br>(dBµV)<br>50.69                                                       | Label Printer<br>20.2°C<br>960hPa<br>Mode 1<br>Factor<br>(dB)<br>0.08         | Emission<br>Level<br>(dBµV/m)<br>50.77          | Relative Humidity         Test Voltage         Antenna Polarity         Limits         (dBµV/m)         74.00           | 53.5%<br>DC 7.4V b<br>Vertical<br>Margin<br>(dB)<br>-23.23           | vy battery1#<br>Value<br>Type<br>peak        |  |
| Remark:<br>Factor = Ant<br>EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4804.000<br>4804.000 | <br> | Label Printer<br>20.2°C<br>060hPa<br>Mode 1<br>Factor<br>(dB)<br>0.08<br>0.08 | Emission<br>Level<br>(dBµV/m)<br>50.77<br>41.44 | Relative Humidity         Test Voltage         Antenna Polarity         Limits       (dBµV/m)         74.00       54.00 | 53.5%<br>DC 7.4V b<br>Vertical<br>Margin<br>(dB)<br>-23.23<br>-12.56 | vy battery1#<br>Value<br>Type<br>peak<br>AVG |  |

### **RESULT: PASS**



| EUT Name      |               | Label F          | Printer        |                   | Μ  | odel Name       |            | NIIMBOT B  | 1             |
|---------------|---------------|------------------|----------------|-------------------|----|-----------------|------------|------------|---------------|
| Temperature   |               | <b>20.2</b> ℃    |                |                   | R  | elative Humidit | у          | 53.5%      |               |
| Pressure      |               | 960hPa           | a              |                   | Te | est Voltage     |            | DC 7.4V by | battery1#     |
| Test Mode     |               | Mode 2           |                | Antenna Polarity  |    |                 | Horizontal |            |               |
|               |               |                  |                |                   |    |                 |            |            |               |
| Frequency     | Mete<br>Readi | ing Factor Level |                |                   |    | Limits          |            | Margin     | Value<br>Type |
| (MHz)         | (dBµ'         | V)               | (dB)           | (dBµV/m)          |    | (dBµV/m)        |            | (dB)       | туре          |
| 4880.000      | 50.1          | 7                | 0.14           | 50.31             |    | 74.00           |            | -23.69     | peak          |
| 4880.000      | 40.3          | 6                | 0.14           | 40.50             |    | 54.00           |            | -13.50     | AVG           |
| 7320.000      | 49.6          | 5                | 2.36           | 52.01             |    | 74.00           |            | -21.99     | peak          |
| 7320.000      | 40.5          | 8                | 2.36           | 42.94             |    | 54.00           |            | -11.06     | AVG           |
| Remark:       |               |                  |                |                   |    |                 |            |            |               |
| Factor = Ante | enna Fa       | ctor + Ca        | able Loss – Pr | e-amplifier.      |    |                 |            |            |               |
|               |               |                  |                |                   |    |                 |            |            |               |
| EUT Name      |               | Label F          | Printer        |                   | M  | odel Name       |            | NIIMBOT B  | 1             |
| Temperature   |               | <b>20.2</b> ℃    |                |                   | R  | elative Humidit | у          | 53.5%      |               |
| Pressure      |               | 960hPa           | a              |                   | Te | est Voltage     |            | DC 7.4V by | battery1#     |
| Test Mode     |               | Mode 2           | 2              |                   | A  | ntenna Polarity |            | Vertical   |               |
| Frequency     | Mete<br>Readi |                  | Factor         | Emission<br>Level |    | Limits          |            | Margin     | Value         |
| (MHz)         | (dBµ'         | √)               | (dB)           | (dBµV/m)          |    | (dBµV/m)        |            | (dB)       | Туре          |
| 4880.000      | 50.3          | 4                | 0.14           | 50.48             |    | 74.00           |            | -23.52     | peak          |
| 4880.000      | 41.3          | 9                | 0.14           | 41.53             |    | 54.00           |            | -12.47     | AVG           |
| 7320.000      | 48.8          | 7                | 2.36           | 51.23             |    | 74.00           |            | -22.77     | peak          |
| 7320.000      | 41.3          | 6                | 2.36           | 43.72             |    | 54.00           |            | -10.28     | AVG           |
| Remark:       |               |                  |                |                   |    |                 |            |            |               |
|               |               |                  |                |                   |    |                 |            |            |               |
| Factor = Ante | enna Fa       | ctor + Ca        | able Loss – Pr | e-amplifier.      |    |                 |            |            |               |

### **RESULT: Pass**



| EUT Name                                                                                   |                                                      | Label Printer                                                  |                                             |                                                       | Мо  | del Name                                      | NIIMBOT B1                                               |                                      |
|--------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-----|-----------------------------------------------|----------------------------------------------------------|--------------------------------------|
| Temperature                                                                                |                                                      | <b>20.2</b> °C                                                 | 2                                           |                                                       | Re  | lative Humidity                               | 53.5%                                                    |                                      |
| Pressure                                                                                   |                                                      | 960hF                                                          | Pa                                          |                                                       | Tes | st Voltage                                    | DC 7.4V by b                                             | attery1#                             |
| Test Mode                                                                                  |                                                      | Mode                                                           | 3                                           | Antenna Polarity                                      |     |                                               | Horizontal                                               |                                      |
|                                                                                            |                                                      |                                                                |                                             |                                                       |     |                                               |                                                          |                                      |
| Frequency                                                                                  | Mete<br>Read                                         | ing Factor Level                                               |                                             |                                                       |     | Limits                                        | Margin                                                   | Value                                |
| (MHz)                                                                                      | (dBµ                                                 | V)                                                             | (dB)                                        | (dBµV/m)                                              |     | (dBµV/m)                                      | (dB)                                                     | Туре                                 |
| 4960.000                                                                                   | 50.1                                                 | 5                                                              | 0.22                                        | 50.37                                                 |     | 74.00                                         | -23.63                                                   | peak                                 |
| 4960.000                                                                                   | 40.3                                                 | 6                                                              | 0.22                                        | 40.58                                                 |     | 54.00                                         | -13.42                                                   | AVG                                  |
| 7440.000                                                                                   | 49.5                                                 | 51                                                             | 2.64                                        | 52.15                                                 |     | 74.00                                         | -21.85                                                   | peak                                 |
| 7440.000                                                                                   | 40.1                                                 | 5                                                              | 2.64                                        | 42.79                                                 |     | 54.00                                         | -11.21                                                   | AVG                                  |
| Remark:                                                                                    |                                                      |                                                                |                                             |                                                       |     |                                               |                                                          |                                      |
| Factor = Ante                                                                              | enna Fa                                              | ctor + C                                                       | Cable Loss – Pro                            | e-amplifier.                                          |     |                                               |                                                          |                                      |
|                                                                                            |                                                      |                                                                |                                             |                                                       |     |                                               |                                                          |                                      |
| EUT Name                                                                                   |                                                      | Label                                                          | Printer                                     |                                                       | Мо  | del Name                                      | NIIMBOT B1                                               |                                      |
| Temperature                                                                                |                                                      | 20.2℃                                                          | 2                                           |                                                       | Re  | lative Humidity                               | 53.5%                                                    |                                      |
| remperature                                                                                |                                                      | 20.2 0                                                         |                                             |                                                       |     |                                               |                                                          |                                      |
| Pressure                                                                                   |                                                      | 960hF                                                          | Pa                                          |                                                       | Tes | st Voltage                                    | DC 7.4V by b                                             | attery1#                             |
| -                                                                                          |                                                      | -                                                              |                                             |                                                       |     | st Voltage<br>tenna Polarity                  | DC 7.4V by b<br>Vertical                                 | pattery1#                            |
| Pressure                                                                                   | Mete                                                 | 960hF<br>Mode<br>er                                            |                                             | Emission<br>Level                                     |     |                                               |                                                          | Value                                |
| Pressure<br>Test Mode                                                                      | Mete                                                 | 960hF<br>Mode<br>er                                            | 3                                           |                                                       |     | tenna Polarity                                | Vertical                                                 |                                      |
| Pressure<br>Test Mode<br>Frequency                                                         | Mete                                                 | 960hF<br>Mode<br>er<br>ing<br>V)                               | 3<br>Factor                                 | Level                                                 |     | tenna Polarity Limits                         | Vertical<br>Margin                                       | Value                                |
| Pressure<br>Test Mode<br>Frequency<br>(MHz)                                                | Mete<br>Read<br>(dBµ                                 | 960hF<br>Mode<br>er<br>ing<br>V)                               | 3<br>Factor<br>(dB)                         | Level<br>(dBµV/m)                                     |     | Limits                                        | Vertical<br>Margin<br>(dB)                               | Value<br>Type                        |
| Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4960.000                                    | Mete<br>Read<br>(dBµ<br>49.8                         | 960hF<br>Mode<br>er<br>ing<br>V)<br>55                         | 3<br>Factor<br>(dB)<br>0.22                 | Level<br>(dBµV/m)<br>50.07                            |     | Limits<br>(dBµV/m)<br>74.00                   | Vertical<br>Margin<br>(dB)<br>-23.93                     | Value<br>Type<br>peak                |
| Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4960.000<br>4960.000                        | Mete<br>Read<br>(dBµ<br>49.8<br>41.3                 | 960hF<br>Mode<br>er<br>ing<br>V)<br>55<br>11<br>55             | 3<br>Factor<br>(dB)<br>0.22<br>0.22         | Level<br>(dBµV/m)<br>50.07<br>41.53                   |     | Limits<br>(dBµV/m)<br>74.00<br>54.00          | Vertical<br>Margin<br>(dB)<br>-23.93<br>-12.47           | Value<br>Type<br>peak<br>AVG         |
| Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4960.000<br>4960.000<br>7440.000            | Mete<br>Read<br>(dBµ<br>49.8<br>41.3<br>49.8         | 960hF<br>Mode<br>er<br>ing<br>V)<br>55<br>11<br>55             | 3<br>Factor<br>(dB)<br>0.22<br>0.22<br>2.64 | Level<br>(dBµV/m)<br>50.07<br>41.53<br>52.49          |     | Limits<br>(dBµV/m)<br>74.00<br>54.00<br>74.00 | Vertical<br>Margin<br>(dB)<br>-23.93<br>-12.47<br>-21.51 | Value<br>Type<br>peak<br>AVG<br>peak |
| Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4960.000<br>4960.000<br>7440.000<br>Remark: | Mete<br>Read<br>(dBµ<br>49.8<br>41.3<br>49.8<br>40.3 | 960hF<br>Mode<br>er<br>ing<br>V)<br>55<br>51<br>55<br>55<br>56 | 3<br>Factor<br>(dB)<br>0.22<br>0.22<br>2.64 | Level<br>(dBµV/m)<br>50.07<br>41.53<br>52.49<br>43.00 |     | Limits<br>(dBµV/m)<br>74.00<br>54.00<br>74.00 | Vertical<br>Margin<br>(dB)<br>-23.93<br>-12.47<br>-21.51 | Value<br>Type<br>peak<br>AVG<br>peak |

#### **RESULT: Pass**



| EUT Name                                                                                                                          |                                                                | Label Printer                                                                         |                                                                   | Model Name                                                                                                                                | NIIMBOT                                                                        | B1                                   |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|
| Temperature                                                                                                                       | •                                                              | <b>20.2</b> ℃                                                                         |                                                                   | Relative Humidity53.5%                                                                                                                    |                                                                                |                                      |
| Pressure                                                                                                                          |                                                                | 960hPa                                                                                |                                                                   | Test Voltage                                                                                                                              | y battery2#                                                                    |                                      |
| Test Mode                                                                                                                         |                                                                | Mode 1                                                                                |                                                                   | Antenna Polarity                                                                                                                          | Horizontal                                                                     |                                      |
|                                                                                                                                   |                                                                |                                                                                       |                                                                   |                                                                                                                                           |                                                                                |                                      |
| Frequency                                                                                                                         | Meter<br>Reading                                               | Factor                                                                                | Emission<br>Level                                                 | Limits Margin                                                                                                                             |                                                                                | Value                                |
| (MHz)                                                                                                                             | (dBµV)                                                         | (dB)                                                                                  | (dBµV/m)                                                          | (dBµV/m)                                                                                                                                  | (dB)                                                                           | — Туре                               |
| 4804.000                                                                                                                          | 51.37                                                          | 0.08                                                                                  | 51.45                                                             | 74.00                                                                                                                                     | -22.55                                                                         | peak                                 |
| 4804.000                                                                                                                          | 40.52                                                          | 0.08                                                                                  | 40.6                                                              | 54.00                                                                                                                                     | -13.40                                                                         | AVG                                  |
| 7206.000                                                                                                                          | 49.31                                                          | 2.21                                                                                  | 51.52                                                             | 74.00                                                                                                                                     | -22.48                                                                         | peak                                 |
| 7206.000                                                                                                                          | 41.52                                                          | 2.21                                                                                  | 43.73                                                             | 54.00                                                                                                                                     | -10.27                                                                         | AVG                                  |
| Remark:                                                                                                                           |                                                                |                                                                                       |                                                                   |                                                                                                                                           |                                                                                |                                      |
| Factor = Ante                                                                                                                     | enna Fact                                                      | or + Cable Loss – P                                                                   | re-amplifier.                                                     |                                                                                                                                           |                                                                                |                                      |
| Factor = Ante                                                                                                                     |                                                                | or + Cable Loss – P<br>Label Printer                                                  | re-amplifier.                                                     | Model Name                                                                                                                                | NIIMBOT                                                                        | B1                                   |
|                                                                                                                                   |                                                                |                                                                                       | re-amplifier.                                                     | Model Name<br>Relative Humidity                                                                                                           | NIIMBOT<br>53.5%                                                               | B1                                   |
| EUT Name                                                                                                                          | •                                                              | Label Printer                                                                         | re-amplifier.                                                     |                                                                                                                                           | 53.5%                                                                          | B1<br>by battery2#                   |
| EUT Name<br>Temperature                                                                                                           | 9                                                              | Label Printer<br>20.2℃                                                                | re-amplifier.                                                     | Relative Humidity                                                                                                                         | 53.5%                                                                          |                                      |
| EUT Name<br>Temperature<br>Pressure                                                                                               | 9                                                              | Label Printer<br>20.2°C<br>960hPa<br>Mode 1                                           | re-amplifier.                                                     | Relative Humidity<br>Test Voltage                                                                                                         | 53.5%<br>DC 7.4V b                                                             | y battery2#                          |
| EUT Name<br>Temperature<br>Pressure<br>Test Mode                                                                                  | Meter                                                          | Label Printer<br>20.2°C<br>960hPa<br>Mode 1<br>Factor                                 | Emission                                                          | Relative Humidity<br>Test Voltage<br>Antenna Polarity                                                                                     | 53.5%<br>DC 7.4V b<br>Vertical                                                 | by battery2#                         |
| EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency                                                                     | Meter                                                          | Label Printer<br>20.2°C<br>960hPa<br>Mode 1<br>Factor                                 | Emission                                                          | Relative Humidity       Test Voltage       Antenna Polarity       Limits                                                                  | 53.5%<br>DC 7.4V b<br>Vertical<br>Margin                                       | y battery2#                          |
| EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency<br>(MHz)                                                            | Meter<br>Reading<br>(dBµV)                                     | Label Printer<br>20.2°C<br>960hPa<br>Mode 1<br>Factor<br>(dB)                         | Emission<br>Level<br>(dBµV/m)                                     | Relative Humidity         Test Voltage         Antenna Polarity         Limits       (dBµV/m)                                             | 53.5%<br>DC 7.4V b<br>Vertical<br>Margin<br>(dB)                               | vy battery2#<br>Value<br>Type        |
| EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4804.000                                                | Meter<br>Reading<br>(dBµV)<br>52.01                            | Label Printer<br>20.2°C<br>960hPa<br>Mode 1<br>Factor<br>(dB)<br>0.08                 | Emission<br>Level<br>(dBµV/m)<br>52.09                            | Relative Humidity         Test Voltage         Antenna Polarity         Limits         (dBµV/m)         74.00                             | 53.5%<br>DC 7.4V b<br>Vertical<br>Margin<br>(dB)<br>-21.91                     | v battery2#<br>Value<br>Type<br>peak |
| EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4804.000<br>4804.000                                    | Meter<br>Reading<br>(dBµV)<br>52.01<br>41.36                   | Label Printer<br>20.2°C<br>960hPa<br>Mode 1<br>Factor<br>(dB)<br>0.08<br>0.08         | Emission<br>Level<br>(dBµV/m)<br>52.09<br>41.44                   | Relative Humidity         Test Voltage         Antenna Polarity         Limits       (dBµV/m)         74.00       1         54.00       1 | 53.5%<br>DC 7.4V b<br>Vertical<br>Margin<br>(dB)<br>-21.91<br>-12.56           | Value<br>Type<br>peak<br>AVG         |
| EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency<br>(MHz)<br>4804.000<br>4804.000<br>7206.000<br>7206.000<br>Remark: | Meter<br>Reading<br>(dBµV)<br>52.01<br>41.36<br>49.35<br>40.57 | Label Printer<br>20.2°C<br>960hPa<br>Mode 1<br>Factor<br>(dB)<br>0.08<br>0.08<br>2.21 | Emission<br>Level<br>(dBµV/m)<br>52.09<br>41.44<br>51.56<br>42.78 | Relative Humidity         Test Voltage         Antenna Polarity         Limits         (dBµV/m)         74.00         54.00         74.00 | 53.5%<br>DC 7.4V b<br>Vertical<br>Margin<br>(dB)<br>-21.91<br>-12.56<br>-22.44 | Value<br>Type<br>peak<br>AVG<br>peak |

### **RESULT: PASS**



| EUT Name                                                                                                         |                                                    | Label P                                                           | rinter                                           |                                                          | Model Name                                                                                             | NIIMBOT B                                                                       | 1                                         |  |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|--|
| Temperature                                                                                                      | •                                                  | <b>20.2</b> ℃                                                     |                                                  |                                                          | Relative Humidity                                                                                      | 53.5%                                                                           |                                           |  |
| Pressure                                                                                                         |                                                    | 960hPa                                                            | l                                                |                                                          | Test Voltage                                                                                           | DC 7.4V by                                                                      | DC 7.4V by battery2#                      |  |
| Test Mode                                                                                                        |                                                    | Mode 2                                                            |                                                  | Antenna Polarity                                         | Horizontal                                                                                             |                                                                                 |                                           |  |
|                                                                                                                  |                                                    |                                                                   |                                                  | ·                                                        |                                                                                                        |                                                                                 |                                           |  |
| Frequency                                                                                                        | Mete<br>Readi                                      | -                                                                 | Factor                                           | Emission<br>Level                                        | Limits                                                                                                 | Margin                                                                          | Value                                     |  |
| (MHz)                                                                                                            | (dBµ\                                              | /)                                                                | (dB)                                             | (dBµV/m)                                                 | (dBµV/m)                                                                                               | (dB)                                                                            | — Туре                                    |  |
| 4880.000                                                                                                         | 50.7                                               | 7                                                                 | 0.14                                             | 50.91                                                    | 74.00                                                                                                  | -23.09                                                                          | peak                                      |  |
| 4880.000                                                                                                         | 40.3                                               | 6                                                                 | 0.14                                             | 40.50                                                    | 54.00                                                                                                  | -13.50                                                                          | AVG                                       |  |
| 7320.000                                                                                                         | 49.3                                               | 1                                                                 | 2.36                                             | 51.67                                                    | 74.00                                                                                                  | -22.33                                                                          | peak                                      |  |
| 7320.000                                                                                                         | 40.7                                               | 7                                                                 | 2.36                                             | 43.13                                                    | 54.00                                                                                                  | -10.87                                                                          | AVG                                       |  |
| Remark:                                                                                                          |                                                    |                                                                   |                                                  |                                                          |                                                                                                        |                                                                                 |                                           |  |
| Factor = Ante                                                                                                    | enna Fa                                            |                                                                   |                                                  |                                                          |                                                                                                        |                                                                                 |                                           |  |
|                                                                                                                  | enna Fa                                            | ctor + Cal                                                        |                                                  |                                                          | Model Name                                                                                             | NIIMBOT B                                                                       | 1                                         |  |
| Factor = Ante                                                                                                    |                                                    |                                                                   |                                                  |                                                          | Model Name<br>Relative Humidity                                                                        | NIIMBOT B                                                                       | 1                                         |  |
| Factor = Ante                                                                                                    |                                                    | Label P                                                           | rinter                                           |                                                          |                                                                                                        |                                                                                 |                                           |  |
| Factor = Ante<br>EUT Name<br>Temperature                                                                         |                                                    | Label P<br>20.2℃                                                  | rinter                                           |                                                          | Relative Humidity                                                                                      | 53.5%                                                                           |                                           |  |
| Factor = Ante<br>EUT Name<br>Temperature<br>Pressure                                                             |                                                    | Label P<br>20.2°C<br>960hPa<br>Mode 2                             | rinter                                           |                                                          | Relative Humidity<br>Test Voltage                                                                      | 53.5%<br>DC 7.4V by                                                             | battery2#                                 |  |
| Factor = Ante<br>EUT Name<br>Temperature<br>Pressure<br>Test Mode                                                | Mete                                               | Label P<br>20.2°C<br>960hPa<br>Mode 2<br>rr<br>ng                 | rinter                                           | Emission                                                 | Relative Humidity<br>Test Voltage<br>Antenna Polarity                                                  | 53.5%<br>DC 7.4V by<br>Vertical                                                 | battery2#                                 |  |
| Factor = Anternational Factor = Anternational Factor = Anternational Frequency Frequency                         | e<br>Mete<br>Readi                                 | Label P<br>20.2 °C<br>960hPa<br>Mode 2<br>or<br>ng<br>/)          | Factor                                           | Emission<br>Level                                        | Relative Humidity Test Voltage Antenna Polarity Limits                                                 | 53.5%<br>DC 7.4V by<br>Vertical<br>Margin                                       | battery2#                                 |  |
| Factor = Anto<br>EUT Name<br>Temperature<br>Pressure<br>Test Mode<br>Frequency<br>(MHz)                          | Mete<br>Readi<br>(dBµ <sup>1</sup>                 | Label P<br>20.2°C<br>960hPa<br>Mode 2<br>rr<br>ng<br>/)<br>6      | rinter<br>Factor<br>(dB)                         | Emission<br>Level<br>(dBµV/m)                            | Relative Humidity Test Voltage Antenna Polarity Limits (dBµV/m)                                        | 53.5%<br>DC 7.4V by<br>Vertical<br>Margin<br>(dB)                               | battery2#<br>Value<br>Type                |  |
| Factor = Anternational Factor = Anternational Fermional Frequency (MHz) 4880.000                                 | Mete<br>Readi<br>(dBµ <sup>1</sup><br>51.3         | Label P<br>20.2℃<br>960hPa<br>Mode 2<br>or<br>ng<br>/)<br>6<br>1  | rinter<br>Factor<br>(dB)<br>0.14                 | Emission<br>Level<br>(dBµV/m)<br>51.50                   | Relative Humidity<br>Test Voltage<br>Antenna Polarity<br>Limits<br>(dBµV/m)<br>74.00                   | 53.5%<br>DC 7.4V by<br>Vertical<br>Margin<br>(dB)<br>-22.50                     | battery2#                                 |  |
| Factor = Anter<br>EUT Name<br>Femperature<br>Pressure<br>Fest Mode<br>Frequency<br>(MHz)<br>4880.000<br>4880.000 | Mete<br>Readi<br>(dBµ <sup>\</sup><br>51.3<br>41.3 | Label P<br>20.2°C<br>960hPa<br>Mode 2<br>rng<br>/)<br>6<br>1<br>7 | Factor<br>(dB)<br>0.14<br>0.14                   | Emission<br>Level<br>(dBµV/m)<br>51.50<br>41.45          | Relative Humidity<br>Test Voltage<br>Antenna Polarity<br>Limits<br>(dBµV/m)<br>74.00<br>54.00          | 53.5%<br>DC 7.4V by<br>Vertical<br>Margin<br>(dB)<br>-22.50<br>-12.55           | battery2#<br>Value<br>Type<br>peak<br>AVG |  |
| Factor = Anternational Factor = Anternational Fermional Frequency (MHz) 4880.000 7320.000                        | Mete<br>Readi<br>(dBµ\<br>51.3<br>41.3<br>49.3     | Label P<br>20.2°C<br>960hPa<br>Mode 2<br>rng<br>/)<br>6<br>1<br>7 | rinter<br>Factor<br>(dB)<br>0.14<br>0.14<br>2.36 | Emission<br>Level<br>(dBµV/m)<br>51.50<br>41.45<br>51.73 | Relative Humidity<br>Test Voltage<br>Antenna Polarity<br>Limits<br>(dBµV/m)<br>74.00<br>54.00<br>74.00 | 53.5%<br>DC 7.4V by<br>Vertical<br>Margin<br>(dB)<br>-22.50<br>-12.55<br>-22.27 | battery2# Value Type peak AVG peak        |  |

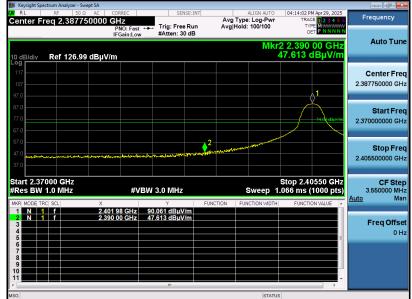
### **RESULT: Pass**



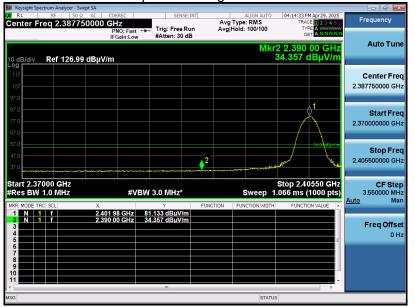
| Reading         Reading           (MHz)         (dBµV)         (d           4960.000         50.17         0.           4960.000         40.35         0.           7440.000         49.31         2.                                                                                                                                                                  | actor Emission<br>Level<br>dB) (dBµV/m<br>22 50.39<br>22 40.57<br>64 51.95<br>64 51.95<br>64 44.22<br>Loss – Pre-amplifier.                                       | Te<br>Ar   | elative Humidity<br>est Voltage<br>ntenna Polarity<br>Limits<br>(dBµV/m)<br>74.00<br>54.00<br>74.00<br>54.00 | 53.5%<br>DC 7.4V by ba<br>Horizontal<br>Margin<br>(dB)<br>-23.61<br>-13.43<br>-22.05<br>-9.78 | Value<br>Type<br>peak<br>AVG<br>AVG  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|
| Test Mode         Mode 3           Frequency         Meter<br>Reading         Fa           (MHz)         (dBµV)         (d           4960.000         50.17         0.           4960.000         40.35         0.           7440.000         49.31         2.           7440.000         41.58         2.           Remark:         Factor = Antenna Factor + Cable L | Actor         Level           dB)         (dBµV/m           .22         50.39           .22         40.57           .64         51.95           .64         44.22 | <b>A</b> r | Limits<br>(dBµV/m)<br>74.00<br>54.00<br>74.00                                                                | Horizontal<br>Margin<br>(dB)<br>-23.61<br>-13.43<br>-22.05                                    | Value<br>Type<br>peak<br>AVG<br>peak |
| Frequency         Meter<br>Reading         Fa           (MHz)         (dBµV)         (c           4960.000         50.17         0.           4960.000         40.35         0.           7440.000         49.31         2.           7440.000         41.58         2.           Remark:         Factor = Antenna Factor + Cable L                                    | Actor         Level           dB)         (dBµV/m           .22         50.39           .22         40.57           .64         51.95           .64         44.22 | n          | Limits<br>(dBµV/m)<br>74.00<br>54.00<br>74.00                                                                | Margin<br>(dB)<br>-23.61<br>-13.43<br>-22.05                                                  | Type<br>peak<br>AVG<br>peak          |
| Frequency         Reading         Fa           (MHz)         (dBµV)         (c           4960.000         50.17         0.           4960.000         40.35         0.           7440.000         49.31         2.           7440.000         41.58         2.           Remark:         Factor = Antenna Factor + Cable L                                             | Actor         Level           dB)         (dBµV/m           .22         50.39           .22         40.57           .64         51.95           .64         44.22 |            | (dBµV/m)<br>74.00<br>54.00<br>74.00                                                                          | (dB)<br>-23.61<br>-13.43<br>-22.05                                                            | Type<br>peak<br>AVG<br>peak          |
| Frequency         Reading         Fa           (MHz)         (dBµV)         (c           4960.000         50.17         0.           4960.000         40.35         0.           7440.000         49.31         2.           7440.000         41.58         2.           Remark:         Factor = Antenna Factor + Cable L                                             | Actor         Level           dB)         (dBµV/m           .22         50.39           .22         40.57           .64         51.95           .64         44.22 |            | (dBµV/m)<br>74.00<br>54.00<br>74.00                                                                          | (dB)<br>-23.61<br>-13.43<br>-22.05                                                            | Type<br>peak<br>AVG<br>peak          |
| 4960.000         50.17         0.           4960.000         40.35         0.           7440.000         49.31         2.           7440.000         41.58         2.           Remark:         Factor = Antenna Factor + Cable L                                                                                                                                      | .22     50.39       .22     40.57       .64     51.95       .64     44.22                                                                                         | )          | 74.00<br>54.00<br>74.00                                                                                      | -23.61<br>-13.43<br>-22.05                                                                    | peak<br>AVG<br>peak                  |
| 4960.000       40.35       0.         7440.000       49.31       2.         7440.000       41.58       2.         Remark:       Factor = Antenna Factor + Cable L                                                                                                                                                                                                      | .22         40.57           .64         51.95           .64         44.22                                                                                         |            | 54.00<br>74.00                                                                                               | -13.43<br>-22.05                                                                              | AVG<br>peak                          |
| 7440.000         49.31         2.           7440.000         41.58         2.           Remark:         Factor = Antenna Factor + Cable L                                                                                                                                                                                                                              | .64 51.95<br>.64 44.22                                                                                                                                            |            | 74.00                                                                                                        | -22.05                                                                                        | peak                                 |
| 7440.000     41.58     2.       Remark:                                                                                                                                                                                                                                                                                                                                | .64 44.22                                                                                                                                                         |            |                                                                                                              |                                                                                               | •                                    |
| Remark:<br>Factor = Antenna Factor + Cable L                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |            | 54.00                                                                                                        | -9.78                                                                                         | AVG                                  |
| Factor = Antenna Factor + Cable L                                                                                                                                                                                                                                                                                                                                      | Loss – Pre-amplifier.                                                                                                                                             |            |                                                                                                              |                                                                                               | _                                    |
|                                                                                                                                                                                                                                                                                                                                                                        | Loss – Pre-amplifier.                                                                                                                                             |            |                                                                                                              |                                                                                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                   |            |                                                                                                              |                                                                                               |                                      |
| FUT Name Label Drinto                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   |            |                                                                                                              |                                                                                               |                                      |
|                                                                                                                                                                                                                                                                                                                                                                        | er                                                                                                                                                                | Mo         | odel Name                                                                                                    | NIIMBOT B1                                                                                    |                                      |
| Temperature20.2℃                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                   | Re         | elative Humidity                                                                                             | 53.5%                                                                                         |                                      |
| Pressure 960hPa                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                   | Те         | est Voltage                                                                                                  | DC 7.4V by ba                                                                                 | ittery2#                             |
| Test Mode Mode 3                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                   | An         | ntenna Polarity                                                                                              | Vertical                                                                                      |                                      |
| Frequency Meter Fa                                                                                                                                                                                                                                                                                                                                                     | actor Emission                                                                                                                                                    | n          | Limits                                                                                                       | Margin                                                                                        | Value                                |
| (MHz) (dBµV) (c                                                                                                                                                                                                                                                                                                                                                        | dB) (dBµV/m                                                                                                                                                       | )          | (dBµV/m)                                                                                                     | (dB)                                                                                          | Туре                                 |
| 4960.000 49.15 0.                                                                                                                                                                                                                                                                                                                                                      | .22 49.37                                                                                                                                                         |            | 74.00                                                                                                        | -24.63                                                                                        | peak                                 |
| 4960.000 40.58 0.                                                                                                                                                                                                                                                                                                                                                      | .22 40.80                                                                                                                                                         |            | 54.00                                                                                                        | -13.20                                                                                        | AVG                                  |
| 7440.000 49.37 2.                                                                                                                                                                                                                                                                                                                                                      | .64 52.01                                                                                                                                                         |            | 74.00                                                                                                        | -21.99                                                                                        | peak                                 |
| 7440.000 39.14 2.                                                                                                                                                                                                                                                                                                                                                      | .64 41.78                                                                                                                                                         |            | 54.00                                                                                                        | -12.22                                                                                        | AVG                                  |
| Remark:                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |            |                                                                                                              |                                                                                               |                                      |
| Factor = Antenna Factor + Cable L                                                                                                                                                                                                                                                                                                                                      | Loss – Pre-amplifier.                                                                                                                                             |            |                                                                                                              |                                                                                               |                                      |

#### **RESULT: Pass**

Note:


- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.




| Band Edge Emission Test Results for Restricted Ban | ds |
|----------------------------------------------------|----|
|----------------------------------------------------|----|

| EUT Name    | Label Printer | Model Name        | NIIMBOT B1     |
|-------------|---------------|-------------------|----------------|
| Temperature | <b>25</b> ℃   | Relative Humidity | 55.4%          |
| Pressure    | 960hPa        | Test Voltage      | Normal Voltage |
| Test Mode   | Mode 1        | Antenna Polarity  | Horizontal     |

Test Graph for Peak Measurement

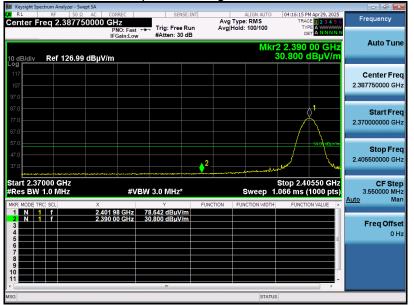


Test Graph for Average Measurement



### **RESULT: PASS**




### Band Edge Emission Test Results for Restricted Bands

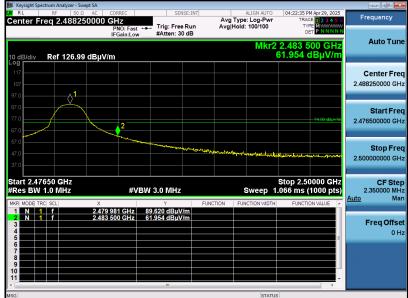
| EUT Name    | Label Printer | Model Name        | NIIMBOT B1     |
|-------------|---------------|-------------------|----------------|
| Temperature | <b>25</b> ℃   | Relative Humidity | 55.4%          |
| Pressure    | 960hPa        | Test Voltage      | Normal Voltage |
| Test Mode   | Mode 1        | Antenna Polarity  | Vertical       |

Test Graph for Peak Measurement



Test Graph for Average Measurement




### **RESULT: PASS**



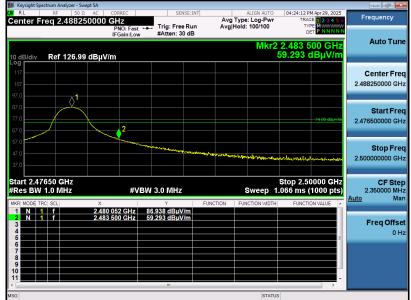
### Band Edge Emission Test Results for Restricted Bands

| EUT Name    | Label Printer | Model Name        | NIIMBOT B1     |
|-------------|---------------|-------------------|----------------|
| Temperature | <b>25</b> ℃   | Relative Humidity | 55.4%          |
| Pressure    | 960hPa        | Test Voltage      | Normal Voltage |
| Test Mode   | Mode 3        | Antenna Polarity  | Horizontal     |

Test Graph for Peak Measurement



Test Graph for Average Measurement




### **RESULT: PASS**



| EUT Name    | Label Printer | Model Name        | NIIMBOT B1     |
|-------------|---------------|-------------------|----------------|
| Temperature | <b>25</b> ℃   | Relative Humidity | 55.4%          |
| Pressure    | 960hPa        | Test Voltage      | Normal Voltage |
| Test Mode   | Mode 3        | Antenna Polarity  | Vertical       |

Test Graph for Peak Measurement



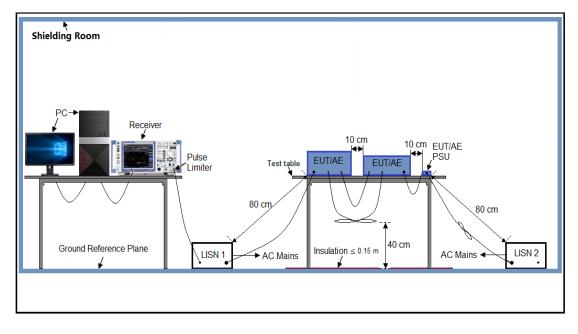
Test Graph for Average Measurement Frequency enter Freq 2.488250000 GHz Avg Type: RMS Avg Hold: 100/100 PNO: Fast IFGain I Trig: Free Run #Atten: 30 dB Auto Tune Ref 126.99 dBµV/m Center Freq 2.488250000 GH Start Freq 2.476500000 GH Stop Freq 2 500000000 GHz Stop 2.50000 GHz 1.066 ms (1000 pts) Start 2.47650 GHz #Res BW 1.0 MHz CF Step 2.350000 MHz #VBW 3.0 MHz\* Sweep Auto Mar 2.479 911 GHz 2.483 500 GHz 77.633 dBµ\ 34.281 dBµ\ Freq Offset 0 Hz

### **RESULT: PASS**

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.



## 12. AC Power Line Conducted Emission Test


#### 12.1 Measurement Limit

| Frequency     | Maximum RF Line Voltage |                |  |
|---------------|-------------------------|----------------|--|
| Frequency     | Q.P. (dBµV)             | Average (dBµV) |  |
| 150kHz~500kHz | 66-56                   | 56-46          |  |
| 500kHz~5MHz   | 56                      | 46             |  |
| 5MHz~30MHz    | 60                      | 50             |  |

Note:

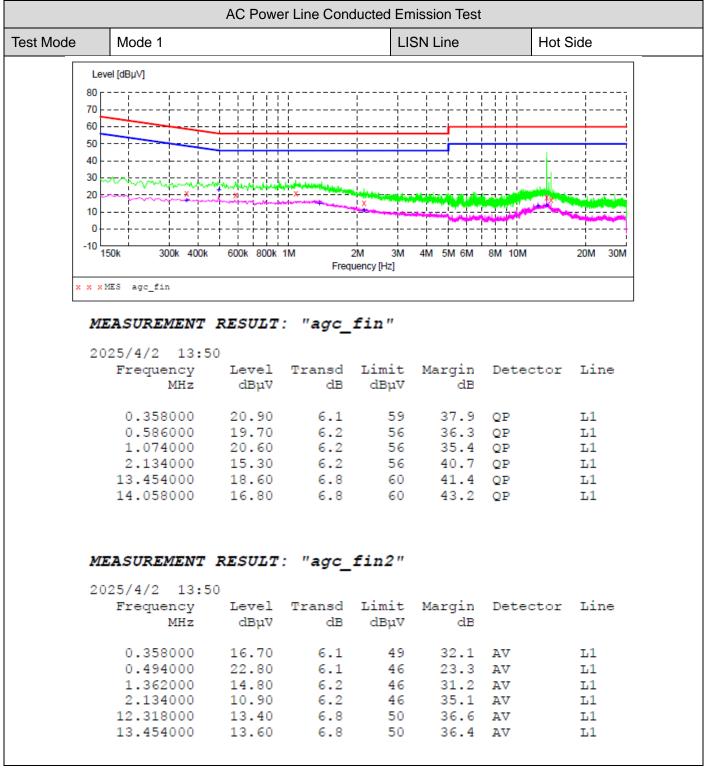
- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

### 12.2 Measurement Setup (Block Diagram of Configuration)

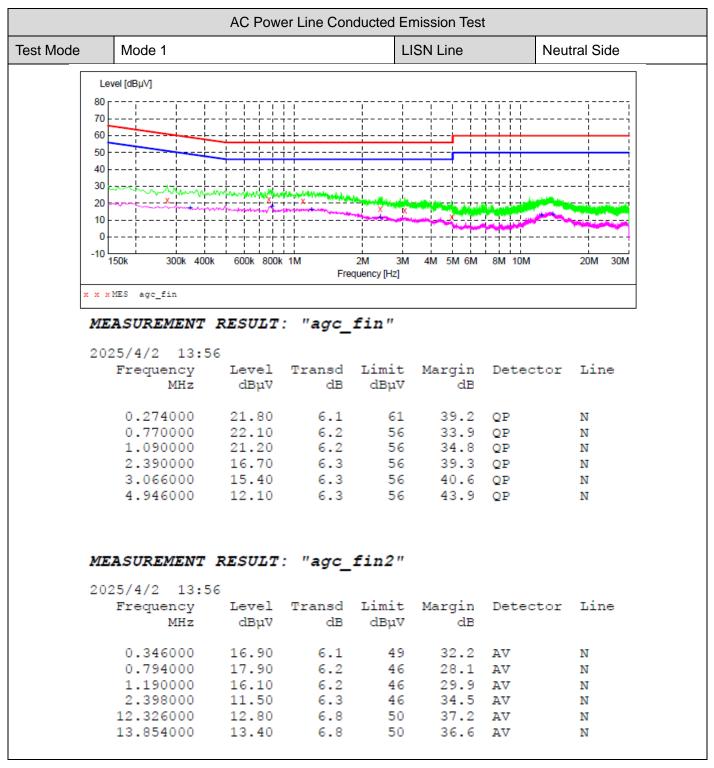




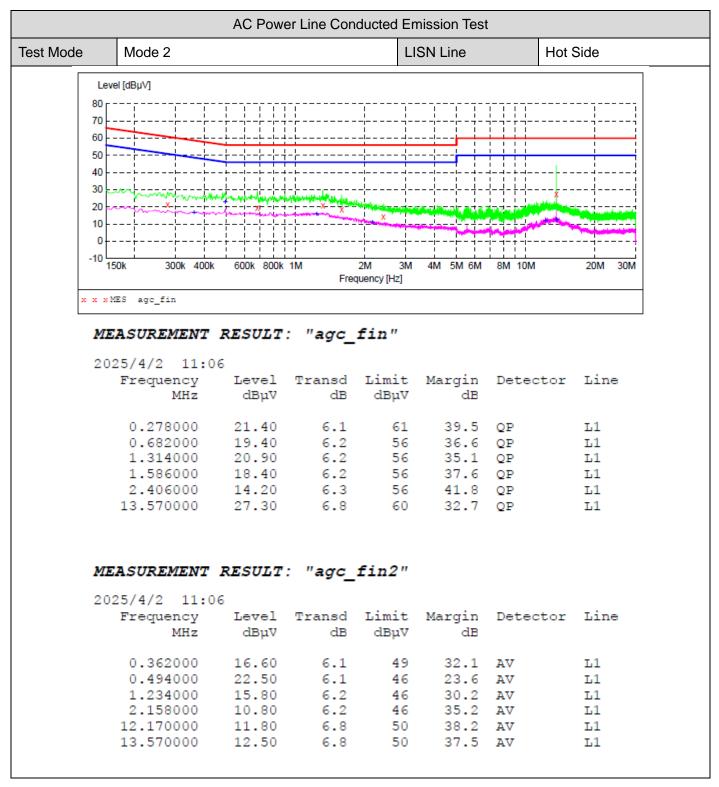
### 12.3 Preliminary Procedure of Line Conducted Emission Test


- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side).
- Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 8. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 9. During the above scans, the emissions were maximized by cable manipulation.
- 10. The test mode(s) were scanned during the preliminary test.
- 11. Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

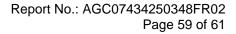
### 12.4 Final Procedure of Line Conducted Emission Test

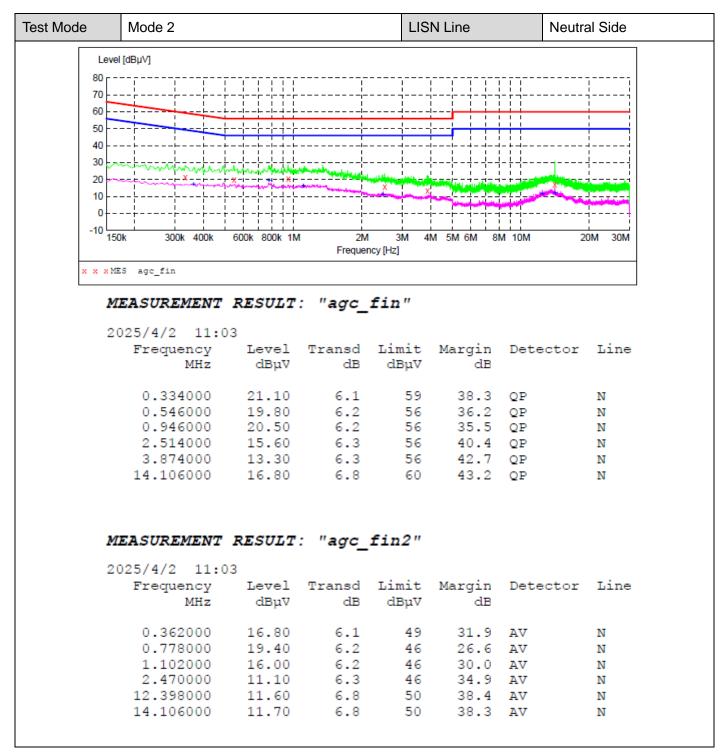

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- 3. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 4. The test data of the worst case condition(s) was reported on the Summary Data page.
- 5. A conducted emission is calculated by the following equation:
  - Measurement Level (dBµV) = Receiver reading (dBµV) + Transd (dB)
  - Transd (dB)= AMN Factor(dB)+Cable Loss(dB)+Attenuation(dB)
  - Margin= Limit-Level

### 12.5 Measurement Result










#### AC Power Line Conducted Emission Test





G

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com



# Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC07434250348AP03

# Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC07434250348AP04



# Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders. 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.

## -----End of Report-----