

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101650

FCC REPORT

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: Tablet

Model No.: Elite OctaMax

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYELIOCTAMX

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 25 Aug., 2021

Date of Test: 25 Aug., to 13 Sep., 2021

Date of report issued: 14 Sep., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	14 Sep., 2021	Original

Tested by:	Mike ou	Date:	14 Sep., 2021	
	Test Engineer			
	/ 4			

Reviewed by: Date: 14 Sep., 2021

Contents

			Page
1	cov	'ER PAGE	1
2	VER	SION	2
3		ITENTS	
4	TES	T SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	15
	6.6	BAND EDGE	16
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	35
7	TES	T SETUP PHOTO	42
R	FUT	CONSTRUCTIONAL DETAILS	44

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass
Conducted Band Edge	15 247 (d)	Appendix A - BLE	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	15.205 & 15.209	Appendix A - BLE	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

oiz Gonorai Boooripii	<u> </u>
Product Name:	Tablet
Model No.:	Elite OctaMax
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps & 500Kbps & 125Kbps
Antenna Type:	Internal Antenna
Antenna gain:	-1.2 dBi
Power supply:	Rechargeable Li-ion Battery DC 3.7V, 4000mAh
AC adapter:	Input: AC100-240V, 50-60Hz, 0.2A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:		Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024			
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022			
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022			
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022			
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022			
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022			
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022			
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022			
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021			
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022			
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022			
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022			
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022			
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022			
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022			
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022			
EMI Test Software	Tonscend	TS+		Version:3.0.0.1				
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024			
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022			
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022			
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022			
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022			
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022			
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022			
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022			
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022			
Test Software	R&S	EMC32	Version: 10.50.40					

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
ISN	Schwarzbeck	CAT3 8158	#96	03-03-2021	03-02-2022	
ISN	Schwarzbeck	CAT5 8158	#166	03-03-2021	03-02-2022	
ISN	Schwarzbeck	NTFM 8158	#126	03-03-2021	03-02-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021	
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021	

Project No.: JYTSZE2108097

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021
Temperature Humidity Chamber	ZhongZhi	CZ-C-150D	ZH16491	11-01-2020	10-31-2021
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

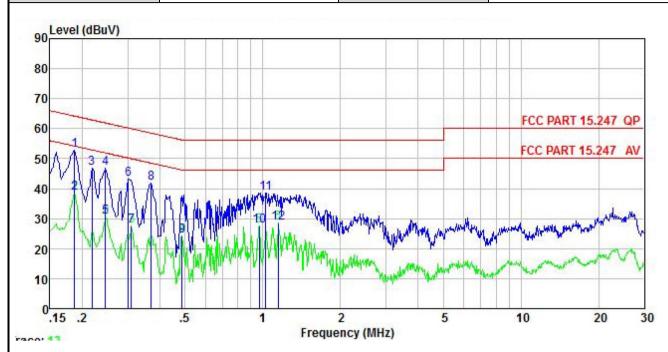
E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -1.2dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.2 Conducted Emission

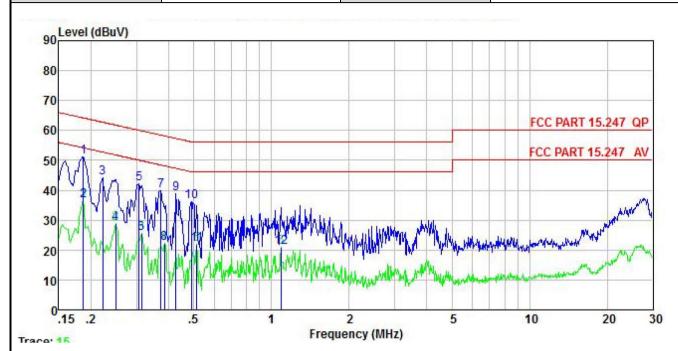
Test Requirement:	FCC Part 15 C Section 15.207	7			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	·	Limit (dBuV)		
-	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	Reference LISN 40cm AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	80cm LISN Filter Filter Receiver	– AC power		
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details	·			
Test results:	Passed				


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 10 of 44

Measurement Data:

Product name:	Tablet	Product model:	Elite OctaMax
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

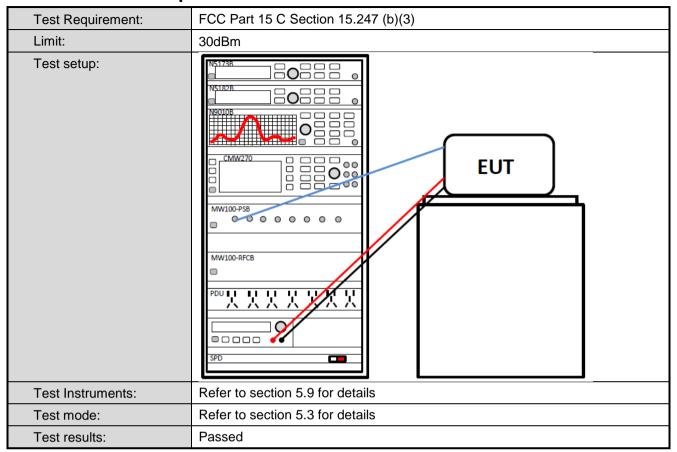

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	—dBu∜	<u>ab</u>	<u>ab</u>	<u>ap</u>	dBu₹	—dBu∜	<u>ab</u>	
1	0.186	42.66	10.23	-0.13	0.02	52.78	64.20	-11.42	QP
2	0.186	28.26	10.23	-0.13	0.02	38.38	64.20	-25.82	Average
3	0.219	36.59	10.24	-0.18	0.03	46.68	62.88	-16.20	QP
1 2 3 4 5 6 7 8 9	0.246	36.63	10.25	-0.21	0.01	46.68	61.91	-15.23	QP
5	0.246	20.37	10.25	-0.21	0.01	30.42	61.91	-31.49	Average
6	0.302	33.02	10.26	-0.24	0.03	43.07	60.19	-17.12	QP
7	0.310	17.56	10.26	-0.18	0.03	27.67	59.97	-32.30	Average
8	0.369	31.32	10.27	0.23	0.03	41.85	58.52	-16.67	QP
9	0.486	14.25	10.29	-0.26	0.03	24.31	56.23	-31.92	Average
10	0.968	16.81	10.32	0.38	0.05	27.56	56.00	-28.44	Average
11	1.027	27.71	10.32	0.43	0.06	38.52	56.00	-17.48	QP
12	1.147	17.76	10.32	0.30	0.08	28.46	56.00	-27.54	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

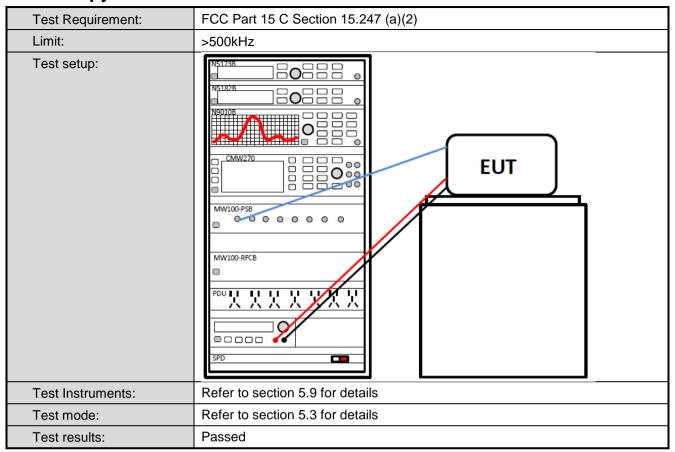
Product name:	Tablet	Product model:	Elite OctaMax
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
ž	MHz	dBu∜	<u>dB</u>	<u>d</u> B		dBu₹	—dBu∜	<u>d</u> B	
1	0.186	41.05	10.21	0.00	0.02	51.28		-12.92	
1 2 3 4 5 6 7 8 9	0.186	26.40	10.21	0.00	0.02	36.63			Average
3	0.222	33.77	10.23	0.00	0.03	44.03		-18.71	
4	0.249	18.65	10.24	0.01	0.01	28.91	61.78	-32.87	Average
5	0.307	31.77	10.25	0.00	0.03	42.05	60.06	-18.01	QP
6	0.313	15.43	10.25	0.00	0.03	25.71	59.88	-34.17	Average
7	0.373	29.56	10.26	-0.04	0.03	39.81	58.43	-18.62	QP
8	0.385	11.85	10.26	-0.05	0.03	22.09	58.17	-36.08	Average
9	0.426	28.55	10.27	-0.03	0.03	38.82	57.33	-18.51	QP
10	0.489	25.71	10.28	0.02	0.03	36.04	56.19	-20.15	QP
11	0.513	11.61	10.28	0.03	0.03	21.95	56.00	-34.05	Average
12	1.088	10.43	10.31	0.09	0.07	20.90			Average


Notes

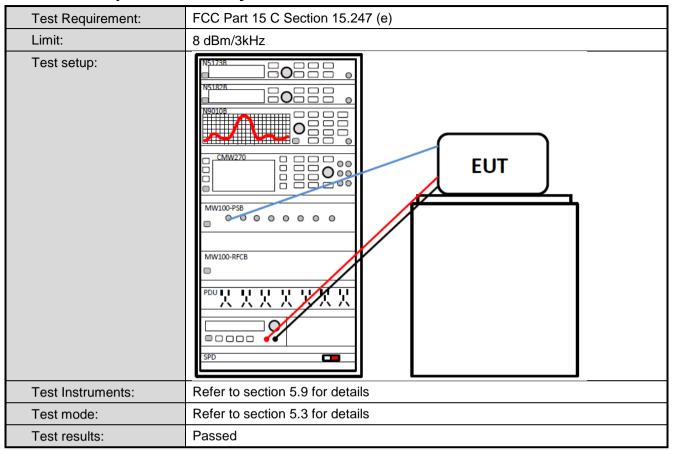
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



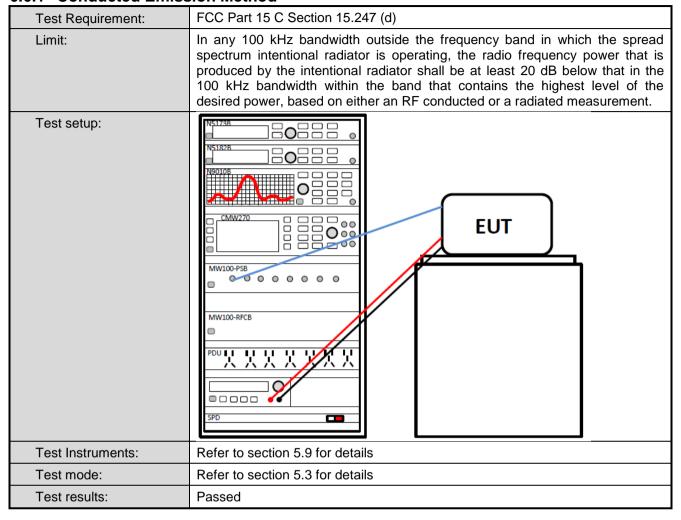
Measurement Data: Refer to Appendix A - BLE

6.4 Occupy Bandwidth


Measurement Data: Refer to Appendix A - BLE

Page 14 of 44

6.5 Power Spectral Density


Measurement Data: Refer to Appendix A - BLE

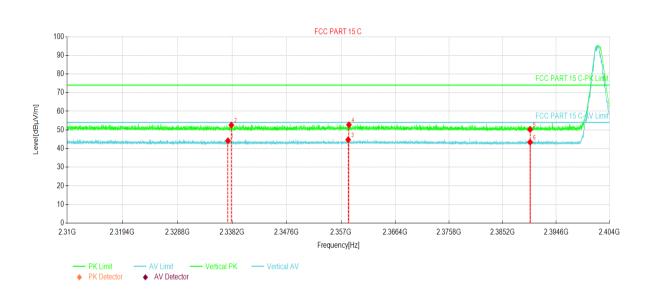
Page 15 of 44

6.6 Band Edge

6.6.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

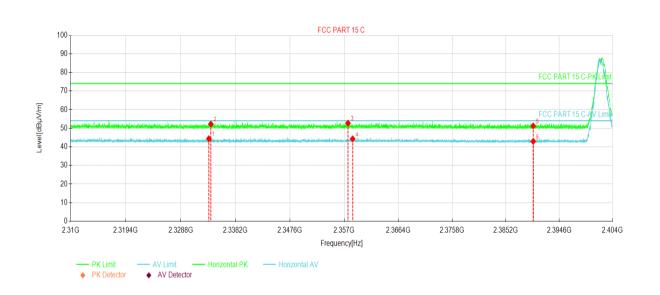
Radiated Emission Method 6.6.2


Test Requirement:	FCC Part 15 C	Section 15.2	205 and 15.209					
Test Frequency Range:	2310 MHz to 2	2390 MHz an	d 2483.5MHz to :	2500 MHz	<u>7</u>			
Test Distance:	3m	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	' Remark			
	Above 1GHz	Peak	1MHz	3MHz				
		RMS	1MHz	3MHz				
Limit:	Frequer	ncy L	Limit (dBuV/m @:	3m)	Remark			
	Above 10	GHz —	54.00 74.00		Average Value Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 							
Test setup:	AE (T	umtable) Grou Test Receive	Horn Antenna 3m Amplifer Con	Antenna Tower	Swwwww\\			
Test Instruments:	Refer to section	on 5.9 for deta	ails					
Test mode:	Refer to section	on 5.3 for deta	ails					
	Refer to section 5.3 for details Passed							

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

PHY: 1MHz

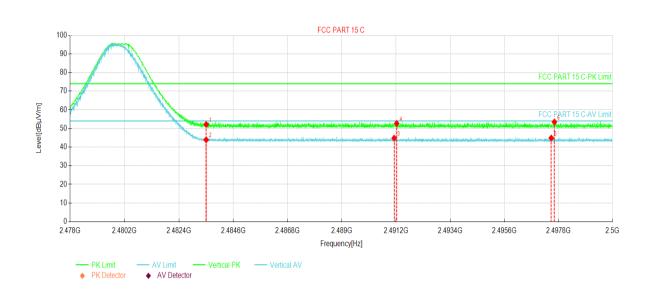
Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Susp	Suspected Data List									
NO.₽	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊮ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarity⊬		
1₽	2337.48	37.30₽	44.20₽	6.90₽	54.00₽	9.80₽	AV₽	Vertical _₽		
2₽	2338.07	45.69₽	52.60₽	6.91₽	74.00₽	21.40₽	PK₽	Vertical₽		
3₽	2358.24	37.80₽	44.77₽	6.97₽	54.00₽	9.23₽	AV₽	Vertical₽		
4.₽	2358.37	45.76₽	52.73₽	6.97₽	74.00₽	21.27₽	PK₽	Vertical₽		
5₽	2390.00	43.14₽	50.22₽	7.08₽	74.00₽	23.78₽	PK₽	Vertical₄		
6₽	2390.00	36.34₽	43.42₽	7.08₽	54.00₽	10.58₽	AV₽	Vertical₽		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

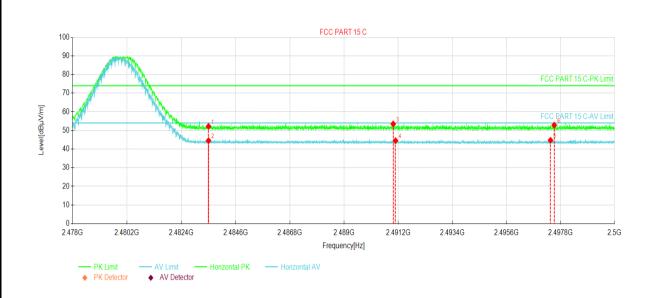
Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Susp	Suspected Data List									
NO.∂	Freq.↓ [MHz]₄	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity⊮		
1₽	2333.62	37.47₽	44.36	6.89₽	54.00₽	9.64₽	AV₽	Horizontalℯ		
2₽	2333.97	45.35₽	52.24₽	6.89₽	74.00₽	21.76₽	PK₽	Horizontal₄		
3₽	2357.64	45.75₽	52.72₽	6.97₽	74.00₽	21.28₽	PK₽	Horizontal₽		
4₽	2358.45	37.30₽	44.27₽	6.97₽	54.00₽	9.73₽	AV₽	Horizontal₄		
5₽	2390.00	44.15₽	51.23₽	7.08₽	74.00₽	22.77₽	PK₽	Horizontal₽		
6₽	2390.00	35.83₽	42.91₽	7.08₽	54.00₽	11.09₽	AV₽	Horizontal₽		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 44

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

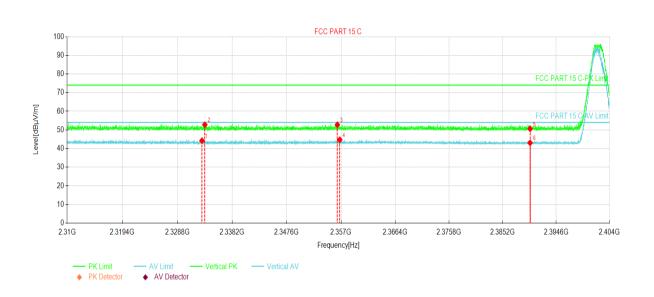

Susp	Suspected Data List							
NO.₽	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace	Polarity∉
1₽	2483.50	44.42₽	52.11₽	7.69₽	74.00₽	21.89₽	PK₽	Vertical₽
2₽	2483.50	36.20₽	43.89₽	7.69₽	54.00₽	10.11₽	AV₽	Vertical₽
3₽	2491.12	37.06₽	44.80₽	7.74₽	54.00₽	9.20₽	AV₽	Vertical₽
4.₽	2491.22	44.92₽	52.66₽	7.74₽	74.00₽	21.34₽	PK₽	Vertical₽
5₽	2497.50	37.06₽	44.84	7.78₽	54.00₽	9.16₽	AV₽	Vertical₽
6₽	2497.63	45.69₽	53.47₽	7.78₽	74.00₽	20.53₽	PK₽	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 20 of 44

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Susp	Suspected Data List							
NO.	Freq.√ [MHz]	Reading⊬ [dBµV/m]⊬	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊭ [dB]⊭	Trace	Polarity⊬
1₽	2483.50	44.48₽	52.17₽	7.69₽	74.00₽	21.83₽	PK₽	Horizontal₽
2₽	2483.50	36.82₽	44.51₽	7.69₽	54.00₽	9.49₽	AV₽	Horizontal₽
3₽	2490.99	45.74₽	53.48₽	7.74₽	74.00₽	20.52₽	PK₽	Horizontal₽
4₽	2491.08	36.78₽	44.52₽	7.74₽	54.00₽	9.48₽	AV₽	Horizontal₽
5₽	2497.39	36.93₽	44.71₽	7.78₽	54.00₽	9.29₽	AV₽	Horizontal₽
6₽	2497.54	45.04₽	52.82₽	7.78₽	74.00₽	21.18	PK₽	Horizontal₽

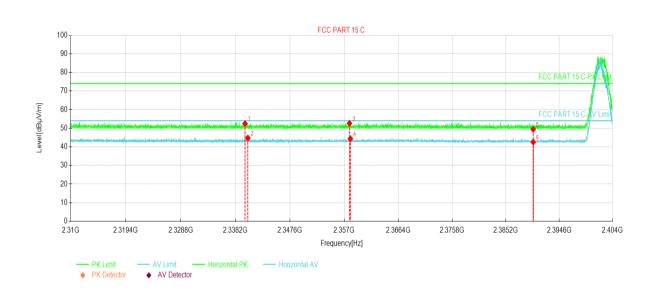

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 44

PHY: 2MHz

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

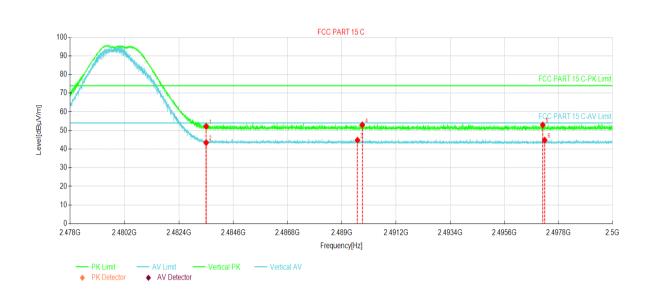
Susp	Suspected Data List							
NO.₽	Freq [MHz].	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace∂	Polarity⊬
1₽	2333.03	37.34₽	44.23₽	6.89₽	54.00₽	9.77₽	AV₽	Vertical₽
2₽	2333.51	45.88₽	52.77₽	6.89₽	74.00₽	21.23₽	PK₽	Vertical₽
3₽	2356.36	45.78₽	52.75₽	6.97₽	74.00₽	21.25₽	PK₽	Vertical₽
4₽	2356.78	37.75₽	44.72₽	6.97₽	54.00₽	9.28₽	AV₽	Vertical₽
5₽	2390.00	43.52₽	50.60₽	7.08₽	74.00₽	23.40₽	PK₽	Vertical₽
6₽	2390.00	35.97₽	43.05₽	7.08₽	54.00₽	10.95₽	AV₽	Vertical₀


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 22 of 44

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Susp	Suspected Data List							
NO.₽	Freq.₽ [MHz]₽	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity⊮
1₽	2339.85	45.56₽	52.47₽	6.91₽	74.00₽	21.53₽	PK₽	Horizontal
2₽	2340.33	37.81₽	44.72₽	6.91₽	54.00₽	9.28₽	AV₽	Horizontal₽
3₽	2357.90	45.65₽	52.62₽	6.97₽	74.00₽	21.38₽	PK₽	Horizontal₽
4.₽	2358.06	37.38₽	44.35₽	6.97₽	54.00₽	9.65₽	AV₽	Horizontal₽
5₽	2390.00	42.33₽	49.41₽	7.08₽	74.00₽	24.59₽	PK₽	Horizontal₽
6₽	2390.00	35.48₽	42.56₽	7.08₽	54.00₽	11.44₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 23 of 44

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Susp	Suspected Data List								
NO.₽	Freq.	Reading [dBµV/m]₄	Level. [dBµV/m].	Factor⊮ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin√ [dB]∉	Trace∂	Polarity _®	
1₽	2483.50	44.45 ₀	52.14 ₂	7.69₽	74.00	21.86	PK₽	Vertical₂⊸	
2₽	2483.50	35.70₽	43.39₽	7.69₽	54.00₽	10.61₽	AV₽	Vertical	
3₽	2489.63	37.02₽	44.75₽	7.73₽	54.00₽	9.25₽	AV₽	Vertical₽	
4₽	2489.82	45.23₽	52.96₽	7.73₽	74.00₽	21.04₽	PK₽	Vertical⊬⊸	
5₽	2497.15	45.15₽	52.93₽	7.78₽	74.00₽	21.07₽	PK₽	Vertical₄	
6₽	2497.23	36.99₽	44.77₽	7.78₽	54.00₽	9.23₽	AV₽	Vertical₽	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Susp	Suspected Data List							
NO	Freq.	Reading	Level	Factor⊬	Limit⊬	Margin⊬	Tuess	Delevity
NO.₽	[MHz]∂	[dBµV/m]	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Trace∂	Polarity∂
1₽	2483.50	42.76₽	50.45₽	7.69₽	74.00₽	23.55₽	PK₽	Horizontal ₂
2₽	2483.50	35.93₽	43.62₽	7.69₽	54.00₽	10.38₽	AV₽	Horizontal₽
3₽	2490.07	37.19₽	44.92₽	7.73₽	54.00₽	9.08₽	AV₽	Horizontal
4₽	2490.14	44.91₽	52.64₽	7.73₽	74.00₽	21.36₽	PK₽	Horizontal₽
5₽	2498.09	37.19₽	44.98₽	7.79₽	54.00₽	9.02₽	AV₽	Horizontal
6₽	2498.10	45.42₽	53.21₽	7.79₽	74.00₽	20.79₽	PK₽	Horizontal₽

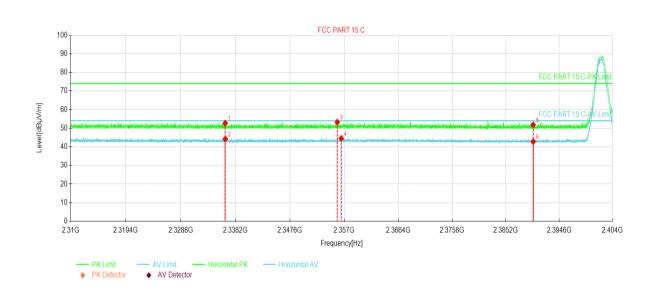

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 25 of 44

Coded PHY, S=2

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

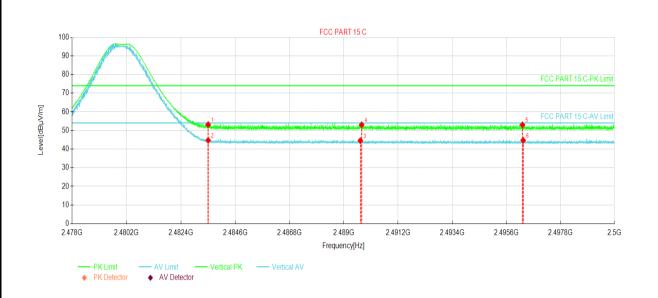
Susp	Suspected Data List							
NO.∂	Freq [MHz]	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity
1₽	2330.08	37.08₽	43.96₽	6.88₽	54.00₽	10.04₽	AV₽	Vertical₄
2₽	2330.71	45.45₽	52.33₽	6.88₽	74.00₽	21.67₽	PK₽	Vertical _₽
3₽	2357.56	45.42₽	52.39₽	6.97₽	74.00₽	21.61₽	PK₽	Verticalℯ
4.	2357.97	37.53₽	44.50₽	6.97₽	54.00₽	9.50₽	AV₽	Verticalℯ
5₽	2390.00	43.13₽	50.21₽	7.08₽	74.00₽	23.79₽	PK₽	Verticalℯ
6₽	2390.00	35.89₽	42.97₽	7.08₽	54.00₽	11.03₽	AV₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

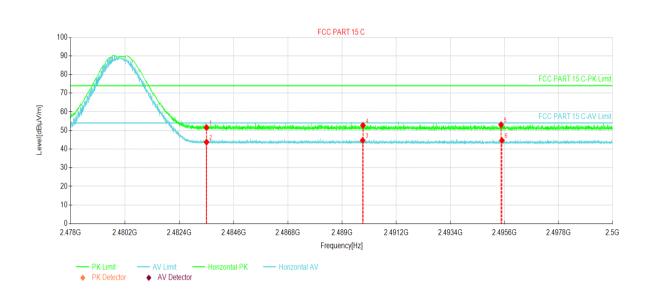


Susp	Suspected Data List							
NO.∂	Freq.√ [MHz]	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity∉
1₽	2336.43	45.82₽	52.72₽	6.90₽	74.00₽	21.28₽	PK₽	Horizontal₽
2 ₽	2336.46	37.31₽	44.21₽	6.90₽	54.00₽	9.79₽	AV₽	Horizontal₽
3₽	2355.78	46.32₽	53.28₽	6.96₽	74.00₽	20.72₽	PK₽	Horizontal₽
4.	2356.48	37.55₽	44.52₽	6.97₽	54.00₽	9.48₽	AV₽	Horizontal₽
5₽	2390.00	44.76₽	51.84₽	7.08₽	74.00₽	22.16₽	PK₽	Horizontal
6₽	2390.00	35.75₽	42.83₽	7.08₽	54.00₽	11.17₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Susp	Suspected Data List							
NO.∂	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊮ [dB]⊮	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity⊬
1₽	2483.50	45.43₽	53.12₽	7.69₽	74.00₽	20.88₽	PK₽	Vertical _₽
2₽	2483.50	37.01₽	44.70₽	7.69₽	54.00₽	9.30₽	AV₽	Vertical₽
3₽	2489.66	36.78₽	44.51₽	7.73₽	54.00₽	9.49₽	AV₽	Vertical₽
4₽	2489.72	45.28₽	53.01₽	7.73₽	74.00₽	20.99₽	PK₽	Vertical₽
5₽	2496.25	45.21₽	52.98₽	7.77₽	74.00₽	21.02₽	PK₽	Vertical₽
6₽	2496.28	36.93₽	44.70₽	7.77₽	54.00₽	9.30₽	AV₽	Vertical₽

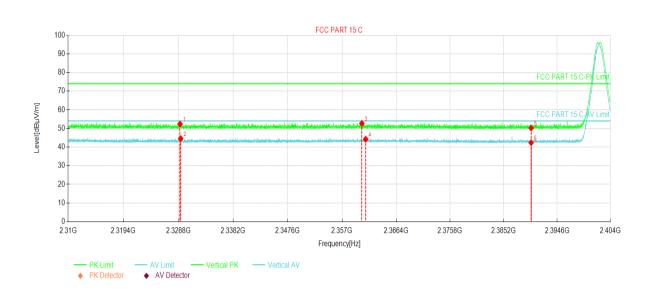

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 28 of 44

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Susp	Suspected Data List								
NO.∂	Freq. _₹	Reading	Level	Factor	Limit⊬	Margin⊬	Trace∂	, Polarity <i></i>	
	[MHz]∂	[dBµV/m]	[dBµV/m]∂	[dB]	[dBµV/m] _□	[dB]∘			
1₽	2483.50	43.86₽	51.55₽	7.69₽	74.00₽	22.45₽	PK₽	Horizontal₽	
2₽	2483.50	36.03₽	43.72₽	7.69₽	54.00₽	10.28₽	AV₽	Horizontal₽⊸	
3₽	2489.83	36.90₽	44.63₽	7.73₽	54.00₽	9.37₽	AV₽	Horizontal₽	
4₽	2489.84	44.96₽	52.69₽	7.73₽	74.00₽	21.31₽	PK₽	Horizontal₽⊸	
5₽	2495.45	45.28₽	53.05₽	7.77₽	74.00₽	20.95₽	PK₽	Horizontal ₂	
6₊₃	2495.49	36.84₽	44.61₽	7.77₽	54.00₽	9.39₽	AV	Horizontal ₂	

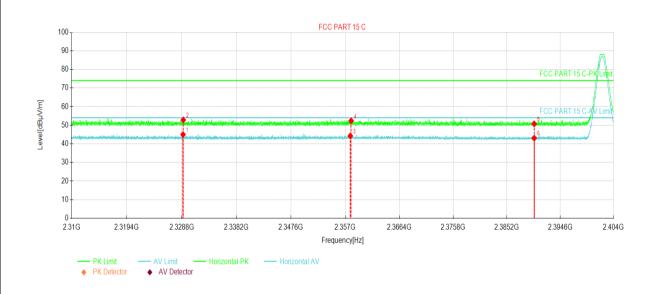

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 29 of 44

Coded PHY, S=8

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

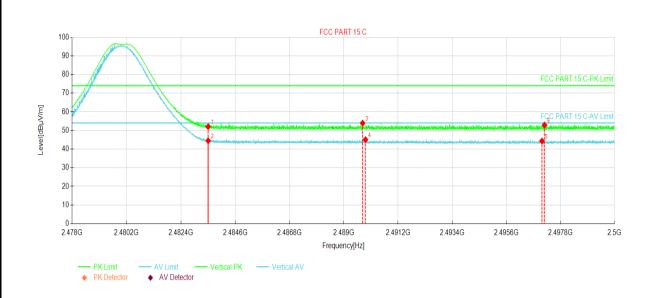
Susp	Suspected Data List							
NO.	Freq [MHz]	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]₄	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity∂
1₽	2329.09	45.49₽	52.37₽	6.88₽	74.00₽	21.63₽	PK₽	Vertical₄⊸
2₽	2329.21	37.66₽	44.54	6.88₽	54.00₽	9.46₽	AV₽	Vertical₄⊸
3₽	2360.44	45.71₽	52.69₽	6.98₽	74.00₽	21.31₽	PK₽	Vertical₄⊸
4₽	2361.10	37.21₽	44.19₽	6.98₽	54.00₽	9.81₽	AV₽	Vertical₽
5₽	2390.00	43.11₽	50.19₽	7.08₽	74.00₽	23.81₽	PK₽	Vertical₄⊸
6₽	2390.00	35.29₽	42.37₽	7.08₽	54.00₽	11.63₽	AV₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 30 of 44

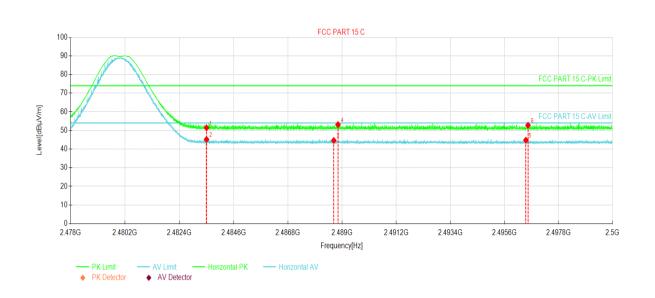
Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Susp	Suspected Data List							
NO.∂	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace	Polarity⊬
1₽	2329.02	38.09₽	44.97₽	6.88₽	54.00₽	9.03₽	AV₽	Horizontal₽
2₄೨	2329.07	45.94₽	52.82₽	6.88₽	74.00₽	21.18₽	PK₽	Horizontal₽
3₽	2357.88	37.26₽	44.23₽	6.97₽	54.00₽	9.77₽	AV₽	Horizontal₽
4.₽	2358.02	45.40₽	52.37₽	6.97₽	74.00₽	21.63₽	PK₽	Horizontal₽
5₽	2390.00	43.63₽	50.71₽	7.08₽	74.00₽	23.29₽	PK₽	Horizontal₽
6₽	2390.00	35.98₽	43.06₽	7.08₽	54.00₽	10.94₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 31 of 44

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Susp	Suspected Data List											
NO.	Freq.	Reading	Level	Factor⊬	Limit⊬	Margin⊬	Trace∂	Polarity <i>₀</i>				
	[MHz]∂	[dBµV/m]₽	[dBµV/m] _₽	[dB]∂	[dBµV/m]∂	[dB]∂	ITace	Polarity				
1₽	2483.50	44.31₽	52.00₽	7.69₽	74.00₽	22.00₽	PK₽	Vertical₄⊸				
2₽	2483.50	36.78₽	44.47₽	7.69₽	54.00₽	9.53₽	AV₽	Vertical₄⊸				
3₽	2489.75	46.17₽	53.90₽	7.73₽	74.00₽	20.10₽	PK₽	Vertical _₽				
4.₽	2489.87	37.29₽	45.02₽	7.73₽	54.00₽	8.98₽	AV₽	Vertical₄⊸				
5₽	2497.04	36.53₽	44.31₽	7.78₽	54.00₽	9.69₽	AV₽	Vertical₄⊸				
6₽	2497.15	45.11₽	52.89₽	7.78₽	74.00₽	21.11₽	PK₽	Vertical _₽				

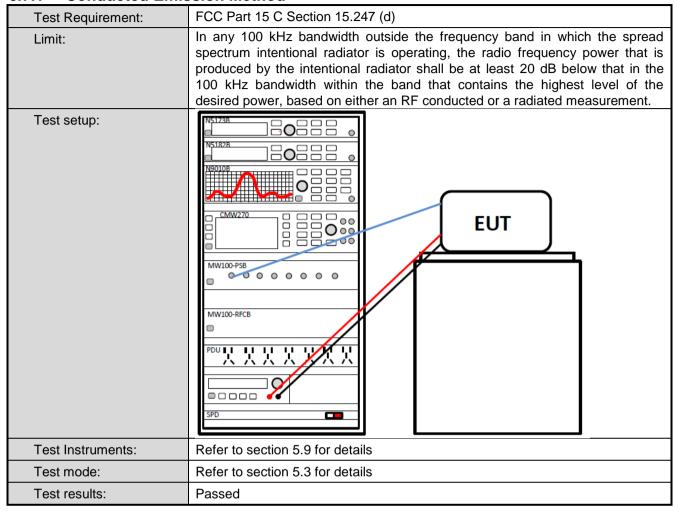
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 32 of 44

Product Name:	Tablet	Product Model:	Elite OctaMax
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Susp	Suspected Data List											
NO.	Freq.	Reading⊬	Level	Factor⊬	Limit⊬	Margin⊬	Trace∂	Polarity <i></i> ∘				
	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	ITACE					
1₽	2483.50	43.71₽	51.40₽	7.69₽	74.00₽	22.60₽	PK₽	Horizontal				
2↩	2483.50	37.48₽	45.17₽	7.69₽	54.00₽	8.83₽	AV₽	Horizontal₽				
3₽	2488.66	36.89₽	44.61₽	7.72₽	54.00₽	9.39₽	AV₽	Horizontal₽				
4₽	2488.83	45.40₽	53.12₽	7.72₽	74.00₽	20.88₽	PK₽	Horizontal₽				
5₽	2496.46	36.99₽	44.77₽	7.78₽	54.00₽	9.23₽	AV₽	Horizontal₽				
6₽	2496.55	44.96₽	52.74₽	7.78₽	74.00₽	21.26₽	PK₽	Horizontal₽				

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

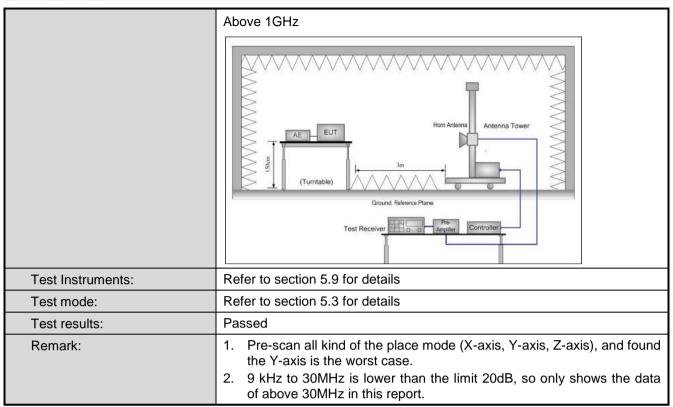

Page 33 of 44

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

Page 34 of 44

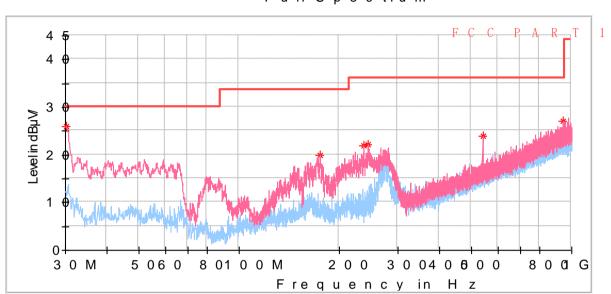


6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	.205	and 15.209			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detector	r	RBW		W	Remark
·	30MHz-1GHz	Quasi-pea	peak 120KHz		300KHz		Quasi-peak Value
	Above 1GHz	Peak		1MHz	3MHz		Peak Value
		RMS		1MHz	3M	Hz	Average Value
Limit:	Frequency		Lim	nit (dBuV/m @	10m)	_	Remark
	30MHz-88M			30.0			Quasi-peak Value
	88MHz-216N 216MHz-960I			33.5 36.0			Quasi-peak Value Quasi-peak Value
	960MHz-1G			44.0			Quasi-peak Value
	Frequency		l in	nit (dBuV/m @	3m)		Remark
				54.0			Average Value
	Above 1GF	lz		74.0			Peak Value
Test Procedure:	1. The EUT	was place	ed o	on the top o	of a ro	tating	table 0.8m(below
rest i roccadic.	1GHz)/1.5r (below 1G rotated 36 radiation. 2. The EUT waway from on the top of 3. The antend the ground Both horized make the number of the extended to find the second to find the sec	m(above 10 Hz)or 3 m 60 degrees was set 10 m the interfer of a variable had height is did to determine the and the rota tamaximum meceiver system on level of ecified, the would be 3 margin wo	GHz mete s to mete erer le-he is va mine verti ent. emi nten able read reter verti rep voulc	z) above the er chamber(a chamber(a chamber(a chamber(a chamber(a chamber(a chamber)) determined aried from one the maximulation of the maximulation of the maximulation of the chamber was turned and the chamber of th	ground above the part of the p	d at a a 1GHz a cosition of a me, where to the action of a cosition of the action of the action of the action of a cosition of the action of a cosition of the action of t	10 meter chamber 1). The table was in of the highest eters(above 1GHz) inich was mounted four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 les to 360 degrees tect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi- reported in a data
Test setup:	Below 1GHz Turn Table Ground Plane	4m			S A RF	Antenna To Search Antenna Test Ceiver	ower

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


Page 36 of 44



Measurement Data (worst case):

Below 1GHz:

Product Name:	Tablet	Product Model:	Elite OctaMax	
Test By:	Janet	Test mode:	BLE Tx mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

•	Frequency↓ (MHz)√	MaxPeak↓ (dB ₩ V/m)₽	Limit↓ (dB μ V /m)∂	Margin↓ (dB)∉	Height↓ (cm)⊬	Pol₽	Azimuth↓ (deg)∂	Corr.↓ (dB/m)₽
	30.194000₽	26.06₽	30.00₽	3.94₽	100.0₽	V₽	125.0₽	-17.7₽
	175.3060004	19.91₽	33.50₽	13.59₽	100.0₽	V₽	157.0₽	-16.9↩
•	237.192000₽	21.89₽	36.00₽	14.11₽	100.0₽	V₽	11.0₽	-15.9↔
F	244.661000₽	22.26₽	36.00₽	13.74₽	100.0₽	V₽	28.0₽	-15.7₽
•	540.0260004	23.94₽	36.00₽	12.06₽	100.0₽	V₽	103.0₽	-8.0₊
•	945.1950004	27.01₽	36.00₽	8.99₽	100.0₽	V₽	80.0₽	-0.1↔

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz

PHY: 1MHz

	Test channel: Lowest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	55.69	-9.60	46.09	74.00	27.91	Vertical			
4804.00	55.11	-9.60	45.51	74.00	28.49	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	47.76	-9.60	38.16	54.00	15.84	Vertical			
4804.00	48.44	-9.60	38.84	54.00	15.16	Horizontal			

	Test channel: Middle channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	55.71	-9.04	46.67	74.00	27.33	Vertical				
4884.00	55.37	-9.04	46.33	74.00	27.67	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	47.90	-9.04	38.86	54.00	15.14	Vertical				
4884.00	48.50	-9.04	39.46	54.00	14.54	Horizontal				

	Test channel: Highest channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	55.56	-8.45	47.11	74.00	26.89	Vertical				
4960.00	55.57	-8.45	47.12	74.00	26.88	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	47.80	-8.45	39.35	54.00	14.65	Vertical				
4960.00	48.93	-8.45	40.48	54.00	13.52	Horizontal				

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

PHY: 2MHz

		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	55.25	-9.60	45.65	74.00	28.35	Vertical
4804.00	56.70	-9.60	47.10	74.00	26.90	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	46.52	-9.60	36.92	54.00	17.08	Vertical
4804.00	48.37	-9.60	38.77	54.00	15.23	Horizontal
+00+.00	40.07	3.00	00.11	04.00	10.20	Tionzontai
		Test ch	nannel: Middle ch	annel		

	Test channel: Middle channel								
		De	tector: Peak Valu	ıe					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4884.00	54.95	-9.04	45.91	74.00	28.09	Vertical			
4884.00	56.84	-9.04	47.80	74.00	26.20	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4884.00	46.34	-9.04	37.30	54.00	16.70	Vertical			
4884.00	48.42	-9.04	39.38	54.00	14.62	Horizontal			

	Test channel: Highest channel									
	Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	54.79	-8.45	46.34	74.00	27.66	Vertical				
4960.00	57.07	-8.45	48.62	74.00	25.38	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	46.43	-8.45	37.98	54.00	16.02	Vertical				
4960.00	48.35	-8.45	39.90	54.00	14.10	Horizontal				

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=2

Test channel: Lowest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	55.89	-9.60	46.29	74.00	27.71	Vertical		
4804.00	56.28	-9.60	46.68	74.00	27.32	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	47.83	-9.60	38.23	54.00	15.77	Vertical		
4804.00	48.65	-9.60	39.05	54.00	14.95	Horizontal		

		Test ch	nannel: Middle ch	nannel		
		De	tector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	56.18	-9.04	47.14	74.00	26.86	Vertical
4884.00	56.38	-9.04	47.34	74.00	26.66	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	47.84	-9.04	38.80	54.00	15.20	Vertical
4884.00	48.72	-9.04	39.68	54.00	14.32	Horizontal

Test channel: Highest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4960.00	55.96	-8.45	47.51	74.00	26.49	Vertical		
4960.00	55.89	-8.45	47.44	74.00	26.56	Horizontal		
		Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4960.00	47.44	-8.45	38.99	54.00	15.01	Vertical		
4960.00	48.87	-8.45	40.42	54.00	13.58	Horizontal		

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=8

Test channel: Lowest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	55.80	-9.60	46.20	74.00	27.80	Vertical		
4804.00	55.55	-9.60	45.95	74.00	28.05	Horizontal		
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4804.00	48.45	-9.60	38.85	54.00	15.15	Vertical		
4804.00	49.07	-9.60	39.47	54.00	14.53	Horizontal		
						•		

		Test ch	nannel: Middle ch	nannel		
		De	tector: Peak Valu	ue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	55.72	-9.04	46.68	74.00	27.32	Vertical
4884.00	55.37	-9.04	46.33	74.00	27.67	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	48.84	-9.04	39.80	54.00	14.20	Vertical
4884.00	49.35	-9.04	40.31	54.00	13.69	Horizontal

Test channel: Highest channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	56.00	-8.45	47.55	74.00	26.45	Vertical	
4960.00	55.23	-8.45	46.78	74.00	27.22	Horizontal	
		Dete	ctor: Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	49.30	-8.45	40.85	54.00	13.15	Vertical	
4960.00	49.23	-8.45	40.78	54.00	13.22	Horizontal	

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

8 EUT Constructional Details

Reference to the test report No.: JYTSZB-R12-2101648

----End of report-----