

FCC Measurement/Technical Report on

RS500 Relay Sensor

FCC ID: NCM-RS500 IC: 2734A-RS500

Test Report Reference: MDE_OPTION_2009_FCC_04

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents	Tab	e of	Conten	ts
-------------------	-----	------	--------	----

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	8
3	Administrative Data	9
3.1	Testing Laboratory	9
3.2	Project Data	9
3.3	Applicant Data	9
3.4	Manufacturer Data	10
4	Test object Data	11
4.1	General EUT Description	11
4.2	EUT Main components	12
4.3	Ancillary Equipment	12
4.4	Auxiliary Equipment	12
4.5	EUT Setups	13
4.6	Operating Modes / Test Channels	13
4.7	Product labelling	14
5	Test Results	15
5.1	Conducted Emissions at AC Mains	15
5.2	Occupied Bandwidth (20 dB)	18
5.3	Occupied Bandwidth (99%)	21
5.4	Peak Power Output	23
5.5	Spurious RF Conducted Emissions	26
5.6	Transmitter Spurious Radiated Emissions	30
5.7	Band Edge Compliance Conducted	42
5.8 5.9	Power Density	47 51
	Channel Separation Dwell Time	51
	Number of Hopping Frequencies	58
6	Test Equipment	61
-		
7	Antenna Factors, Cable Loss and Sample Calculations	64
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	64 65
7.2 7.3	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz) Antenna R&S HL562 (30 MHz – 1 GHz)	65 66
7.4	Antenna R&S HF907 (1 GHz – 18 GHz) Antenna R&S HF907 (1 GHz – 18 GHz)	67
7.4 7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	68
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	69
8	Measurement Uncertainties	70
9	Photo Report	71
<u> </u>		/ 1

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10-2013 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for FHSS (e.g. Bluetooth®) equipment from FCC and IC

FHSS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
Peak conducted output power	§ 15.247 (b) (1), (4)	RSS-247 Issue 2: 5.4 (b)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Channel separation	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-247 Issue 2: 5.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.207			
Conducted Emissions at AC Mains The measurement was performed accordi	ing to ANSI C6	3.10	Final Re	esult
	-	5110		bount
OP-Mode	Setup	Date	FCC	IC
Operating mode, Connection to AC mains worst case, via ancillary/auxiliary equipment	S01_AB01	2021-06-29	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 ((a) (1)		
Occupied Bandwidth (20 dB) The measurement was performed accordi	ing to ANSI C6	3.10	Final R	esult
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Lora (FHSS), high	S01_AA01	2021-06-15	Passed	Passed
Lora (FHSS), low	S01_AA01	2021-06-15	Passed	Passed
Lora (FHSS), mid	S01_AA01	2021-06-15	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	IC RSS-Ge	n & IC TRC-4	3; Ch. 6.	7 & Ch. 8
Occupied Bandwidth (99%) The measurement was performed accordi	rmed according to ANSI C63.10 Final Resu		esult	
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
	S01_AA01	2021-06-15	N/A	Performed
Lora (FHSS), high	S01_AA01 S01_AA01	2021-06-15 2021-06-15	N/A N/A	Performed Performed
Lora (FHSS), high Lora (FHSS), low			-	
Lora (FHSS), high Lora (FHSS), low Lora (FHSS), mid 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	S01_AA01	2021-06-15 2021-06-15	N/A	Performed
Lora (FHSS), high Lora (FHSS), low Lora (FHSS), mid 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Peak Power Output	S01_AA01 S01_AA01 § 15.247 (2021-06-15 2021-06-15 (b) (1) (2)	N/A N/A	Performed Performed
Lora (FHSS), high Lora (FHSS), low Lora (FHSS), mid 47 CFR CHAPTER I FCC PART 15	S01_AA01 S01_AA01 § 15.247 (2021-06-15 2021-06-15 (b) (1) (2)	N/A	Performed Performed
Lora (FHSS), high Lora (FHSS), low Lora (FHSS), mid 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Peak Power Output The measurement was performed accordi OP-Mode Radio Technology, Operating Frequency,	S01_AA01 S01_AA01 § 15.247 (2021-06-15 2021-06-15 (b) (1) (2)	N/A N/A	Performed Performed
Lora (FHSS), high Lora (FHSS), low Lora (FHSS), mid 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Peak Power Output The measurement was performed accordi OP-Mode Radio Technology, Operating Frequency, Measurement method	S01_AA01 S01_AA01 § 15.247 (ing to ANSI C6	2021-06-15 2021-06-15 (b) (1) (2)	N/A N/A Final Re	Performed Performed
Lora (FHSS), high Lora (FHSS), low Lora (FHSS), mid 47 CFR CHAPTER I FCC PART 15 <u>Subpart C §15.247</u> Peak Power Output	S01_AA01 S01_AA01 § 15.247 (ing to ANSI C6 Setup	2021-06-15 2021-06-15 (b) (1) (2) 03.10 Date	N/A N/A Final Re FCC	Performed Performed esult IC

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d	I)		
Spurious RF Conducted Emissions				
The measurement was performed accor	ding to ANSI C63	3.10	Final Re	esult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency Lora (FHSS), high	S01_AA01	2021-06-21	Passed	Passec
Lora (FHSS), low	S01_AA01	2021-06-21	Passed	Passed
Lora (FHSS), mid	S01_AA01	2021-06-21	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (c	1)		
Transmitter Spurious Radiated Emission The measurement was performed accor		8.10	Final Re	esult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency, Measurement range	p	2446		
Lora (FHSS), high, 1 GHz - 10 GHz	S01_AB01	2021-05-27	Passed	Passed
Lora (FHSS), high, 30 MHz - 1 GHz	S01_AB01	2021-05-31	Passed	Passed
_ora (FHSS), low, 1 GHz - 10 GHz	S01_AB01	2021-05-27	Passed	Passed
Lora (FHSS), low, 30 MHz - 1 GHz	S01_AB01	2021-05-31	Passed	Passed
Lora (FHSS), mid, 1 GHz - 10 GHz	S01_AB01	2021-05-27	Passed	Passed
Lora (FHSS), mid, 30 MHz - 1 GHz	S01_AB01	2021-05-31	Passed	Passed
Lora (FHSS), mid, 9 kHz - 30 MHz	S01_AB01	2021-05-31	Passed	Passec
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d	1)		
Band Edge Compliance Conducted The measurement was performed accor	ding to ANSI C63	10	Final Re	scult
	-			
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Lora (FHSS), high, high	S01_AA01	2021-06-15	Passed	Passec
Lora (FHSS), hopping, high	S01_AA01	2021-06-15	Passed	Passec
Lora (FHSS), hopping, low	S01_AA01	2021-06-15	Passed	Passec
Lora (FHSS), low, low	S01_AA01	2021-06-15	Passed	Passec
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a)(1)		
Channel Separation The measurement was performed accor	ding to ANSI C63	8.10	Final Re	esult
OP-Mode	Setup	Date	FCC	IC
Radio Technology Lora (FHSS)	S01_AA01	2021-06-21	Passed	Passed
			labbea	1 4666

47 CFR CHAPTER I FCC PART 15 § 15.247 (a) (1) (i) (ii) (iii) **Subpart C §15.247**

The measurement was performed according to ANSI C63.10		Final Result		
OP-Mode Radio Technology	Setup	Date	FCC	IC
Lora (FHSS)	S02_AA01	2021-06-23	Passed	Passed
Lora (HYBRID)	S02_AA01	2021-06-25	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a	a) (1) (i) (ii) (i	iii)	
Number of Hopping Frequencies				
The measurement was performed account	rding to ANSI C67	3 10	Final Re	ecult

The measurement was performed according to ANSI C63.10			Final Result	
OP-Mode Radio Technology	Setup	Date	FCC	IC
Lora (FHSS)	S01_AA01	2021-06-21	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control			
Version	Release date	Change Description	Version validity
initial	2021-07-01		valid

COMMENT: -

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report) Dipl.-Ing. Daniel Gall

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

5

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01 -02 -03			
FCC Designation Number:	DE0015			
FCC Test Firm Registration:	929146			
ISED CAB Identifier	DE0007; ISED#: 3699A			
Responsible for accreditation scope:	DiplIng. Marco Kullik			
Report Template Version:	2021-01-13			
3.2 PROJECT DATA				
Responsible for testing and report:	DiplIng. Daniel Gall			
Employees who performed the tests:	documented internally at 7Layers			
Date of Report: 2021-07-01				
Testing Period:	2021-05-27 to 2021-06-29			

3.3 APPLICANT DATA

Company Name:	Option (Crescent NV)
Address:	Gaston Geenslaan 14 3001 Leuven Belgium
Contact Person:	Jasna Papuga

3.4 MANUFACTURER DATA

Company Name:

please see Applicant Data

Address:

Contact Person:

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	LoRa Relay Sensor
Product name	Relay Sensor
Туре	RS500
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	5 V
Antenna / Gain	Integral / -2 dBi
Tested Modulation Type	FSK
General product description	The EUT is a Relay sensor with LoRa technology
Specific product description for the EUT	The EUT is a LoRaWAN transceiver in the 900 MHz band. Relevant for this report is the 125 kHz hopping mode which is implemented as FHSS for link setup and as hybrid with 8 channels during established communication.
EUT ports (connected cables during testing):	Enclosure Switch port (2x) unshielded two wire cable Sensor port (2x) unshielded two wire cable DC port unshielded two wire
Tested datarates	Data rate settings LS5 to 12 are supported by the test software, the worst case of the modes was tested for each test case (worst case determination was performed with LoRa Sensor WT500 that according to the applicant uses the same transmitter hardware).
Special software used for testing	The local TX test modes were set using "LoraNode" software provided by applicant (non-hopping mode tests). Tera Term was used to send commands for hopping mode tests. Tera Term together with Macros and prepared templates in the Option CloudGate LORA gateway, which were provided by the applicant, were used for dwell time tests.

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
EUT aa01	DE1234017aa01		
Sample Parameter		Value	
Serial No.	000CE30000047047		
HW Version	1.0		
SW Version	2.3.0.0		
Comment	board with temporary anter	nna connector	

Sample Name	Sample Code	Description	
EUT ab01	DE1234017ab01		
Sample Parameter		Value	
Serial No.	000CE300000467F6		
HW Version	1.0		
SW Version	2.3.0.0		
Comment			

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

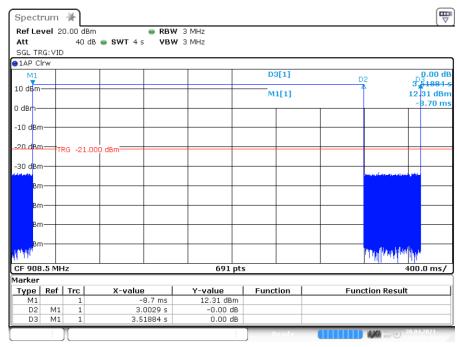
4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AC/DC Adapter	Phihong, PSA15R-050P, -, -, P81900644A3	AC/DC Adapter
AUX A	Option, Cloudgate, -, -, KW4AL4M163	LORA Gateway

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.


Setup	Combination of EUTs	Description and Rationale
S01_AB01	EUT ab01, AC/DC Adapter,	Test Mode Radiated Setup
S01_AA01	EUT aa01, AC/DC Adapter,	Test Mode Conducted Setup
S02_AA01	EUT aa01, AUX A, AC/DC Adapter,	Dwell Time Setup

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

	900 M 902 - 9	Hz ISM 926 MHz	:
LoRa Test Channels:	low	mid	high
Channel:	0	31	63
Frequency [MHz]	902.3	908.5	914.9

Duty Cycle

Date: 20.APR.2021 21:28:21

85 % Duty Cycle

4.7 PRODUCT LABELLING

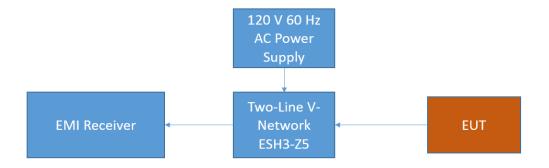
4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS


5.1 CONDUCTED EMISSIONS AT AC MAINS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.10 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold & Average
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 2.5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1. EMI receiver settings:

- Detector: Quasi-Peak & (CISPR) Average

- IF Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.207

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBµV)
0.15 - 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

5.1.3 TEST PROTOCOL

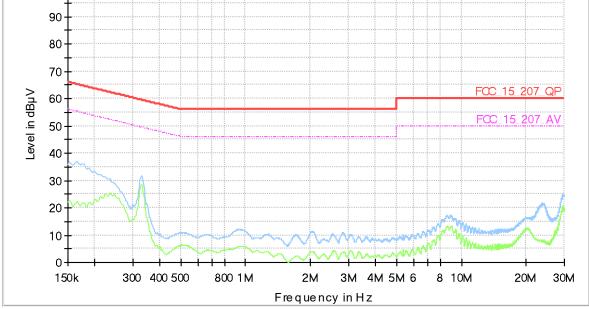
Temperature:	27 °C
Air Pressure:	1004 hPa
Humidity	13 0/2

Humidity:	43 %	/o				
Power line	PE	Frequency [MHz]	Measured value QP [dBµV]	Measured value AV [dBµV]	Limit [dBµV]	Margin [dB]
-	-	-	-	-	-	-

Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT

Operating mode = worst case, Connection to AC mains = via ancillary/auxiliary equipment (S01_AB01)


Diagram 1.01

Common Information

Test Description: Test Standard: EUT / Setup Code: Operating Conditions: Operator Name: Comment: Legend:

Tested Port / used LISN: Termination of other ports: Conducted Emissions FCC §15.207, ANSI C63.10 DE1234017ab01 120 V 60 Hz, LoRaTX MCH 908,5MHz CAP

Trace: blue = QP, green = CISPR AV; Star: red or blue = critical frequency; Rhombus: blue = final QP, green = final CISPR AV AC mains => 1st LISN ESH3-Z5

Final Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	PE	Corr. (dB)

5.1.5 TEST EQUIPMENT USED

- Conducted Emissions FCC

5.2 OCCUPIED BANDWIDTH (20 DB)

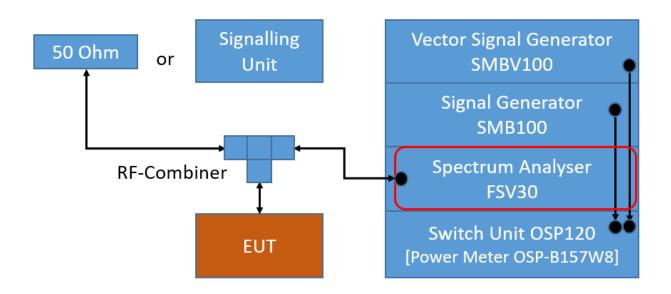
Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.


The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 1% to 5 % of the OBW
- Video Bandwidth (VBW): $\geq 3 \times RBW$
- Span: 2 to 5 times the OBW
- Trace: Maxhold
- Sweeps: Till stable
- Sweeptime: Auto
- Detector: Peak

The technology depending measurement parameters can be found in the measurement plot.

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

For the band: 902 - 928 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (i)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

For the band: 5725 - 5850 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The maximum allowed 20 dB bandwidth of the hopping channel is 1 MHz

For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

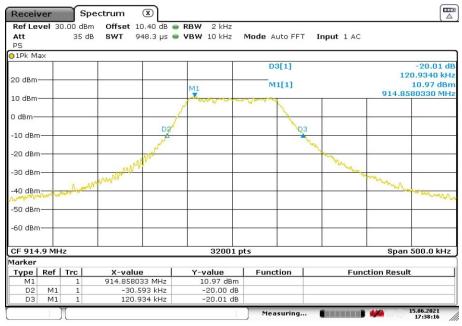
1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz

2. If the system output power exceeds 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report. Therefore the limit is determined as 1.5 MHz.


5.2.3 TEST PROTOCOL

Ambient tempera Air Pressure: Humidity: LoRaWAN; FHSS		24–28 °C 1001–1016 hPa 32–43 %			
Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
900 MHz Band	0	902.3	0.150	0.5	0.350
	31	908.5	0.150	0.5	0.350
	63	914.9	0.152	0.5	0.348

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS), Operating Frequency = high (S01_AA01)

Date: 15.JUN.2021 17:38:16

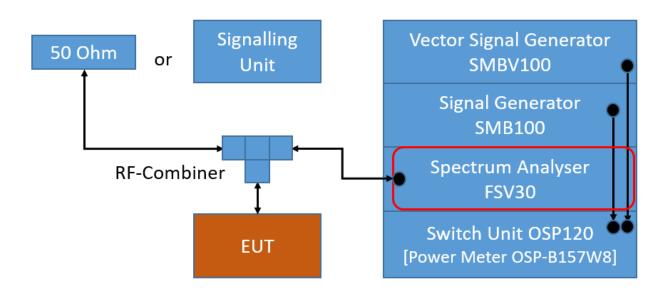
5.2.5 TEST EQUIPMENT USED - R&S TS8997

5.3 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.3.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 1 to 5 % of the OBW
- Video Bandwidth (VBW): ≥ 3 times the RBW
- Span: 1.5 to 5 times the OBW
- Trace: Maxhold
- Sweeps: Till stable
- Sweeptime: Auto
- Detector: Peak

TEST REQUIREMENTS / LIMITS 5.3.2

No applicable limit.

5.3.3 TEST PROTOCOL

Ambient temper Air Pressure: Humidity: LoRaWAN; FHSS		24-28 °C 1001-1016 hPa 32-43 %	
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
Band 900 MHz Band	Channel No.	Frequency [MHz] 902.3	99 % Bandwidth [MHz] 0.128
	Channel No. 0 31		

Remark: Please see next sub-clause for the measurement plot.

MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF 5.3.4 APPLICABLE)

(S01_AA01) Receiver Spectrum X Ref Level 30.00 dBm Offset 10.40 dB . RBW 2 kHz SWT 948.3 µs 👄 VBW 10 kHz Att 35 dB Mode Auto FFT Input 1 AC PS 01Pk Max M1[1] 10.78 dBm 908.4560010 MHz 20 dBm Occ Bw 127.761632449 kH 11 10 dBm T1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm 32001 pts Span 500.0 kHz CF 908.5 MHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 908.456001 MHz 908.4382676 MHz 908.5660292 MHz 10.78 dBm 0.12 dBm -2.25 dBm Occ Bw 127.761632449 kHz T1 T2 Measuring... 15.06.2021 17:28:21 Date: 15.JUN.2021 17:28:21

Radio Technology = Lora (FHSS), Operating Frequency = mid

5.3.5 TEST EQUIPMENT USED

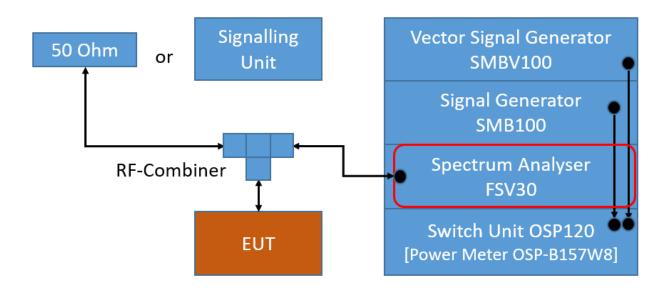
R&S TS8997 -

5.4 PEAK POWER OUTPUT

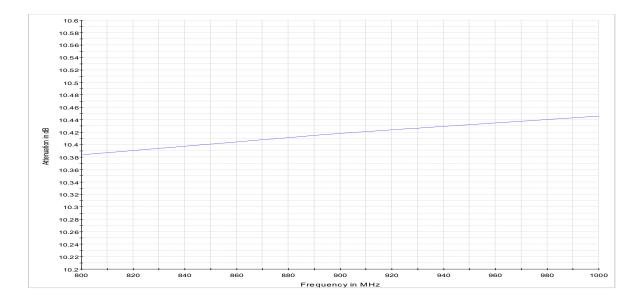
Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.4.1 TEST DESCRIPTION


FHSS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyser was set higher than the output power of the EUT.


The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): ≥ 20 dB BW
- Video Bandwidth (VBW): ≥ 3 times RBW
- Trace: Maxhold
- Sweeps: Till stable
- Sweeptime: Auto
- Detector: Peak

Attenuation Output power

5.4.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

5725-5850 MHz bands: 1 watt.

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (\text{Limit (W)}/1\text{mW})$

5.4.3 TEST PROTOCOL

Ambient temper Air Pressure: Humidity: LoRaWAN; FHSS		24-28 °C 1001-1016 hPa 32-43 % F5				
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
900 MHz Band	0	902.3	20.2	30.0	9.8	20.2
	31	908.5	20.2	30.0	9.8	20.2
	63	914.9	20.2	30.0	9.8	20.2

Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS), Operating Frequency = high, Measurement method = conducted

5.4.5 TEST EQUIPMENT USED

- R&S TS8997

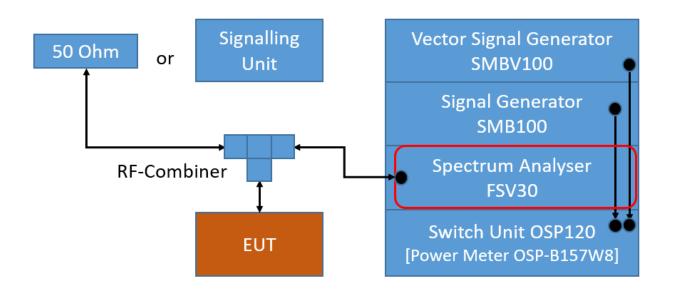
5.5 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

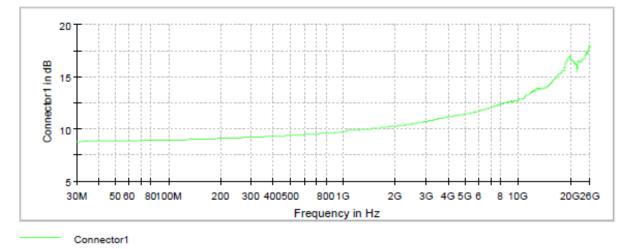
ANSI C63.10

5.5.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:


- Frequency range: 30 26000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: Till Stable
- Sweep Time: Auto
- Detector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.

TS8997; Spurious RF Conducted Emissions

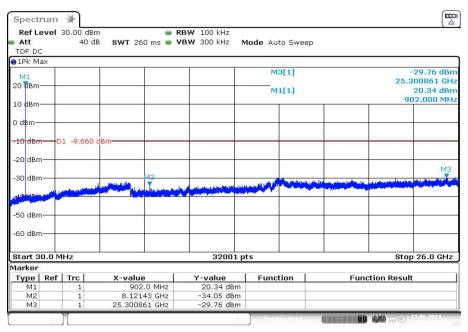
Attenuation of the measurement part

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.5.3 TEST PROTOCOL

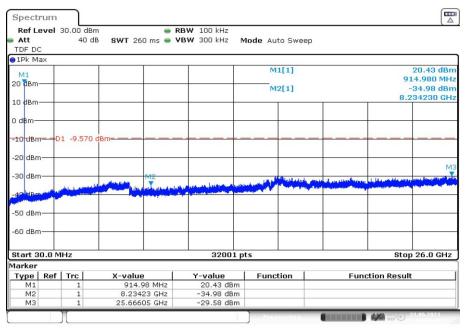

Air Pressur Humidity:	mperature: e: FHSS 125 kHz; :	32-43	1016 hPa					
ChannelChannelSpurieNoCenterFreq.		Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	902.3	8121.4	-34.1	PEAK	100	20.3	0.3	34.4
31	908.5	8175.8	-34.7	PEAK	100	20.5	0.5	35.1
63	914.9	8234.2	-35.0	PEAK	100	20.4	0.4	35.4

Remark: Please see next sub-clause for the measurement plot.

5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS), Operating Frequency = low (S01_AA01)

Date: 21.JUN.2021 19:01:27


Radio Technology = Lora (FHSS), Operating Frequency = mid (S01_AA01)

Ref L	evel	30.00 dB	m	👄 R	BW 100 kHz				
Att		40 0	B SWT 2	60 ms 👄 🖌	' BW 300 kHz	Mode Auto S	Sweep		
TDF DO									
1Pk M	ax			1		M3[1	1		-28.92 dBn
M1						molt	1		24.087610 GH
20 dBm						M1[1]	1		20.47 dBr
10 dBm									908.490 MH
dBm-			_						
10 dBn	r-D	1 -9.530	dBm	-					
20 dBrr	1								M3
-30 dBm				0.00					· •
30 401				Y	والم الأم القوارين والرواير أورا	and the state of the	all and a start of a start	and the star of the second starting	And the state of the
40 HP	and the second	and a local distance			A standard and a standard and	and a second		-	
50 dBm			+	+					
60 dBm									
Start 3	0.0 M	IHz			32001	pts			Stop 26.0 GHz
larker									
Туре	Ref	Trc	X-valu		Y-value	Function	·	Function Re	sult
M1 M2		1		.49 MHz 758 GHz	20.47 dBm -34.65 dBm				
MZ		1		761 GHz	-28.92 dBm				

Date: 21.JUN.2021 19:06:23

Radio Technology = Lora (FHSS), Operating Frequency = high (S01_AA01)

Date: 21.JUN.2021 19:08:04

5.5.5 TEST EQUIPMENT USED - R&S TS8997

5.6 TRANSMITTER SPURIOUS RADIATED EMISSIONS

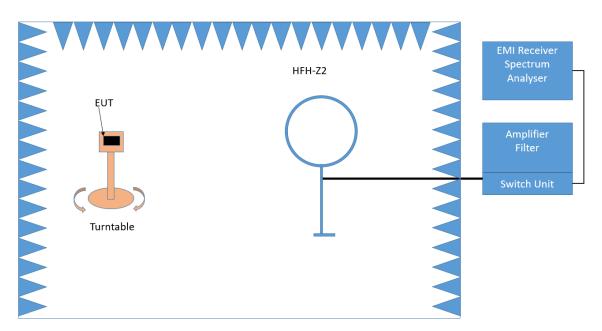
Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.6.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapters of ANSI C63.10:


- < 30 MHz: Chapter 6.4
- 30 MHz 1 GHz: Chapter 6.5
- > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

1. Measurement up to 30 MHz

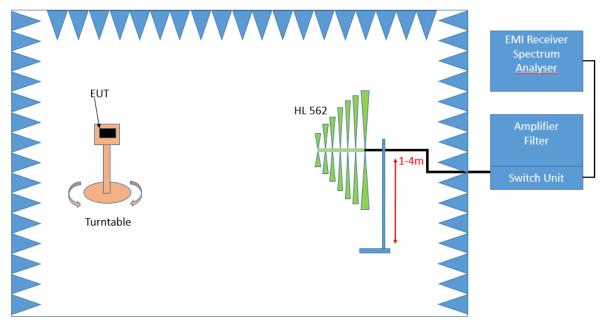
Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

TEST REPORT REFERENCE: MDE_OPTION_2009_FCC_04

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak (9 kHz 150 kHz, Peak / Average 150 kHz- 30 MHz)
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°

- Height variation range: 1 4 m
- Height variation step size: 1.5 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The highest emission will also be recorded and adjusted.

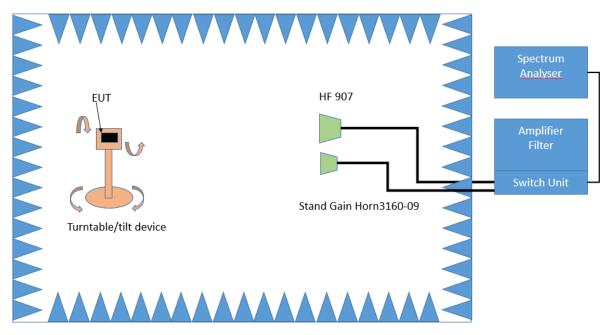
- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: 360 °
- Height variation range:1 4 m
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by $\pm 45^{\circ}$ Spectrum analyser settings: - Detector: Peak

Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

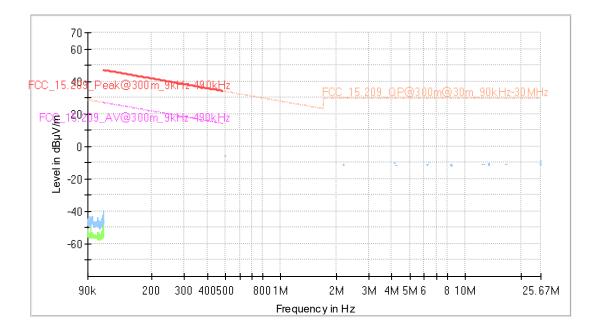
The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.6.3 TEST PROTOCOL

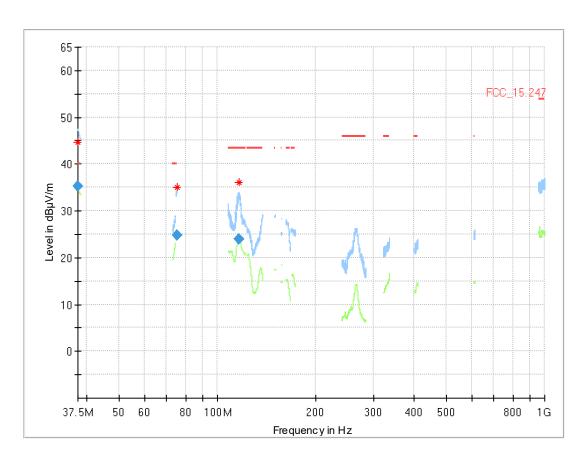
Ambient temperature:	24-28 °C						
Air Pressure:	1001–1016 hPa						
Humidity:	32-43 %						
LoRaWAN; FHSS 125 kHz;	SF12						
Applied duty cycle correction (AV): 0 dB							


Ch. No	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec-tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	902.3	37.5	35.3	QP	120	40.0	4.7	RB
0	902.3	8120.6	58.9	PEAK	1000	74.0	15.1	RB
0	902.3	8121.1	53.1	AV	1000	54.0	0.9	RB
31	908.5	38.0	39.2	QP	120	40.0	0.9	RB
31	908.5	8177.0	58.3	PEAK	1000	74.0	15.7	RB
31	908.5	8176.9	51.2	AV	1000	54.0	2.8	RB
63	914.9	37.8	38.9	QP	120	40.0	1.1	RB
63	914.9	8233.8	58.2	PEAK	1000	74.0	15.8	RB
63	914.9	8233.8	51.5	AV	1000	54.0	2.5	RB
63	914.9	9148.6	55.6	PEAK	1000	74.0	18.4	RB
63	914.9	9149.1	49.4	AV	1000	54.0	4.6	RB

Remark: Please see next sub-clause for the measurement plot.

5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

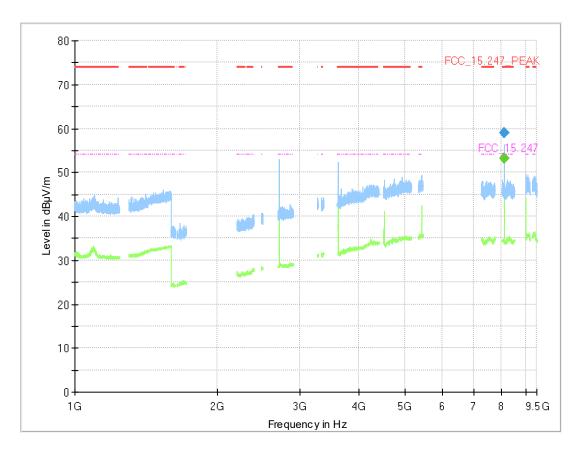
Radio Technology = Lora (FHSS), Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz



Final Result

	i ma									
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimuth (deg)	Corr. (dB/m)		

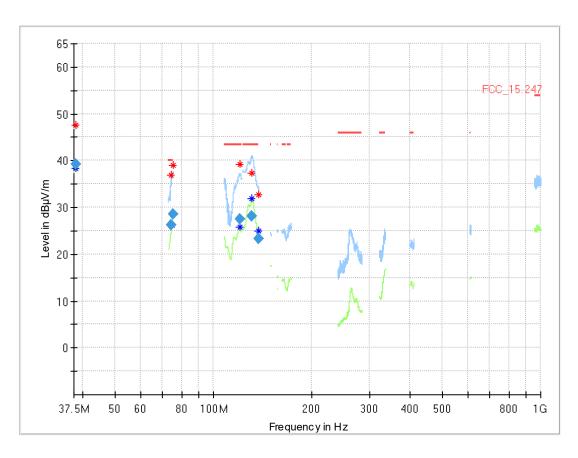
Radio Technology = Lora (FHSS), Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01_AB01)



Final	Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margi n	Meas. Time (ms)	Bandwidt h	Heigh t	Pol	Azimut h	Corr. (dB/m)	Comment
37.500000	35.34	40.00	4.66	1000.0	120.000	102.0	V	-4.0	15.2	
75.200000	24.85	40.00	15.15	1000.0	120.000	131.0	V	45.0	9.5	
116.190000	24.04	43.50	19.46	1000.0	120.000	106.0	V	89.0	11.5	

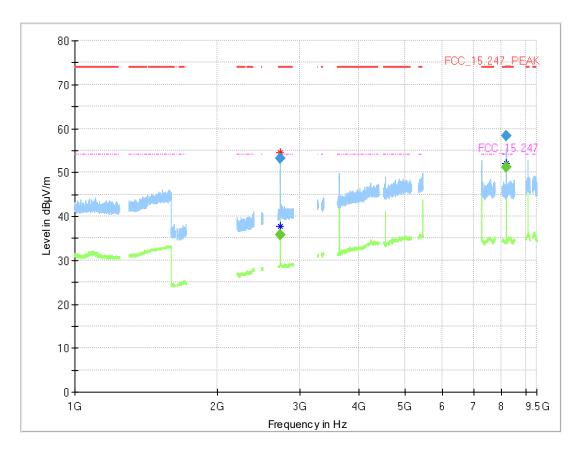
Radio Technology = Lora (FHSS), Operating Frequency = low, Measurement range = 1 GHz -10 GHz (S01_AB01)



						esuit					
Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
8120.594	58.9		74.00	15.06	1000.0	1000.000	150.0	Н	56.0	86.0	-13.5
8121.069		53.1	54.00	0.87	1000.0	1000.000	150.0	Н	41.0	105.0	-13.5

Final Result

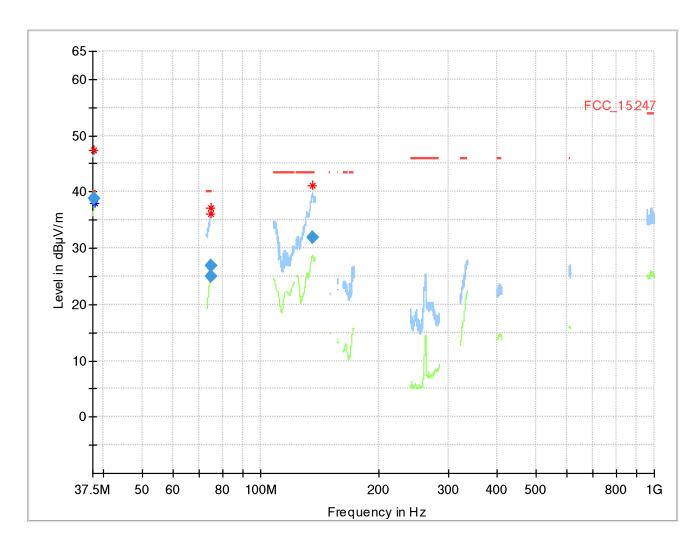
Radio Technology = Lora (FHSS), Operating Frequency = mid, Measurement range = 30 MHz -1 GHz (S01_AB01)



	i ma_roour									
Frequency	QuasiPeak	Limit	Margi	Meas. Time	Bandwidt	Heigh	Pol	Azimut	Corr.	Comment
(MHz)	(dBµV/m)	(dBµV/m)	n	(ms)	h	t		h	(dB/m)	
37.950000	39.15	40.00	0.85	1000.0	120.000	103.0	V	-50.0	15.0	
74.560000	26.25	40.00	13.75	1000.0	120.000	128.0	V	-145.0	9.4	
75.200000	28.58	40.00	11.42	1000.0	120.000	132.0	V	-157.0	9.5	
120.300000	27.58	43.50	15.92	1000.0	120.000	143.0	V	-133.0	11.4	
130.980000	28.23	43.50	15.27	1000.0	120.000	106.0	V	-181.0	10.4	
137.910000	23.40	43.50	20.10	1000.0	120.000	105.0	V	-190.0	10.0	

Final_Result

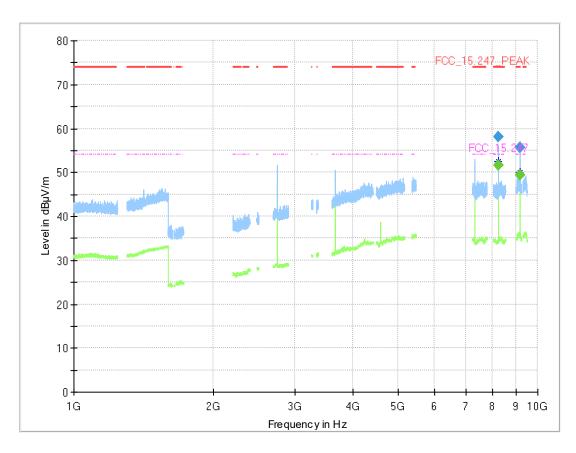
Radio Technology = Lora (FHSS), Operating Frequency = mid, Measurement range = 1 GHz -10 GHz (S01_AB01)



Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2725.070		35.8	54.00	18.21	1000.0	1000.000	150.0	Н	-88.0	4.0	-2.5
2725.280	53.3		74.00	20.71	1000.0	1000.000	150.0	Н	-96.0	-15.0	-2.5
8176.881		51.2	54.00	2.80	1000.0	1000.000	150.0	Н	41.0	102.0	-13.2
8177.000	58.3		74.00	15.69	1000.0	1000.000	150.0	Н	41.0	105.0	-13.2

Final_Result

Radio Technology = Lora (FHSS), Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_AB01)



Final_Result

Frequency	QuasiPe	Limit	Marg	Meas.	Bandwi	Heig	Pol	Azimu	Corr.	Commen
(MHz)	ak	(dBµV/	in	Time	dth	ht		th	(dB/	t
	(dBµV/m	m)	(dB)	(ms)	(kHz)	(cm)		(deg)	m)	
37.800000	38.91	40.00	1.09	1000.0	120.000	104.	V	55.0	15.1	
74.600000	25.05	40.00	14.95	1000.0	120.000	146.	V	-92.0	9.4	
75.100000	26.83	40.00	13.17	1000.0	120.000	141.	V	-99.0	9.5	
135.570000	31.99	43.50	11.51	1000.0	120.000	108.	V	-130.0	10.2	

Radio Technology = Lora (FHSS), Operating Frequency = high, Measurement range = 1 GHz -10 GHz (S01_AB01)

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBuV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
8233.763		51.5	54.00	2.45	1000.0	1000.000	150.0	н	52.0	86.0	-12.8
8233.763	58.2		74.00	15.82	1000.0	1000.000	150.0	н	53.0	92.0	-12.8
9148.600	55.6		74.00	18.40	1000.0	1000.000	150.0	H	60.0	82.0	-10.2
9149.100		49.4	54.00	4.61	1000.0	1000.000	150.0	Н	58.0	78.0	-10.2

Final_Result

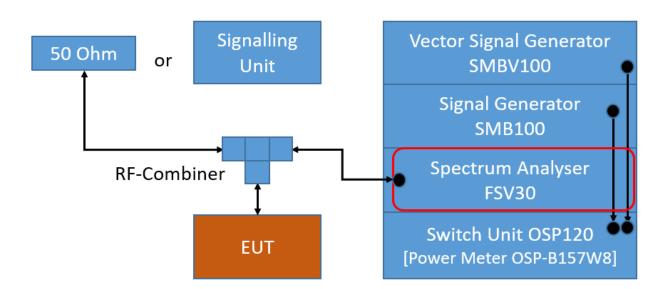
5.6.5 TEST EQUIPMENT USED

- Radiated Emissions

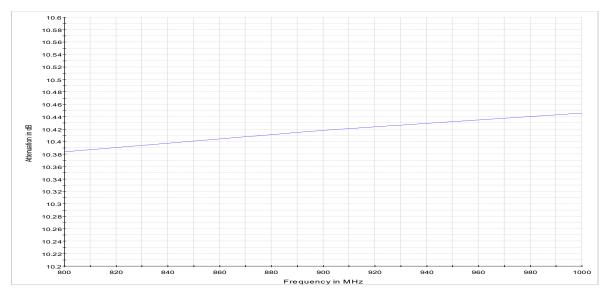
5.7 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10


5.7.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".


The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Lower Band Edge: Measured range: 898.0 MHz to 928.0 MHz Upper Band Edge Measured range: 902.0 MHz to 932 MHz
- Detector: Peak
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweeptime: Auto
- Sweeps: Till stable
- Trace: Maxhold

Attenuation of the measurement path

5.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

Limit

0.3

0.1

0.4

0.4

[dBm]

Margin to

Limit

[dB]

28.0

52.3

28.6

41.1

Ref.

20.3

20.1

20.4

20.4

100

100

100

Level

[dBm]

5.7.3 TEST PROTOCOL

914.9

hopping

hopping

63

hopping

hopping

Air Pressur Humidity:	mperature: e: FHSS 125 kHz; SF1	24–28 °C 1001–1016 hPa 32–43 %				
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	
0	902.3	902.0	-27.7	PEAK	100	

-52.2

-28.2

-40.7

928.0

902.0

928.0

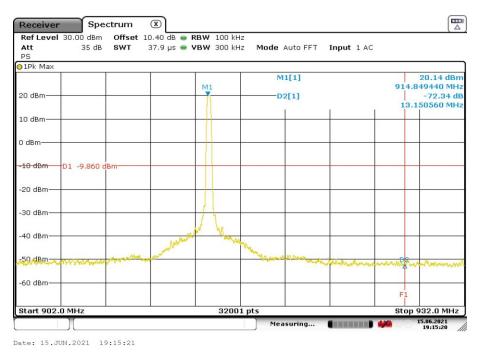
Remark: Please see next sub-clause for the measurement plot.

5.7.4 MEASUREMENT PLOT

Radio Technology = Lora (FHSS), Operating Frequency = low, Band Edge = low (S01_AA01)

PEAK

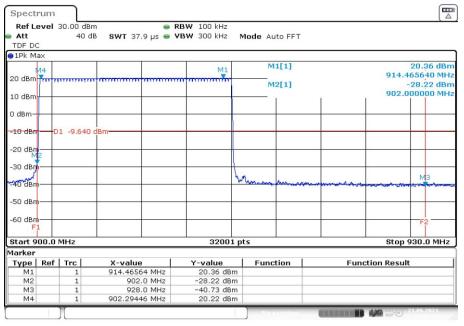
PEAK


PEAK

Receiver		ctrum	×							2
	30.00 dBm									
Att PS	35 dB	SWT	37.9 µs 🖷	VBW	300 kHz	Mode	Auto FFT	Input 1 AC		
1Pk Max										
					1	M	1[1]			20.28 dB
	M1								902.2	247210 MH
20 dBm	- N	-			1	D	2[1]			-47.99 c
	11						1	T 1	-2	47.210 KH
LO dBm								1 1		+
) dBm			-					1 1		+
10 dBm-	D1 -9.720 d	Bm		_						+
2002200 20040										
20 dBm				<u> </u>						+
	DP									
-30 dBm										+
40 dBm	- Set	When .								
and the second second		N Nor	acommenced							1202
50 dBm			accession and and	the krains	m the an	UNITER UP INTO A	and a second and a second	and man	an analysis and	And halfan ar la
-60 dBm										
	F1									
Start 898.) MHz				32001 p	ots			Stop	928.0 MH

Date: 15.JUN.2021 19:09:07

Radio Technology = Lora (FHSS), Operating Frequency = high, Band Edge = high (S01_AA01)


Radio Technology = Lora (FHSS), Operating Frequency = hopping, Band Edge = low (S01_AA01)

Att TDF DC	2	30.00 dB 40 d			BW 100 kHz BW 300 kHz	Mode	e Auto FFT			
1Pk M							M1[1]			20.36 dBr
	14		S. CONTRACTOR	Constanting of	M1		the start		914	1.465640 MH
U dBm	True 1	munu		THIT I HAVE A	diaman and a second		M2[1]			-28.22 dBr
0 dBm									903	2.000000 MH
U UBIII								1		
dBm-										
abiii										
0 dBn		01 -9.640	dBm							
20 dBn			-							
M	2					l				
30 dBn			-							
mind						When.				MЗ
f0 dBn								and and the second second	A standard and a	100 million (Concas
50 dBn										
o ubn										
50 dBr										
F										F2
tart 9	00.0	MHz			3200	l pts			Sto	p 930.0 MHz
arker										
Type	Ref	Trc	X-value		Y-value	F	unction		Function Res	ult
M1		1	914.465	54 MHz	20.36 dB	m				
M2		1	902	.0 MHz	-28.22 dB	m				
MЗ		1		.0 MHz	-40.73 dB					
M4		1	902.294	16 MHz	20.22 dB	m				

Date: 21.JUN.2021 20:44:17

Radio Technology = Lora (FHSS), Operating Frequency = hopping, Band Edge = high (S01_AA01)

Date: 21.JUN.2021 20:44:17

5.7.5 TEST EQUIPMENT USED - R&S TS8997

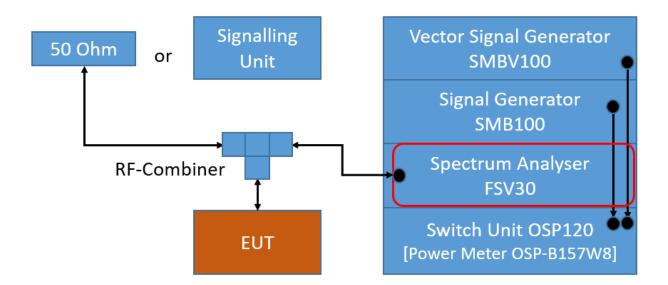
5.8 POWER DENSITY

Standard FCC Part 15 Subpart C

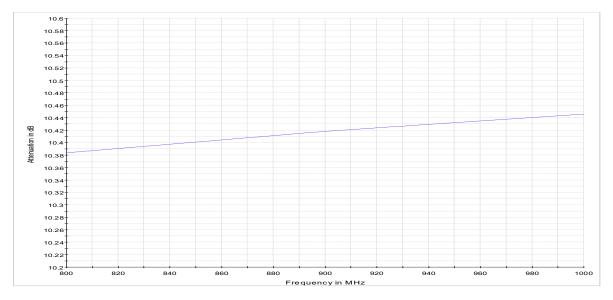
The test was performed according to: ANSI C63.10

1.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.


The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


Maximum Average Power Spectral Density (e.g. WLAN):

Analyser settings:

- Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz
- Video Bandwidth (VBW): ≥ 3 times RBW
- Sweep Points: ≥ 2 times span / RBW
- Trace: Maxhold
- Sweeps: Till stable
- Sweeptime: \leq Number of Sweep Points x minimum transmission duration
- Detector: RMS

Attenuation of the measurement path

1.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

....

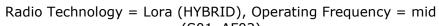
The same method of determining the conducted output power shall be used to determine the power spectral density.

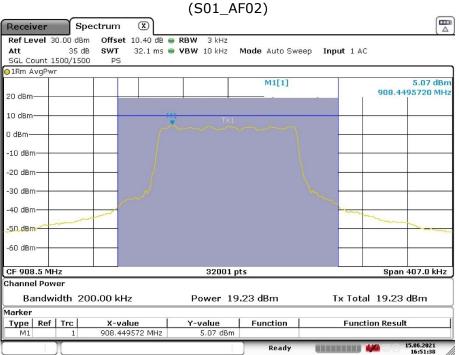
FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

....

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission




1.1.3 TEST PROTOCOL

Ambient temperatu Air Pressure: Humidity: LoRaWAN; Hybrid;		24–28 °C 1001–1016 hP 32–43 %	a			
Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	Used RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
900 MHz Band	0	902.3	5.4	3.0	8.0	2.6
	31	908.5	6.1	3.0	8.0	1.9
	63	914.9	6.1	3.0	8.0	1.9

Remark: Results include 1.0 dB duty cycle correction factor. Please see next sub-clause for the measurement plot.

1.1.4 MEASUREMENT PLOT

Date: 15.JUN.2021 16:51:38

Duty Cycle used during testing:

Date: 23.MAR.2021 21:25:54

79 %

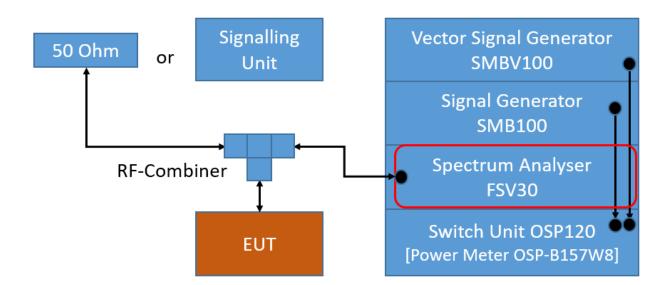
1.1.5 TEST EQUIPMENT USED - R&S TS8997

5.9 CHANNEL SEPARATION

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.9.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the channel separation measurement. The channel separation is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

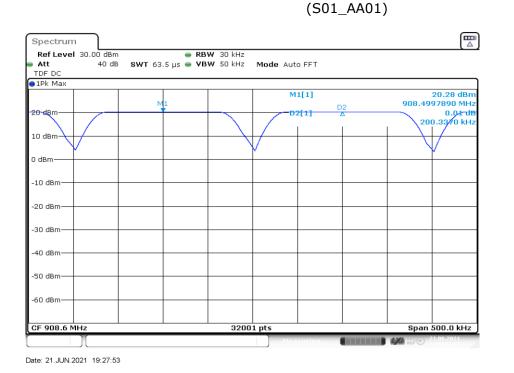
Analyser settings:

- Detector: Peak
- Trace: Maxhold
- Span: appr. 3 x OBW
- Centre Frequency: approximate mid of two channels
- Resolution Bandwidth (RBW): appr. 30 % of channel spacing
- Video Bandwidth (VBW): ≥ RBW
- Sweep Time: Auto
- Sweeps: Till stable

The technology depending measurement parameters can be found in the measurement plot.

5.9.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (1)


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.9.3 TEST PROTOCOL

Ambient temperature: Air Pressure: Humidity:	24–28 ℃ 1001–1016 hPa 32–43 %		
Radio Technology	Channel Separation [MHz]	Limit [MHz]	Margin to Limit [MHz]
LoRaWAN; FHSS 125 kHz; SF12	0.200	0.152	0.049

Remark: Please see next sub-clause for the measurement plot.

Radio Technology = Lora (FHSS)

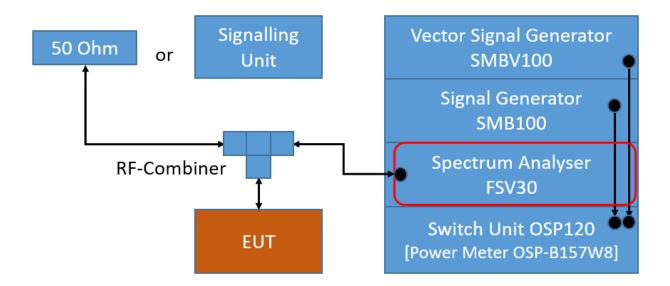
5.9.4 MEASUREMENT PLOT

5.9.5 TEST EQUIPMENT USED

- R&S TS8997

5.10 DWELL TIME

Standard FCC Part 15 Subpart C


The test was performed according to: ANSI C63.10

5.10.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the dwell time measurement. The EUT is set to its maximum dwell time.

The dwell time is measured by spectrum analyser.

In addition to the dwell time from single burst length, measured dwell time summing up all measured bursts lengths is given in the result table.

5.10.2 TEST REQUIREMENTS / LIMITS

For the band: 902 – 928 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

For the band: 5725 - 5850 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

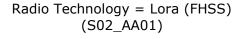
The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

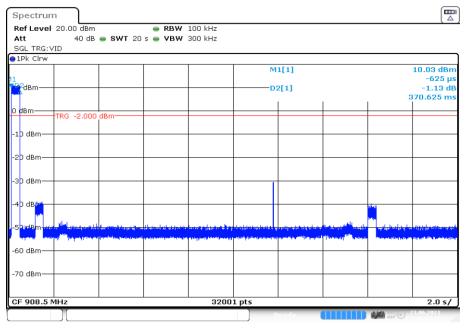
For the frequency band 2400 – 2483.5 MHz: FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

...The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

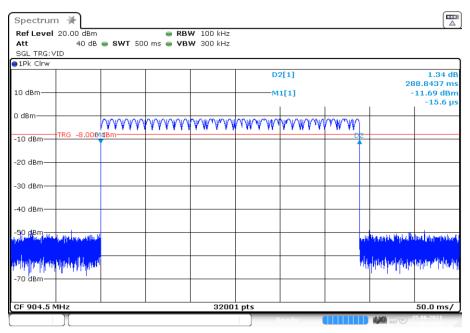


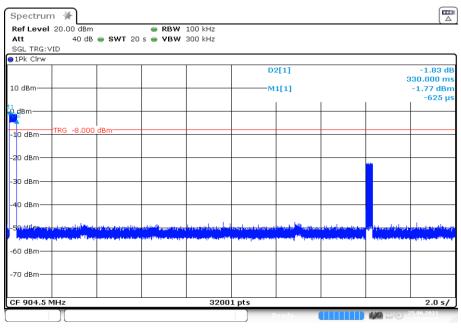

5.10.3 TEST PROTOCOL

Ambient temperature: Air Pressure:	24–28 °C 1001–1016 hPa			
Humidity:	32-43 %	T		
Radio Technology	Time Slot Length [ms]	Dwell Time [ms]	Limit [s]	Margin to Limit [ms]
LoRaWAN; FHSS 125 kHz; Join Procedure	360.625	360.625	0.4	39.375
Ambient temperature: Air Pressure: Humidity:	24–28 °C 1001–1016 hPa 32–43 %	_		
Radio Technology	Time Slot Length [ms]	Dwell Time [ms]	Limit [s]	Margin to Limit [ms]
LoRaWAN; Hybrid; 125 kHz; In Connection	288.844	288.844	0.4	111.156

Remark: Please see next sub-clause for the measurement plot.

5.10.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)




Date: 23.JUN.2021 20:12:33

Radio Technology = Lora (HYBRID) (S02_AA01)

Date: 25.JUN.2021 19:11:55

Date: 25.JUN.2021 19:08:25

5.10.5 TEST EQUIPMENT USED

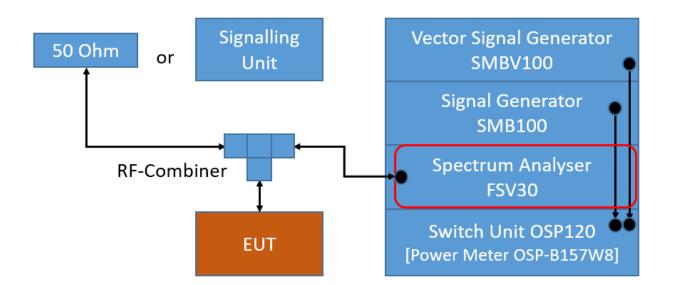
- R&S TS8997

5.11 NUMBER OF HOPPING FREQUENCIES

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.11.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Detector: Peak
- Trace: Maxhold
- Frequency span: Frequency band of operation
- Resolution Bandwidth (RBW): < 30 % of channel spacing or 20 dB bandwidth (whichever is smaller)
- Video Bandwidth (VBW): 3 x RBW
- Sweep Time: Auto
- Sweeps: Till stable

The technology depending measurement parameters can be found in the measurement plot.

5.11.2 TEST REQUIREMENTS / LIMITS

For the band: 902 – 928 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (i)

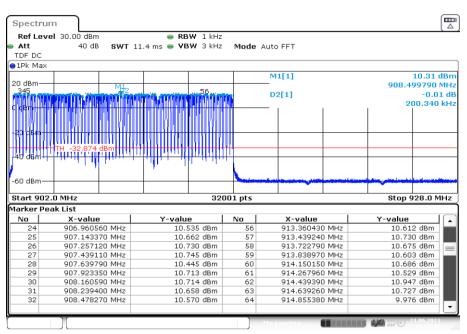
If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies

For the band: 5725 - 5850 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies.

For the band: 2400 – 2483.5 MHz FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


5.11.3 TEST PROTOCOL

Ambient temperature: Air Pressure:	24–28 °C 1001–1016 hPa		
Humidity:	32-43 %		
Radio Technology	Number of Hopping Frequencies	Limit	Margin to Limit
LoRaWAN; FHSS 125 kHz; SF12	64	50	14

Remark: Please see next sub-clause for the measurement plot.

5.11.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Lora (FHSS) (S01_AA01)

Date: 21.JUN.2021 20:17:30

5.11.5 TEST EQUIPMENT USED

- R&S TS8997

6 TEST EQUIPMENT

1 Conducted Emissions FCC Conducted Emissions AC Mains for FCC standards

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	_	Rubidium Frequency Normal MFS	Datum GmbH	002	2020-11	2021-11
1.2	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936		
1.3	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
1.4			Frankonia Germany EMC Solution GmbH	-		
1.5			Rohde & Schwarz GmbH & Co. KG	829996/002		
1.6		EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2021-01	2023-01
	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	7489		

2 R&S TS8997

2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1		Signal Analyzer 10 Hz - 30 GHz		103005	2020-05	2022-05
2.2	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13985	2019-06	2021-06
2.3		EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2021-01	2023-01
	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993	2019-06	2021-06

3 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2020-11	2021-11
3.2	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936		
3.3		EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
3.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	2021-04	2023-04
3.5	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
3.6	7D00101800-	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
3.7			Maturo GmbH	-		
3.8	Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	2021-04	2023-04
3.9	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2019-06	2021-06
3.10	32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
			Spitzenberger & Spies GmbH & Co. KG	B6278		
3.12	3160-09		EMCO Elektronic GmbH	00083069		
3.13	8SS	High Pass Filter	Wainwright Instruments GmbH	09		
3.14	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
3.15		Filter	Trilithic	9942011		
3.16	42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
3.17	TT 1.5 WI	Turn Table	Maturo GmbH	-		
3.18	HL 562 ULTRALOG		Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.19	MA4985-XP-ET	Bore Sight Antenna Mast	innco systems GmbH	none		
3.20	JUN-AIR Mod. 6- 15		JUN-AIR Deutschland GmbH	612582		
3.21	FSW43	Signal analyser	Rohde & Schwarz GmbH & Co. KG	102013	2019-02	2021-08
3.22	HFH2-Z2	Loop Antenna + 3 Axis Tripod	Rohde & Schwarz GmbH & Co. KG	829324/006	2021-01	2024-01
3.23	SB4- 100.OLD20- 3T/10 Airwin 2 x 1.5 kW		airWin Kompressoren UG	901/00503		
3.24	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
3.25	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
3.26	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
3.27	HF 907-2	Double-ridged horn	Rohde & Schwarz	102817	2019-04	2022-04
3.28	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
3.29		Broadband	Miteq	2035324		
3.30	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		
3.31	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			cable
		LISN	loss
		insertion	(incl. 10
		loss	dB
		ESH3-	atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

			È			-				
				cable	cable	cable	cable	distance	dLimit	dused
				loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
-	AF	6		(inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	HFH-Z2)	Corr.		chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6		0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6		0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6		0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6		0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5		0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5		0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5		0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5		0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4		0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4		0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4		0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3		0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3		0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3		0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3		0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3		0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3		0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2		0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1		0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{\text{Limit}} = 10 \text{ m})$

	·/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

			`		· · ·				
						cable			
				cable		loss 3			
				loss 1		(switch			
				(relay +	cable	unit,			
	AF			cable	loss 2	atten-	cable		
	R&S			inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB		dB	dB	dB	dB		
1000	24.4	-19.4		0.99	0.31	-21.51	0.79		
2000	28.5	-17.4		1.44	0.44	-20.63	1.38		
3000	31.0	-16.1		1.87	0.53	-19.85	1.33		
4000	33.1	-14.7		2.41	0.67	-19.13	1.31		
5000	34.4	-13.7		2.78	0.86	-18.71	1.40		
6000	34.7	-13.7		2.78	0.80	-17.83	1.40		
7000	34.7								
/000	35.0	-11.0		2.82	0.86	-16.19	1.46		
							cable		1
							loss 4		
				cable			(switch		
				loss 1	cable	cable	unit,		used
	AF			(relay	loss 2	loss 3	atten-	cable	for
	R&S			inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr			•	· ·		· · ·	15.247
Frequency		Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	
3000	31.0	-23.4		0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3		0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2		0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
				cable					
	. –			loss 1	cable	cable	cable	cable	cable
	AF			(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S			inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35.6	-57.3		0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2		0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3		0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7		0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1		0.98	0.53	-61.05	4.02	1.44	1.83
16000	41.3	-54.1		1.23	0.49	-61.51	4.17	1.44	1.85
17000	42.8	-54.4		1.23		-62.36	4.17	1.51	
					0.76		4.34	1.53	2.00
18000	44.2	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			•				
			cable	cable	cable	cable	cable
			loss 1	loss 2	loss 3	loss 4	loss 5
			(inside	(pre-	(inside	(switch	(to
3160-09	Corr.		chamber)	amp)	chamber)	unit)	receiver)
dB (1/m)	dB		dB	dB	dB	dB	dB
40.2	-23.5		0.72	-35.85	6.20	2.81	2.65
40.2	-23.2		0.69	-35.71	6.46	2.76	2.59
40.2	-22.0		0.76	-35.44	6.69	3.15	2.79
40.3	-21.3		0.74	-35.07	7.04	3.11	2.91
40.3	-20.3		0.72	-34.49	7.30	3.07	3.05
40.3	-19.9		0.78	-34.46	7.48	3.12	3.15
40.3	-19.1		0.87	-34.07	7.61	3.20	3.33
40.3	-19.1		0.90	-33.96	7.47	3.28	3.19
40.3	-18.7		0.89	-33.57	7.34	3.35	3.28
40.4	-19.0		0.87	-33.66	7.06	3.75	2.94
40.4	-19.5		0.88	-33.75	6.92	3.77	2.70
40.4	-19.3		0.90	-33.35	6.99	3.52	2.66
40.4	-19.8		0.88	-33.99	6.88	3.88	2.58
40.4	-19.5		0.91	-33.89	7.01	3.93	2.51
40.4	-19.3		0.88	-33.00	6.72	3.96	2.14
40.5	-20.4		0.89	-34.07	6.90	3.66	2.22
40.5	-21.3		0.86	-35.11	7.02	3.69	2.28
40.5	-21.1		0.90	-35.20	7.15	3.91	2.36
	40.2 40.2 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3	EMCO 3160-09 Corr. dB (1/m) dB 40.2 -23.5 40.2 -23.2 40.2 -23.2 40.2 -22.0 40.3 -21.3 40.3 -20.3 40.3 -19.9 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.4 -19.0 40.4 -19.5 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.5 -20.4	EMCO3160-09Corr.dB (1/m)dB40.2-23.540.2-23.240.3-21.340.3-20.340.3-19.940.3-19.140.3-19.140.3-19.140.4-19.040.4-19.540.4-19.840.4-19.540.4-19.540.4-19.540.4-19.540.5-20.440.5-21.3	AF loss 1 EMCO (inside 3160-09 Corr. (inside dB (1/m) dB dB 40.2 -23.5 0.72 40.2 -23.2 0.69 40.2 -22.0 0.76 40.3 -21.3 0.74 40.3 -20.3 0.72 40.3 -19.9 0.78 40.3 -19.1 0.87 40.3 -19.1 0.87 40.3 -19.1 0.90 40.4 -19.0 0.87 40.4 -19.5 0.88 40.4 -19.3 0.90 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.5 -20.4 0.89 40.5 -20.4 0.89	AF EMCOloss 1 (inside (inside (pre- chamber)3160-09Corr.dB (1/m)dB40.2-23.540.2-23.240.2-23.240.2-22.040.3-21.340.3-20.340.3-19.940.3-19.140.3-19.140.3-19.140.3-19.140.3-19.140.4-19.040.4-19.540.4-19.540.4-19.540.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.5-20.40.86-35.11	AF EMCOloss 1 (inside (inside (inside (amp))loss 2 (inside (inside amp))loss 3 (inside (inside amp))dB (1/m)dBdBdBdB40.2-23.50.72-35.856.2040.2-23.20.69-35.716.4640.2-22.00.76-35.446.6940.3-20.30.72-34.497.3040.3-19.90.78-34.467.4840.3-19.10.87-34.077.6140.3-19.10.87-33.577.3440.3-19.10.89-33.577.3440.4-19.00.87-33.667.0640.4-19.30.90-33.356.9940.4-19.30.90-33.897.0140.4-19.30.88-33.006.7240.5-20.40.89-34.076.9040.5-21.30.86-35.117.02	AF EMCOIoss 1 (inside

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

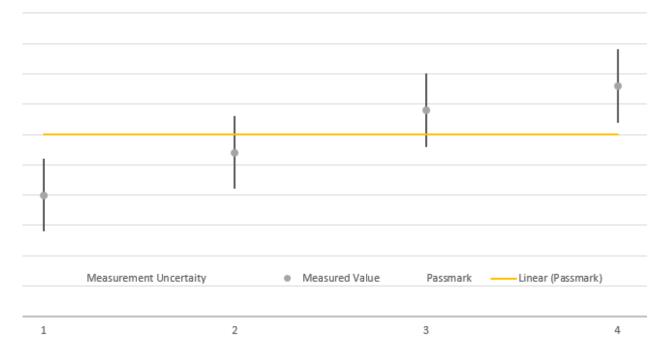
 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.