

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name: LG Electronics U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632

United States

Date of Testing: 02/26/20 - 03/17/20 Test Site/Location: PCTEST Lab, Columbia, MD, USA

Document Serial No.: 1M2002250026-01-R1.ZNF

FCC ID: ZNFK300TM

APPLICANT: LG ELECTRONICS U.S.A., INC.

DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model: LM-K300TM

Additional Model(s): LM-K300TMS, LMK300TM, LMK300TMS, K300TMS,

LM-K300MM, LMK300MM, K300MM

Equipment	Band & Mode	Tx Frequency		SAR		
Class		,			1g Hotspot (W/kg)	
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.39	0.56	0.56	
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.18	0.27	0.38	
PCE	UMTS 850	826.40 - 846.60 MHz	0.34	0.44	0.44	
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.26	0.75	0.75	
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.42	0.65	0.79	
PCE	CDMA/EVDO BC10 (§90S)	817.90 - 823.10 MHz	0.36	0.40	0.36	
PCE	CDMA/EVDO BC0 (§22H)	824.70 - 848.31 MHz	0.38	0.52	0.36	
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	0.48	0.54	0.62	
PCE	LTE Band 71	665.5 - 695.5 MHz	0.22	0.41	0.41	
PCE	LTE Band 12	699.7 - 715.3 MHz	0.30	0.44	0.44	
PCE	LTE Band 13	779.5 - 784.5 MHz	0.35	0.60	0.60	
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.36	0.41	0.41	
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	N/A	N/A	N/A	
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.27	0.75	0.75	
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.42	0.58	0.92	
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	N/A	
PCE	LTE Band 41	2498.5 - 2687.5 MHz	0.13	1.14	1.14	
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.42	0.57	0.57	
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	0.44	
NII	U-NII-2A	5260 - 5320 MHz	0.38	0.49	N/A	
NII	U-NII-2C	5500 - 5720 MHz	0.67	0.56	N/A	
NII	U-NII-3	5745 - 5825 MHz	0.64	0.60	0.60	
DSS/DTS	Bluetooth	2402 - 2480 MHz	< 0.1	< 0.1	< 0.1	
Simultaneous	s SAR per KDB 690783 D01v01r03	8	1 19	1.38	1.55	

Note: This revised Test Report (S/N: 1M2002250026-01-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: ZNFK300TM	PCTEST Proud to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 4 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 1 of 105

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INFO	DRMATION	15
3	INTRODI	JCTION	16
4	DOSIME	TRIC ASSESSMENT	17
5	DEFINIT	ON OF REFERENCE POINTS	18
6	TEST CC	NFIGURATION POSITIONS	19
7	RF EXPO	OSURE LIMITS	22
8	FCC ME	ASUREMENT PROCEDURES	23
9	RF CONI	DUCTED POWERS	30
10	SYSTEM	VERIFICATION	61
11	SAR DAT	TA SUMMARY	64
12	FCC MUI	LTI-TX AND ANTENNA SAR CONSIDERATIONS	83
13	SAR ME	ASUREMENT VARIABILITY	96
14	ADDITIO	NAL TESTING PER FCC GUIDANCE	97
15	EQUIPM	ENT LIST	101
16	MEASUR	REMENT UNCERTAINTIES	102
17	CONCLU	SION	103
18	REFERE	NCES	104
APPEN APPEN APPEN APPEN APPEN	IDIX A: IDIX B: IDIX C: IDIX D: IDIX E: IDIX F: IDIX G:	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS SAR TISSUE SPECIFICATIONS SAR SYSTEM VALIDATION DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS DOWNLINK LTE CA RF CONDUCTED POWERS POWER REDUCTION VERIFICATION SAR PROBE AND DIPOLE CERTIFICATIONS	
	- // / / i.	O.A.C. NODE AND DIT OLE CERTIFICATIONS	

FCC ID: ZNFK300TM	PCTEST* Proud to be part of the recess	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Domo 2 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 2 of 105

1.1 Device Overview

		1
Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
CDMA/EVDO BC10 (§90S)	Voice/Data	817.90 - 823.10 MHz
CDMA/EVDO BC0 (§22H)	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
LTE Band 71	Voice/Data	665.5 - 695.5 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

FCC ID: ZNFK300TM	POTEST*	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 3 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Fage 3 01 105

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 Maximum Output Power

CDMA B	CDMA BC10 (815 MHz)				
	Modulated Average Output Power				
	(in dBm)				
	1x-RTT	EVDO Rev 0	EVDO Rev A		
Max allowed power	25.2	25.2	25.2		
Nominal	24.7	24.7	24.7		
CDMA B	CO (835 MF	lz)			
	Modulated Average Output Power				
		(in dBm)			
	1x-RTT	EVDO Rev 0	EVDO Rev A		
Max allowed power	25.2	25.2	25.2		
Nominal	24.7	24.7	24.7		
CDMA B	C1 (1900 MI	Hz)			
	Modulate	d Average Out	put Power		
	(in dBm)				
	1x-RTT	EVDO Rev 0	EVDO Rev A		
Max allowed power	24.7	24.7	24.7		
Nominal	24.2	24.2	24.2		

	GSM/GPRS/EDGE 850								
	Voice (in dBm)	Data	Data - Burst Average GMSK (in dBm)			Data	a - Burst Avera	age 8-PSK (in d	Bm)
	1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
Max allowed power	32.7	32.7	31.7	29.7	28.7	27.7	25.7	24.7	23.7
Nominal	32.2	32.2	31.2	29.2	28.2	27.2	25.2	24.2	23.2
	•		GSM/GP	RS/EDGE 19	000	•			
	Voice Data - Burst Average GMSK (in dBm)			Data	a - Burst Avera	age 8-PSK (in d	Bm)		
	1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
Max allowed power	30.7	30.7	28.7	26.7	25.7	26.7	24.7	23.7	22.7
Nominal	30.2	30.2	28.2	26.2	25.2	26.2	24.2	23.2	22.2

FCC ID: ZNFK300TM	PCTEST* Poud to be part of seemest	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 4 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 4 01 105

UMTS	UMTS Band 5 (850 MHz)				
	Modulated Average Output Power (in dBm)				
	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6		
Max allowed power	25.2	25.2	25.2		
Nominal	24.7	24.7	24.7		
UMTS	Band 4 (175	50 MHz)			
	Modulated Average Output Power (in dBm)				
	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6		
Max allowed power	24.7	24.7	24.7		
Nominal	24.2	24.2	24.2		
UMTS	Band 2 (190	00 MHz)			
	Modulated Average Output Power (in dBm)				
	3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6		
Max allowed power	24.7	24.7	24.7		
Nominal	24.2	24.2	24.2		

FCC ID: ZNFK300TM	PCTEST Poud to be part of the recent	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 5 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Fage 5 01 105

		Modulated
Mode / Band		Average Output
		Power (in dBm)
LTE FDD Band 71	Max allowed power	25.2
LIE FUU Ballu /1	Nominal	24.7
LTE FDD Band 12	Max allowed power	25.2
LIE FUU Ballu 12	Nominal	24.7
LTE FDD Band 13	Max allowed power	25.2
LIE FDD Ballu 13	Nominal	24.7
LTE FDD Band 5	Max allowed power	25.2
LIE FUU Ballu 3	Nominal	24.7
LTE FDD Band 26	Max allowed power	25.2
LIE FUU Ballu 20	Nominal	24.7
LTE FDD Band 4	Max allowed power	24.7
LTE FDD Ballu 4	Nominal	24.2
LTE FDD Band 66	Max allowed power	24.7
LIE FDD Ballu 00	Nominal	24.2
LTE FDD Band 2	Max allowed power	24.7
LTE FDD Ballu 2	Nominal	24.2
LTE FDD Band 25	Max allowed power	24.7
LIE FUU Ballu 23	Nominal	24.2
LTE TDD Band 41 (PC3)	Max allowed power	24.7
LIL IDD Ballu 41 (PC3)	Nominal	24.2
LTE TDD Band 41 (PC2)	Max allowed power	27.7
LIE IDD Ballu 41 (PC2)	Nominal	27.2

FCC ID: ZNFK300TM	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Domo 6 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20 Portable Handset			Page 6 of 105
ON DOTEST				DEV/ 24 4 M

		IEEE 802.11 (in dBm)							
Mode	Band	b		g		n			
	mum / al Power	Max	Nom.	Max	Nom.	Max	Nom.		
2.4 GHz WIFI	2.45 GHz	23.0	22.0	21.0 ch. 1: 18.0		20.0 ch. 1: 17.5 ch. 11: 18.0			

Bluetooth (in dBm)				
Max	Nom			
9.5	8.5			

Bluetooth LE (in dBm)				
Max	Nom			
3.5	2.5			

FCC ID: ZNFK300TM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 7 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 7 of 105
ON DOTEST				DE\/ 21 / M

Mode Band			IEEE 802.11 (in dBm)							
		а		n		ac				
	/ Nominal wer	Max	Nom.	Max	Nom.	Max	Nom.			
	5200 MHz	19.0	18.0	18.5	17.5	18.5	17.5			
		ch. 36: 17.0	16.0	ch. 36: 17.0	16.0	ch. 36: 17.0	16.0			
	5300 MHz	19.0	18.0	18.5	17.5	18.5	17.5			
		ch. 64: 17.0	16.0	ch. 64: 17.0	16.0	ch. 64: 17.0	16.0			
5 GHz		19.5	18.5	19.0	18.0	19.0	18.0			
WIFI (20MHz BW)	5500 MHz	ch. 100: 17.0 ch. 104: 19.0 ch. 108: 19.0 ch. 112: 19.0 ch. 116: 19.0 ch. 120: 19.0 ch. 124: 19.0 ch. 128: 19.0	16.0 18.0 18.0 18.0 18.0 18.0 18.0	ch. 100: 17.0 ch. 104: 18.5 ch. 108: 18.5 ch. 112: 18.5 ch. 116: 18.5 ch. 120: 18.5 ch. 124: 18.5 ch. 128: 18.5	16.0 17.5 17.5 17.5 17.5 17.5 17.5	ch. 100: 17.0 ch. 104: 18.5 ch. 108: 18.5 ch. 112: 18.5 ch. 116: 18.5 ch. 120: 18.5 ch. 124: 18.5 ch. 128: 18.5	16.0 17.5 17.5 17.5 17.5 17.5 17.5			
	5800 MHz	19.5	18.5	19.0	18.0	19.0	18.0			
	5200 MHz			16.5 ch. 38: 15.5	15.5 14.5	16.5 ch. 38: 15.5	15.5 14.5			
5 GHz	5300 MHz			16.5 ch. 62: 15.5	15.5 14.5	16.5 ch. 62: 15.5	15.5 14.5			
WIFI (40MHz BW)	5500 MHz			17.0 ch. 102: 14.0 ch. 110: 16.5 ch. 118: 16.5	16.0 13.0 15.5	17.0 ch. 102: 14.0 ch. 110: 16.5 ch. 118: 16.5	16.0 13.0 15.5 15.5			
	5800 MHz			17.0	16.0	17.0	16.0			
5 GHz	5200 MHz 5300 MHz					15.5 15.5	14.5 14.5			
WIFI (80MHz	5500 MHz					16.0	15.0			
BW)						ch. 106: 13.0 ch. 122: 15.5	12.0 14.5			
	5800 MHz					16.0	15.0			

FCC ID: ZNFK300TM	PCTEST Poud to be part of the recent	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 8 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 6 01 105

1.3.2 Reduced Output Power

Mode	Band	IEEE 802.11 (in dBm)							
Wode	Dana	b		g		n			
	mum / al Power	Max	Nom.	Ma	ax	Nom.	Ma	ax	Nom.
2.4	2.45	21.0	20.0	21	.0	20.0	20	.0	19.0
GHz WIFI	GHz			ch. 1: ch. 11:	18.0 18.5	17.0 17.5	ch. 1: ch. 11:	17.5 18.0	16.5 17.0

FCC ID: ZNFK300TM	PCTEST Proud to be past of deleness	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 0 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 9 of 105

Mode Band			IEEE 802.11 (in dBm)						
Mode	Danu	а		n		ac			
	/ Nominal wer	Max	Nom.	Max	Nom.	Max	Nom.		
	5200 MHz	17.0	16.0	17.0	16.0	17.0	16.0		
	5300 MHz	17.0	16.0	17.0	16.0	17.0	16.0		
		17.5	16.5	17.5	16.5	17.5	16.5		
5 GHz WIFI (20MHz BW)	5500 MHz	ch. 100: 17.0 ch. 104: 17.0 ch. 108: 17.0 ch. 112: 17.0 ch. 116: 17.0 ch. 120: 17.0 ch. 124: 17.0 ch. 128: 17.0	16.0 16.0 16.0 16.0 16.0	ch. 100: 17.0 ch. 104: 17.0 ch. 108: 17.0 ch. 112: 17.0 ch. 116: 17.0 ch. 120: 17.0 ch. 124: 17.0 ch. 128: 17.0	16.0 16.0 16.0	ch. 100: 17.0 ch. 104: 17.0 ch. 108: 17.0 ch. 112: 17.0 ch. 116: 17.0 ch. 120: 17.0 ch. 124: 17.0 ch. 128: 17.0	16.0 16.0 16.0 16.0 16.0 16.0 16.0		
	5800 MHz	17.5	16.5	17.5	16.5	17.5	16.5		
	5200 MHz			16.5 ch. 38: 15.5	15.5 14.5	16.5 ch. 38: 15.5	15.5 14.5		
5 GHz	5300 MHz			16.5 ch. 62: 15.5	15.5	16.5 ch. 62: 15.5	15.5 14.5		
WIFI (40MHz BW)	5500 MHz			17.0 ch. 102: 14.0 ch. 110: 16.5 ch. 118: 16.5	16.0 13.0 15.5	17.0 ch. 102: 14.0 ch. 110: 16.5 ch. 118: 16.5	16.0 13.0 15.5 15.5		
	5800 MHz			17.0	16.0	17.0	16.0		
	5200 MHz					15.5	14.5		
5 GHz	5300 MHz					15.5	14.5		
WIFI (80MHz BW)	5500 MHz					16.0 ch. 106: 13.0 ch. 122: 15.5	15.0 12.0 14.5		
	5800 MHz					16.0	15.0		

FCC ID: ZNFK300TM	POTEST Poud to be part of the recessed	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 10 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 10 of 105

1.4 DUT Antenna Locations

The overall dimensions of this device are $> 9 \times 5$ cm. The overall diagonal dimension of the device is ≤ 160 mm and the diagonal display is ≤ 150 mm. A diagram showing the location of the device antennas can be found in Appendix E.

Table 1-1
Device Edges/Sides for SAR Testing

Device Lages/oldes for SAIN Testing									
Mode	Back	Front	Тор	Bottom	Right	Left			
GPRS 850	Yes	Yes	No	Yes	No	Yes			
GPRS 1900	Yes	Yes	No	Yes	Yes	No			
UMTS 850	Yes	Yes	No	Yes	No	Yes			
UMTS 1750	Yes	Yes	No	Yes	Yes	No			
UMTS 1900	Yes	Yes	No	Yes	Yes	No			
EVDO BC10 (§90S)	Yes	Yes	No	Yes	No	Yes			
EVDO BC0 (§22H)	Yes	Yes	No	Yes	No	Yes			
PCS EVDO	Yes	Yes	No	Yes	Yes	No			
LTE Band 71	Yes	Yes	No	Yes	No	Yes			
LTE Band 12	Yes	Yes	No	Yes	No	Yes			
LTE Band 13	Yes	Yes	No	Yes	No	Yes			
LTE Band 26 (Cell)	Yes	Yes	No	Yes	No	Yes			
LTE Band 66 (AWS)	Yes	Yes	No	Yes	Yes	No			
LTE Band 25 (PCS)	Yes	Yes	No	Yes	Yes	No			
LTE Band 41	Yes	Yes	No	Yes	Yes	No			
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes			
5 GHz WLAN	Yes	Yes	Yes	No	No	Yes			
Bluetooth	Yes	Yes	Yes	No	No	Yes			

Note: Particular DUT edges were not required to be evaluated for wireless router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-2A, U-NII-2C operations are disabled.

FCC ID: ZNFK300TM	PCTEST Proud to be part of defences	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 44 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 11 of 105

PCTEST REV 21.4 M 09/11/2019

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2
Simultaneous Transmission Scenarios

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Notes
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
2	1x CDMA voice + 5 GHz WI-FI	Yes	Yes	N/A	
3	1x CDMA voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	^Bluetooth Tethering is considered
4	1x CDMA voice + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	N/A	^Bluetooth Tethering is considered
5	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	
6	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	
7	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	^Bluetooth Tethering is considered
8	GSM voice + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	N/A	^Bluetooth Tethering is considered
9	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	
10	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	
11	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	^Bluetooth Tethering is considered
12	UMTS + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	Yes^	^Bluetooth Tethering is considered
13	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	
14	LTE + 5 GHz WI-FI	Yes	Yes	Yes	
15	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	^Bluetooth Tethering is considered
16	LTE + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes^	Yes	Yes^	^Bluetooth Tethering is considered
17	CDMA/EVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
18	CDMA/EVDO data + 5 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
19	CDMA/EVDO data + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered
20	CDMA/EVDO data + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes*^	Yes*	Yes^	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered
21	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
22	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	* Pre-installed VOIP applications are considered
23	GPRS/EDGE + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered
24	GPRS/EDGE + 2.4 GHz Bluetooth + 5 GHz WI-FI	Yes*^	Yes*	Yes^	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered

- 1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is only supported for the U-NII-1 and U-NII-3 by S/W, therefore U-NII-2A and U-NII-2C were not evaluated for wireless router conditions.
- 6. This device supports VOLTE.
- 7. This device supports VOWIFI.
- 8. This device supports Bluetooth Tethering.

FCC ID: ZNFK300TM	PCTEST Proud to be part of decisions	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 12 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 12 of 105

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WIFI, only 2.4 GHz, U-NII-1, and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

When U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band for applicable exposure condition(s) according to FCC KDB Publication 248227 D01v02r02.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are supported

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix F.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

This device supports both Power Class 2 (PC2) and Power Class 3 (PC3) for LTE Band 41. Per May 2017 TCB Workshop Notes, SAR tests were performed with Power Class 3 (given the specific UL/DL limitations for Power Class 2). Additionally, SAR testing for the power class 2 condition was evaluated for the highest configuration in Power Class 3 for each test configuration to confirm the results were scalable linearly (See Section 14.1).

This device supports LTE Carrier Aggregation (CA) for LTE Band 41 with two component carriers in the uplink. SAR Measurements and conducted powers were evaluated per 2017 Fall TCB Workshop Notes.

FCC ID: ZNFK300TM	PCTEST Proud to be part of the releases	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 42 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 13 of 105

This device supports 64QAM on the uplink for LTE Operations. Conducted powers for 64QAM uplink configurations were measured per Section 5.1 of FCC KDB Publication 941225D05v02r05. SAR was not required for 64QAM since the highest maximum output power for 64QAM is $\leq \frac{1}{2}$ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg, per Section 5.2.4 of FCC KDB Publication 941225 D05v02r05.

1.7 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- May 2017 TCB Workshop Notes (LTE Band 41 Power Class 2/3)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

FCC ID: ZNFK300TM	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 44 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 14 of 105

		TE Information					
orm Factor			Portable Handset				
requency Range of each LTE transmission band		LTE	Band 71 (665.5 - 695.5	MHz)			
			Band 12 (699.7 - 715.3				
			Band 13 (779.5 - 784.5				
		LTE Ba	nd 26 (Cell) (814.7 - 848	3.3 MHz)			
		LTE Ba	and 5 (Cell) (824.7 - 848.	.3 MHz)			
	LTE Band 66 (AWS) (1710.7 - 1779.3 MHz)						
			d 4 (AWS) (1710.7 - 175				
			d 25 (PCS) (1850.7 - 19				
			d 2 (PCS) (1850.7 - 190				
hannal Dandwidtha		LTE Band 41 (2498.5 - 2687.5 MHz)					
hannel Bandwidths	LTE Band 71: 5 MHz, 10 MHz, 15 MHz, 20 MHz LTE Band 12: 1.4 MHz, 3 MHz, 5 MHz, 10 MHz						
			E Band 13: 5 MHz, 10 M				
): 1.4 MHz, 3 MHz, 5 MH				
			Cell): 1.4 MHz, 3 MHz, 5				
	L		4 MHz, 3 MHz, 5 MHz, 1		-lz		
			4 MHz, 3 MHz, 5 MHz, 10				
			4 MHz, 3 MHz, 5 MHz, 1				
			MHz, 3 MHz, 5 MHz, 10		Z		
harred Niverbase and Francisco (MIIII)	Len		11: 5 MHz, 10 MHz, 15 M		LEAL		
hannel Numbers and Frequencies (MHz) TE Band 71: 5 MHz	Low 665.5 /	Low-Mid	Mid 680 5 (133307)	Mid-High	High		
E Band 71: 5 MHz		133147) 33172)	680.5 (133297) 680.5 (133297)	693 (1	133447) 33422)		
E Band 71: 10 MHz		133197)	680.5 (133297)		133397)		
E Band 71: 13 MHz		33222)	680.5 (133297)	688 (1			
TE Band 12: 1.4 MHz		(23017)	707.5 (23095)	715.3 (
TE Band 12: 3 MHz	700.5 (23025)		707.5 (23095)	714.5			
E Band 12: 5 MHz		(23035)	707.5 (23095)	713.5 (
TE Band 12: 10 MHz		23060)	707.5 (23095)		23130)		
TE Band 13: 5 MHz	779.5	(23205)	782 (23230)	784.5 ((23255)		
TE Band 13: 10 MHz	N	VA .	782 (23230)	N	/A		
TE Band 26 (Cell): 1.4 MHz	814.7	(26697)	831.5 (26865)	848.3 ((27033)		
E Band 26 (Cell): 3 MHz	815.5	(26705)	831.5 (26865)	847.5 ((27025)		
E Band 26 (Cell): 5 MHz		(26715)	831.5 (26865)		(27015)		
E Band 26 (Cell): 10 MHz	819 (26740)		831.5 (26865)	844 (26990)			
E Band 26 (Cell): 15 MHz	821.5 (26765)		831.5 (26865)	841.5 (26965)			
TE Band 5 (Cell): 1.4 MHz	824.7 (20407)		836.5 (20525)	848.3 (20643)			
TE Band 5 (Cell): 3 MHz	825.5 (20415) 826.5 (20425)		836.5 (20525)	847.5 (20635)			
IE Band 5 (Cell): 5 MHz IE Band 5 (Cell): 10 MHz			836.5 (20525)	846.5 (20625)			
TE Band 66 (AWS): 1.4 MHz		20450) (131979)	836.5 (20525)	844 (20600) 1770 3 (133665)			
TE Band 66 (AWS): 3 MHz		(131987)	1745 (132322) 1745 (132322)	1779.3 (132665) 1778.5 (132657)			
TE Band 66 (AWS): 5 MHz		(131997)	1745 (132322)	1778.5 (132657)			
TE Band 66 (AWS): 10 MHz		132022)	1745 (132322)	1777.5 (132647)			
TE Band 66 (AWS): 15 MHz		(132047)	1745 (132322)	1773 (132522)			
TE Band 66 (AWS): 20 MHz		132072)	1745 (132322)		132572)		
TE Band 4 (AWS): 1.4 MHz	1710.7	(19957)	1732.5 (20175)	1754.3 (20393)			
TE Band 4 (AWS): 3 MHz	1711.5	(19965)	1732.5 (20175)	1753.5	(20385)		
TE Band 4 (AWS): 5 MHz	1712.5	(19975)	1732.5 (20175)	1752.5	(20375)		
TE Band 4 (AWS): 10 MHz		(20000)	1732.5 (20175)	1750 (20350)			
TE Band 4 (AWS): 15 MHz		(20025)	1732.5 (20175)		(20325)		
TE Band 4 (AWS): 20 MHz		(20050)	1732.5 (20175)		20300)		
TE Band 25 (PCS): 1.4 MHz		(26047)	1882.5 (26365)		(26683)		
TE Band 25 (PCS): 3 MHz		(26055)	1882.5 (26365)		(26675)		
TE Band 25 (PCS): 5 MHz TE Band 25 (PCS): 10 MHz		(26065)	1882.5 (26365)		(26665)		
E Band 25 (PCS): 15 MHz		(26090) (26115)	1882.5 (26365) 1882.5 (26365)	1910 (1907.5			
E Band 25 (PCS): 15 MHz		(26140)	1882.5 (26365)	1907.5			
E Band 2 (PCS): 1.4 MHz		(18607)	1880 (18900)		(19193)		
E Band 2 (PCS): 3 MHz		(18615)	1880 (18900)		(19185)		
E Band 2 (PCS): 5 MHz		(18625)	1880 (18900)		(19175)		
TE Band 2 (PCS): 10 MHz		(18650)	1880 (18900)	1905 (
E Band 2 (PCS): 15 MHz	1857.5	(18675)	1880 (18900)		(19125)		
TE Band 2 (PCS): 20 MHz	1860 ((18700)	1880 (18900)		19100)		
E Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
E Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)		
E Band 41: 15 MHz	2506 (39750)	2549.5 (40185) 2549.5 (40185)	2593 (40620) 2593 (40620)	2636.5 (41055)	2680 (41490)		
E Band 41: 20 MHz E Category	2506 (39750)	2049.0 (40160)	L UE Cat 7, UL UE Cat	2636.5 (41055) 13	2680 (41490)		
odulations Supported in UL			QPSK, 16QAM, 64QAM				
E MPR Permanently implemented per 3GPP TS			Dis, 10 Will, 0 TO/NIV				
6.101 section 6.2.3~6.2.5? (manufacturer attestation			YES				
be provided)							
MPR (Additional MPR) disabled for SAR Testing?		-	YES	-			
E Carrier Aggregation Possible Combinations	The te	chnical description incl	udes all the possible car	rier aggregation combi	nations		
E Additional Information	This device does no shown in Section 9 an	nt support full CA feature d Appendix F. All uplint	es on 3GPP Release 11. k communications are id The following LTE Relea	. It supports carrier ago entical to the Release 8	gregation features a 3 Specifications. Up		

FCC ID: ZNFK300TM	POTEST Poud to be part of the recessed	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 15 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 15 of 105

© 2020 PCTEST

REV 21.4 M

3

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFK300TM	PCTEST: Proud to be part of the recess	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 16 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Faye 10 01 105

DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

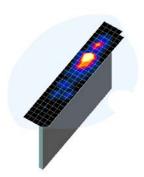


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			$\Delta z_{zoom}(n)$	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFK300TM	PCTEST* Proud to be part of the recess	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 17 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 17 of 105

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

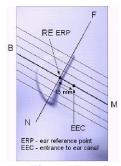


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2
Front, back and side view of SAM Twin Phantom

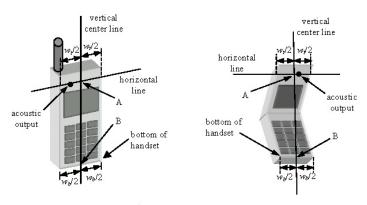


Figure 5-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: ZNFK300TM	POTEST* Poud to be part of seeness	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 18 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 16 01 105

6 TEST CONFIGURATION POSITIONS

6.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 **Positioning for Cheek**

The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

Positioning for Ear / 15° Tilt 6.3

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

	FCC ID: ZNFK300TM	PCTEST* Provid to be part of received	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dogg 10 of 105	
	1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 19 of 105	
© 202	0 PCTEST				REV 21.4 M	

09/11/2019

Figure 6-2 Front, Side and Top View of Ear/15° Tilt
Position

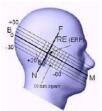


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

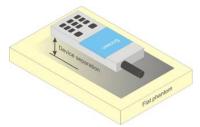


Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

FCC ID: ZNFK300TM	PCTEST Poud to be part of the element	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 20 of 105

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: ZNFK300TM	PCTEST* Proud to be part of received	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 21 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 21 01 105

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR Head	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFK300TM	PCTEST* Proud to be part of received	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 22 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 22 01 105

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

8.4.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

FCC ID: ZNFK300TM	PCTEST Proud to be part of the releases	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 22 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 23 of 105

PCTEST REV 21.4 M 09/11/2019

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1
Parameters for Max. Power for RC1

Parameter	Units	Value
Î _{or}	dBm/1.23 MHz	-104
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 8-2
Parameters for Max. Power for RC3

Parameter	Units	Value
lor	dBm/1.23 MHz	-86
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

8.4.3 Body-worn SAR Measurements

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

8.4.4 Body-worn SAR Measurements for EVDO Devices

For handsets with EVDO capabilities, the 3G SAR test reduction procedure is applied to EVDO Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

FCC ID: ZNFK300TM	PCTEST Poud to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 24 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 24 of 105

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For EVDO data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with EVDO Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

8.5 SAR Measurement Conditions for UMTS

8.5.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.5.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.5.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.5.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in

FCC ID: ZNFK300TM	PCTEST* Proud to be part of recess	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 25 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 25 of 105

12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.5.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.6 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.6.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

8.6.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.6.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.6.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.

FCC ID: ZNFK300TM	PCTEST* Provid to be part of reseased	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 26 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 26 of 105

- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.6.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

8.6.6 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

8.7 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.7.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

FCC ID: ZNFK300TM	PCTEST Proud to be part of defences	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 27 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 27 of 105

8.7.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg.

8.7.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled, SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.7.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.

8.7.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.

8.7.6 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is

FCC ID: ZNFK300TM	PCTEST Proud to be part of the releases	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 28 of 105

the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.7.7 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.6).

8.7.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required.

FCC ID: ZNFK300TM	PCTEST Poud to be part of the element	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 20 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 29 of 105

9.1 CDMA Conducted Powers

Table 9-1
Maximum Conducted Power

Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	FCH+SCH	FCH	(RTAP)	(RETAP)
Cellular	564	90S	820.1	24.78	24.80	23.80	25.10	25.06	25.07
	1013	22H	824.7	24.76	24.82	23.80	25.09	25.02	25.03
Cellular	384	22H	836.52	24.80	24.87	23.85	25.15	25.10	25.11
	777	22H	848.31	24.86	24.91	23.93	25.19	25.12	25.02
	25	24E	1851.25	24.23	24.27	23.25	24.52	24.53	24.56
PCS	600	24E	1880	24.23	24.25	23.26	24.51	24.57	24.51
	1175	24E	1908.75	24.24	24.27	23.29	24.57	24.62	24.65

Note: RC1 is only applicable for IS-95 compatibility. For FCC Rule Part 90S, Per FCC KDB Publication 447498 D01v06 4.1.g), only one channel is required since the device operates within the transmission range of 817.90 – 823.10 MHz.

Figure 9-1
Power Measurement Setup

FCC ID: ZNFK300TM	POTEST* Poud to be part of decement	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 30 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 30 01 103

9.2 **GSM Conducted Powers**

Table 9-2 Maximum Conducted Power

Maximum Conducted Power										
	Maximum Burst-Averaged Output Power									
		Voice	GPRS/EDGE Data (GMSK)			EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS GPRS GPRS GPRS [dBm] [dBm] [dBm] [dBm] 1 Tx Slot 2 Tx Slot 3 Tx Slot 4 Tx Slot			EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	32.56	32.44	31.36	29.66	28.59	27.70	25.13	24.25	22.85
GSM 850	190	32.57	32.56	31.47	29.70	28.70	27.65	25.42	24.23	23.12
	251	32.56	32.60	31.50	29.68	28.63	27.63	25.50	24.36	23.29
	512	30.69	30.70	28.67	26.68	25.67	26.14	24.50	23.25	22.70
GSM 1900	661	30.60	30.60	28.70	26.59	25.70	26.17	24.51	23.25	22.66
	810	30.70	30.68	28.64	26.70	25.69	26.29	24.61	23.46	22.69

	Calculated Maximum Frame-Averaged Output Power										
		Voice	GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	23.36	23.24	25.17	25.23	25.41	18.50	18.94	19.82	19.67	
GSM 850	190	23.37	23.36	25.28	25.27	25.52	18.45	19.23	19.80	19.94	
	251	23.36	23.40	25.31	25.25	25.45	18.43	19.31	19.93	20.11	
	512	21.49	21.50	22.48	22.25	22.49	16.94	18.31	18.82	19.52	
GSM 1900	661	21.40	21.40	22.51	22.16	22.52	16.97	18.32	18.82	19.48	
	810	21.50	21.48	22.45	22.27	22.51	17.09	18.42	19.03	19.51	
GSM 850	Frame	23.00	23.00	25.01	24.77	25.02	18.00	19.01	19.77	20.02	
GSM 1900	Avg.Targets:	21.00	21.00	22.01	21.77	22.02	17.00	18.01	18.77	19.02	

FCC ID: ZNFK300TM	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 24 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 31 of 105

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

GSM Class: B

GPRS Multislot class: 12 (Max 4 Tx uplink slots) EDGE Multislot class: 12 (Max 4 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-2
Power Measurement Setup

FCC ID: ZNFK300TM	PCTEST: Provid to be part of the decrees	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 22 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 32 of 105
20 DCTEST			DE\/ 21 / M

9.3 UMTS Conducted Powers

Table 9-3
Maximum Conducted Power

3GPP Release	Mode 3GPP 34.121 Subtest		Cellular Band [dBm]		AWS Band [dBm]			PCS Band [dBm]			MPR [dB]	
Version		Gubtest	4132	4183	4233	1312	1412	1513	9262	9400	9538	
99	WCDMA	12.2 kbps RMC	24.95	24.97	25.06	24.40	24.39	24.36	24.55	24.45	24.53	-
99	VVCDIVIA	12.2 kbps AMR	24.92	24.98	25.05	24.36	24.39	24.37	24.50	24.43	24.52	-
6		Subtest 1	24.11	24.15	24.11	23.61	23.44	23.44	23.59	23.42	23.48	1
6	HSDPA	Subtest 2	24.06	24.10	24.13	23.55	23.39	23.40	23.54	23.35	23.44	1
6	TIODEA	Subtest 3	23.57	23.63	23.60	23.07	22.90	22.91	23.05	22.92	22.92	1.5
6		Subtest 4	23.56	23.49	23.64	23.04	22.91	22.90	23.04	22.77	22.93	1.5
6		Subtest 1	22.12	22.13	22.15	21.65	21.49	21.49	21.70	21.54	21.53	3
6		Subtest 2	22.14	22.12	22.18	21.53	21.39	21.43	21.56	21.40	21.45	3
6	HSUPA	Subtest 3	23.12	23.11	23.15	22.56	22.43	22.46	22.60	22.46	22.47	2
6		Subtest 4	21.65	21.65	21.69	21.06	20.91	20.93	21.08	21.11	21.01	3.5
6		Subtest 5	23.07	23.09	23.10	22.53	22.43	22.39	22.59	22.41	22.40	2

This device does not support DC-HSDPA.

Figure 9-3
Power Measurement Setup

FCC ID: ZNFK300TM	POSTEST Poud to be part of decensed	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 22 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 33 of 105
20 DCTEST				DE\/ 21 / M

LTE Conducted Powers 9.4

9.4.1 LTE Band 71

Table 9-4 LTE Band 71 Maximum Conducted Powers - 20 MHz Bandwidth

	ZTZ Bana	7 I Maxima	LTE Band 71	ers - 20 Minz Band	Width
			20 MHz Bandwidth		
			Mid Channel		
Modulation	RB Size	B Size RB Offset	133297 (680.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	JOFF [UB]	
	1	0	24.90		0
	1	50	25.00	0	0
	1	99	24.68		0
QPSK	50	0	23.92		1
	50	25	23.96	0-1	1
	50	50	23.92	0-1	1
	100	0	23.91		1
	1	0	24.10		1
	1	50	24.12	0-1	1
	1	99	23.95		1
16QAM	50	0	22.97		2
	50	25	22.99	0-2	2
	50	50	22.91	0-2	2
	100	0	23.01		2
	1	0	23.09		2
	1	50	23.12	0-2	2
	1	99	22.97		2
64QAM	50	0	21.94		3
	50	25	21.99	0-3	3
	50	50	21.87	0-3	3
	100	0	21.96		3

Note: LTE Band 71 at 20 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFK300TM	Poud to be part of the recession	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 24 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 34 of 105

© 2020 PCTEST © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Table 9-5
LTE Band 71 Maximum Conducted Powers - 15 MHz Bandwidth

	LTE Band 71 15 MHz Bandwidth							
Modulation	RB Size	RB Offset	Mid Channel 133297 (680.5 MHz) Conducted Power	MPR Allowed per 3GPP [dB]	MPR [dB]			
	4	0	[dBm]					
	1	0	24.60		0			
	1	36	24.71	0	0			
QPSK	1	74	24.55		0			
QPSK	36	0	23.80	0-1	1			
	36	18	23.81		1			
	36	37	23.79		1			
	75	0	23.80		1			
	1	0	24.07	0.4	1			
	1	36 74	24.13	0-1	1			
400414			23.93					
16QAM	36	0	22.86		2			
	36	18	22.89	0-2	2			
	36	37	22.81		2			
	75	0	22.85		2			
	1	0	22.91	0.0	2			
	1	36	22.97	0-2	2			
	1	74	22.78		2			
64QAM	36	0	21.90		3			
	36	18	21.94	0-3	3			
	36	37	21.92		3			
	75	0	21.83		3			

Note: LTE Band 71 at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFK300TM	Provide to be part of the element	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dog 25 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 35 of 105
ON DOTEST				DE\/ 21 / M

Table 9-6 LTE Band 71 Maximum Conducted Powers - 10 MHz Bandwidth

		LIL Du	ila 7 i Maximani	LTE Band 71	10 10 11112	Janawiath		
				10 MHz Bandwidth				
Modulation	RB Size	RB Offset	Low Channel 133172 (668.0 MHz)	Mid Channel 133297 (680.5 MHz)	High Channel 133422 (693.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Conducted Power [dBm]			
	1	0	24.80	24.71	24.65	0	0	
	1	25	24.94	24.83	24.86		0	
	1	49	24.75	24.59	24.69		0	
QPSK	25	0	23.87	23.86	23.83	0-1	1	
	25	12	23.91	23.83	23.81		1	
	25	25	23.95	23.81	23.75		1	
	50	0	23.94	23.85	23.82		1	
	1	0	24.15	23.93	23.68	0-1	1	
16QAM	1	25	24.19	24.05	23.80		1	
	1	49	24.11	23.86	23.69		1	
	25	0	23.04	22.94	22.95	0-2	2	
	25	12	23.09	22.92	22.92		2	
	25	25	23.13	22.88	22.84		2	
	50	0	23.07	22.91	22.83		2	
	1	0	22.78	22.89	22.96	0-2	2	
64QAM	1	25	22.91	22.98	22.93		2	
	1	49	22.76	22.79	22.99		2	
	25	0	22.05	21.99	21.96	0-3	3	
	25	12	22.10	22.01	21.91		3	
	25	25	22.13	21.96	21.85		3	
	50	0	22.08	21.89	21.90		3	

Table 9-7 LTE Band 71 Maximum Conducted Powers - 5 MHz Bandwidth

LTE Band 71 5 MHz Bandwidth							
Modulation	RB Size	RB Offset	Low Channel Mid Channel High Channel				
			133147 (665.5 MHz)	Wil K Allowed	MPR Allowed per 3GPP [dB]	MPR [dB]	
			(Conducted Power [dBm]		
	1	0	24.76	24.64	24.76	0	0
	1	12	24.99	24.88	24.99		0
QPSK	1	24	24.81	24.58	24.79		0
	12	0	23.95	23.79	23.79	0-1	1
	12	6	23.91	23.81	23.81		1
	12	13	23.89	23.76	23.77		1
	25	0	23.88	23.77	23.82		1
16QAM	1	0	24.20	23.67	23.68	0-1	1
	1	12	24.19	23.89	23.93		1
	1	24	24.18	23.78	23.73		1
	12	0	22.96	22.93	22.87	0-2	2
	12	6	23.05	22.97	22.85		2
	12	13	23.01	22.88	22.81		2
	25	0	22.98	22.87	22.81		2
64QAM	1	0	23.05	23.14	22.83	0-2	2
	1	12	23.00	23.20	23.07		2
	1	24	23.10	23.11	22.91		2
	12	0	21.83	21.92	21.86	0-3	3
•	12	6	21.96	21.93	21.89		3
-	12	13	21.92	21.87	21.85		3
	25	0	21.97	21.89	21.84		3

FCC ID: ZNFK300TM	PCTEST Proud to be part of releases	SAR EVALUATION REPORT	G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 26 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 36 of 105

9.4.2 LTE Band 12

Table 9-8
LTE Band 12 Maximum Conducted Powers - 10 MHz Bandwidth

	LTE Band 12 Waximum Conducted Fowers - 10 Winz Bandwidth LTE Band 12 10 MHz Bandwidth							
Modulation	RB Size	RB Offset	Mid Channel 23095 (707.5 MHz) Conducted Power [dBm] 24.91	MPR Allowed per 3GPP [dB]	MPR [dB]			
	1	25	25.01	0	0			
	1	49	24.84	Ü	0			
QPSK	25	0	24.01		1			
	25	12	24.02	0-1	1			
	25	25	23.97		1			
	50	0	23.98		1			
	1	0	24.18	0-1	1			
	1	25	24.20		1			
	1	49	23.96		1			
16QAM	25	0	23.02		2			
	25	12	23.02	0-2	2			
	25	25	22.99	02	2			
	50	0	23.00		2			
	1	0	23.11		2			
	1	25	23.17	0-2	2			
	1	49	22.97		2			
64QAM	25	0	22.05		3			
	25	12	22.06	0-3	3			
	25	25	22.04	0-3	3			
	50	0	22.14		3			

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFK300TM	POTEST Poud to be part of decement	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 37 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 37 01 103

Table 9-9 LTE Band 12 Maximum Conducted Powers - 5 MHz Bandwidth

				LTE Band 12			
Modulation	RB Size	RB Offset	Low Channel 23035 (701.5 MHz)	5 MHz Bandwidth Mid Channel 23095 (707.5 MHz)	High Channel 23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.74	24.72	24.65		0
	1	12	24.98	24.95	24.90	0	0
	1	24	24.95	24.70	24.62		0
QPSK	12	0	23.79	23.86	23.80		1
	12	6	23.85	23.89	23.84	0-1	1
	12	13	23.82	23.83	23.71		1
	25	0	23.80	23.85	23.71		1
	1	0	24.15	23.98	23.58		1
	1	12	24.12	24.02	23.87	0-1	1
	1	24	24.14	23.74	23.69		1
16QAM	12	0	22.89	22.87	22.83		2
	12	6	22.97	22.91	22.91	0-2	2
	12	13	22.92	22.88	22.79	0-2	2
	25	0	22.93	22.87	22.78		2
	1	0	22.95	22.89	23.04		2
	1	12	23.12	23.06	23.18	0-2	2
	1	24	22.93	22.88	23.08		2
64QAM	12	0	21.82	21.87	21.89		3
	12	6	21.91	21.93	21.92	0-3	3
	12	13	21.88	21.89	21.84	0-3	3
	25	0	21.90	21.89	21.84		3

Table 9-10 LTF Rand 12 Maximum Conducted Powers - 3 MHz Bandwidth

		LIE Da	nd 12 Maximun	n Conducted Po	wers - 3 MHZ B	andwidth	
				LTE Band 12 3 MHz Bandwidth			
			Low Channel 23025	Mid Channel	High Channel 23165	MDD Allowed nor	
Modulation	RB Size	RB Offset	(700.5 MHz)	23095 (707.5 MHz)	(714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			, ,	Conducted Power [dBm	,	- 3011 [02]	
	1	0	24.70	24.69	24.72		0
		-	-			-	
	1	7	24.82	24.78	24.85	0	0
	1	14	24.70	24.67	24.67		0
QPSK	8	0	23.78	23.85	23.74		1
	8	4	23.82	23.86	23.79	0-1	1
	8	7	23.77	23.81	23.72		1
	15	0	23.78	23.82	23.76		1
	1	0	23.75	23.64	24.10	0-1	1
	1	7	23.83	23.67	24.02		1
	1	14	23.68	23.51	24.07		1
16QAM	8	0	22.88	22.80	22.90		2
	8	4	22.91	22.84	22.81	0-2	2
	8	7	22.80	22.79	22.86	0-2	2
	15	0	22.88	22.81	22.78] [2
	1	0	23.05	22.90	22.56		2
	1	7	23.18	22.99	22.72	0-2	2
	1	14	23.04	22.88	22.68	1	2
64QAM	8	0	21.92	21.88	21.89		3
	8	4	21.94	21.91	21.93	1	3
	8	7	21.88	21.88	21.90	0-3	3
	15	0	21.91	21.90	21.85	1	3

FCC ID: ZNFK300TM	PCTEST Poud to be part of determined	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 38 of 105

Table 9-11
LTE Band 12 Maximum Conducted Powers -1.4 MHz Bandwidth

		LIL Dai	TO 12 MAXIII	LTE Band 12	WC13 -1.4 WII12 L	Sanawiatii	
			Low Channel	1.4 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	1]		
	1	0	24.67	24.61	24.75		0
	1	2	24.73	24.66	24.80		0
	1	5	24.68	24.65	24.78	0 [0
QPSK	3	0	24.85	24.83	24.80		0
	3	2	24.88	24.86	24.83	0-1	0
	3	3	24.87	24.55	24.82		0
	6	0	23.79	23.87	23.76		1
	1	0	24.15	23.53	23.51		1
	1	2	24.16	23.49	23.56		1
	1	5	24.13	23.54	23.52	0-1	1
16QAM	3	0	24.19	23.85	23.86] "" [1
	3	2	24.10	23.92	23.91		1
	3	3	24.06	23.94	23.89		1
	6	0	22.72	23.01	22.97	0-2	2
	1	0	22.71	22.79	22.95		2
	1	2	22.79	22.85	23.08		2
	1	5	22.62	22.86	22.93	0-2	2
64QAM	3	0	22.92	22.83	23.04		2
	3	2	22.95	22.84	23.03]	2
	3	3	22.94	22.84	23.05		2
	6	0	22.19	22.01	21.81	0-3	3

FCC ID: ZNFK300TM	PCTEST Proud to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 20 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 39 of 105

LTE Band 13 9.4.3

Table 9-12 LTE Band 13 Maximum Conducted Powers - 10 MHz Bandwidth

	LTE Band 13 10 MHz Bandwidth							
Modulation	RB Size	RB Offset	Mid Channel 23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]	0011 [00]				
	1	0	24.71		0			
	1	25	25.02	0	0			
	1	49	24.78		0			
QPSK	25	0	23.91		1			
	25	12	23.99	0-1	1			
	25	25	23.97		1			
	50	0	23.98		1			
	1	0	24.02		1			
	1	25	24.20	0-1	1			
	1	49	23.94		1			
16QAM	25	0	22.94		2			
	25	12	23.02	0-2	2			
	25	25	22.98	0-2	2			
	50	0	22.95		2			
	1	0	23.00		2			
	1	25	23.15	0-2	2			
	1	49	22.88		2			
64QAM	25	0	21.94		3			
	25	12	22.01	0-3	3			
	25	25	21.98	0-3	3			
	50	0	21.99		3			

FCC ID: ZNFK300TM	POUR to be part of deciment	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 40 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 40 01 105

Table 9-13
LTE Band 13 Maximum Conducted Powers - 5 MHz Bandwidth

	LTE Band 13 5 MHz Bandwidth							
			Mid Channel					
Modulation	RB Size	RB Offset	23230 (782.0 MHz) Conducted Power	MPR Allowed per 3GPP [dB]	MPR [dB]			
			[dBm]					
	1	0	24.65		0			
	1	12	24.83	0	0			
	1	24	24.59		0			
QPSK	12	0	23.85		1			
	12	6	23.94	0-1	1			
	12	13	23.88	0-1	1			
	25	0	23.89		1			
	1	0	23.88		1			
	1	12	24.04	0-1	1			
	1	24	23.82		1			
16QAM	12	0	22.89		2			
	12	6	22.99	0-2	2			
	12	13	22.98	0-2	2			
	25	0	22.95		2			
	1	0	23.03		2			
	1	12	22.96	0-2	2			
	1	24	22.95		2			
64QAM	12	0	21.92		3			
	12	6	21.97	0-3	3			
	12	13	21.96	0-3	3			
	25	0	21.89		3			

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFK300TM	POTEST Poud to be part of the recessed	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 41 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 41 01 105

© 2020 PCTEST REV 21.4 M 09/11/2019

9.4.4 LTE Band 26 (Cell)

Table 9-14
LTE Band 26 (Cell) Maximum Conducted Powers - 15 MHz Bandwidth

	LTE Band 26 (Cell) Maximum Conducted Powers - 15 MHz Bandwidth LTE Band 26 (Cell)							
			15 MHz Bandwidth					
Modulation	RB Size	RB Offset	Mid Channel 26865 (831.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]			
	1	0	24.98		0			
	1	36	25.12	0	0			
	1	74	24.89		0			
QPSK	36	0	24.01		1			
	36	18	24.08	0-1	1			
	36	37	24.07		1			
	75	0	24.06		1			
	1	0	24.20	0-1	1			
	1	36	24.19		1			
	1	74	24.15		1			
16QAM	36	0	22.96		2			
	36	18	23.01	0-2	2			
	36	37	23.08	0-2	2			
	75	0	23.08		2			
	1	0	23.09		2			
	1	36	22.96	0-2	2			
	1	74	22.96		2			
64QAM	36	0	22.07		3			
	36	18	22.07	0-3	3			
	36	37	22.07	0-3	3			
1	75	0	22.01	1	3			

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFK300TM	POSTEST Proud to be part of @ element	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 42 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 42 of 105
20 DCTEST	"			DEV/ 21 / M

REV 21.4 M 09/11/2019

Table 9-15
LTE Band 26 (Cell) Maximum Conducted Powers - 10 MHz Bandwidth

	-	TE Bana	26 (Cell) Maxim	LTE Band 26 (Cell)	I OWCIS - TO WII	iz Banawiatn	
			Low Channel	10 MHz Bandwidth Mid Channel	High Channel	1	
Modulation	RB Size	RB Offset	26740 (819.0 MHz)	26865 (831.5 MHz)	26990 (844.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.85	24.75	24.87		0
	1	25	24.98	24.96	25.10	0	0
	1	49	24.87	24.83	24.98		0
QPSK	25	0	24.07	24.04	24.11	0-1	1
	25	12	24.05	24.00	24.04		1
	25	25	24.07	24.01	23.89		1
	50	0	24.09	24.06	23.99		1
	1	0	23.76	23.70	24.10	0-1	1
	1	25	23.88	24.01	24.14		1
	1	49	23.81	23.95	24.08		1
16QAM	25	0	23.20	23.05	23.18		2
	25	12	23.11	23.16	23.11	0-2	2
	25	25	23.19	23.14	22.97	0-2	2
	50	0	23.19	23.11	23.04		2
	1	0	23.16	23.16	22.86		2
	1	25	23.12	23.13	22.99	0-2	2
	1	49	23.14	23.15	22.82]	2
64QAM	25	0	22.14	22.16	22.20		3
	25	12	22.19	22.12	22.17	0-3	3
	25	25	22.18	22.14	21.98		3
	50	0	22.09	22.17	22.08	1	3

Table 9-16
LTE Band 26 (Cell) Maximum Conducted Powers - 5 MHz Bandwidth

				LTE Band 26 (Cell) 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.73	24.81	24.91		0
	1	12	24.99	24.99	25.10	0	0
	1	24	24.75	24.82	25.01	<u> </u>	0
QPSK	12	0	24.00	24.00	24.02		1
	12	6	24.05	24.03	24.03	0-1	1
	12	13	23.96	24.01	23.91] 0-1	1
	25	0	23.99	23.98	23.93		1
	1	0	23.98	23.85	24.16	0-1	1
	1	12	24.13	24.07	24.13		1
	1	24	23.93	23.87	24.20		1
16QAM	12	0	23.08	23.10	23.11		2
	12	6	23.17	23.13	23.12	0-2	2
	12	13	23.08	23.10	23.01	0-2	2
	25	0	23.09	23.08	23.08		2
	1	0	23.12	23.19	23.05		2
	1	12	23.19	23.20	23.15	0-2	2
	1	24	23.12	23.00	23.09		2
64QAM	12	0	22.06	22.07	22.02		3
	12	6	22.11	22.11	22.03] ,,	3
	12	13	22.01	22.07	21.93	0-3	3
	25	0	22.03	22.10	22.06	1 [3

FCC ID: ZNFK300TM	PCTEST* Proud to be part of received	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 42 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 43 of 105

© 2020 PCTEST REVIEW 02/20/20 - 03/11/20 Politable Platitiset REV 21.4 M 09/11/2019

Table 9-17
LTE Band 26 (Cell) Maximum Conducted Powers - 3 MHz Bandwidth

				LTE Band 26 (Cell) 3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26705 (815.5 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27025 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.88	24.83	24.83		0
	1	7	24.91	24.97	24.97	0	0
	1	14	24.86	24.86	24.94		0
QPSK	8	0	24.01	23.90	24.01	0-1	1
	8	4	24.03	23.94	24.06		1
F	8	7	24.00	23.93	24.05		1
	15	0	24.02	23.97	23.98		1
	1	0	23.81	24.19	23.79		1
	1	7	23.91	24.12	23.94	0-1	1
	1	14	23.74	24.10	23.78		1
16QAM	8	0	23.01	23.09	23.04		2
	8	4	23.05	23.11	23.03	0-2	2
	8	7	23.03	23.10	22.98	0-2	2
	15	0	23.01	23.04	23.01		2
	1	0	23.16	23.17	23.12		2
	1	7	23.14	23.20	23.19	0-2	2
	1	14	23.07	23.20	23.17		2
64QAM	8	0	22.05	22.02	22.03		3
	8	4	22.07	22.04	22.02	0-3	3
	8	7	22.06	22.01	22.00] 0-3	3
	15	0	22.08	21.95	21.99		3

Table 9-18

LTE Band 26 (Cell) Maximum Conducted Powers -1.4 MHz Bandwidth

				LTE Band 26 (Cell) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26697 (814.7 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27033 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBn	n]		
	1	0	24.94	24.93	24.81		0
	1	2	24.99	24.99	25.02		0
	1	5	24.87	24.96	24.99	0	0
QPSK	3	0	25.03	25.01	24.97		0
	3	2	25.09	25.03	25.00		0
	3	3	25.11	25.02	24.99		0
	6	0	24.03	23.94	24.08	0-1	1
	1	0	23.73	23.72	24.18		1
	1	2	23.78	23.70	24.15		1
	1	5	23.79	23.77	24.06	0-1	1
16QAM	3	0	24.20	24.16	24.19		1
	3	2	24.18	24.18	24.20		1
	3	3	24.19	24.19	24.14		1
	6	0	23.12	23.18	22.91	0-2	2
	1	0	23.04	23.19	22.73		2
	1	2	23.16	23.16	22.88		2
	1	5	23.16	23.17	22.75	0-2	2
64QAM	3	0	23.14	23.19	23.08	J 0 2	2
	3	2	23.15	23.11	23.11		2
	3	3	23.17	23.08	23.12		2
	6	0	22.19	22.06	22.15	0-3	3

FCC ID: ZNFK300TM	PCTEST Proud to be part of defences	SAR EVALUATION REPORT	G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 44 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 44 of 105

9.4.5 LTE Band 66 (AWS)

Table 9-19
LTE Band 66 (AWS) Maximum Conducted Powers - 20 MHz Bandwidth

				LTE Band 66 (AWS) 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.44	24.30	24.39		0
	1	50	24.62	24.54	24.63	0	0
	1	99	24.37	24.31	24.35		0
QPSK	50	0	23.64	23.52	23.68	0-1	1
	50	25	23.63	23.62	23.62		1
	50	50	23.58	23.56	23.55		1
	100	0	23.63	23.52	23.58		1
	1	0	23.68	23.50	23.70		1
	1	50	23.66	23.46	23.64	0-1	1
	1	99	23.54	23.41	23.60		1
16QAM	50	0	22.67	22.62	22.20		2
	50	25	22.68	22.63	22.67	0-2	2
	50	50	22.67	22.62	22.62	0-2	2
	100	0	22.66	22.58	22.61		2
	1	0	22.65	22.58	22.66		2
	1	50	22.56	22.64	22.64	0-2	2
	1	99	22.62	22.62	22.62		2
64QAM	50	0	21.67	21.63	21.70		3
	50	25	21.69	21.66	21.68	0-3	3
	50	50	21.67	21.59	21.63		3
	100	0	21.65	21.60	21.60		3

Table 9-20
LTE Band 66 (AWS) Maximum Conducted Powers - 15 MHz Bandwidth

			()	LTE Band 66 (AWS) 15 MHz Bandwidth		- Danawiani	
					High Channel		
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.61	24.38	24.45		0
	1	36	24.65	24.54	24.50	0	0
	1	74	24.53	24.45	24.39		0
QPSK	36	0	23.68	23.67	23.68	0-1	1
	36	18	23.69	23.70	23.67		1
	36	37	23.65	23.68	23.61		1
	75	0	23.70	23.69	23.63		1
	1	0	23.39	23.30	23.56		1
	1	36	23.49	23.50	23.67	0-1	1
	1	74	23.51	23.38	23.54		1
16QAM	36	0	22.64	22.68	22.64		2
	36	18	22.67	22.66	22.69	0-2	2
	36	37	22.63	22.69	22.66	0-2	2
	75	0	22.66	22.65	22.68		2
·	1	0	22.40	22.63	22.35		2
	1	36	22.48	22.67	22.43	0-2	2
	1	74	22.34	22.63	22.29		2
64QAM	36	0	21.70	21.69	21.69		3
	36	18	21.69	21.66	21.67	0-3	3
	36	37	21.65	21.65	21.69		3
	75	0	21.68	21.68	21.68		3

FCC ID: ZNFK300TM	PCTEST Proud to be part of the cleanest	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 45 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 45 of 105

© 2020 PCTEST REVISION 09/11/2019 Politable Halloset REV 21.4 M 09/11/2019

Table 9-21
LTE Band 66 (AWS) Maximum Conducted Powers - 10 MHz Bandwidth

			(71110) maximi	LTE Band 66 (AWS)	CWOIG TO IVI	iz Banawiath	
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	Conducted Power [dBm]						
	1	0	24.58	24.41	24.48		0
	1	25	24.66	24.59	24.63	0	0
	1	49	24.46	24.45	24.44		0
QPSK	25	0	23.60	23.57	23.64		1
	25	12	23.61	23.59	23.63	0-1	1
	25	25	23.63	23.64	23.55		1
	50	0	23.60	23.63	23.62		1
	1	0	23.66	23.25	23.49		1
	1	25	23.58	23.37	23.55	0-1	1
	1	49	23.57	23.26	23.41		1
16QAM	25	0	22.65	22.70	22.70		2
	25	12	22.67	22.68	22.67	0-2	2
	25	25	22.68	22.70	22.67	0-2	2
	50	0	22.66	22.64	22.59		2
	1	0	22.48	22.57	22.69		2
	1	25	22.53	22.68	22.67	0-2	2
	1	49	22.37	22.62	22.68		2
64QAM	25	0	21.66	21.66	21.57		3
	25	12	21.68	21.68	21.63	0-3	3
	25	25	21.63	21.67	21.69		3
	50	0	21.68	21.65	21.68		3

Table 9-22 LTE Band 66 (AWS) Maximum Conducted Powers - 5 MHz Bandwidth

				LTE Band 66 (AWS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.58	24.32	24.45		0
	1	12	24.68	24.59	24.66	0	0
	1	24	24.50	24.33	24.42		0
QPSK	12	0	23.59	23.56	23.55	0-1	1
	12	6	23.66	23.57	23.61		1
	12	13	23.56	23.59	23.56		1
	25	0	23.59	23.55	23.55		1
	1	0	23.70	23.44	23.66		1
	1	12	23.62	23.57	23.31	0-1	1
	1	24	23.37	23.46	23.66		11
16QAM	12	0	22.66	22.66	22.67		2
	12	6	22.68	22.69	22.67	0-2	2
	12	13	22.66	22.65	22.70	0.2	2
	25	0	22.63	22.63	22.68		2
	1	0	22.62	22.63	22.57		2
	1	12	22.61	22.52	22.60	0-2	2
	1	24	22.65	22.69	22.63		2
64QAM	12	0	21.63	21.61	21.59		3
	12	6	21.68	21.67	21.68	0-3	3
	12	13	21.66	21.64	21.61		3
	25	0	21.67	21.62	21.69		3

FCC ID: ZNFK300TM	PCTEST Proud to be part of defences	SAR EVALUATION REPORT	À	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 46 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 46 of 105

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Table 9-23
LTE Band 66 (AWS) Maximum Conducted Powers - 3 MHz Bandwidth

				LTE Band 66 (AWS) 3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 131987 (1711.5 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			, ,	Conducted Power [dBm]		
	1	0	24.64	24.39	24.44		0
	1	7	24.70	24.58	24.60	0	0
	1	14	24.55	24.42	24.52		0
QPSK	8	0	23.63	23.55	23.54	0-1	1
	8	4	23.65	23.54	23.61		1
	8	7	23.59	23.56	23.57		1
	15	0	23.61	23.55	23.55		1
	1	0	23.68	23.27	23.40		1
	1	7	23.57	23.39	23.52	0-1	1
	1	14	23.67	23.25	23.38		1
16QAM	8	0	22.69	22.56	22.64		2
	8	4	22.63	22.61	22.67	0-2	2
	8	7	22.61	22.59	22.61	0-2	2
	15	0	22.66	22.60	22.65		2
	1	0	22.47	22.58	22.66		2
	1	7	22.59	22.66	22.63	0-2	2
64QAM	1	14	22.48	22.64	22.66		2
	8	0	21.63	21.59	21.65		3
	8	4	21.67	21.61	21.67	0-3	3
	8	7	21.70	21.59	21.61		3
	15	0	21.68	21.62	21.62		3

Table 9-24
LTE Band 66 (AWS) Maximum Conducted Powers -1.4 MHz Bandwidth

	_		(AVVO) WIAXIIII	LTE Band 66 (AWS)			
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.56	24.45	24.42		0
	1	2	24.61	24.55	24.51		0
	1	5	24.52	24.48	24.48	0	0
QPSK	3	0	24.62	24.60	24.60		0
	3	2	24.68	24.62	24.63		0
	3	3	24.69	24.66	24.62		0
	6	0	23.65	23.54	23.53	0-1	1
	1	0	23.28	23.26	23.27		1
	1	2	23.32	23.33	23.30		1
	1	5	23.29	23.31	23.34	0-1	1
16QAM	3	0	23.68	23.69	23.69		1
	3	2	23.70	23.70	23.70		1
	3	3	23.70	23.69	23.70		1
	6	0	22.64	22.68	22.68	0-2	2
	1	0	22.53	22.65	22.37		2
	1	2	22.57	22.62	22.47		2
	1	5	22.60	22.66	22.35	0-2	2
64QAM	3	0	22.68	22.64	22.68		2
	3	2	22.69	22.70	22.70		2
	3	3	22.64	22.67	22.69		2
	6	0	21.65	21.56	21.59	0-3	3

FCC ID: ZNFK300TM	PCTEST* Proud to be part of the recess	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 47 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 47 of 105

Table 9-25 LTE Band 25 (PCS) Maximum Conducted Powers - 20 MHz Bandwidth

				LTE Band 25 (PCS)			
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26140 (1860.0 MHz)	26365 (1882.5 MHz)	26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.44	24.36	24.41		0
	1	50	24.57	24.55	24.55	0	0
	1	99	24.31	24.37	24.35		0
QPSK	50	0	23.61	23.58	23.64		1
	50	25	23.66	23.64	23.61	0-1	1
	50	50	23.60	23.61	23.41	0-1	1
	100	0	23.57	23.60	23.52		1
	1	0	23.69	23.65	23.68		1
	1	50	23.70	23.70	23.70	0-1	1
	1	99	23.53	23.64	23.61		1
16QAM	50	0	22.64	22.69	22.68		2
	50	25	22.69	22.68	22.68	0-2	2
	50	50	22.67	22.61	22.46	0-2	2
	100	0	22.55	22.60	22.54		2
	1	0	22.70	22.55	22.61		2
	1	50	22.62	22.69	22.64	0-2	2
	1	99	22.60	22.67	22.60		2
64QAM	50	0	21.65	21.60	21.64		3
	50	25	21.70	21.68	21.70	0-3	3
	50	50	21.64	21.64	21.48		3
	100	0	21.64	21.56	21.45		3

Table 9-26 LTE Band 25 (PCS) Maximum Conducted Powers - 15 MHz Bandwidth

LTE Band 25 (PCS) 15 MHz Bandwidth Low Channel High Channel Mid Channel 26115 26365 26615 MPR Allowed per MPR [dB] Modulation **RB Size RB Offset** (1882.5 MHz) 3GPP [dB] (1857.5 MHz) (1907.5 MHz) Conducted Power [dBm] 0 24.51 24.40 24.47 1 0 1 36 24.55 24.47 24.56 0 0 1 74 24.44 24.42 24.43 0 **QPSK** 36 0 23.62 23.58 23.67 36 18 23.65 23.61 23.68 1 0-1 36 37 23.64 23.61 23.54 1 75 0 23.61 23.59 23.60 1 1 0 23.69 23.65 23.69 1 1 36 23.64 23.61 23.68 0-1 1 23.68 1 74 23.65 23.69 1 16QAM 36 0 22.64 22.61 22.69 2 36 18 22.63 22.64 22.67 2 0-2 36 37 22.61 22.63 22.57 2 75 0 22.62 22.61 22.61 2 22.61 22.69 22.66 1 0 2 1 36 22.69 22.68 22.69 0-2 2 74 22.67 1 22.68 22.65 2 64QAM 36 0 21.67 21.65 3 21.63 36 18 21.66 21.66 21.70 3 0-3 36 3 37 21.67 21.66 21.61 75 0 21.63 21.63 21.62 3

FCC ID: ZNFK300TM	POTEST: Poud to be part of the recession	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 48 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 46 01 105

Table 9-27
LTE Band 25 (PCS) Maximum Conducted Powers - 10 MHz Bandwidth

		TE Band A	25 (PCS) Maxim	LTE Band 25 (PCS)	FOWEIS - IO WII	iz Danuwium	
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			, (Conducted Power [dBm]		
	1	0	24.52	24.46	24.46		0
	1	25	24.57	24.42	24.57	0	0
	1	49	24.44	24.42	24.42		0
QPSK	25	0	23.60	23.57	23.70		1
	25	12	23.59	23.54	23.62	0-1	1
	25	25	23.61	23.58	23.48	0-1	1
	50	0	23.62	23.60	23.63		1
	1	0	23.63	23.69	23.70		1
	1	25	23.61	23.67	23.68	0-1	1
	1	49	23.64	23.60	23.69		1
16QAM	25	0	22.63	22.60	22.70		2
	25	12	22.62	22.59	22.68	0-2	2
	25	25	22.63	22.63	22.55	0-2	2
	50	0	22.61	22.62	22.65		2
	1	0	22.69	22.68	22.69		2
	1	25	22.70	22.69	22.65	0-2	2
	1	49	22.67	22.70	22.67		2
64QAM	25	0	21.63	21.60	21.70		3
	25	12	21.62	21.57	21.67	0-3	3
	25	25	21.61	21.62	21.54] 0-3	3
	50	0	21.65	21.56	21.68		3

Table 9-28
LTE Band 25 (PCS) Maximum Conducted Powers - 5 MHz Bandwidth

				LTE Band 25 (PCS) 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	24.42	Conducted Power [dBm 24.31	24.43		0
	1	12				-l , -l-	
	1		24.67	24.56	24.65	0	0
ODCK	10	24	24.36	24.34	24.66		0
QPSK	12	0	23.58	23.45	23.65	┥ ├	1
	12	6	23.61	23.50	23.64	0-1	1
	12	13	23.60	23.51	23.52		
	25	0	23.60	23.59	23.62		1
	1	0	23.70	23.68	23.67		1
	1	12	23.69	23.61	23.69	0-1	1
	1	24	23.62	23.59	23.70		1
16QAM	12	0	22.64	22.60	22.70	↓	2
	12	6	22.69	22.59	22.67	0-2	2
	12	13	22.66	22.56	22.69	」 '-	2
	25	0	22.63	22.54	22.65		2
	1	0	22.70	22.60	22.69	_	2
	1	12	22.67	22.68	22.69	0-2	2
	1	24	22.66	22.59	22.68		2
64QAM	12	0	21.69	21.53	21.70		3
	12	6	21.70	21.63	21.65	0-3	3
	12	13	21.69	21.61	21.63]	3
	25	0	21.65	21.58	21.66	1 [3

FCC ID: ZNFK300TM	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 49 of 105

© 2020 PCTEST REVISION 09/11/2019 Politable Halloset REV 21.4 M 09/11/2019

Table 9-29 LTE Band 25 (PCS) Maximum Conducted Powers - 3 MHz Bandwidth

	•			LTE Band 25 (PCS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26055 (1851.5 MHz)	26365 (1882.5 MHz)	26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.57	24.43	24.50		0
	1	7	24.68	24.60	24.61	0	0
	1	14	24.52	24.45	24.46		0
QPSK	8	0	23.61	23.47	23.59		1
	8	4	23.64	23.52	23.59	0-1	1
	8	7	23.59	23.46	23.53	0-1	1
	15	0	23.65	23.50	23.61		1
	1	0	23.70	23.68	23.69		1
	1	7	23.69	23.69	23.70	0-1	1
	1	14	23.68	23.70	23.69		1
16QAM	8	0	22.69	22.61	22.69		2
	8	4	22.70	22.65	22.64	0-2	2
	8	7	22.70	22.62	22.66	0-2	2
	15	0	22.67	22.56	22.65		2
	1	0	22.66	22.70	22.64		2
	1	7	22.66	22.68	22.67	0-2	2
	1	14	22.65	22.69	22.68		2
64QAM	8	0	21.58	21.58	21.70		3
	8	4	21.70	21.62	21.32	0-3	3
	8	7	21.69	21.58	21.69	0-3	3
	15	0	21.68	21.56	21.70		3

Table 9-30 LTE Band 25 (PCS) Maximum Conducted Powers -1.4 MHz Bandwidth

	_			LTE Band 25 (PCS)			
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26047	26365	26683	MPR Allowed per	MPR [dB]
Wodulation	ND SIZE	IND Offset	(1850.7 MHz)	(1882.5 MHz)	(1914.3 MHz)	3GPP [dB]	WII IX [UD]
				Conducted Power [dBm]		
	1	0	24.46	24.39	24.40		0
	1	2	24.58	24.51	24.51		0
	1	5	24.46	24.40	24.38	0	0
QPSK	3	0	24.54	24.48	24.49]	0
	3	2	24.56	24.51	24.51]	0
	3	3	24.55	24.48	24.52	0-1	0
	6	0	23.61	23.55	23.60		1
	1	0	23.69	23.65	23.70		1
	1	2	23.70	23.69	23.68		1
	1	5	23.70	23.69	23.70	0-1	1
16QAM	3	0	23.61	23.53	23.63]	1
	3	2	23.63	23.59	23.65		1
	3	3	23.59	23.54	23.63		1
	6	0	22.66	22.64	22.69	0-2	2
	1	0	22.70	22.68	22.69		2
	1	2	22.69	22.69	22.67]	2
	1	5	22.67	22.67	22.68	0-2	2
64QAM	3	0	22.66	22.60	22.68		2
	3	2	22.69	22.65	22.70		2
	3	3	22.67	22.62	22.70		2
ı	6	0	21.67	21.61	21.69	0-3	3

FCC ID: ZNFK300TM	PCTEST Proud to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 50 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 50 of 105

© 2020 PCTEST

9.4.7 LTE Band 41 PC3

Table 9-31
LTE Band 41 Maximum Conducted Powers - 20 MHz Bandwidth

					LTE Band 41	WC13 - 20 IVII			
			Low Channel	Low-Mid Channel	MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	3m]			
	1	0	24.23	24.11	24.22	24.03	24.34		0
	1	50	24.51	24.31	24.35	24.26	24.55	0	0
	1	99	24.54	24.05	24.01	24.01	24.29		0
QPSK	50	0	23.33	23.34	23.38	23.18	23.51		1
	50	25	23.41	23.30	23.33	23.25	23.45	0-1	1
	50	50	23.32	23.22	23.18	23.16	23.43	0-1	1
	100	0	23.38	23.31	23.26	23.10	23.50		1
	1	0	23.30	23.26	23.34	23.21	23.44		1
	1	50	23.58	23.15	23.53	23.45	23.65	0-1	1
	1	99	23.33	23.21	23.17	23.18	23.45		1
16QAM	50	0	22.46	22.47	22.44	22.26	22.55		2
	50	25	22.19	22.40	22.37	22.28	22.50	0-2	2
	50	50	22.44	22.31	22.25	22.23	22.48	0-2	2
	100	0	22.47	22.33	22.35	22.27	22.52		2
	1	0	21.96	21.88	21.96	21.94	22.02] [2
	1	50	22.21	22.05	22.09	21.94	22.21	0-2	2
	1	99	21.98	21.82	22.12	22.01	22.02		2
64QAM	50	0	21.44	21.42	21.39	21.23	21.54		3
	50	25	21.46	21.36	21.35	21.23	21.51	0-3	3
	50	50	21.44	21.30	21.48	21.20	21.44		3
	100	0	21.49	21.37	21.33	21.12	21.49		3

Table 9-32
LTE Band 41 Maximum Conducted Powers - 15 MHz Bandwidth

					LTE Band 41	WEIS - IS WII			
			Low Channel	Low-Mid Channel	5 MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	24.23	24.13	24.13	23.92	24.19		0
	1	36	24.38	24.15	24.17	24.00	24.30	0	0
	1	74	24.23	24.05	23.97	23.91	24.22		0
QPSK	36	0	23.41	23.31	23.27	23.07	23.35		1
	36	18	23.42	23.29	23.23	23.10	23.37	0-1	1
	36	37	23.38	23.23	23.16	23.06	23.35	0-1	1
	75	0	23.34	23.27	23.20	23.05	23.33		1
	1	0	23.20	23.20	23.20	23.03	23.26	0-1	1
	1	36	23.33	23.25	23.15	22.98	23.36		1
	1	74	23.22	23.12	23.05	22.99	23.24		1
16QAM	36	0	22.34	22.24	22.19	22.00	22.27		2
	36	18	22.32	22.22	22.17	22.03	22.28	0-2	2
	36	37	22.35	22.18	22.08	21.96	22.25	0-2	2
	75	0	22.33	22.29	22.19	22.09	22.30		2
	1	0	21.96	21.89	21.88	21.70	21.91		2
	1	36	22.06	21.98	21.87	21.75	22.04	0-2	2
	1	74	21.95	21.84	21.74	21.77	21.93		2
64QAM	36	0	21.35	21.26	21.23	21.02	21.32		3
	36	18	21.38	21.23	21.21	21.03	21.36	0-3	3
	36	37	21.38	21.21	21.11	21.02	21.30		3
	75	0	21.37	21.28	21.20	21.04	21.35		3

FCC ID: ZNFK300TM	POTEST Poud to be part of decement	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo E1 of 10E
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 51 of 105

© 2020 PCTEST REV 21.4 M 09/11/2019

Table 9-33 LTE Band 41 Maximum Conducted Powers - 10 MHz Bandwidth

					LTE Band 41 0 MHz Bandwidth	wers - 10 Mr	iz Banawia	<u> </u>	
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	24.31	24.17	24.22	23.98	24.31		0
	1	25	24.35	24.12	24.06	23.94	24.35	0	0
	1	49	24.35	24.15	24.10	23.93	24.32		0
QPSK	25	0	23.41	23.29	23.30	23.11	23.44		1
	25	12	23.42	23.33	23.29	23.13	23.41	0-1	1
	25	25	23.38	23.22	23.22	23.10	23.42	0-1	1
	50	0	23.40	23.30	23.28	23.09	23.45		1
	1	0	23.29	23.19	23.29	23.03	23.35		1
	1	25	23.25	23.17	23.26	23.02	23.34	0-1	1
	1	49	23.24	23.22	23.20	23.00	23.37		1
16QAM	25	0	22.46	22.35	22.37	22.15	22.45		2
	25	12	22.52	22.38	22.32	22.18	22.43	0-2	2
	25	25	22.47	22.32	22.30	22.13	22.43	0-2	2
	50	0	22.41	22.35	22.27	22.17	22.45		2
	1	0	22.05	21.96	21.93	21.71	22.04		2
	1	25	22.06	21.93	21.84	21.72	22.00	0-2	2
	1	49	22.08	21.94	21.84	21.73	22.07		2
64QAM	25	0	21.40	21.29	21.31	21.06	21.33] [3
	25	12	21.20	21.28	21.25	21.11	21.38	0-3	3
	25	25	21.38	21.27	21.21	21.05	21.33] 0.3	3
	50	0	21.45	21.37	21.32	21.15	21.47		3

Table 9-34 LTE Band 41 Maximum Conducted Powers - 5 MHz Bandwidth

		LIE	Band 41 W	iaximum Co		wers - 5 MH	z Bandwidi	in	
					LTE Band 41 MHz Bandwidth				
	RB Size		Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation		RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [di	3m]			
	1	0	24.26	24.05	24.08	23.88	24.23		0
	1	12	24.39	24.34	24.35	24.05	24.36	0	0
	1	24	24.22	24.10	24.04	23.88	24.23		0
QPSK	12	0	23.34	23.26	23.24	22.97	23.37		1
	12	6	23.38	23.31	23.29	23.04	23.44	0-1	1
	12	13	23.38	23.25	23.18	23.01	23.37] "-" [1
	25	0	23.37	23.24	23.21	22.98	23.34		1
	1	0	23.22	23.14	23.10	23.01	23.27		1
	1	12	23.44	23.40	23.13	23.20	23.41	0-1	1
	1	24	23.23	23.16	23.05	22.93	23.30		1
16QAM	12	0	22.29	22.16	22.13	21.91	22.27		2
	12	6	22.37	22.13	22.09	21.94	22.32	0-2	2
	12	13	22.26	22.14	22.04	21.84	22.24	0-2	2
	25	0	22.39	22.30	22.21	22.02	22.36		2
	1	0	21.97	21.88	21.81	21.84	21.95		2
	1	12	22.18	22.08	22.01	21.82	22.11	0-2	2
	1	24	21.90	21.84	21.70	21.65	21.94		2
64QAM	12	0	21.27	21.15	21.11	20.94	21.27		3
	12	6	21.35	21.20	21.12	20.99	21.32	0-3	3
	12	13	21.30	21.15	21.03	20.92	21.26	J 0-3	3
	25	0	21.36	21.24	21.17	21.02	21.30		3

FCC ID: ZNFK300TM	PCTEST	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 52 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 52 of 105
20 DOTEST			DEV/ 24 4 M

9.4.8 LTE Band 41 PC2

Table 9-35 LTE Band 41 Maximum Conducted Powers - 20 MHz Bandwidth

					LTE Band 41	VVCI 3 - 20 IVII			
			Low Channel	Low-Mid Channel	0 MHz Bandwidth Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [di	Bm]			
	1	0	27.13	27.08	27.13	26.92	27.02		0
	1	50	27.43	27.28	27.27	27.11	27.27	0	0
	1	99	27.16	26.97	26.92	26.89	27.11		0
QPSK	50	0	26.39	26.30	26.28	26.08	26.37		1
	50	25	26.36	26.26	26.27	26.12	26.38	0-1	1
	50	50	26.33	26.19	26.14	26.06	26.31	0-1	1
	100	0	26.38	26.30	26.25	26.11	25.95		1
	1	0	26.30	26.28	26.38	26.21	26.41		1
	1	50	26.62	26.51	26.53	26.37	26.60	0-1	1
	1	99	26.36	26.23	26.21	26.15	26.38		1
16QAM	50	0	25.49	25.34	25.37	25.17	25.45		2
	50	25	25.45	25.32	24.97	25.19	25.44	0-2	2
	50	50	25.38	25.24	25.20	25.14	25.38	0-2	2
	100	0	25.41	25.30	25.30	25.21	25.21		2
	1	0	25.14	25.09	25.15	25.00	25.21] [2
	1	50	25.41	25.27	25.33	25.19	25.42	0-2	2
	1	99	25.19	25.02	24.98	24.96	25.18		2
64QAM	50	0	24.40	24.33	24.37	24.17	24.44		3
	50	25	24.43	24.31	24.32	24.22	24.38	0-3	3
	50	50	24.37	24.21	24.16	24.16	24.38		3
	100	0	24.40	24.28	24.10	24.15	24.42		3

Table 9-36 LTE Band 41 Maximum Conducted Powers - 15 MHz Bandwidth

					LTE Band 41 5 MHz Bandwidth	Weis- 15 Wii			
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [de	Bm]			
	1	0	27.12	27.04	27.03	26.82	27.04		0
	1	36	27.20	27.11	27.07	26.89	27.19	0	0
	1	74	27.13	26.97	26.90	26.80	27.04		0
QPSK	36	0	26.29	26.20	26.18	25.97	26.23		1
	36	18	26.30	26.21	26.15	25.98	26.21	0-1	1
	36	37	26.28	26.15	26.08	25.95	26.16	0-1	1
	75	0	26.24	26.16	26.11	25.95	26.22		1
	1	0	26.31	26.28	26.30	26.11	26.31	0-1	1
	1	36	26.43	26.34	26.32	26.16	26.38		1
	1	74	26.30	26.20	26.18	26.05	26.32		1
16QAM	36	0	25.24	25.11	25.15	24.96	25.18		2
	36	18	25.25	25.12	25.10	24.95	25.21	0-2	2
	36	37	25.24	25.10	25.04	24.93	25.19	0-2	2
	75	0	25.27	25.16	25.14	24.99	25.25		2
	1	0	25.11	25.07	25.09	24.91	25.11		2
	1	36	25.20	25.13	25.10	24.97	25.21	0-2	2
	1	74	25.12	25.00	24.94	24.86	25.10		2
64QAM	36	0	24.30	24.23	24.22	24.00	24.23		3
	36	18	24.29	24.25	24.15	23.99	24.26	0-3	3
	36	37	24.30	24.17	24.11	24.03	24.22		3
	75	0	24.31	24.25	24.20	24.03	24.28		3

	FCC ID: ZNFK300TM	PCTEST* Proud to be part of the recensed	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dogg 52 of 105
	1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 53 of 105
1	O DOTECT			DEV/ 24 4 M

Table 9-37 LTE Band 41 Maximum Conducted Powers - 10 MHz Bandwidth

					LTE Band 41 0 MHz Bandwidth	wers - 10 Mr		<u></u>	
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dE	Bm]			
	1	0	27.19	27.09	27.08	26.87	27.13		0
	1	25	27.41	27.22	27.20	26.99	27.27	0	0
	1	49	27.17	27.06	26.96	26.87	27.15		0
QPSK	25	0	26.25	26.20	26.20	26.02	26.28		1
	25	12	26.29	26.18	26.19	26.01	26.29	0-1	1
	25	25	26.21	26.19	26.12	26.00	26.29	0-1	1
	50	0	26.32	26.21	26.14	26.01	26.31		1
	1	0	26.38	26.32	26.35	26.17	26.29		1
	1	25	26.55	26.46	26.42	26.25	26.41	0-1	1
	1	49	26.38	26.29	26.24	26.13	26.40		1
16QAM	25	0	25.36	25.26	25.27	25.11	25.35		2
	25	12	25.37	25.28	25.24	25.09	25.35	0-2	2
	25	25	25.31	25.24	25.21	25.13	25.36		2
	50	0	25.35	25.25	25.24	25.08	25.33		2
	1	0	25.20	25.18	25.15	24.97	25.22		2
	1	25	25.32	25.20	25.23	25.07	25.32	0-2	2
	1	49	25.23	25.19	25.02	24.96	25.23		2
64QAM	25	0	24.29	24.23	24.25	24.07	24.32] [3
	25	12	24.34	24.25	24.17	24.09	24.31	0-3	3
	25	25	24.31	24.31	24.19	24.06	24.29		3
	50	0	24.42	24.25	24.27	24.12	24.37		3

Table 9-38 LTE Band 41 Maximum Conducted Powers - 5 MHz Bandwidth

					LTE Band 41 MHz Bandwidth	Weis-5 Will			
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [de	Bm]			
	1	0	27.16	27.02	27.03	26.81	27.09		0
	1	12	27.31	27.13	27.09	26.91	27.17	0	0
	1	24	27.15	27.01	26.95	26.82	27.07		0
QPSK	12	0	26.27	26.20	26.12	25.97	26.31		1
	12	6	26.26	26.17	26.17	26.00	26.30	0-1	1
	12	13	26.22	26.16	26.09	25.96	26.20	0-1	1
	25	0	26.16	26.10	26.11	25.95	26.22		1
	1	0	26.36	26.26	26.30	26.09	26.34		1
	1	12	26.47	26.34	26.32	26.17	26.41	0-1	1
	1	24	26.31	26.26	26.20	26.08	26.32		1
16QAM	12	0	25.25	25.12	25.14	24.97	25.30		2
	12	6	25.27	25.16	25.13	24.99	25.23	0-2	2
	12	13	25.23	25.12	25.06	24.94	25.19	, , , , , , , , , , , , , , , , , , ,	2
	25	0	25.30	25.23	25.20	25.07	25.30		2
	1	0	25.15	24.99	25.05	24.89	25.12		2
	1	12	25.24	25.08	25.11	24.97	25.21	0-2	2
	1	24	25.11	25.05	25.00	24.88	25.13		2
64QAM	12	0	24.30	24.14	24.17	24.01	24.20	1	3
	12	6	24.22	24.19	24.16	23.96	24.24	0-3	3
	12	13	24.24	24.16	24.11	23.89	24.19]	3
	25	0	24.24	24.18	24.13	23.96	24.24		3

FCC ID: ZNFK300TM	PCTEST Proud to be part of references	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo E4 of 10E
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 54 of 105

9.4.9 LTE Uplink Carrier Aggregation Conducted Powers

Table 9-39 LTE Uplink Carrier Aggregation Conducted Powers

						. .	· • • • • • • • • • • • • • • • • • • •	ໆ. <i>,</i> ເສຣ	ງ. ~ ອ າ								
		PCC					SCC						Power				
	Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	SCC Band	SCC Bandwidth [MHz]	SCC (UL/DL) Channel	SCC (UL/DL) Frequency [MHz]	Modulation	SCC UL# RB	SCC UL RB Offset	LTE Tx.Power with UL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
ſ	CA_41C	LTE B41	20	40620	2593.0	QPSK	1	0	LTE B41	20	40422	2573.2	QPSK	1	99	24.12	24.22
Γ	CA 41C	LTE B41	20	41490	2680.0	QPSK	1	0	LTE B41	20	41292	2660.2	QPSK	1	99	24.60	24.34

Table 9-40 LTE Uplink Carrier Aggregation Maximum Conducted Powers – PC2

						- 33										
				PCC							SCC				Power	
		PCC	PCC	PCC			PCC UL		scc	scc	scc					LTE Single
Combination	PCC Band	Bandwidth		(UL/DL)	Modulation	PCC UL#	RB	SCC Band	Bandwidth		(UL/DL)	Modulation	SCC UL#	SCC UL RB	LTE Tx.Power with UL	Carrier Tx
Combination	PCC Ballu			Frequency	iviodulation	RB		SCC Ballu		. , ,	Frequency	Wiodulation	RB	Offset	CA Enabled (dBm)	Power
		[MHz]	Channel	[MHz]			Offset		[MHz]	Channel	[MHz]					(dBm)
CA_41C	LTE B41 PC2	20	40620	2593.0	QPSK	1	0	LTE B41 PC2	20	40422	2573.2	QPSK	1	99	27.26	27.13
CA_41C	LTE B41 PC2	20	41490	2680.0	QPSK	1	0	LTE B41 PC2	20	41292	2660.2	QPSK	1	99	27.45	27.02

Notes:

- 1. This device supports uplink carrier aggregation for LTE CA_41C with a maximum of two 20 MHz component carriers. For intraband contiguous carrier aggregation scenarios, 3GPP 36.101 Table 6.2.2A-1 specifies that the aggregate maximum allowed output power is equivalent to the single carrier scenario. 3GPP 36.101 6.2.3A allows for several dB of MPR to be applied when non-contiguous RB allocation is implemented. The Maximum Conducted Powers and MPR settings in this device are permanently implemented per the above 3GPP requirements.
- 2. Per FCC Guidance, the output power with uplink CA active was measured for the configuration with the highest reported SAR with single carrier for each exposure condition. The power was measured with wideband signal integration over both component carriers.

Figure 9-4
Power Measurement Setup

FCC ID: ZNFK300TM	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 55 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Fage 55 01 105

9.5 **WLAN Conducted Powers**

Table 9-41 2.4 GHz WLAN Maximum Average RF Power

2.4GHz Conducted Power [dBm]							
Erog [MU=1	Channel	IEEE Transmission Mode					
Freq [MHz]	Channel	802.11b	802.11g	802.11n			
2412	1	22.41	17.44	16.96			
2417	2	N/A	20.19	19.21			
2437	6	22.31	20.22	19.20			
2457	10	N/A	20.17	19.25			
2462	11	22.19	17.99	17.31			

FCC ID: ZNFK300TM	PCTEST Pous to be part of the element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 50 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 56 of 105

Table 9-42 5 GHz WLAN Maximum Average RF Power

	5GHz (20MHz	2) Conducted	Power [dBm]				
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11a	802.11n	802.11ac			
		Average	Average	Average			
5180	36	16.56	16.39	16.40			
5200	40	18.72	17.71	17.82			
5220	44	18.49	17.73	17.71			
5240	48	18.52	17.75	17.62			
5260	52	18.35	17.73	17.71			
5280	56	18.35	17.79	17.76			
5300	60	18.23	17.78	17.71			
5320	64	16.61	16.46	16.44			
5500	100	16.89	16.69	16.63			
5520	104	18.66	18.01	17.94			
5600	120	18.34	17.65	17.63			
5620	124	18.35	17.80	17.62			
5660	132	18.65	18.49	18.35			
5720	144	18.78	18.55	18.37			
5745	149	18.82	18.30	18.23			
5785	157	18.84	18.44	18.56			
5825	165	19.22	18.44	18.43			

Table 9-43 2.4 GHz WLAN Reduced Average RF Power

2.4GHz Conducted Power [dBm]							
		IEEE	Transmission	Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n			
		Average	Average	Average			
2412	1	20.35	17.44	16.96			
2417	2		20.19	19.21			
2437	6	20.54	20.22	19.20			
2457	10		20.17	19.25			
2462	11	20.52	17.99	17.31			

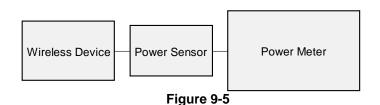

FCC ID: ZNFK300TM	Poud to be part of the recession	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 57 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Fage 37 01 103

Table 9-44
5 GHz WLAN Reduced Average RF Power

	5GHz (20MHz) Conducted Power [dBm]									
		IEEE .	Transmission	Mode						
Freq [MHz]	Channel	802.11a	802.11n	802.11ac						
		Average	Average	Average						
5180	36	16.56	16.39	16.40						
5200	40	16.90	16.75	16.75						
5220	44	16.96	16.75	16.78						
5240	48	16.99	16.79	16.70						
5260	52	16.98	16.79	16.89						
5280	56	16.97	16.71	16.81						
5300	60	16.86	16.79	16.82						
5320	64	16.61	16.46	16.44						
5500	100	16.89	16.69	16.63						
5600	120	16.81	16.64	16.68						
5620	124	16.70	16.60	16.71						
5660	132	17.01	17.02	17.01						
5720	144	17.14	17.07	17.04						
5745	149	17.23	17.08	17.06						
5785	157	17.31	17.19	17.21						
5825	165	17.43	17.18	17.26						

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

FCC ID: ZNFK300TM	PCTEST* Poud to be part of the reseases	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 58 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Fage 56 01 105

Power Measurement Setup

© 2020 PCTEST REV 21.4 M 09/11/2019

Bluetooth Conducted Powers 9.6

Table 9-45 Bluetooth Average RF Power

		Average it	Avg Co	nducted wer
Frequency [MHz]	Data Rate [Mbps]	Channel No.	[dBm]	[mW]
2402	1.0	0	7.63	5.789
2441	1.0	39	8.78	7.559
2480	1.0	78	7.64	5.805
2402	2.0	0	5.44	3.500
2441	2.0	39	5.95	3.938
2480	2.0	78	4.86	3.059
2402	3.0	0	5.51	3.555
2441	3.0	39	6.01	3.992
2480	3.0	78	4.91	3.097

FCC ID: ZNFK300TM	PCTEST* Proud to be part of the recess	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 50 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 59 of 105

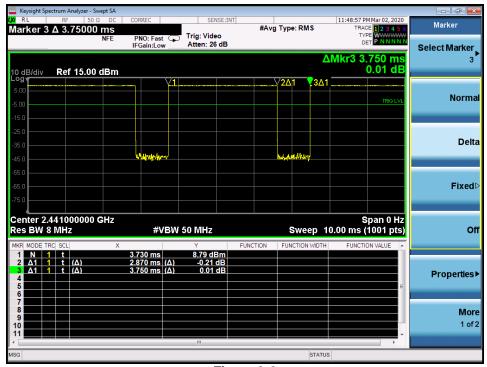


Figure 9-6
Bluetooth Transmission Plot

Equation 9-1 Bluetooth Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.87 \textit{ms}}{3.75 \textit{ms}} * 100\% = 76.5\%$$

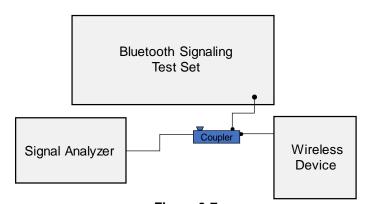


Figure 9-7
Power Measurement Setup

FCC ID: ZNFK300TM	PCTEST Poud to be part of the recessed	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 60 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 60 01 105

© 2020 PCTEST REV 21.4 M 09/11/2019

10.1 Tissue Verification

Table 10-1 Measured Head Tissue Properties

	IVICAS			1133	uc i i	oper	1100		
Calibrated for		Tissue Temp During Calibration	Measured	Measured	Measured Dielectric	TARGET Conductivity,	TARGET	% dev σ	% dev
Tests Performed on:	Tissue Type	(°C)	Frequency (MHz)	Conductivity, σ (S/m)	Dielectric Constant, ε	Conductivity, σ (S/m)	Dielectric Constant, ε	% dev σ	% dev
			680	0.844	40.664	0.888	42.305	-4.95%	-3.88
			695	0.849	40.619	0.889	42.227	-4.50%	-3.81
			700	0.851	40.604	0.889	42.201	-4.27%	-3.78
			710	0.854	40.574	0.890	42.149	-4.04%	-3.74
02/26/2020	750 Head	20.4	725 740	0.859	40.527 40.476	0.891	42.071 41.994	-3.59% -3.25%	-3.67
02/26/2020	/30 Head	20.4	750	0.868	40.476	0.894	41.942	-2.91%	-3.57
			755	0.870	40.430	0.894	41.916	-2.68%	-3.55
			770	0.876	40.390	0.895	41.838	-2.12%	-3.46
			785	0.881	40.355	0.896	41.760	-1.67%	-3.36
			800	0.886	40.322	0.897	41.682	-1.23%	-3.26
03/02/2020	835 Head	21.3	820 835	0.863	39.963 39.760	0.899	41.578 41.500	-4.00% -2.44%	-3.88°
03/02/2020	835 Head	21.3	850	0.878	39.760	0.900	41.500	-2.73%	-4.65
			1710	1.317	38.478	1.348	40.142	-2.30%	-4.15
			1720	1.323	38.463	1.354	40.126	-2.29%	-4.14
02/26/2020	1750 Head	20.4	1745	1.339	38.425	1.368	40.087	-2.12%	-4.15
,,			1750 1770	1.342	38.416 38.379	1.371	40.079 40.047	-2.12% -2.10%	-4.15 -4.17
			1770	1.354	38.379	1.383	40.047	-2.10%	-4.17
			1850	1.380	40.783	1.334	40.000	-1.43%	1.96
			1860	1.391	40.742	1.400	40.000	-0.64%	1.85
03/05/2020	1900 Head	22.4	1880	1.413	40.665	1.400	40.000	0.93%	1.66
03/05/2020	1900 Head	22.4	1900	1.434	40.580	1.400	40.000	2.43%	1.45
			1905	1.439	40.559	1.400	40.000	2.79%	1.40
			1910	1.445	40.539	1.400	40.000	3.21%	1.35
			2300 2310	1.733	38.629 38.616	1.670 1.679	39.500 39.480	3.77%	-2.21
			2310	1.740	38.605	1.687	39.480	3.62%	-2.19
			2400	1.809	38.492	1.756	39.289	3.02%	-2.03
			2450	1.846	38.414	1.800	39.200	2.56%	-2.0
			2500	1.885	38.332	1.855	39.136	1.62%	-2.0
3/5/2020	2450 Head	21.7	2510	1.893	38.317	1.866	39.123	1.45%	-2.06
-,-,			2535	1.912	38.272	1.893	39.092	1.00%	-2.10
			2550 2560	1.923 1.932	38.244 38.223	1.909	39.073 39.060	0.73%	-2.12 -2.14
			2600	1.952	38.158	1.920	39.000	0.00%	-2.18
			2650	2.006	38.061	2.018	38.945	-0.59%	-2.27
			2680	2.032	38.007	2.051	38.907	-0.93%	-2.3
			2700	2.048	37.979	2.073	38.882	-1.21%	-2.32
			2300	1.743	38.211	1.670	39.500	4.37%	-3.26
			2310	1.750	38.202	1.679	39.480	4.23%	-3.24
			2320 2400	1.758 1.818	38.193	1.687 1.756	39.460 39.289	4.21% 3.53%	-3.2
			2450	1.856	38.009	1.800	39.200	3.53%	-3.00
			2500	1.897	37.929	1.855	39.136	2.26%	-3.08
03/12/2020	2450 Head	22.2	2510	1.906	37.916	1.866	39.123	2.14%	-3.0
03/12/2020	2430 Read	22.2	2535	1.925	37.883	1.893	39.092	1.69%	-3.09
			2550	1.937	37.853	1.909	39.073	1.47%	-3.12
			2560	1.946	37.833	1.920	39.060	1.35%	-3.14
			2600 2650	1.980 2.020	37.763 37.669	1.964 2.018	39.009 38.945	0.81%	-3.19
			2680	2.020	37.606	2.018	38.907	-0.29%	-3.20
			2700	2.061	37.571	2.073	38.882	-0.58%	-3.3
			5180	4.512	35.542	4.635	36.009	-2.65%	-1.3
			5190	4.519	35.529	4.645	35.998	-2.71%	-1.3
			5200	4.529	35.515	4.655	35.986	-2.71%	-1.3
			5210	4.539	35.493	4.666	35.975	-2.72%	-1.3
			5220 5240	4.549	35.468 35.417	4.676 4.696	35.963 35.940	-2.72% -2.66%	-1.3
			5250	4.571 4.582	35.399	4.090	35.940	-2.63%	-1.4
			5260	4.596	35.383	4.717	35.917	-2.57%	-1.49
			5270	4.609	35.370	4.727	35.906	-2.50%	-1.4
			5280	4.620	35.354	4.737	35.894	-2.47%	-1.5
			5290	4.631	35.343	4.748	35.883	-2.46%	-1.5
			5300	4.641	35.333	4.758	35.871	-2.46% -2.52%	-1.5
			5310 5320	4.648 4.656	35.320	4.768 4.778	35.860 35.849	-2.52% -2.55%	-1.5
			5500	4.856	35.295	4.778	35.643	-2.55% -2.16%	-1.8
			5510	4.871	34.955	4.903	35.632	-2.15%	-1.0
			5520	4.881	34.943	4.983	35.620	-2.05%	-1.9
			5530	4.890	34.931	4.994	35.609	-2.08%	-1.9
			5540	4.896	34.920	5.004	35.597	-2.16%	-1.9
			5550	4.904	34.894	5.014	35.586	-2.19% -2.19%	-1.9
03/09/2020	5200-5800 Head	21.1	5560 5580	4.914	34.873 34.831	5.024 5.045	35.574 35.551	-2.19% -2.10%	-1.9
33/09/2020	ozuu−odUU Head	21.1	5580 5600	4.939	34.831	5.045	35.551 35.529	-2.10% -1.95%	-2.0
			5610	4.978	34.775	5.076	35.518	-1.93%	-2.0
			5620	4.990	34.758	5.086	35.506	-1.89%	-2.1
			5640	5.017	34.742	5.106	35.483	-1.74%	-2.09
			5660	5.033	34.699	5.127	35.460	-1.83%	-2.15
			5670	5.044	34.679	5.137	35.449	-1.81%	-2.1
			5680 5690	5.056 5.068	34.660 34.635	5.147 5.158	35.437 35.426	-1.77%	-2.19
			5700	5.068	34.635	5.168	35.426	-1.72%	-2.26
			5710	5.093	34.606	5.178	35.403	-1.72%	-2.2
			5720	5.105	34.594	5.188	35.391	-1.60%	-2.2
			5745	5.133	34.555	5.214	35.363	-1.55%	-2.2
			5750	5.138	34.547	5.219	35.357	-1.55%	-2.29
			5755	5.143	34.542	5.224	35.351	-1.55%	-2.2
			5765	5.152	34.527	5.234	35.340	-1.57%	-2.3
			5775 5785	5.162 5.174	34.517 34.498	5.245 5.255	35.329 35.317	-1.58% -1.54%	-2.3
			5785	5.174	34.498	5.255	35.317 35.305	-1.54%	-2.3
		1	5800	5.184	34.479	5.265	35.305	-1.54%	-2.3
			5800	5.196	34.459 34.421	5.275	35.294	-1.50%	-2.37

FCC ID: ZNFK300TM	POTEST: Poud to be part of the recession	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 61 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 61 01 105

Table 10-2
Measured Body Tissue Properties

Calibrated for Tests		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET	Ė	
Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, or (Sim)	Measured Dielectric Constant, s	TARGET Conductivity, or (Site)	TARGET Dielectric Constant, s	% dev a	% dev z
			690	0.919	54.095 54.051	0.958	55.804 55.745	-8.07% -3.65%	-2.05% -2.04%
			700 710	0.925	54.032 53.976	0.959	55.726 55.687	-3.55% -3.22%	-2.04%
03/09/2020	700 Body	21.5	725 740	0.933	53.843 53.660	0.961	55.629	-2.91%	-221%
			750	0.937	53.527	0.964	55.531	-2.80%	-2.61%
			770	0.941	53.296	0.965	55.453	-2.49%	-2.89%
			800	0.950	53.135	0.967	55.336	-1.70%	-2.90%
03/04/2020	835 Body	21.3	820 835	0.946	54.343 54.192	0.969	55.258 55.200	-2.37% -0.93%	-1.65%
			850 820	0.976	54.041 55.060	0.969	55.154 55.258	-1.21% -2.89%	-2.02% -0.35%
03/16/2020	835 Body	22.0	835 850	0.956	54.915 54.777	0.970	55.200 55.154	-1.44% -1.72%	-0.52% -0.68%
			1710	1.428	55.742 55.709	1.463	53.537	-2.39% -1.97%	4.12%
02/26/2020	1750 Body	20.9	1745	1.468	55.639 55.635	1.485	53.445 53.422	-1.14% -0.04%	4.11%
			1770	1.496	55.565	1,501	53.379	-0.33%	4.10%
			1790 1710	1.423	55.848	1.514 1.463 1.469	53.326 53.537	-2.72%	4.32%
03/02/2020	1750 Body	22.0	1745	1.463	55,744	1.465	53.445 53.422	-1.40%	4.30%
			1770	1.491	55.664	1.501	53.379	-0.67%	4.25%
			1790	1.512	55.594 51.624	1.514	53.326 53.300	-0.00%	-2.14%
03/12/2020	1900 Body	24.0	1890	1.519	51.592 51.533	1.520	53.300 53.300	1.30%	-3.22%
	,		1900	1.568	51.470 51.452	1.520	53.300 53.300	2.83%	-2.42% -2.47%
			1910 1850	1.574	51.435 52.191	1.520	53,300 53,300	-0.55%	-2.50% -2.08%
03/16/2020		22.7	1890 1890	1.521	52.157 52.090	1.520	53.300 53.300	1.51%	-2.14%
03/16/2020	1900 Body	22.7	1900 1905	1.565	52.022 52.004	1.520	53,300 53,300	2.96%	-2.40%
			1910	1.576	51.987 52.422	1.520	53.300 57.900	2.60%	-2.45%
			2310	1.871	52.398	1.816	52.887	3.03%	-0.92%
			2400	1.979	52.157	1.902	52.767	4.05%	-1.15%
			2450 2500	2.039 2.098	51.998 51.848	2.021	52,700 52,636	3.81%	-1.50%
03/02/2020	2450 Body	22.5	2510 2535	2.111 2.142	51.818 51.741	2.035	52.623 52.592	372%	-1.53% -1.62%
		l	2550 2560	2.160 2.172	51.697 51.670	2.092 2.106	52.573 52.560	3.25%	-1.67% -1.69%
	1	1	2600 2650	2.217 2.281	51.546 51.379	2.163 2.234	52,509 52,445	2.50%	-1.63% -2.63%
			2680 2700	2.317 2.341	51.300 51.243	2.277 2.305	52.407 52.382	1.76%	-2.11% -2.17%
			2300 2310	1.830 1.841	51.864 51.836	1.809	52.900 52.887	1.16%	-1.95% -1.99%
		l	2220	1.852	51.808 51.585	1.826	52.873 52.767	1.42%	-2.01%
		l	2450 2450 2500	1.997	51.452	1.900	52.700 52.636	2.41%	-2.27%
03/05/2020	2450 Body	23.5	2510 2510 2535	2.066	51.278	2.035	52.636 52.623	1.52%	-2.55%
			2550	2.114	51.174	2.092	52.573	1.05%	-2.65%
			2500 2500 2500	2.126	51.150 51.028	2.106 2.163 2.234	52.500 52.500	0.95%	-2.68%
			2650 2680	2.230 2.268	50.884 50.798	2.234	52.445 52.407	-0.18% -0.40%	-2.98%
			2700 2300	2.293 1.864	50.732 52.621	2.305 1.809	52.382 52.900	-0.52% 3.04%	-2.15% -0.53%
			2310 2320	1.875	52.592 52.561	1.816	52.887 52.873	325%	-0.58% -0.59%
			2400 2400	1.979 2.036	52.332 52.194	1.902	52.767 52.700	4.05%	-0.82%
			2500	2.096	52.032	2.021 2.035	52.636 52.623	371%	-1.15%
03/16/2020	2450 Body	22.5	2510 2535	2.138 2.157	51.942	2.071	52.592	324%	-1.24%
			2550 2560	2.169	51.907 51.881	2.092 2.106	52.573 52.590	2.99%	-1.27% -1.29%
			2650	2.219	51.607	2.163 2.234	52.445	2.59%	-1.44% -1.60%
			2580 2700	2.318 2.343	51.513 51.443	2.277	52.407 52.382	1.60%	-1.79%
			5190 5190	5.411 5.421	47.394 47.383	5.276	49.041 49.025	2.52%	-2.35%
			5200 5210	5.434	47.383 47.369	5.299	49.001	2.55%	-2.32% -2.32%
			5220 5340	5.457 5.481	47.348 47.310	5.323	45.957 45.950	2.52%	-2.35%
			5250 5250	5.494 5.508	47.286 47.255	5.358 5.369	48.947 48.933	2.54%	-2.29%
			5270	5.524	47.235	5.381	45.919	2.66%	-2.44%
			5290	5.550	47.200	5.404	40.022	2.70%	-2.45%
			5310	5.577	47.191	5.428	40.053	2.75%	-2.42%
			5500	5.819	46.871	3.650	40.007	2.99%	-2.57%
			5510 5520	5.835 5.848	46.838 46.811	5.661 5.673	45.594 45.590	2.00%	-2.51% -2.54%
			5530 5540	5.860 5.871	46.796 46.793	5.685 5.696	40.555 40.553	3.00%	-2.64%
			5550 5560	5.884 5.897	46.772 46.758	5.708	48.529 48.526	2.00%	-2.64% -2.64%
03/09/2020	5200-5800 Body	23	5590 5600	5.921 5.953	46.743 46.707	5.743 5.766	45.422 45.471	3.10%	-2.62% -2.64%
			5610	5.965 5.980	46.677	5.778	40.450	324%	-2.58% -2.70%
	1	1	5620 5640 5660	6.014	46.620 46.582	5.790 5.813 5.837 5.846 5.860	45,444 45,417 45,390	3.46%	-2.7%
	1	l	5570 5590	6.053	46.578 46.572	5.848 5.860	48.376 48.353	251%	-2.72%
	1	1	5090	6.079	46.552	5.872	45.349	353% 354%	-2.72% -2.77%
		l	5710	6.106	46.523	5.895	45.322	250%	-2.72%
	1	l	5745	6.154	46.441	3.907 5.936	40.275	267%	-2.72%
		l	5750 5755	6.160 6.167	46.428 46.414	5.942 5.947	45.255 45.251	3.70%	-2.67% -2.62%
	1	l	5765 5775	6.179 6.192	45.401 45.407	5.959 5.971	45.245 45.234	3.69%	-2.82%
	1	l	5785 5795	6.210 6.222	45.408 45.400	5.902 5.994	48.220 48.207	281%	-2.75% -2.75%
	1	l	5800 5805	6.229 6.234	46.392 46.385	8.000 800.8	48.200 48.193	3.82%	-2.75% -2.75%
			5825 5180	6.263 5.429	45.342 47.464	5.029 5.276	45.166 49.041	2.90%	-2.79% -2.22%
	1	1	5190 5200	5.445 5.460	47.429 47.463	5.288 5.299	49.028 49.014	2.97%	-3.26% -3.16%
	1	l	5210 5230	5.469 5.848	47.417 47.336	5.311	49.001 48.987	2.97%	-222% -2296
		l	5240	5.500	47.361	5.346	48.990	2.88%	-2.27%
		1	5260	5.530	47.308	5.369	48.933	200%	-2.32%
	1	1	5250	5.566	47.256	5.393	45.905	321%	-2.27%
		1	5300	5.584	47.235 47.261	3.404 5.416	40.022 45.072	3 10%	-2.3%
		1	5310 5320	5.614	47.255 47.230	5.428	40.055	3.22%	-3.29% -3.32%
	1	1	5500 5510	5.854 5.863	46.908 46.888	5.650 5.661	45.507 45.534	2.61% 2.57%	-2.50%
		1	5520 5530	5.882 5.888	46.892 46.878	5.673 5.665	48,590 48,595	2.57%	-2.47% -2.45%
	1	l	5540 5550	5.912 5.924	46.852 46.855	5.696 5.706	45.553 45.539	379%	-2.40% -2.47%
03/17/2020	5200-5800 Body	23	5590 5590 5900	5.926 5.948	46.787 46.764	5.720 5.743	48.526	2.60% 2.57%	-2.58% -2.58%
		1	5510	5.990 6.004	46.757 46.735	5.766 5.778	45.422 45.471 45.455	3,00%	-2.54%
	1	1	5620 5641	6.026 6.040	46.692	5.790	40.444 40.417	4.00% 3.91%	-2.62% -2.52%
		1	5620 5640 5690 5670	6.074	46.628	5.837 5.848	45.390	4.00%	-2.54%
	1	l	5500	6.099	46.581	5.860	40.353	4.00%	-2.60% -2.60%
		1	5700 5700	6.125	46.556	5.872	45.349 45.335	4.11%	-2.60%
		l	5720	6.152	46.533	3.495 5.907	45.322 45.329	4.15%	-2.60% -2.60%
	1	1	5745 5750	6.210	46.512 46.477	5.936 5.942	48.275 48.268	4.30%	-2.65%
	1	1	5755 5765	6.201	46.501 46.459	5.947 5.959	45.245	4.27%	-2.65%
		l	5775 5785	6.218 6.240	46.447 46.462	5.971 5.902	45.234 45.220	4.14%	-2.70% -2.65%
	1	l	5795 5800	6.255	46.415 46.391	5.994	45.207 45.200	4.56%	-2.72% -2.75%
L		<u></u>	5005 5025	6.276 6.295	46.383 46.355	6.006 6.029	45.193 45.165	4.50%	-2.78%
	ב וופר						-	_	

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFK300TM	POUR to be part of deciment	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 62 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 62 of 105

© 2020 PCTEST

REV 21.4 M 09/11/2019

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

> **Table 10-3 System Verification Results**

						ystem Ve	rification					
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
L	750	HEAD	02/26/2020	21.2	20.4	0.200	1054	7410	1.680	8.290	8.400	1.33%
Н	835	HEAD	03/02/2020	22.7	21.3	0.200	4d133	7406	1.890	9.430	9.450	0.21%
L	1750	HEAD	02/26/2020	21.2	20.4	0.100	1150	7410	3.770	36.500	37.700	3.29%
G	1900	HEAD	03/05/2020	22.7	22.4	0.100	5d080	7409	4.120	39.800	41.200	3.52%
Е	2450	HEAD	03/05/2020	23.2	23.0	0.100	719	3589	5.420	53.100	54.200	2.07%
Е	2600	HEAD	03/12/2020	22.9	21.2	0.100	1064	3589	5.870	58.100	58.700	1.03%
Н	5250	HEAD	03/09/2020	22.1	21.1	0.050	1057	7406	3.680	79.200	73.600	-7.07%
Н	5600	HEAD	03/09/2020	22.1	21.1	0.050	1057	7406	3.900	84.100	78.000	-7.25%
Н	5750	HEAD	03/09/2020	22.1	21.1	0.050	1057	7406	3.780	80.500	75.600	-6.09%
К	750	BODY	03/09/2020	23.0	21.5	0.200	1161	7547	1.690	8.430	8.450	0.24%
D	835	BODY	03/04/2020	21.9	21.3	0.200	4d047	7488	1.790	9.470	8.950	-5.49%
Н	835	BODY	03/16/2020	22.7	22.0	0.200	4d132	7406	1.980	9.960	9.900	-0.60%
I	1750	BODY	02/26/2020	21.2	20.9	0.100	1148	7357	3.850	37.700	38.500	2.12%
ı	1750	BODY	03/02/2020	22.8	22.0	0.100	1148	7357	3.910	37.700	39.100	3.71%
J	1900	BODY	03/12/2020	22.0	23.5	0.100	5d148	7571	4.180	39.100	41.800	6.91%
Р	1900	BODY	03/16/2020	24.5	22.0	0.100	5d149	7551	4.100	39.400	41.000	4.06%
К	2450	BODY	03/02/2020	23.0	22.5	0.100	797	7547	5.070	51.100	50.700	-0.78%
К	2450	BODY	03/05/2020	23.5	23.0	0.100	719	7547	5.030	50.800	50.300	-0.98%
K	2450	BODY	03/16/2020	23.2	22.5	0.100	797	7547	5.050	51.100	50.500	-1.17%
К	2600	BODY	03/02/2020	23.0	22.5	0.100	1004	7547	5.610	54.800	56.100	2.37%
К	2600	BODY	03/16/2020	23.2	22.5	0.100	1004	7547	5.260	54.800	52.600	-4.01%
G	5250	BODY	03/09/2020	22.5	22.3	0.050	1191	7409	3.610	77.000	72.200	-6.23%
G	5600	BODY	03/09/2020	22.5	22.3	0.050	1191	7409	3.980	78.600	79.600	1.27%
G	5750	BODY	03/09/2020	22.5	22.3	0.050	1191	7409	3.710	76.900	74.200	-3.51%
G	5750	BODY	03/17/2020	22.8	22.3	0.050	1237	7409	3.740	75.900	74.800	-1.45%

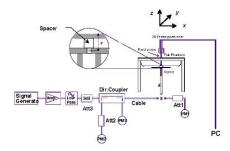


Figure 10-1 **System Verification Setup Diagram**

Figure 10-2 **System Verification Setup Photo**

FCC ID: ZNFK300TM	POLICE TO POLICE	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 63 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	raye 03 01 105

11 SAR DATA SUMMARY

11.1 **Standalone Head SAR Data**

Table 11-1 GSM 850 Head SAR

						MEASU	JREMEN	T RESU	LTS						
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	32.7	32.57	-0.15	Right	Cheek	10342	1	1:8.3	0.155	1.030	0.160	
836.60	190	GSM 850	GSM	32.7	32.57	0.09	Right	Tilt	10342	1	1:8.3	0.111	1.030	0.114	
836.60	190	GSM 850	GSM	32.7	32.57	0.06	Left	Cheek	10342	1	1:8.3	0.269	1.030	0.277	
836.60	190	GSM 850	GSM	32.7	32.57	-0.06	Left	Tilt	10342	1	1:8.3	0.154	1.030	0.159	
836.60	190	GSM 850	GPRS	28.7	28.70	-0.08	Right	Cheek	10342	4	1:2.076	0.338	1.000	0.338	
836.60	190	GSM 850	GPRS	28.7	28.70	0.01	Right	Tilt	10342	4	1:2.076	0.211	1.000	0.211	
836.60	190	GSM 850	GPRS	28.7	28.70	-0.01	Left	Cheek	10342	4	1:2.076	0.393	1.000	0.393	A1
836.60	190	GSM 850	GPRS	28.7	28.70	0.15	Left	Tilt	10342	4	1:2.076	0.227	1.000	0.227	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head								
	Spatial Peak Uncontrolled Exposure/General Population										1.6 W/kg veraged or	(mw/g) ver 1 gram			

Table 11-2 GSM 1900 Head SAR

MEASUREMENT RESULTS														
ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
661	GSM 1900	GSM	30.7	30.60	0.05	Right	Cheek	10342	1	1:8.3	0.138	1.023	0.141	
661	GSM 1900	GSM	30.7	30.60	0.12	Right	Tilt	10342	1	1:8.3	0.113	1.023	0.116	
661	GSM 1900	GSM	30.7	30.60	0.12	Left	Cheek	10342	1	1:8.3	0.147	1.023	0.150	
661	GSM 1900	GSM	30.7	30.60	0.03	Left	Tilt	10342	1	1:8.3	0.076	1.023	0.078	
661	GSM 1900	GPRS	25.7	25.70	0.17	Right	Cheek	10342	4	1:2.076	0.172	1.000	0.172	
661	GSM 1900	GPRS	25.7	25.70	-0.13	Right	Tilt	10342	4	1:2.076	0.144	1.000	0.144	
661	GSM 1900	GPRS	25.7	25.70	0.06	Left	Cheek	10342	4	1:2.076	0.182	1.000	0.182	A2
661	GSM 1900	GPRS	25.7	25.70	-0.19	Left	Tilt	10342	4	1:2.076	0.097	1.000	0.097	
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak										1.6 W/kg	(mW/g)			
	Ch. 661 661 661 661 661 661	Ch. 661 GSM 1900	Mode Service 661 GSM 1900 GSM 661 GSM 1900 GSM 661 GSM 1900 GSM 661 GSM 1900 GSM 661 GSM 1900 GPRS 661 GSM 1900 GPRS 661 GSM 1900 GPRS 661 GSM 1900 GPRS ANSI / IEEE C95.1 1992 Spatial Personal Per	Mode Service Allowed Power [dBm]	Ch. Mode Service Power [dBm] Allowed Power [dBm] Conducted Power [dBm] 661 GSM 1900 GSM 30.7 30.60 661 GSM 1900 GPRS 25.7 25.70 661 GSM 1900 GPRS 25.7 25.70	Note Note	Note Service Maximum Conducted Power [dBm] Power [dBm] Side	Note Service Maximum Allowed Power [dBm] Power [dBm] Power [dBm] Power [dBm] Side Position	Note Service Maximum Conducted Power [dBm] Power Side Test Position Number Number	Note Service Maximum Power [dBm] P	Name	Note Service Maximum Power [dBm] P	Name Service Maximum Allowed Power [dBm] Power	Name Service Mode Service Maximum Allowed Power [dBm] Power

FCC ID: ZNFK300TM	Postest of decrees	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 64 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Fage 04 01 105

© 2020 PCTEST

Table 11-3 UMTS 850 Head SAR

	CINTO ODO FIERU CAR													
	MEASUREMENT RESULTS													
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	1
836.60	4183	UMTS 850	RMC	25.2	24.97	0.18	Right	Cheek	10342	1:1	0.192	1.054	0.202	
836.60	4183	UMTS 850	RMC	25.2	24.97	0.20	Right	Tilt	10342	1:1	0.123	1.054	0.130	
836.60	4183	UMTS 850	RMC	25.2	24.97	0.07	Left	Cheek	10342	1:1	0.322	1.054	0.339	А3
836.60	4183	UMTS 850	RMC	25.2	24.97	0.05	Left	Tilt	10342	1:1	0.164	1.054	0.173	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Head							
	Spatial Peak						1.6 W/kg (mW/g)							
	Uncontrolled Exposure/General Population						averaged over 1 gram							

Table 11-4 UMTS 1750 Head SAR

	UM13 1730 Head SAR													
	MEASUREMENT RESULTS													
FREQU	REQUENCY			Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Ch.	ouo	5511155	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	. 101 //
1732.40	1412	UMTS 1750	RMC	24.7	24.39	0.09	Right	Cheek	10227	1:1	0.242	1.074	0.260	A4
1732.40	1412	UMTS 1750	RMC	24.7	24.39	0.17	Right	Tilt	10227	1:1	0.197	1.074	0.212	
1732.40	1412	UMTS 1750	RMC	24.7	24.39	-0.20	Left	Cheek	10227	1:1	0.185	1.074	0.199	
1732.40	1412	UMTS 1750	RMC	24.7	24.39	0.06	Left	Tilt	10227	1:1	0.156	1.074	0.168	
		ANSI / IEEI	E C95.1 1992	- SAFETY LI	MIT						Head			
	Spatial Peak						1.6 W/kg (mW/g)							
	Uncontrolled Exposure/General Population						averaged over 1 gram							

Table 11-5 UMTS 1900 Head SAR

							00 1100							
					МЕ	EASURE	MENT R	ESULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	i
1880.00	9400	UMTS 1900	RMC	24.7	24.45	0.12	Right	Cheek	10334	1:1	0.396	1.059	0.419	A5
1880.00	1880.00 9400 UMTS 1900 RMC 24.7 24.45					-0.02	Right	Tilt	10334	1:1	0.303	1.059	0.321	
1880.00						0.19	Left	Cheek	10334	1:1	0.326	1.059	0.345	
1880.00	30.00 9400 UMTS 1900 RMC 24.7 24.45 (Left	Tilt	10334	1:1	0.195	1.059	0.207	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										Head			
	Spatial Peak									1.6 V	V/kg (mW/g))		
		Uncontrolled	d Exposure/G	eneral Popul	ation					averag	jed over 1 gra	am		

FCC ID: ZNFK300TM	Pound to be part of the element	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 65 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 65 01 105

Table 11-6 CDMA BC10 (§90S) Head SAR

					CDIVIA	DC 10	(8903)	пеаа	SAK					
					ME	ASURE	MENT R	ESULTS						
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.2	24.80	0.02	Right	Cheek	10334	1:1	0.332	1.096	0.364	A6
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.2	24.80	-0.11	Right	Tilt	10334	1:1	0.193	1.096	0.212	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.2	24.80	-0.04	Left	Cheek	10334	1:1	0.326	1.096	0.357	
CDMA BC10								1.096	0.207					
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.2	25.07	0.01	Right	Cheek	10334	1:1	0.251	1.030	0.259	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.2	25.07	0.06	Right	Tilt	10334	1:1	0.146	1.030	0.150	
820.10	CDMA BC10							Cheek	10334	1:1	0.161	1.030	0.166	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.2	25.07	0.16	Left	Tilt	10334	1:1	0.095	1.030	0.098	
		ANSI / IEE			<u> </u>			Head						
	Spatial Peak									1.6 \	N/kg (mW/g))		
		Uncontrolled	Exposure/G	eneral Popul	ation					averaç	jed over 1 gra	am		

Table 11-7 CDMA BC0 (§22H) Head SAR

				<u> </u>	,	3							
				ME	ASURE	MENT R	ESULTS						
ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
384	CDMA BC0 (§22H)	RC3 / SO55	25.2	24.87	0.05	Right	Cheek	10334	1:1	0.332	1.079	0.358	
384	CDMA BC0 (§22H)	RC3 / SO55	25.2	24.87	0.02	Right	Tilt	10334	1:1	0.194	1.079	0.209	
384	CDMA BC0 (§22H)	RC3 / SO55	25.2	24.87	-0.18	Left	Cheek	10334	1:1	0.355	1.079	0.383	A7
384	CDMA BCO								1.079	0.224			
384	CDMA BC0 (§22H)	EVDO Rev. A	25.2	25.11	0.02	Right	Cheek	10334	1:1	0.249	1.021	0.254	
384	CDMA BC0 (§22H)	EVDO Rev. A	25.2	25.11	0.03	Right	Tilt	10334	1:1	0.148	1.021	0.151	
CDMA BC0							Cheek	10334	1:1	0.177	1.021	0.181	
384	CDMA BC0 (§22H)	EVDO Rev. A	25.2	25.11	-0.04	Left	Tilt	10334	1:1	0.114	1.021	0.116	
	ANSI / IEE	E C95.1 1992						Head	·				
		Spatial Pe					1.6 V	V/kg (mW/g))				
	Uncontrolled	d Exposure/G	eneral Popul	lation					averag	ed over 1 gra	am		
	Ch. 384 384 384 384 384 384	CDMA BCO (§22H) 384 CDMA BCO	Mode Service	Mode	Mode Service Maximum Allowed Power [dBm] Conducted Power [dBm]	Measure Maximum Allowed Power [dBm] Po	Measurement Maximum Allowed Power [dBm] Power [dBm]	Measurement Results Maximum Allowed Power [dBm] Power Fift [dB] Side Test Position	Measurement Results Maximum Allowed Power [dBm] Conducted Power [dBm] Power [dBm] Device Serial Number	Measurement Results Side Test Position Duty Cycle	Measurement Results Side Test Position Device Serial Number Device Serial Number	NCY Mode Service Maximum Allowed Power [dBm] Pow	NCY Mode Service Maximum Allowed Power [dBm] Conducted Power [dBm] Power Drift [dB] Side Test Position Number Cycle Duty Earling Number Cycle Register Reported SAR (1g) Reported SAR (1g) (W/kg) Factor (W/kg) (W/kg)

FCC ID: ZNFK300TM	POTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 66 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 66 of 105
20 DCTEST				DE\/ 21 / M

Table 11-8 PCS CDMA Head SAR

						,	117	IU SAR	<u> </u>					
					ME	EASURE	MENT R	ESULTS						
FREQUE	ENCY			Maximum	Conducted	Power		Test	Device	Duty	SAR (1g)	Scaling	Reported SAR (1g)	
MHz	Ch.	Mode	Service	Allowed Power [dBm]	Dower [dDm]	Drift [dB]	Side	Position	Serial Number	Cycle	(W/kg)	Factor	(W/kg)	Plot #
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.25	0.12	Right	Cheek	10334	1:1	0.429	1.109	0.476	A8
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.25	-0.01	Right	Tilt	10334	1:1	0.279	1.109	0.309	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.25	0.14	Left	Cheek	10334	1:1	0.367	1.109	0.407	
1880.00	600	PCS CDMA	RC3 / SO55	24.7	24.25	-0.02	Left	Tilt	10334	1:1	0.199	1.109	0.221	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.51	0.00	Right	Cheek	10334	1:1	0.414	1.045	0.433	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.51	-0.13	Right	Tilt	10334	1:1	0.266	1.045	0.278	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.51	0.17	Left	Cheek	10334	1:1	0.318	1.045	0.332	
1880.00	600	PCS CDMA	EVDO Rev. A	24.7	24.51	0.12	Left	Tilt	10334	1:1	0.175	1.045	0.183	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head			
			Spatial Pe	ak						1.6 V	V/kg (mW/g))		
		Uncontrolled	d Exposure/G	eneral Popul	lation					averag	ed over 1 gra	am		

Table 11-9 LTE Band 71 Head SAR

								MEAS	UREME	ENT RES	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ci	۱.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	25.2	25.00	0.05	0	Right	Cheek	QPSK	1	50	10318	1:1	0.206	1.047	0.216	
680.50	133297	Mid	LTE Band 71	20	24.2	23.96	0.13	1	Right	Cheek	QPSK	50	25	10318	1:1	0.160	1.057	0.169	
680.50	133297	Mid	LTE Band 71	20	25.2	25.00	-0.17	0	Right	Tilt	QPSK	1	50	10318	1:1	0.084	1.047	0.088	
680.50	133297	Mid	LTE Band 71	20	24.2	23.96	0.08	1	Right	Tilt	QPSK	50	25	10318	1:1	0.065	1.057	0.069	
680.50	133297	Mid	LTE Band 71	20	25.2	25.00	0.03	0	0 Left Cheek QPSK 1 50 10318 1:1 0.214 1.047 0.224								A9		
680.50	133297	Mid	LTE Band 71	20	24.2	23.96	0.12	1	Left	Cheek	QPSK	50	25	10318	1:1	0.181	1.057	0.191	
680.50	133297	Mid	LTE Band 71	20	25.2	25.00	0.09	0	Left	Tilt	QPSK	1	50	10318	1:1	0.108	1.047	0.113	
680.50	133297	Mid	LTE Band 71	20	24.2	23.96	0.04	1	Left	Tilt	QPSK	50	25	10318	1:1	0.090	1.057	0.095	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Head					
	Spatial Peak												.6 W/kg (n eraged over						
			Uncontrolled Exposure/General Population										ave	ayeu over	i graiii				

FCC ID: ZNFK300TM	PCTEST Proud to be part of releases	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 67 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 67 of 105

Table 11-10 LTE Band 12 Head SAR

									<u> </u>	2110	au or	<u> </u>							
								MEAS	SUREMI	ENT RE	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	ĺ
707.50	23095	Mid	LTE Band 12	10	25.2	25.01	0.02	0	Right	Cheek	QPSK	1	25	10318	1:1	0.230	1.045	0.240	
707.50	23095	Mid	LTE Band 12	10	24.2	24.02	0.14	1	Right	Cheek	QPSK	25	12	10318	1:1	0.194	1.042	0.202	
707.50	23095	Mid	LTE Band 12	10	25.2	25.01	-0.03	0	Right	Tilt	QPSK	1	25	10318	1:1	0.132	1.045	0.138	
707.50	23095	Mid	LTE Band 12	10	24.2	24.02	-0.11	1	Right	Tilt	QPSK	25	12	10318	1:1	0.103	1.042	0.107	
707.50	23095	Mid	LTE Band 12	10	25.2	25.01	-0.07	0	Left Cheek QPSK 1 25 10318 1:1 0.291 1.045 0.304								A10		
707.50	23095	Mid	LTE Band 12	10	24.2	24.02	0.00	1	Left	Cheek	QPSK	25	12	10318	1:1	0.238	1.042	0.248	
707.50 23095 Mid LTE Band 12 10 25.2 25.01 0.07							0	Left	Tilt	QPSK	1	25	10318	1:1	0.183	1.045	0.191		
707.50	23095	Mid	LTE Band 12	10	24.2	24.02	-0.05	1	Left	Tilt	QPSK	25	12	10318	1:1	0.143	1.042	0.149	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population													Head .6 W/kg (neraged over	nW/g)				

Table 11-11 LTE Band 13 Head SAR

								MEAS	SUREMI	ENT RES	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.2	25.02	0.15	0	Right	Cheek	QPSK	1	25	10318	1:1	0.310	1.042	0.323	
782.00	23230	Mid	LTE Band 13	10	24.2	23.99	-0.05	1	Right	Cheek	QPSK	25	12	10318	1:1	0.251	1.050	0.264	
782.00	23230	Mid	LTE Band 13	10	25.2	25.02	0.16	0	Right	Tilt	QPSK	1	25	10318	1:1	0.160	1.042	0.167	
782.00	23230	Mid	LTE Band 13	10	24.2	23.99	0.00	1	Right	Tilt	QPSK	25	12	10318	1:1	0.134	1.050	0.141	
782.00	23230	Mid	LTE Band 13	10	25.2	25.02	0.01	0	0 Left Cheek QPSK 1 25 10318 1:1 0.336 1.042 0.350								0.350	A11	
782.00	23230	Mid	LTE Band 13	10	24.2	23.99	0.09	1	Left	Cheek	QPSK	25	12	10318	1:1	0.276	1.050	0.290	
782.00 23230 Mid LTE Band 13 10 25.2 25.02 0.01							0	Left	Tilt	QPSK	1	25	10318	1:1	0.180	1.042	0.188		
782.00	23230	Mid	LTE Band 13	10	24.2	23.99	-0.06	1	Left	Tilt	QPSK	25	12	10318	1:1	0.155	1.050	0.163	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population												Head .6 W/kg (neraged over	nW/g)					

Table 11-12 LTE Band 26 (Cell) Head SAR

								Daniu	20 (Celly	Heau	סאוע							
								MEAS	SUREM	ENT RE	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.12	-0.05	0	Right	Cheek	QPSK	1	36	10342	1:1	0.357	1.019	0.364	A12
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.08	0.06	1	Right	Cheek	QPSK	36	18	10342	1:1	0.293	1.028	0.301	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.12	0.07	0	Right	Tilt	QPSK	1	36	10342	1:1	0.179	1.019	0.182	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.08	0.16	1	Right	Tilt	QPSK	36	18	10342	1:1	0.111	1.028	0.114	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.12	0.02	0	Left	Cheek	QPSK	1	36	10342	1:1	0.301	1.019	0.307	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.08	0.09	1	Left	Cheek	QPSK	36	18	10342	1:1	0.248	1.028	0.255	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.12	0.01	0	Left	Tilt	QPSK	1	36	10342	1:1	0.156	1.019	0.159	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.08	0.05	1	Left	Tilt	QPSK	36	18	10342	1:1	0.127	1.028	0.131	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									•			Head						
				Spatial Pe										.6 W/kg (r					
			Uncontrolled F	vnosuro/G	eneral Ponu	lation							21/6	eraged over	1 aram				

FCC ID: ZNFK300TM	PCTEST Proud to be part of the element	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 60 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 68 of 105

Table 11-13 LTE Band 66 (AWS) Head SAR

								- u u	55 (,		11040	. 0,							
	MEASUREMENT RESULTS																		
FRI	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.63	-0.06	0	Right	Cheek	QPSK	1	50	10318	1:1	0.269	1.016	0.273	A13
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.68	-0.05	1	Right	Cheek	QPSK	50	0	10318	1:1	0.219	1.005	0.220	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.63	0.07	0	Right	Tilt	QPSK	1	50	10318	1:1	0.254	1.016	0.258	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.68	0.02	1	Right	Tilt	QPSK	50	0	10318	1:1	0.183	1.005	0.184	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.63	0.14	0	Left	Cheek	QPSK	1	50	10318	1:1	0.266	1.016	0.270	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.68	0.13	1	Left	Cheek	QPSK	50	0	10318	1:1	0.190	1.005	0.191	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.63	0.21	0	Left	Tilt	QPSK	1	50	10318	1:1	0.141	1.016	0.143	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.68	0.07	1	Left	Tilt	QPSK	50	0	10318	1:1	0.111	1.005	0.112	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Head					
	Spatial Peak												1	.6 W/kg (r	nW/g)				
	Uncontrolled Exposure/General Population												ave	eraged over	r 1 gram				

Table 11-14 LTE Band 25 (PCS) Head SAR

								MEAS	UREMI	ENT RES	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.57	0.01	0	Right	Cheek	QPSK	1	50	10334	1:1	0.370	1.030	0.381	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.66	-0.02	1	Right	Cheek	QPSK	50	25	10334	1:1	0.272	1.009	0.274	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.57	0.06	0	Right	Tilt	QPSK	1	50	10334	1:1	0.269	1.030	0.277	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.66	0.21	1	Right	Tilt	QPSK	50	25	10334	1:1	0.197	1.009	0.199	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.57	0.03	0	Left	Cheek	QPSK	1	50	10334	1:1	0.410	1.030	0.422	A14
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.66	0.02	1	Left	Cheek	QPSK	50	25	10334	1:1	0.302	1.009	0.305	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.57	0.06	0	Left	Tilt	QPSK	1	50	10334	1:1	0.216	1.030	0.222	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.66	0.18	1	Left	Tilt	QPSK	50	25	10334	1:1	0.151	1.009	0.152	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									<u> </u>				Head					
	Spatial Peak Uncontrolled Exposure/General Population													.6 W/kg (n					
			Uncontrolled E	xposure/G	eneral Popu	lation							ave	eraged over	1 gram				

FCC ID: ZNFK300TM	POTEST Poud to be part of the recessed	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 69 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 69 of 105

© 2020 PCTEST REV 21.4 M

Table 11-15 LTE Band 41 Head SAR

									ana	711	icac	1 07	1 \								
								ME	EASURE	MENT F	RESULT	s									
1 CC Uplink 2 CC Uplink, Power Class	Component Carrier	FF	EQUENC	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
opinik, Power Class	Carrier	MHz	С	h.		[MHZ]	Power [dBm]	Power [dBill]	Driit [db]			Position				Number	Cycle	(W/kg)	Pactor	(W/kg)	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	24.7	24.34	0.17	0	Right	Cheek	QPSK	1	0	10342	1:1.58	0.079	1.086	0.086	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	24.7	24.55	0.12	0	Right	Cheek	QPSK	1	50	10342	1:1.58	0.087	1.035	0.090	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.51	0.14	1	Right	Cheek	QPSK	50	0	10342	1:1.58	0.065	1.045	0.068	
1 CC Uplink - Power Class 2	N/A	2680.00	41490	High	LTE Band 41	20	27.7	27.02	0.01	0	Right	Cheek	QPSK	1	0	10342	1:2.31	0.109	1.169	0.127	
1 CC Uplink - Power Class 2	N/A	2680.00	41490	High	LTE Band 41	20	27.7	27.27	0.12	0	Right	Cheek	QPSK	1	50	10342	1:2.31	0.115	1.104	0.127	
2 CC Uplink - Power	PCC	2680.00	41490	High	LTE Band 41	20	24.7	24.60	0.16	0	Right	Cheek	QPSK	1	0	10342	1:1.58	0.088	1.023	0.090	
Class 3	scc	2660.20	41292	nign	LIE Band 41	20	24.7	24.60	0.16	0	Right	Cneek	UPSK	'	99	10342	1:1.58	0.088	1.023	0.090	
2 CC Uplink - Power	PCC	2680.00	41490	High	LTE Band 41		27.7	27.45	0.12	0	Dieta	Ohaali	QPSK	1	0	10342	1:2.31	0.126	1.059	0.133	A15
Class 2	scc	2660.20	41292	High	LIE Band 41	20	27.7	27.45	0.12	0	Right	Cheek	QPSK	1	99	10342	1:2.31	0.126	1.059	0.133	A15
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	24.7	24.55	0.09	0	Right	Tilt	QPSK	1	50	10342	1:1.58	0.049	1.035	0.051	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.51	0.19	1	Right	Tilt	QPSK	50	0	10342	1:1.58	0.037	1.045	0.039	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	24.7	24.55	0.18	0	Left	Cheek	QPSK	1	50	10342	1:1.58	0.054	1.035	0.056	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.51	0.12	1	Left	Cheek	QPSK	50	0	10342	1:1.58	0.040	1.045	0.042	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	24.7	24.55	0.15	0	Left	Tilt	QPSK	1	50	10342	1:1.58	0.076	1.035	0.079	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.51	0.14	1	Left	Tilt	QPSK	50	0	10342	1:1.58	0.054	1.045	0.056	
		•	ANS	I / IEEE	C95.1 1992 - SA	FETY LIMIT							•			Head	i		•		
					Spatial Peak											I.6 W/kg (r	•				
	Uncontrolled Exposure/General Population														aw	eraged ove	r 1 gram				

Table 11-16 DTS Head SAR

							N	IEASUF	EMENT	RESUL	TS							
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	21.0	20.54	0.13	Right	Cheek	10227	1	99.4	0.568	0.374	1.112	1.006	0.418	A16
2437	6	802.11b	DSSS	22	21.0	20.54	0.03	Right	Tilt	10227	1	99.4	0.406	0.294	1.112	1.006	0.329	
2437	6	802.11b	DSSS	22	21.0	20.54	0.01	Left	Cheek	10227	1	99.4	0.211	-	1.112	1.006	-	
2437	6	802.11b	DSSS	22	21.0	20.54	0.02	Left	Tilt	10227	1	99.4	0.184	-	1.112	1.006		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak												Hea 1.6 W/kg					
	Spattal Peak Uncontrolled Exposure/General Population												averaged ov	er 1 gram				

FCC ID: ZNFK300TM	Postest of decrees	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 70 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 70 01 105

Table 11-17 NII Head SAR

							-		iicaa									
							N	IEASUF	REMENT	RESUL	TS							
FREQUE	NCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted	Power	Side	Test Position	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHZ]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5260	52	802.11a	OFDM	20	17.0	16.98	0.13	Right	Cheek	10219	6	96.9	0.753	-	1.005	1.032	-	
5260	52	802.11a	OFDM	20	17.0	16.98	0.08	Right	Tilt	10219	6	96.9	0.827	0.362	1.005	1.032	0.375	
5260	52	802.11a	OFDM	20	17.0	16.98	0.14	Left	Cheek	10219	6	96.9	0.568	-	1.005	1.032		
5260	52	802.11a	OFDM	20	17.0	16.98	0.09	Left	Tilt	10219	6	96.9	0.581	-	1.005	1.032		
5720	144	802.11a	OFDM	20	17.5	17.14	0.14	Right	Cheek	10219	6	96.9	1.198	0.570	1.086	1.032	0.639	
5500	100	802.11a	OFDM	20	17.0	16.89	0.10	Right	Tilt	10219	6	96.9	0.969	0.454	1.026	1.032	0.481	
5660	132	802.11a	OFDM	20	17.5	17.01	0.15	Right	Tilt	10219	6	96.9	1.089	0.567	1.119	1.032	0.655	
5720	144	802.11a	OFDM	20	17.5	17.14	0.14	Right	Tilt	10219	6	96.9	1.252	0.596	1.086	1.032	0.668	
5720	144	802.11a	OFDM	20	17.5	17.14	0.12	Left	Cheek	10219	6	96.9	0.846	-	1.086	1.032	-	
5720	144	802.11a	OFDM	20	17.5	17.14	-0.13	Left	Tilt	10219	6	96.9	0.991	-	1.086	1.032	-	
5825	165	802.11a	OFDM	20	17.5	17.43	0.21	Right	Cheek	10219	6	96.9	1.226	0.610	1.016	1.032	0.640	A17
5825	165	802.11a	OFDM	20	17.5	17.43	0.12	Right	Tilt	10219	6	96.9	1.127	0.577	1.016	1.032	0.605	
5825	165	802.11a	OFDM	20	17.5	17.43	0.14	Left	Cheek	10219	6	96.9	0.915	-	1.016	1.032	-	
5825	25 165 802.11a OFDM 20 17.5 17.43 0.							Left	Tilt	10219	6	96.9	0.989		1.016	1.032	-	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Hea	nd				
	Spatial Peak												1.6 W/kg	(mW/g)				
	Uncontrolled Exposure/General Population												averaged ov	er 1 gram				

Table 11-18 DSS Head SAR

	200 11000 07111															
	MEASUREMENT RESULTS															
FREQUE	ENCY	M. J.	0	Maximum	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty	SAR (1g)	Scaling	Scaling	Reported SAR (1g)	DI-1.#
MHz	Ch.	Mode	Service	Allowed Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	Cycle (%)	(W/kg)	Factor (Cond Power)	Factor (Duty Cycle)	(W/kg)	Plot #
2441.00	39	Bluetooth	FHSS	10.0	8.78	-0.11	Right	Cheek	10219	1	76.5	0.029	1.323	1.307	0.050	A18
2441.00	39	Bluetooth	FHSS	10.0	8.78	0.14	Right	Tilt	10219	1	76.5	0.019	1.323	1.307	0.033	
2441.00	39	Bluetooth	FHSS	10.0	8.78	0.16	Left	Cheek	10219	1	76.5	0.011	1.323	1.307	0.019	
2441.00	39	Bluetooth	FHSS	10.0	8.78	0.11	Left	Tilt	10219	1	76.5	0.010	1.323	1.307	0.017	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT											Head				
	Spatial Peak										1.6	W/kg (mW/	g)			
	Uncontrolled Exposure/General Population										avera	ged over 1 g	ıram			

FCC ID: ZNFK300TM	Postest of decrees	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 71 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 71 01 105

11.2 Standalone Body-Worn SAR Data

Table 11-19 GSM/UMTS/CDMA Body-Worn SAR Data

Mode GSM 850 GSM 850 GSM 1900	Service GSM GPRS	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Conducted Power Consist # of time Duty Cids Scaling (1g) Plant														
GSM 850				Sint [aB]			Slots	Cycle	Side	, ,	Scaling Factor	(1g)								
GSM 850		32.7	32.57			Number	0.010	0,0.0		(W/kg)		(W/kg)								
	GPRS			-0.04	10 mm	10342	1	1:8.3	back	0.338	1.030	0.348								
GSM 1900		28.7	28.70	0.13	10 mm	10342	4	1:2.076	back	0.564	1.000	0.564	A19							
	GSM	30.7	30.60	0.04	10 mm	10342	1	1:8.3	back	0.229	1.023	0.234								
GSM 1900	GPRS	25.7	25.70	0.00	10 mm	10342	4	1:2.076	back	0.273	1.000	0.273	A20							
UMTS 850	RMC	25.2	24.97	0.10	10 mm	10318	N/A	1:1	back	0.413	1.054	0.435	A22							
UMTS 1750	RMC	24.7	24.40	-0.08	10 mm	10334	N/A	1:1	back	0.684	1.072	0.733								
UMTS 1750	RMC	24.7	24.39	0.11	10 mm	10334	N/A	1:1	back	0.699	1.074	0.751	A23							
UMTS 1750	RMC	24.7	24.36	-0.08	10 mm	10334	N/A	1:1	back	0.626	1.081	0.677								
UMTS 1900	RMC	24.7	24.55	-0.02	10 mm	10334	N/A	1:1	back	0.620	1.035	0.642								
UMTS 1900	RMC	24.7	24.45	-0.16	10 mm	10334	N/A	1:1	back	0.586	1.059	0.621								
UMTS 1900	RMC	24.7	24.53	-0.03	10 mm	10334	N/A	1:1	back	0.623	1.040	0.648	A24							
CDMA BC10 (§90S)	TDSO / SO32	25.2	25.10	-0.03	10 mm	10318	N/A	1:1	back	0.392	1.023	0.401	A26							
DMA BC0 (§22H)	TDSO / SO32	25.2	25.15	-0.13	10 mm	10318	N/A	1:1	back	0.514	1.012	0.520	A28							
PCS CDMA	TDSO / SO32	24.7	24.51	-0.02	10 mm	10334	N/A	1:1	back	0.516	1.045	0.539	A30							
										•										
Uncentrelled	•	ral Danulatio	n.							,										
	UMTS 1750 UMTS 1750 UMTS 1900 UMTS 1900 UMTS 1900 CDMA BC10 (§90S) DMA BC0 (§22H) PCS CDMA ANSI / IEEE	UMTS 1750 RMC UMTS 1750 RMC UMTS 1900 RMC UMTS 1900 RMC UMTS 1900 RMC UMTS 1900 RMC CDMA BC10 (§90S) TDSO / SO32 DMA BC0 (§22H) TDSO / SO32 ANSI / IEEE C95.1 1992 - S. Spatial Peak	UMTS 1750 RMC 24.7 UMTS 1750 RMC 24.7 UMTS 1900 RMC 24.7 UMTS 1900 RMC 24.7 UMTS 1900 RMC 24.7 UMTS 1900 RMC 24.7 CDMA BC10 (§90S) TDSO / SO32 25.2 PCS CDMA TDSO / SO32 24.7 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	UMTS 1750 RMC 24.7 24.39 UMTS 1750 RMC 24.7 24.36 UMTS 1900 RMC 24.7 24.55 UMTS 1900 RMC 24.7 24.45 UMTS 1900 RMC 24.7 24.53 UMTS 1900 RMC 24.7 24.53 CDMA BC10 (§90S) TDSO / SO32 25.2 25.10 DMA BC0 (§22H) TDSO / SO32 25.2 25.15 PCS CDMA TDSO / SO32 24.7 24.51 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	UMTS 1750 RMC 24.7 24.39 0.11 UMTS 1750 RMC 24.7 24.36 -0.08 UMTS 1900 RMC 24.7 24.55 -0.02 UMTS 1900 RMC 24.7 24.45 -0.16 UMTS 1900 RMC 24.7 24.53 -0.03 CDMA BC10 (§90S) TDSO / SO32 25.2 25.10 -0.03 MA BC0 (§22H) TDSO / SO32 25.2 25.15 -0.13 PCS CDMA TDSO / SO32 24.7 24.51 -0.02 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	UMTS 1750 RMC 24.7 24.39 0.11 10 mm UMTS 1750 RMC 24.7 24.36 -0.08 10 mm UMTS 1900 RMC 24.7 24.55 -0.02 10 mm UMTS 1900 RMC 24.7 24.45 -0.16 10 mm UMTS 1900 RMC 24.7 24.53 -0.03 10 mm UMTS 1900 TDSO / SO32 25.2 25.10 -0.03 10 mm DMA BC10 (§90S) TDSO / SO32 25.2 25.15 -0.13 10 mm PCS CDMA TDSO / SO32 24.7 24.51 -0.02 10 mm ANSI / IEEE C95.1 1992 - SAFETY LIMIT	UMTS 1750 RMC 24.7 24.39 0.11 10 mm 10334 UMTS 1750 RMC 24.7 24.36 -0.08 10 mm 10334 UMTS 1900 RMC 24.7 24.55 -0.02 10 mm 10334 UMTS 1900 RMC 24.7 24.45 -0.16 10 mm 10334 UMTS 1900 RMC 24.7 24.45 -0.16 10 mm 10334 UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 CDMA BC10 (§90S) TDSO / SO32 25.2 25.10 -0.03 10 mm 10318 DMA BC0 (§22H) TDSO / SO32 25.2 25.15 -0.13 10 mm 10318 PCS CDMA TDSO / SO32 24.7 24.51 -0.02 10 mm 10334 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	UMTS 1750 RMC 24.7 24.39 0.11 10 mm 10334 N/A UMTS 1750 RMC 24.7 24.36 -0.08 10 mm 10334 N/A UMTS 1900 RMC 24.7 24.55 -0.02 10 mm 10334 N/A UMTS 1900 RMC 24.7 24.45 -0.16 10 mm 10334 N/A UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A CDMA BC10 (§90S) TDSO / SO32 25.2 25.10 -0.03 10 mm 10318 N/A PCS CDMA TDSO / SO32 24.7 24.51 -0.02 10 mm 10334 N/A ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	UMTS 1750 RMC 24.7 24.39 0.11 10 mm 10334 N/A 1:1 UMTS 1750 RMC 24.7 24.36 -0.08 10 mm 10334 N/A 1:1 UMTS 1900 RMC 24.7 24.55 -0.02 10 mm 10334 N/A 1:1 UMTS 1900 RMC 24.7 24.45 -0.16 10 mm 10334 N/A 1:1 UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A 1:1 UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A 1:1 CDMA BC10 (§90S) TDSO / SO32 25.2 25.10 -0.03 10 mm 10318 N/A 1:1 DMA BC0 (§22H) TDSO / SO32 25.2 25.15 -0.13 10 mm 10318 N/A 1:1 PCS CDMA TDSO / SO32 24.7 24.51 -0.02 10 mm 10334 N/A 1:1 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	UMTS 1750 RMC 24.7 24.39 0.11 10 mm 10334 N/A 1:1 back UMTS 1750 RMC 24.7 24.36 -0.08 10 mm 10334 N/A 1:1 back UMTS 1900 RMC 24.7 24.55 -0.02 10 mm 10334 N/A 1:1 back UMTS 1900 RMC 24.7 24.45 -0.16 10 mm 10334 N/A 1:1 back UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A 1:1 back UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A 1:1 back CDMA BC10 (§90S) TDSO / SO32 25.2 25.10 -0.03 10 mm 10318 N/A 1:1 back DMA BC0 (§22H) TDSO / SO32 25.2 25.15 -0.13 10 mm 10318 N/A 1:1 back PCS CDMA TDSO / SO32 24.7 24.51 -0.02 10 mm 10334 N/A 1:1 back ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	UMTS 1750 RMC 24.7 24.39 0.11 10 mm 10334 N/A 1:1 back 0.699 UMTS 1750 RMC 24.7 24.36 -0.08 10 mm 10334 N/A 1:1 back 0.626 UMTS 1900 RMC 24.7 24.55 -0.02 10 mm 10334 N/A 1:1 back 0.620 UMTS 1900 RMC 24.7 24.45 -0.16 10 mm 10334 N/A 1:1 back 0.586 UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A 1:1 back 0.623 CDMA BC10 (§90S) TDSO / SO32 25.2 25.10 -0.03 10 mm 10318 N/A 1:1 back 0.392 DMA BC0 (§22H) TDSO / SO32 25.2 25.15 -0.13 10 mm 10318 N/A 1:1 back 0.514 PCS CDMA TDSO / SO32 24.7 24.51 -0.02 10 mm 10334 N/A 1:1 back 0.516 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	UMTS 1750 RMC 24.7 24.39 0.11 10 mm 10334 N/A 1:1 back 0.699 1.074 UMTS 1750 RMC 24.7 24.36 -0.08 10 mm 10334 N/A 1:1 back 0.626 1.081 UMTS 1900 RMC 24.7 24.55 -0.02 10 mm 10334 N/A 1:1 back 0.620 1.035 UMTS 1900 RMC 24.7 24.45 -0.16 10 mm 10334 N/A 1:1 back 0.586 1.059 UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A 1:1 back 0.623 1.040 CDMA BC10 (§90S) TDSO / SO32 25.2 25.10 -0.03 10 mm 10318 N/A 1:1 back 0.392 1.023 DMA BC0 (§22H) TDSO / SO32 25.2 25.15 -0.13 10 mm 10318 N/A 1:1 back 0.514 1.012 PCS CDMA TDSO / SO32 24.7 24.51 -0.02 10 mm 10334 N/A 1:1 back 0.516 1.045 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak	UMTS 1750 RMC 24.7 24.39 0.11 10 mm 10334 N/A 1:1 back 0.699 1.074 0.751 UMTS 1750 RMC 24.7 24.36 -0.08 10 mm 10334 N/A 1:1 back 0.626 1.081 0.677 UMTS 1900 RMC 24.7 24.55 -0.02 10 mm 10334 N/A 1:1 back 0.620 1.035 0.642 UMTS 1900 RMC 24.7 24.45 -0.16 10 mm 10334 N/A 1:1 back 0.586 1.059 0.621 UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A 1:1 back 0.623 1.040 0.648 UMTS 1900 RMC 24.7 24.53 -0.03 10 mm 10334 N/A 1:1 back 0.623 1.040 0.648 CDMA BC10 (§90S) TDSO / SO32 25.2 25.10 -0.03 10 mm 10318 N/A 1:1 back 0.392 1.023 0.401 DMA BC0 (§22H) TDSO / SO32 25.2 25.15 -0.13 10 mm 10318 N/A 1:1 back 0.516 1.045 0.539 ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak							

FCC ID: ZNFK300TM	POTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager			
Document S/N:	Test Dates:	DUT Type:		Page 72 of 105			
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	26/20 - 03/17/20 Portable Handset					
20 BCTEST	02,20,20 00,11,20	- Criabio Francoct		DEV/ 24 4 M			

Table 11-20 LTE Body-Worn SAR

									uy-vv	UIII 3	<u> </u>								
								MEASU	REMENT	RESULT	s								
FR	EQUENC	′	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	C	h.		[miiz]	Power [dBm]	r ower [abin]	Dilit [ab]		Number						Cycle	(W/kg)	1 actor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	25.2	25.00	-0.04	0	10334	QPSK	1	50	10 mm	back	1:1	0.395	1.047	0.414	A32
680.50	133297	Mid	LTE Band 71	20	24.2	23.96	0.00	1	10334	QPSK	50	25	10 mm	back	1:1	0.308	1.057	0.326	
707.50	23095	Mid	LTE Band 12	10	25.2	25.01	0.08	0	10334	QPSK	1	25	10 mm	back	1:1	0.418	1.045	0.437	A33
707.50	23095	Mid	LTE Band 12	10	24.2	24.02	0.08	1	10334	QPSK	25	12	10 mm	back	1:1	0.328	1.042	0.342	
782.00	23230	Mid	LTE Band 13	10	25.2	25.02	-0.05	0	10334	QPSK	1	25	10 mm	back	1:1	0.572	1.042	0.596	A34
782.00	23230	Mid	LTE Band 13	10	24.2	23.99	-0.04	1	10334	QPSK	25	12	10 mm	back	1:1	0.446	1.050	0.468	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.12	0.00	0	10326	QPSK	1	36	10 mm	back	1:1	0.405	1.019	0.413	A35
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.08	-0.03	1	10326	QPSK	36	18	10 mm	back	1:1	0.338	1.028	0.347	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.7	24.62	-0.12	0	10334	QPSK	1	50	10 mm	back	1:1	0.725	1.019	0.739	A36
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.54	0.02	0	10334	QPSK	1	50	10 mm	back	1:1	0.724	1.038	0.752	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.63	0.02	0	10334	QPSK	1	50	10 mm	back	1:1	0.656	1.016	0.666	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.68	0.03	1	10334	QPSK	50	0	10 mm	back	1:1	0.527	1.005	0.530	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.57	-0.04	0	10334	QPSK	1	50	10 mm	back	1:1	0.563	1.030	0.580	A37
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.66	-0.02	1	10334	QPSK	50	25	10 mm	back	1:1	0.424	1.009	0.428	
			ANSI / IEEE C	295.1 1992	- SAFETY LI	MIT								Вс	dy				
				Spatial Pea	ak									1.6 W/kg	g (mW/g))			
			Uncontrolled E	xposure/G	eneral Popul	ation							av	eraged o	ver 1 gra	ım			

Table 11-21 LTE Band 41 Body-Worn SAR

								allu 4	. 50	uy .	10111	<u> Ortiv</u>	<u> </u>								
								MEASUF	REMENT	RESUL	.TS										
1 CC Uplink 2 CC Uplink, Power Class	Component Carrier		EQUENC		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
		MHz	(ch.		[a]	Power [dBm]				Number						-,	(W/kg)		(W/kg)	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	24.7	24.54	0.06	0	10318	QPSK	1	99	10 mm	back	1:1.58	0.593	1.038	0.616	
1 CC Uplink - Power Class 3	N/A	2549.50	40185	Low-Mid	LTE Band 41	20	24.7	24.31	0.01	0	10318	QPSK	1	50	10 mm	back	1:1.58	0.709	1.094	0.776	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.7	24.22	0.00	0	10318	QPSK	1	0	10 mm	back	1:1.58	0.713	1.117	0.796	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.7	24.35	0.08	0	10318	QPSK	1	50	10 mm	back	1:1.58	0.736	1.084	0.798	
1 CC Uplink - Power Class 3	link - Power Class 3 N/A 2636.50 41055 Mid-High LTE Band 41 20 24.7 24.26											QPSK	1	50	10 mm	back	1:1.58	0.674	1.107	0.746	
1 CC Uplink - Power Class 3	plink - Power Class 3 N/A 2680.00 41490 High LTE Band 41 20 24.7 24.55											QPSK	1	50	10 mm	back	1:1.58	0.607	1.035	0.628	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.51	0.10	1	10318	QPSK	50	0	10 mm	back	1:1.58	0.414	1.045	0.433	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.50	0.01	1	10318	QPSK	100	0	10 mm	back	1:1.58	0.473	1.047	0.495	
1 CC Uplink - Power Class 2	N/A	2593.00	40620	Mid	LTE Band 41	20	27.7	27.13	-0.02	0	10318	QPSK	1	0	10 mm	back	1:2.31	0.923	1.140	1.052	
1 CC Uplink - Power Class 2	N/A	2593.00	40620	Mid	LTE Band 41	20	27.7	27.27	-0.04	0	10318	QPSK	1	50	10 mm	back	1:2.31	1.030	1.104	1.137	A39
	PCC	2593.00	40620											0							
2 CC Uplink - Power Class 3	SCC	2573.20	40422	Mid	LTE Band 41	20	24.7	24.12	0.04	0	10318	QPSK	1	99	10 mm	back	1:1.58	0.663	1.143	0.758	
	PCC	2593.00	40620											0							
2 CC Uplink - Power Class 2	SCC	2573.20	40422	Mid	LTE Band 41	20	27.7	27.26	-0.13	0	10318	QPSK	1	99	10 mm	back	1:2.31	0.905	1.107	1.002	
1 CC Uplink - Power Class 2	ower Class 2 N/A 2593.00 40620 Mid LTE Band 41 20 27.7 27.27											QPSK	1	50	10 mm	back	1:2.31	0.988	1.104	1.091	
		ANSI	/ IEEE	C95.1 19	92 - SAFETY LIN	ИIT										Body					
				Spatial	Peak										1.6 V	V/kg (mV	N/g)				
		Uncon	trolled I	Exposur	e/General Popul	ation									averag	ed over 1	l gram				

Note: Blue entry represents variability measurement.

FCC ID: ZNFK300TM	PCTEST* Poud to be part of the cleanest	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 73 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 73 01 103

© 2020 PCTEST REV 21.4 M

Table 11-22 DTS Body-Worn SAR

							MEAS	SUREME	ENT RE	SULTS	;							
FREQU	QUENCY Mode Service MHz Maximum Allowed Power [dBm] Maxim																	
MHz	Ch.	mode Getwee [MHz] Allowed ower [dBm] [dB] Spacing Genal Rate Gide Cycle																
2412	1	802.11b	DSSS	22	23.0	22.41	0.02	10 mm	10219	1	back	99.4	0.809	0.497	1.146	1.006	0.573	A40
		ANS	SI / IEEE (C95.1 1992	- SAFETY LIMIT								В	ody				
				Spatial Pe										kg (mW/g)				
		Unco	ntrolled E	xposure/G	eneral Populati	on							averaged	over 1 gram				

Table 11-23 NII Body-Worn SAR

								MEAS	UREMENT	RESULTS								
FREQ	JENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]		Number	(Mbps)		.,.,,	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5280	56	802.11a	OFDM	20	19.0	18.35	-0.12	10 mm	10227	6	back	96.9	0.807	0.405	1.161	1.032	0.485	
5720	144	802.11a	OFDM	20	19.5	18.78	0.05	10 mm	10227	6	back	96.9	0.810	0.461	1.180	1.032	0.561	
5825	165	802.11a	OFDM	20	19.5	19.22	-0.12	10 mm	10227	6	back	96.9	1.133	0.541	1.067	1.032	0.596	A41
		Al	NSI / IEEE	C95.1 199	2 - SAFETY LIMI	п							Body					
		Uno	ontrolled	Spatial P Exposure/	eak General Popula	tion							W/kg (mW/g aged over 1 g					

Table 11-24 DSS Body-Worn SAR

						ME	EASURE	MENT R	ESULT	s						
FRE	QUENCY	Mode	Service	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor		Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	10.0	8.78	0.18	10 mm	10219	1	back	76.5	0.020	1.324	1.307	0.035	A42
		ANSI / IEEE	C95.1 199	2 - SAFETY LI	MIT							Body				
			Spatial F	Peak								1.6 W/kg (mV	V/g)			
		Uncontrolled	Exposure/	General Popu	lation						a	veraged over 1	gram			

FCC ID: ZNFK300TM	POSTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 74 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 74 of 105
20 DCTEST				DE\/ 21.4 M

11.3 Standalone Hotspot SAR Data

Table 11-25 GPRS/UMTS/CDMA Hotspot SAR Data

				OI NO	/UIVI I S			RESULTS		I De	ııa				
				Maximum	IVIE	ASURE	MEMI		,				I	Reported SAR	
FREQUE	Ch.	Mode	Service	Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (1g) (W/kg)	Scaling Factor	(1g) (W/kg)	Plot #
836.60	190	GSM 850	GPRS	28.7	28.70	0.13	10 mm	10342	4	1:2.076	back	0.564	1.000	0.564	A19
836.60	190	GSM 850	GPRS	28.7	28.70	-0.13	10 mm	10342	4	1:2.076	front	0.498	1.000	0.498	
836.60	190	GSM 850	GPRS	28.7	28.70	-0.12	10 mm	10342	4	1:2.076	bottom	0.218	1.000	0.218	
836.60	190	GSM 850	GPRS	28.7	28.70	-0.10	10 mm	10342	4	1:2.076	left	0.473	1.000	0.473	
1880.00	661	GSM 1900	GPRS	25.7	25.70	0.00	10 mm	10342	4	1:2.076	back	0.273	1.000	0.273	
1880.00	661	GSM 1900	GPRS	25.7	25.70	0.19	10 mm	10342	4	1:2.076	front	0.378	1.000	0.378	A21
1880.00	661	GSM 1900	GPRS	25.7	25.70	0.04	10 mm	10342	4	1:2.076	bottom	0.315	1.000	0.315	
1880.00	661	GSM 1900	GPRS	25.7	25.70	-0.13	10 mm	10342	4	1:2.076	right	0.152	1.000	0.152	
836.60	4183	UMTS 850	RMC	25.2	24.97	0.10	10 mm	10318	N/A	1:1	back	0.413	1.054	0.435	A22
836.60	4183	UMTS 850	RMC	25.2	24.97	0.00	10 mm	10318	N/A	1:1	front	0.364	1.054	0.384	
836.60	4183	UMTS 850	RMC	25.2	24.97	0.02	10 mm	10318	N/A	1:1	bottom	0.193	1.054	0.203	
836.60	4183	UMTS 850	RMC	25.2	24.97	-0.02	10 mm	10318	N/A	1:1	left	0.312	1.054	0.329	
1712.40	1312	UMTS 1750	RMC	24.7	24.40	-0.08	10 mm	10334	N/A	1:1	back	0.684	1.072	0.733	
1732.40	1412	UMTS 1750	RMC	24.7	24.39	0.11	10 mm	10334	N/A	1:1	back	0.699	1.074	0.751	A23
1752.60	1513	UMTS 1750	RMC	24.7	24.36	-0.08	10 mm	10334	N/A	1:1	back	0.626	1.081	0.677	
1732.40	1412	UMTS 1750	RMC	24.7	24.39	-0.06	10 mm	10334	N/A	1:1	front	0.650	1.074	0.698	
1732.40	1412	UMTS 1750	RMC	24.7	24.39	0.06	10 mm	10334	N/A	1:1	bottom	0.517	1.074	0.555	
1732.40	1412	UMTS 1750	RMC	24.7	24.39	0.06	10 mm	10334	N/A	1:1	right	0.162	1.074	0.174	
1880.00	9400	UMTS 1900	RMC	24.7	24.45	-0.16	10 mm	10334	N/A	1:1	back	0.586	1.059	0.621	
1852.40	9262	UMTS 1900	RMC	24.7	24.55	0.06	10 mm	10334	N/A	1:1	front	0.760	1.035	0.787	A25
1880.00	9400	UMTS 1900	RMC	24.7	24.45	0.05	10 mm	10334	N/A	1:1	front	0.736	1.059	0.779	
1907.60	9538	UMTS 1900	RMC	24.7	24.53	-0.10	10 mm	10334	N/A	1:1	front	0.730	1.040	0.759	
1880.00	9400	UMTS 1900	RMC	24.7	24.45	0.01	10 mm	10334	N/A	1:1	bottom	0.691	1.059	0.732	
1880.00	9400	UMTS 1900	RMC	24.7	24.45	-0.03	10 mm	10334	N/A	1:1	right	0.400	1.059	0.424	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.2	25.06	0.01	10 mm	10318	N/A	1:1	back	0.351	1.033	0.363	A27
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.2	25.06	-0.01	10 mm	10318	N/A	1:1	front	0.347	1.033	0.358	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.2	25.06	0.04	10 mm	10318	N/A	1:1	bottom	0.169	1.033	0.175	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. 0	25.2	25.06	-0.02	10 mm	10318	N/A	1:1	left	0.339	1.033	0.350	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.2	25.10	0.05	10 mm	10318	N/A	1:1	back	0.353	1.023	0.361	A29
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.2	25.10	-0.01	10 mm	10318	N/A	1:1	front	0.302	1.023	0.309	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.2	25.10	0.06	10 mm	10318	N/A	1:1	bottom	0.189	1.023	0.193	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.2	25.10	-0.01	10 mm	10318	N/A	1:1	left	0.288	1.023	0.295	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.57	-0.09	10 mm	10334	N/A	1:1	back	0.416	1.030	0.428	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.7	24.53	0.04	10 mm	10334	N/A	1:1	front	0.575	1.040	0.598	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.57	-0.21	10 mm	10334	N/A	1:1	front	0.599	1.030	0.617	A31
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.7	24.62	0.04	10 mm	10334	N/A	1:1	front	0.575	1.019	0.586	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.57	-0.06	10 mm	10334	N/A	1:1	bottom	0.438	1.030	0.451	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.7	24.57	0.03	10 mm	10334	N/A	1:1	right	0.259	1.030	0.267	
		ANSI / IEEE	C95.1 1992 - S Spatial Peak	AFETY LIMIT								ody g (mW/g)			
		Uncontrolled	Exposure/Gene	eral Populati	on					а		over 1 gram			

FCC ID: ZNFK300TM	PCTEST Proud to be part of the recent	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 75 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Fage 75 01 105

Table 11-26 LTE Band 71 Hotspot SAR

								. Dan	<u>u </u>	iotspe	, t O,	111							
								MEAS	JREMEN	T RESULT	гs								
FRE	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	CI	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
680.50	133297	Mid	LTE Band 71	20	25.2	25.00	-0.04	0	10334	QPSK	1	50	10 mm	back	1:1	0.395	1.047	0.414	A32
680.50	133297	Mid	LTE Band 71	20	24.2	23.96	0.00	1	10334	QPSK	50	25	10 mm	back	1:1	0.308	1.057	0.326	
680.50	133297	Mid	LTE Band 71	20	25.2	25.00	0.01	0.01 0 10334 QPSK 1 50 10 mm front 1:1 0.280 1.047 0.293											
680.50	133297	Mid	LTE Band 71	20	24.2	23.96	0.01												
680.50	133297	Mid	LTE Band 71	20	25.2	25.00	0.05	0	10334	QPSK	1	50	10 mm	bottom	1:1	0.114	1.047	0.119	
680.50	133297	Mid	LTE Band 71	20	24.2	23.96	0.05	1	10334	QPSK	50	25	10 mm	bottom	1:1	0.085	1.057	0.090	
680.50	133297	Mid	LTE Band 71	20	25.2	25.00	0.00	0	10334	QPSK	1	50	10 mm	left	1:1	0.378	1.047	0.396	
680.50	133297	Mid	LTE Band 71	20	24.2	23.96	0.03	.03 1 10334 QPSK 50 25 10 mm left 1:1 0.294 1.057 0.311										0.311	
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	/kg (mW	//g)				
		Ur	controlled Expo	sure/Gene	ral Populatio	n							average	d over 1	gram				

Table 11-27 LTE Band 12 Hotspot SAR

								MEASU	JREMENT	RESULT	s							•	
FRI	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	h.		[WHZ]	Power [dBm]	rower [ubili]	Driit [dB]		Number							(W/kg)	racioi	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.2	25.01	0.08	0	10334	QPSK	1	25	10 mm	back	1:1	0.418	1.045	0.437	A33
707.50	23095	Mid	LTE Band 12	10	24.2	24.02	0.08	0.08 1 10334 QPSK 25 12 10 mm back 1:1 0.328 1.042 0.342											
707.50	23095	Mid	LTE Band 12	10	25.2	25.01	-0.01 0 10334 QPSK 1 25 10 mm front 1:1 0.355 1.045 0.371												
707.50	23095	Mid	LTE Band 12	10	24.2	24.02	-0.01												
707.50	23095	Mid	LTE Band 12	10	25.2	25.01	0.08	0	10334	QPSK	1	25	10 mm	bottom	1:1	0.142	1.045	0.148	
707.50	23095	Mid	LTE Band 12	10	24.2	24.02	0.02	1	10334	QPSK	25	12	10 mm	bottom	1:1	0.105	1.042	0.109	
707.50	23095	Mid	LTE Band 12	10	25.2	25.01	0.08	0	10334	QPSK	1	25	10 mm	left	1:1	0.402	1.045	0.420	
707.50	23095	Mid	LTE Band 12	10	24.2	24.02	0.08	1	10334	QPSK	25	12	10 mm	left	1:1	0.302	1.042	0.315	
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body		•	•		
			Spa	atial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gene	ral Populatio	n							average	ed over 1	gram				

Table 11-28 LTE Band 13 Hotspot SAR

							<u> </u>	Danie	<i>1</i> 13 1	ισιδρυ	ינטא	.11							
								MEASU	JREMEN	T RESULT	s								
FRI	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.2	25.02	-0.05	0	10334	QPSK	1	25	10 mm	back	1:1	0.572	1.042	0.596	A34
782.00	23230	Mid	LTE Band 13	10	24.2	23.99	-0.04	1	10334	QPSK	25	12	10 mm	back	1:1	0.446	1.050	0.468	
782.00	23230	Mid	LTE Band 13	10	25.2	25.02	0.03 0 10334 QPSK 1 25 10 mm front 1:1 0.430 1.042 0.448												
782.00	23230	Mid	LTE Band 13	10	24.2	23.99	0.02	1	10334	QPSK	25	12	10 mm	front	1:1	0.339	1.050	0.356	
782.00	23230	Mid	LTE Band 13	10	25.2	25.02	0.13	0	10334	QPSK	1	25	10 mm	bottom	1:1	0.199	1.042	0.207	
782.00	23230	Mid	LTE Band 13	10	24.2	23.99	0.07	1	10334	QPSK	25	12	10 mm	bottom	1:1	0.151	1.050	0.159	
782.00	23230	Mid	LTE Band 13	10	25.2	25.02	-0.07	0	10334	QPSK	1	25	10 mm	left	1:1	0.412	1.042	0.429	
782.00	23230	Mid	LTE Band 13	10	24.2	23.99	-0.01 1 10334 QPSK 25 12 10 mm left 1:1 0.316 1.050 0.332												
		,	ANSI / IEEE C95. Spa	1 1992 - SA atial Peak	FETY LIMIT								1.6 W	Body //kg (mV	V/a)				
		Un	controlled Expo		ral Populatio	n								ed over 1					

FCC ID: ZNFK300TM	POTEST* Poud to be part of seeness	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 76 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 76 01 105

Table 11-29 LTE Band 26 (Cell) Hotspot SAR

								iiid Z	3 (00:	.,	pot	OAIX						MEASUREMENT RESULTS												
								MEASU	IREMENT	result	s																			
FRE	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#											
MHz	Cl	١.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)												
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.12	0.00	0	10326	QPSK	1	36	10 mm	back	1:1	0.405	1.019	0.413	A35											
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.08	-0.03	1	10326	QPSK	36	18	10 mm	back	1:1	0.338	1.028	0.347												
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.12	-0.04	0	10326	QPSK	1	36	10 mm	front	1:1	0.383	1.019	0.390												
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.08	-0.01	1 10326 QPSK 36 18 10 mm front 1:1 0.316 1.028 0.325																						
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.12	0.00	0	10326	QPSK	1	36	10 mm	bottom	1:1	0.194	1.019	0.198												
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.2	24.08	-0.05	1	10326	QPSK	36	18	10 mm	bottom	1:1	0.157	1.028	0.161												
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.2	25.12	-0.04	0	10326	QPSK	1	36	10 mm	left	1:1	0.302	1.019	0.308												
831.50	50 26865 Mid LTE Band 26 (Cell) 15 24.2 24.08 0						0.01	1	10326	QPSK	36	18	10 mm	left	1:1	0.256	1.028	0.263												
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body																							
	Spatial Peak											1.6 W	//kg (mV	V/g)																
		Ur	ncontrolled Expo	sure/Gener	al Populatio	n		averaged over 1 gram																						

Table 11-30 LTE Band 66 (AWS) Hotspot SAR

								MEASU	IREMENT	RESULT									
	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Cl	h.		[a]	Power [dBm]				Number							(W/kg)		(W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.7	24.62	-0.12	0	10334	QPSK	1	50	10 mm	back	1:1	0.725	1.019	0.739	A36
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.54	0.02	0	10334	QPSK	1	50	10 mm	back	1:1	0.724	1.038	0.752	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.63	0.02	0	10334	QPSK	1	50	10 mm	back	1:1	0.656	1.016	0.666	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.68	0.03	1	10334	QPSK	50	0	10 mm	back	1:1	0.527	1.005	0.530	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.7	24.62	-0.13	0	10334	QPSK	1	50	10 mm	front	1:1	0.614	1.019	0.626	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.54	0.01	0	10334	QPSK	1	50	10 mm	front	1:1	0.711	1.038	0.738	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.63	0.11	0	10334	QPSK	1	50	10 mm	front	1:1	0.692	1.016	0.703	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.68	-0.08	1	10334	QPSK	50	0	10 mm	front	1:1	0.526	1.005	0.529	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.63	-0.03	0	10334	QPSK	1	50	10 mm	bottom	1:1	0.561	1.016	0.570	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.68	0.05	1	10334	QPSK	50	0	10 mm	bottom	1:1	0.422	1.005	0.424	
1770.00	LTE Band 66							0	10334	QPSK	1	50	10 mm	right	1:1	0.232	1.016	0.236	
1770.00	00 132572 High LTE Band 66 (AWS) 20 23.7 23.68 0.0						0.09	1	10334	QPSK	50	0	10 mm	right	1:1	0.165	1.005	0.166	
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT			_						Body					
			Spa	atial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	al Population	n							average	ed over 1	gram				

FCC ID: ZNFK300TM	PCTEST Poud to be part of received	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 77 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 77 of 105

Table 11-31 LTE Band 25 (PCS) Hotspot SAR

									, , ,	<i>)</i> 110t.	op o c	<u> </u>							
								MEASU	JREMENT	RESULT	s								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Cl	h.		[2]	Power [dBm]	· owor [abin]	Dinit [dD]		Number							(W/kg)	1 4 6 6 7	(W/kg)	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.57	-0.04	0	10334	QPSK	1	50	10 mm	back	1:1	0.563	1.030	0.580	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.66	-0.02	1	10334	QPSK	50	25	10 mm	back	1:1	0.424	1.009	0.428	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.57	-0.04	0	10334	QPSK	1	50	10 mm	front	1:1	0.892	1.030	0.919	A38
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.7	24.55	0.02	0	10334	QPSK	1	50	10 mm	front	1:1	0.872	1.035	0.903	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.7	24.55	0.02	0	10334	QPSK	1	50	10 mm	front	1:1	0.838	1.035	0.867	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.66	0.02	1	10334	QPSK	50	25	10 mm	front	1:1	0.650	1.009	0.656	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.7	23.60	0.01	1	10334	QPSK	100	0	10 mm	front	1:1	0.660	1.023	0.675	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.57	0.02	0	10334	QPSK	1	50	10 mm	bottom	1:1	0.621	1.030	0.640	
1860.00	26140	Low	LTE Band 25 (PCS)	20	23.7	23.66	-0.02	1	10334	QPSK	50	25	10 mm	bottom	1:1	0.444	1.009	0.448	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.7	24.57	0.00	0	10334	QPSK	1	50	10 mm	right	1:1	0.285	1.030	0.294	
1860.00	LTE Band 26							1	10334	QPSK	50	25	10 mm	right	1:1	0.213	1.009	0.215	
1860.00	00 26140 Low LTE Band 25 (PCS) 20 24.7 24.57 0.0						0.05	0	10334	QPSK	1	50	10 mm	front	1:1	0.872	1.030	0.898	
		F	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body				•	
			Spa	atial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gene	ral Populatio	n							average	ed over 1	gram				
								averaged over 1 gram											

Note: Blue entry represents variability measurement.

Table 11-32 LTF Band 41 Hotsnot SAR

							LIE	Band	41	HOTS	pot a	SAK									
								MEASU	JREMEN	IT RESU	LTS										
1 CC Uplink 2 CC Uplink, Power Class	Component Carrier	FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
		MHz	С	h.		,	Power [dBm]				Number							(W/kg)		(W/kg)	
1 CC Uplink - Power Class 3	N/A	2506.00	39750	Low	LTE Band 41	20	24.7	24.54	0.06	0	10318	QPSK	1	99	10 mm	back	1:1.58	0.593	1.038	0.616	
1 CC Uplink - Power Class 3	N/A	2549.50	40185	Low- Mid	LTE Band 41	20	24.7	24.31	0.01	0	10318	QPSK	1	50	10 mm	back	1:1.58	0.709	1.094	0.776	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.7	24.22	0.00	0	10318	QPSK	1	0	10 mm	back	1:1.58	0.713	1.117	0.796	
1 CC Uplink - Power Class 3	N/A	2593.00	40620	Mid	LTE Band 41	20	24.7	24.35	0.08	0	10318	QPSK	1	50	10 mm	back	1:1.58	0.736	1.084	0.798	
1 CC Uplink - Power Class 3	N/A	2636.50	41055	Mid- High	LTE Band 41	20	24.7	24.26	-0.02	0	10318	QPSK	1	50	10 mm	back	1:1.58	0.674	1.107	0.746	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	24.7	24.55	-0.03	0	10318	QPSK	1	50	10 mm	back	1:1.58	0.607	1.035	0.628	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.51	0.10	1	10318	QPSK	50	0	10 mm	back	1:1.58	0.414	1.045	0.433	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.50	0.01	1	10318	QPSK	100	0	10 mm	back	1:1.58	0.473	1.047	0.495	
1 CC Uplink - Power Class 2	N/A	2593.00	40620	Mid	LTE Band 41	20	27.7	27.13	-0.02	0	10318	QPSK	1	0	10 mm	back	1:2.31	0.923	1.140	1.052	
1 CC Uplink - Power Class 2	N/A	2593.00	40620	Mid	LTE Band 41	20	27.7	27.27	-0.04	0	10318	QPSK	1	50	10 mm	back	1:2.31	1.030	1.104	1.137	A39
	PCC	2593.00	40620										1	0							
2 CC Uplink - Power Class 3	scc	2573.20	40422	Mid	LTE Band 41	20	24.7	24.12	0.04	0	10318	QPSK	1	99	10 mm	back	1:1.58	0.663	1.143	0.758	
	PCC	2593.00	40620										1	0							
2 CC Uplink - Power Class 2	scc	2573.20	40422	Mid	LTE Band 41	20	27.7	27.26	-0.13	0	10318	QPSK	1	99	10 mm	back	1:2.31	0.905	1.107	1.002	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	24.7	24.55	0.18	0	10318	QPSK	1	50	10 mm	front	1:1.58	0.097	1.035	0.100	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.51	0.19	1	10318	QPSK	50	0	10 mm	front	1:1.58	0.073	1.045	0.076	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	24.7	24.55	0.04	0	10318	QPSK	1	50	10 mm	bottom	1:1.58	0.475	1.035	0.492	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.51	0.03	1	10318	QPSK	50	0	10 mm	bottom	1:1.58	0.375	1.045	0.392	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	24.7	24.55	-0.16	0	10318	QPSK	1	50	10 mm	right	1:1.58	0.150	1.035	0.155	
1 CC Uplink - Power Class 3	N/A	2680.00	41490	High	LTE Band 41	20	23.7	23.51	-0.01	1	10318	QPSK	50	0	10 mm	right	1:1.58	0.118	1.045	0.123	
1 CC Uplink - Power Class 2	N/A	2593.00	40620	Mid	LTE Band 41	20	27.7	27.27	-0.04	0	10318	QPSK	1	50	10 mm	back	1:2.31	0.988	1.104	1.091	
		ANSI	IEEE C	95.1 19	992 - SAFETY LII	MIT										Body					
				Spatia	l Peak										1.6 V	V/kg (mW	//g)				
	Spatial Peak Uncontrolled Exposure/General Population									averaged over 1 gram											

Note: Blue entry represents variability measurement.

FCC ID: ZNFK300TM	PCTEST Pout to be part of & reness	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 70 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 78 of 105
non PCTEST				REV 21.4 M

09/11/2019

Table 11-33

							WLA	N HO	tspo	t 5A	K							
							MEAS	UREME	NT RE	SULTS								
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAF (1g)	Plot #
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	23.0	22.41	0.02	10 mm	10219	1	back	99.4	0.809	0.497	1.146	1.006	0.573	A40
2412	1	802.11b	DSSS	22	23.0	22.41	-0.07	10 mm	10219	1	front	99.4	0.191	-	1.146	1.006	-	
2412	1	802.11b	DSSS	22	23.0	22.41	0.15	10 mm	10219	1	top	99.4	0.227	0.149	1.146	1.006	0.172	
2412	1	802.11b	DSSS	22	23.0	22.41	0.12	10 mm	10219	1	left	99.4	0.225	-	1.146	1.006	-	
5200 40 802.11a OFDM 20 19.0 18.72								10 mm	10227	6	back	96.9	0.708	0.399	1.067	1.032	0.439	
5200	40	802.11a	OFDM	20	19.0	18.72	0.18	10 mm	10227	6	front	96.9	0.224	-	1.067	1.032	-	
5200	40	802.11a	OFDM	20	19.0	18.72	0.15	10 mm	10227	6	top	96.9	0.382	0.176	1.067	1.032	0.194	
5200	40	802.11a	OFDM	20	19.0	18.72	0.15	10 mm	10227	6	left	96.9	0.336	-	1.067	1.032	-	
5825	165	802.11a	OFDM	20	19.5	19.22	-0.12	10 mm	10227	6	back	96.9	1.133	0.541	1.067	1.032	0.596	A41
5825	165	802.11a	OFDM	20	19.5	19.22	0.13	10 mm	10227	6	front	96.9	0.388	-	1.067	1.032	-	
5825	165	802.11a	OFDM	20	19.5	19.22	0.16	10 mm	10227	6	top	96.9	0.511	-	1.067	1.032	-	
5825	165 802.11a OFDM 20 19.5 19.22 C						0.11	10 mm	10227	6	left	96.9	0.665	0.289	1.067	1.032	0.318	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body										
				Spatial Pea	ak								1.6 W/kg	ı (mW/g)				
	Uncontrolled Exposure/General Population												averaged o	ver 1 gram				

FCC ID: ZNFK300TM	PCTEST* Poud to be part of recess	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 70 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 79 of 105

Table 11-34 DSS Hotspot SAR

							OO III	Jiopo	. 0/ 11	<u> </u>							
	MEASUREMENT RESULTS																
FREQU	ENCY	Mode	Service	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #	
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	(Cond Power)	(Duty Cycle)	(W/kg)	l	
2441	39	Bluetooth	0.18	10 mm	10219	1	back	76.5	0.020	1.324	1.307	0.035	A42				
2441 39 Bluetooth FHSS 10.0 8.78 -0.							10 mm	10219	1	front	76.5	0.008	1.324	1.307	0.014		
2441	39	Bluetooth	FHSS	10.0	8.78	0.06	10 mm	10219	1	top	76.5	0.006	1.324	1.307	0.010		
2441	39	Bluetooth	FHSS	10.0	8.78	-0.13	10 mm	10219	1	left	76.5	0.005	1.324	1.307	0.009		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body										
	Spatial Peak						1.6 W/kg (mW/g)										
	Uncontrolled Exposure/General Population						averaged over 1 gram										

11.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. The orange highlights throughout the report represents the highest SAR per FCC Equipment Class

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013
 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all
 GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power
 was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or
 more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

FCC ID: ZNFK300TM	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 90 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 80 of 105

 GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

CDMA Notes:

- Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01.
- Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

UMTS Notes:

- 1. UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- 1. LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.6.4
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

FCC ID: ZNFK300TM	PCTEST Proud to be part of the releases	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 94 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 81 of 105

- 7. This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per FCC Guidance, all SAR tests were performed using Power Class 3. SAR with power class 2 at the available duty factor was additionally performed for the power class 3 configuration with the highest SAR configuration for each exposure conditions. Please see Section 14 for linearity results.
- 8. For LTE Band 41, per FCC guidance, SAR was first measured with only a single carrier active in the uplink (carrier aggregation not active). For each exposure condition, the uplink CA scenario with two component carriers was additionally tested for the configuration with the highest SAR when carrier aggregation was not active. The SCC was configured with the closest available contiguous channel. The two component carriers were configured so the resource blocks are physically allocated side by side to achieve the maximum output power.
- This device supports LTE Band 41 ULCA active with Power Class 2. Highest SAR test configuration for each exposure condition in Power Class 3 with ULCA active was repeated with Power Class 2 with ULCA active.

WLAN Notes:

- 1. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.7.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.7.6 for more information.
- 4. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

Bluetooth Notes

- 1. Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. See Section 9.6 for the time domain plot and calculation for the duty factor of the device.
- 2. Head and Hotspot Bluetooth SAR were evaluated for BT BR tethering applications.

FCC ID: ZNFK300TM	PCTEST Poud to be part of received	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 82 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		PEV 21 4 M

TEST REV 21.4 M 09/11/2019

FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS 12

12.1 Introduction

thereof, please contact INFO@PCTEST.COM.

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g SAR.

12.3 Head SAR Simultaneous Transmission Analysis

Table 12-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.393	0.418	0.811
	GSM/GPRS 1900	0.182	0.418	0.600
	UMTS 850	0.339	0.418	0.757
	UMTS 1750	0.260	0.418	0.678
	UMTS 1900	0.419	0.418	0.837
	CDMA/EVDO BC10 (§90S)	0.364	0.418	0.782
	CDMA/EVDO BC0 (§22H)	0.383	0.418	0.801
Head SAR	PCS CDMA/EVDO	0.476	0.418	0.894
	LTE Band 71	0.224	0.418	0.642
	LTE Band 12	0.304	0.418	0.722
	LTE Band 13	0.350	0.418	0.768
	LTE Band 26 (Cell)	0.364	0.418	0.782
	LTE Band 66 (AWS)	0.273	0.418	0.691
	LTE Band 25 (PCS)	0.422	0.418	0.840
	LTE Band 41	0.133	0.418	0.551

FCC ID: ZNFK300TM	PCTEST Poud to be part of received	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 83 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 83 01 105

© 2020 PCTEST 09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including principal microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or asset

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

iditalieous Transmission Scenario With 5 GHZ WEAN (Heid to E					
Exposure Condition	· I Mode		5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	
		1	2	1+2	
	GSM/GPRS 850	0.393	0.668	1.061	
	GSM/GPRS 1900	0.182	0.668	0.850	
	UMTS 850	0.339	0.668	1.007	
	UMTS 1750	0.260	0.668	0.928	
	UMTS 1900	0.419	0.668	1.087	
	CDMA/EVDO BC10 (§90S)	0.364	0.668	1.032	
	CDMA/EVDO BC0 (§22H)	0.383	0.668	1.051	
Head SAR	PCS CDMA/EVDO	0.476	0.668	1.144	
	LTE Band 71	0.224	0.668	0.892	
	LTE Band 12	0.304	0.668	0.972	
	LTE Band 13	0.350	0.668	1.018	
	LTE Band 26 (Cell)	0.364	0.668	1.032	
	LTE Band 66 (AWS)	0.273	0.668	0.941	
	LTE Band 25 (PCS)	0.422	0.668	1.090	
	LTE Band 41	0.133	0.668	0.801	

FCC ID: ZNFK300TM	POTEST Proud to be part of the element	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 94 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 84 of 105
ON DOTEST				DEV/ 24 4 M

Table 12-3
Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

<u>imunaneoi</u>	neid to Ea			
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.393	0.050	0.443
	GSM/GPRS 1900	0.182	0.050	0.232
	UMTS 850	0.339	0.050	0.389
	UMTS 1750	0.260	0.050	0.310
	UMTS 1900	0.419	0.050	0.469
	CDMA/EVDO BC10 (§90S)	0.364	0.050	0.414
	CDMA/EVDO BC0 (§22H)	0.383	0.050	0.433
Head SAR	PCS CDMA/EVDO	0.476	0.050	0.526
	LTE Band 71	0.224	0.050	0.274
	LTE Band 12	0.304	0.050	0.354
	LTE Band 13	0.350	0.050	0.400
	LTE Band 26 (Cell)	0.364	0.050	0.414
	LTE Band 66 (AWS)	0.273	0.050	0.323
	LTE Band 25 (PCS)	0.422	0.050	0.472
	LTE Band 41	0.133	0.050	0.183

Table 12-4
Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Held to Ear)

41	Italieous Transmission Scenario With Didetooth and 3 Griz WEAN (Field to					
	Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
			1	2	3	1+2+3
		GSM/GPRS 850	0.393	0.050	0.668	1.111
		GSM/GPRS 1900	0.182	0.050	0.668	0.900
		UMTS 850	0.339	0.050	0.668	1.057
		UMTS 1750	0.260	0.050	0.668	0.978
		UMTS 1900	0.419	0.050	0.668	1.137
		CDMA/EVDO BC10 (§90S)	0.364	0.050	0.668	1.082
		CDMA/EVDO BC0 (§22H)	0.383	0.050	0.668	1.101
	Head SAR	PCS CDMA/EVDO	0.476	0.050	0.668	1.194
		LTE Band 71	0.224	0.050	0.668	0.942
		LTE Band 12	0.304	0.050	0.668	1.022
		LTE Band 13	0.350	0.050	0.668	1.068
		LTE Band 26 (Cell)	0.364	0.050	0.668	1.082
		LTE Band 66 (AWS)	0.273	0.050	0.668	0.991
		LTE Band 25 (PCS)	0.422	0.050	0.668	1.140
		LTE Band 41	0.133	0.050	0.668	0.851

FCC ID: ZNFK300TM	Poud to be part of the recession	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 95 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 85 of 105

© 2020 PCTEST REVIEW 02/20/20 - 03/11/20 Politable Platitiset REV 21.4 M 09/11/2019

12.4 Body-Worn Simultaneous Transmission Analysis

Table 12-5
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	GSM/GPRS 850	0.564	0.573	1.137	N/A
	GSM/GPRS 1900	0.273	0.573	0.846	N/A
	UMTS 850	0.435	0.573	1.008	N/A
	UMTS 1750	0.751	0.573	1.324	N/A
	UMTS 1900	0.648	0.573	1.221	N/A
	CDMA BC10 (§90S)	0.401	0.573	0.974	N/A
	CDMA BC0 (§22H)	0.520	0.573	1.093	N/A
Body-Worn	PCS CDMA	0.539	0.573	1.112	N/A
	LTE Band 71	0.414	0.573	0.987	N/A
	LTE Band 12	0.437	0.573	1.010	N/A
	LTE Band 13	0.596	0.573	1.169	N/A
	LTE Band 26 (Cell)	0.413	0.573	0.986	N/A
	LTE Band 66 (AWS)	0.752	0.573	1.325	N/A
	LTE Band 25 (PCS)	0.580	0.573	1.153	N/A
	LTE Band 41	1.137	0.573	See Note 1	0.02

Note 1: No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

Table 12-6
Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

ious mansinission scenario with 5 GHz WEAN (Body-World					
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	GSM/GPRS 850	0.564	0.596	1.160	N/A
	GSM/GPRS 1900	0.273	0.596	0.869	N/A
	UMTS 850	0.435	0.596	1.031	N/A
	UMTS 1750	0.751	0.596	1.347	N/A
	UMTS 1900	0.648	0.596	1.244	N/A
	CDMA BC10 (§90S)	0.401	0.596	0.997	N/A
	CDMA BC0 (§22H)	0.520	0.596	1.116	N/A
Body-Worn	PCS CDMA	0.539	0.596	1.135	N/A
	LTE Band 71	0.414	0.596	1.010	N/A
	LTE Band 12	0.437	0.596	1.033	N/A
	LTE Band 13	0.596	0.596	1.192	N/A
	LTE Band 26 (Cell)	0.413	0.596	1.009	N/A
	LTE Band 66 (AWS)	0.752	0.596	1.348	N/A
	LTE Band 25 (PCS)	0.580	0.596	1.176	N/A
	LTE Band 41	1.137	0.596	See Note 1	0.02

Note 1: No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

FCC ID: ZNFK300TM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 96 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 86 of 105
20 DCTEST				DE\/ 21 / M

PCTEST REV 21.4 M

Table 12-7
Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.564	0.035	0.599
	GSM/GPRS 1900	0.273	0.035	0.308
	UMTS 850	0.435	0.035	0.470
	UMTS 1750	0.751	0.035	0.786
	UMTS 1900	0.648	0.035	0.683
	CDMA BC10 (§90S)	0.401	0.035	0.436
	CDMA BC0 (§22H)	0.520	0.035	0.555
Body-Worn	PCS CDMA	0.539	0.035	0.574
	LTE Band 71	0.414	0.035	0.449
	LTE Band 12	0.437	0.035	0.472
	LTE Band 13	0.596	0.035	0.631
	LTE Band 26 (Cell)	0.413	0.035	0.448
	LTE Band 66 (AWS)	0.752	0.035	0.787
	LTE Band 25 (PCS)	0.580	0.035	0.615
	LTE Band 41	1.137	0.035	1.172

Table 12-8
Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Body-Worn at 1.0 cm)

ansmissi	on ocenano with	Diactoo	uii aiiu 3	CITE VVL	ait (Doa)
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	3	1+2+3
	GSM/GPRS 850	0.564	0.035	0.596	1.195
	GSM/GPRS 1900	0.273	0.035	0.596	0.904
	UMTS 850	0.435	0.035	0.596	1.066
	UMTS 1750	0.751	0.035	0.596	1.382
	UMTS 1900	0.648	0.035	0.596	1.279
	CDMA BC10 (§90S)	0.401	0.035	0.596	1.032
	CDMA BC0 (§22H)	0.520	0.035	0.596	1.151
Body-Worn	PCS CDMA	0.539	0.035	0.596	1.170
	LTE Band 71	0.414	0.035	0.596	1.045
	LTE Band 12	0.437	0.035	0.596	1.068
	LTE Band 13	0.596	0.035	0.596	1.227
	LTE Band 26 (Cell)	0.413	0.035	0.596	1.044
	LTE Band 66 (AWS)	0.752	0.035	0.596	1.383
	LTE Band 25 (PCS)	0.580	0.035	0.596	1.211
	LTE Band 41	1.137	0.035	0.596	See Note 2

Note 2: Please see section 12.7 for detailed simultaneous transmission analysis.

FCC ID: ZNFK300TM		SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 97 of 105	
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 87 of 105	

© 2020 PCTEST REV 21.4 M 09/11/2019

12.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for the applicable exposure conditions was used for simultaneous transmission analysis.

Table 12-9
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.564	0.573	1.137
	GPRS 1900	0.378	0.573	0.951
	UMTS 850	0.435	0.573	1.008
	UMTS 1750	0.751	0.573	1.324
	UMTS 1900	0.787	0.573	1.360
	EVDO BC10 (§90S)	0.363	0.573	0.936
11.1	EVDO BC0 (§22H)	0.361	0.573	0.934
Hotspot SAR	PCS EVDO	0.617	0.573	1.190
SAIN	LTE Band 71	0.414	0.573	0.987
	LTE Band 12	0.437	0.573	1.010
	LTE Band 13	0.596	0.573	1.169
	LTE Band 26 (Cell)	0.413	0.573	0.986
	LTE Band 66 (AWS)	0.752	0.573	1.325
	LTE Band 25 (PCS)	0.919	0.573	1.492
	LTE Band 41	1.137	0.573	See Table Below

Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.137	0.573	See Note 1	0.02
	Front	0.100	0.573*	0.673	N/A
Hotspot	Тор	-	0.172	0.172	N/A
SAR	Bottom	0.492	-	0.492	N/A
	Right	0.155	-	0.155	N/A
	Left	-	0.573*	0.573	N/A

Note 1: No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

FCC ID: ZNFK300TM	PCTEST Poud to be part of received	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Domo 99 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 88 of 105

Table 12-10
Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)

ous transmission occurre with 5 one weart (notspot								
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)				
		1	2	1+2				
	GPRS 850	0.564	0.596	1.160				
	GPRS 1900	0.378	0.596	0.974				
	UMTS 850	0.435	0.596	1.031				
	UMTS 1750	0.751	0.596	1.347				
	UMTS 1900	0.787	0.596	1.383				
	EVDO BC10 (§90S)	0.363	0.596	0.959				
I latan at	EVDO BC0 (§22H)	0.361	0.596	0.957				
Hotspot SAR	PCS EVDO	0.617	0.596	1.213				
JAK	LTE Band 71	0.414	0.596	1.010				
	LTE Band 12	0.437	0.596	1.033				
	LTE Band 13	0.596	0.596	1.192				
	LTE Band 26 (Cell)	0.413	0.596	1.009				
	LTE Band 66 (AWS)	0.752	0.596	1.348				
	LTE Band 25 (PCS)	0.919	0.596	1.515				
	LTE Band 41	1.137	0.596	See Table Below				

Simult Tx	Configuration	LTE Band 41 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	Back	1.137	0.596	See Note 1	0.02
	Front	0.100	0.596*	0.696	N/A
Hotspot	Тор	-	0.194	0.194	N/A
SAR	Bottom	0.492	-	0.492	N/A
	Right	0.155	-	0.155	N/A
	Left	-	0.318	0.318	N/A

Note 1: No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.6 for detailed SPLS ratio analysis.

FCC ID: ZNFK300TM		SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 89 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 69 01 105

© 2020 PCTEST

Table 12-11 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.564	0.035	0.599
	GPRS 1900	0.378	0.035	0.413
	UMTS 850	0.435	0.035	0.470
	UMTS 1750	0.751	0.035	0.786
	UMTS 1900	0.787	0.035	0.822
	EVDO BC10 (§90S)	0.363	0.035	0.398
I latan at	EVDO BC0 (§22H)	0.361	0.035	0.396
Hotspot SAR	PCS EVDO	0.617	0.035	0.652
JAK	LTE Band 71	0.414	0.035	0.449
	LTE Band 12	0.437	0.035	0.472
	LTE Band 13	0.596	0.035	0.631
	LTE Band 26 (Cell)	0.413	0.035	0.448
	LTE Band 66 (AWS)	0.752	0.035	0.787
	LTE Band 25 (PCS)	0.919	0.035	0.954
	LTE Band 41	1.137	0.035	1.172

Table 12-12 Simultaneous Transmission Scenario with Bluetooth and 5 GHz WLAN (Hotspot at 1.0 cm)

S	iransm	issior	1 Scer	iario v	vith Bi	ue	too	ın an	<u>a 5 GH</u>	<u>z</u>	WLAN (HOTS)
	Exposure Condition	Mode			2G/3G/4 SAR (W/I	-		etooth (W/kg)	5 GHz WLAN SA (W/kg)		Σ SAR (W/kg)
					1			2	3		1+2+3
ſ		(GPRS 85	0	0.564		0.	035	0.596		1.195
ľ		G	PRS 190	00	0.378		0.	035	0.596		1.009
ĺ		Į	JMTS 85	0	0.435		0.	035	0.596		1.066
ĺ		L	JMTS 175	60	0.751		0.	035	0.596		1.382
ĺ		ι	UMTS 1900		0.787		0.035		0.596		1.418
ſ		EVDO	O BC10 (§90S)	0.363		0.	035	0.596		0.994
ĺ	Ustanat	EVD	O BC0 (§	22H)	0.361		0.	035	0.596		0.992
	Hotspot SAR	F	CS EVD	0	0.617		0.	035	0.596		1.248
	SAIN	Ľ	TE Band	71	0.414		0.	035	0.596		1.045
		Ľ	TE Band	12	0.437		0.	035	0.596		1.068
		Ľ	TE Band	13	0.596		0.	035	0.596		1.227
		LTE	Band 26	(Cell)	0.413		0.	035	0.596		1.044
		LTE E	Band 66 (AWS)	0.752		0.	035	0.596		1.383
		LTE Band 25 (PCS) LTE Band 41		PCS)	0.919		0.	035	0.596		1.550
				1.137		0.	035	0.596		See Table Below	
-			Simult Tx	Configuration	LTE Band 41 SAR (W/kg)		uetooth R (W/kg)	5 GHz WLA SAR (W/kg			_
					1		2	3	1+2+3		

Note 2: Please see section 12.7 for detailed simultaneous transmission analysis.

FCC ID: ZNFK300TM		SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 00 of 105	
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 90 of 105	

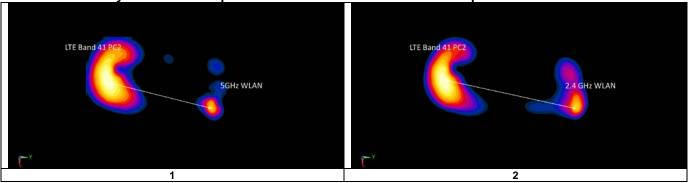
12.6 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is \leq 0.04 for 1g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

Distance_{Tx1-Tx2} = R_i =
$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
 (Body-Worn, Hotspot)
SPLS Ratio = $\frac{(SAR_1+SAR_2)^{1.5}}{R_i}$

12.6.1 Body-worn and Hotspot Back Side SPLSR Evaluation and Analysis

Table 12-13
Peak SAR Locations for Body-worn and Hotspot Back Side


Mode/Band	x (mm)	y (mm)
2.4 GHz WLAN	-4.60	69.60
5 GHz WLAN	1.00	55.00
LTE Band 41 PC2	-32.20	-68.40

FCC ID: ZNFK300TM	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 04 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 91 of 105
ON DOTEST				DEV/ 21 / M

Table 12-14 Body-worn and Hotspot Back Side SAR to Peak Location Separation Ratio Calculations

_										
	Anteni	Antenna Pair Ant "a" Ant "b"		one SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number		
	Ant "a"			b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}			
	LTE Band 41 PC2	5 GHz WLAN	1.137	0.596	1.733	127.79	0.02	1		
	LTE Band 41 PC2	2.4 GHz WLAN	1.137	0.573	1.71	140.73	0.02	2		

Table 12-15 Body-worn and Hotspot Back Side SAR to Peak Location Separation Ratio Plots

12.7 Additional Simultaneous SAR Evaluation and Analysis for Main Band, Bluetooth and 5 GHz WLAN Operations

Per KDB Publication 865664, when the sum of the transmitters potentially operating simultaneously is greater than the 1.6 W/kg and the sum to peak SAR location separation ratio between any pair of transmitters is more than 0.04 for 1g. SAR tests are required for simultaneous transmission to determine the aggregate 1g SAR. When required, each transmitter is tested for simultaneous transmission in the configuration, channel and operating mode that resulted in the highest SAR during the stand-alone evaluation.

The Bluetooth and 5GHz WLAN transmitters are co-located antenna pair and spatially separated from 2G/3G/4G antenna. Per November 2019 TCB Workshop Notes, enlarged volumetric scans on co-located antenna pair were performed for the Bluetooth and 5GHz WLAN. The SPLSR procedure for the spatially separated 2G/3G/4G antenna and aggregated SAR distribution of the co-located Bluetooth/5GHz WLAN antenna pair was applied according to KDB Publication 447498.

	FCC ID: ZNFK300TM	PCTEST* Proud to be part of the element	SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dags 02 of 405	
	1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 92 of 105	
© 202	0 PCTEST				REV 21.4 M	

09/11/2019

12.7.1 Body-worn and Hotspot Back Side Volumetric SAR Evaluation and Analysis for Bluetooth, and 5GHz WLAN Simultaneous Transmission

Table 12-16 Simultaneous Transmission SAR Analysis

Band/Mode	Configuration	Frequency [MHz]	Measured Standalone 1g SAR [W/kg]	Conducted Power [dBm]	Maximum Allowed Power [dBm]	Duty Cycle (%)	Scaling Factor (Cond Power)	Scaling Factor (Duty Cycle)	Volumetric 1g SAR [W/kg]	Scaled Volumetric 1g SAR [W/kg]	Volumetric SAR Plot Number
5 GHz WLAN	Back Side, IEEE 802.11a, 20 MHz, Ch. 165, 6 Mbps, 10mm	5825	0.541	19.22	19.5	96.9	1.067	1.032	0.529	0.583	A43
Bluetooth	Back Side, Ch. 39, 1 Mbps, 10mm	2441	0.02	8.78	10.0	76.5	1.324	1.307	0.028	0.048	A44

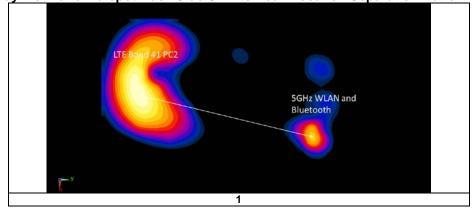
<u> </u>			Simultaneous
Simultaneous	Band SAR	SAR Plot	
	(W/kg)	Number	
5 GHz WLAN	Bluetooth	0.605	A45

Note:

- 1. All volumetric zoom scans were performed with DASY52 SAR system version 52.10. Post processor SEMCAD X Versions 14.6.14 (7483) multiband combiner requires enlarged zoom scans to overlap but does not require measurement point resolutions within the volumes to be identical for interpolation and superposition.
- 2. Each antenna was evaluated independently using the channel/configuration that produced the highest measured SAR when the standalone SAR was tested.
- 3. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05. The simultaneous transmission SAR results of the individual transmitters were scaled using SEMCAD X during processing.
- 4. The Bluetooth and 5 GHz WIFI SAR values above represent the aggregate distributions from the simultaneous transmission (volumetric) SAR evaluation.

FCC ID: ZNFK300TM	Postest of decrees	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 93 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 93 01 103

12.7.2 Body-worn and Hotspot SPLSR Evaluation and Analysis for Main Band, Bluetooth and 5GHz WLAN simultaneous Transmission


Table 12-17
Peak SAR Locations for Body-worn and Hotspot Back Side

Mode/Band	x (mm)	y (mm)	Reported SAR (W/kg)
5 GHz WLAN and Bluetooth	3.00	56.00	0.605
LTE Band 41 PC2	-32.20	-68.40	1.137

Table 12-18
Body-worn and Hotspot Back Side SAR to Peak Location Separation Ratio Calculations

Antenna Pair			one SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "a" Ant "b"		b	a+b	D_{a-b}	(a+b) ^{1.5} /D _{a-b}	
LTE Band 41 PC2 5 GHz WLAN and Bluetooth		1.137	0.605	1.742	129.28	0.02	1

Table 12-19
Body-worn and Hotspot Back Side SAR to Peak Location Separation Ratio Plots

FCC ID: ZNFK300TM	POSTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 04 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset		Page 94 of 105
ON DOTEST				DEV/ 21 / M

12.8 Simultaneous Transmission Conclusion

The above numerical summed SAR results, SPLSR and Volumetric analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit per FCC KDB Publication 447498 D01v06 and IEEE 1528- 2013 Section 6.3.4.1.2

FCC ID: ZNFK300TM	PCTEST Proud to be part of the releases	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 05 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 95 of 105

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 13-1
Body SAR Measurement Variability Results

	Body OAR meddurement Variability Results												
	BODY VARIABILITY RESULTS												
Band	FREQUENCY		Mode	Service	Service Side S	Spacing	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1900	1860.00	26140	LTE Band 25 (PCS), 20 MHz Bandwidth	QPSK, 1 RB, 50 RB Offset	front	10 mm	0.892	0.872	1.02	N/A	N/A	N/A	N/A
2600	2593.00	40620	LTE Band 41 PC2, 20 MHz Bandwidth	QPSK, 1 RB, 50 RB Offset	back	10 mm	1.030	0.988	1.04	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Во	dy			
	Spatial Peak							1	I.6 W/kg	(mW/g)			
	ı	Uncont	rolled Exposure/General Popul	ation				av	eraged o	ver 1 gram			

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFK300TM	PCTEST* Proud to be part of received	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 06 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 96 of 105

© 2020 PCTEST REV 21.4 M 09/11/2019

14.1 LTE Band 41 Power Class 2 and Power Class 3 Linearity

This device supports Power Class 2 and Power Class 3 operations for LTE Band 41. The highest available duty cycle for Power Class 2 operations is 43.3 % using UL-DL configuration 1. Per May 2017 TCB Workshop Notes based on the device behavior, all SAR tests were performed using Power Class 3. SAR with Power Class 2 at the highest power and available duty factor was additionally performed for the Power Class 3 configuration with the highest SAR for each exposure condition. The linearity between the Power Class 2 and Power Class 3 SAR results and the respective frame averaged powers was calculated to determine that the results were linear. When ULCA is active, the linearity between the Power Class 2 with ULCA active and Power Class 3 with ULCA active SAR results and the respective frame averaged powers was calculated to determine that the results were linear. Per May 2017 TCB Workshop, no additional SAR measurements were required since the linearity between power classes was < 10% and all reported SAR values were < 1.4 W/kg for 1g.

LTE Band 41 SAR testing with power class 2 at the highest power and available duty factor was additionally performed for the power class 3 configuration with the highest SAR for each exposure condition.

Table 14-1 LTE Band 41 Head Linearity Data

1		
	LTE Band 41 PC3	LTE Band 41 PC2
Maximum Allowed Output Power (dBm)	24.70	27.70
Measured Output Power (dBm)	24.34	27.02
Measured SAR (W/kg)	0.079	0.109
Measured Power (mW)	271.64	503.50
Duty Cycle	63.3%	43.3%
Frame Averaged Output Power (mW)	171.95	218.02
% deviation from expected linearity		8.27%

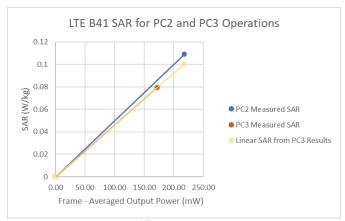


Figure 14-1 LTE Band 41 Head Linearity

FCC ID: ZNFK300TM	Postest of decrees	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 97 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 97 01 105

© 2020 PCTEST REV 21.4 M 09/11/2019

Table 14-2
LTE Band 41 ULCA Head Linearity Data

Till Dana ii Oloftiioaa Imoanty Data						
	LTE Band 41 PC3	LTE Band 41 PC2				
Maximum Allowed Output Power (dBm)	24.70	27.70				
Measured Output Power (dBm)	24.60	27.45				
Measured SAR (W/kg)	0.088	0.126				
Measured Power (mW)	288.40	555.90				
Duty Cycle	63.3%	43.3%				
Frame Averaged Output Power (mW)	182.56	240.71				
% deviation from expected linearity		8.22%				

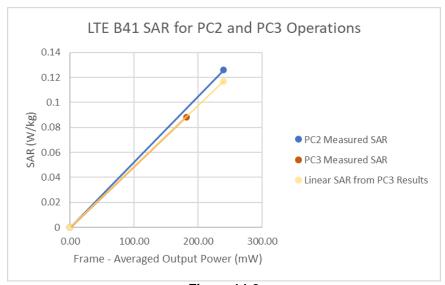


Figure 14-2 LTE Band 41 ULCA Head Linearity

FCC ID: ZNFK300TM	Provide to be part of the recession	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 98 of 105
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 96 01 105

Table 14-3
LTE Band 41 Body-Worn and Hotspot Linearity Data

	LTE Band 41 PC3	LTE Band 41 PC2
Maximum Allowed Output Power (dBm)	24.70	27.70
Measured Output Power (dBm)	24.35	27.27
Measured SAR (W/kg)	0.736	1.030
Measured Power (mW)	272.27	533.33
Duty Cycle	63.3%	43.3%
Frame Averaged Output Power (mW)	172.35	230.93
% deviation from expected linearity		4.44%

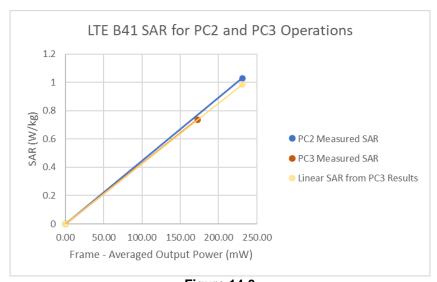


Figure 14-3
LTE Band 41 Body-Worn and Hotspot Linearity

FCC ID: ZNFK300TM	PCTEST* Proud to be part of determined	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 00 of 105
1M2002250026-01-R1.Zf	NF 02/26/20 - 03/17/20	Portable Handset		Page 99 of 105
20 DOTEST				DEV/ 24 4 M

Table 14-4
LTE Band 41 ULCA Body-Worn and Hotspot Linearity Data

	LTE Band 41 PC3	LTE Band 41 PC2
Maximum Allowed Output Power (dBm)	24.70	27.70
Measured Output Power (dBm)	24.12	27.26
Measured SAR (W/kg)	0.663	0.905
Measured Power (mW)	258.23	532.11
Duty Cycle	63.3%	43.3%
Frame Averaged Output Power (mW)	163.46	230.40
% deviation from expected linearity		-3.16%

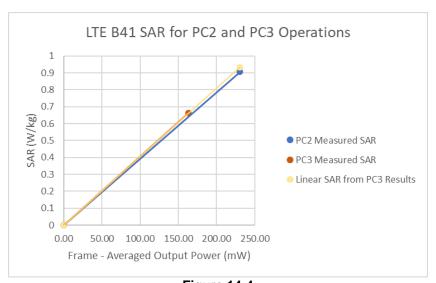


Figure 14-4
LTE Band 41 ULCA Body-Worn and Hotspot Linearity

FCC ID: ZNFK300TM	PCTEST* Proud to be part of @ rienness	SAR EVALUATION REPORT	Approved by: Quality Manage
Document S/N:	Test Dates:	DUT Type:	Dags 100 of 100
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 100 of 10

© 2020 PCTEST REV 21.4 M 09/11/2019

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Manufacturer Agilent	8753ES	Description S-Parameter Vector Network Analyzer	9/19/2019	Annual	9/19/2020	MY40003841
Agilent	8753ES	S-Parameter Network Analyzer	8/26/2019	Annual	8/26/2020	MY40003641
Agilent	E4438C	ESG Vector Signal Generator	5/22/2019	Annual	5/22/2020	MY45091346
	E4438C	ESG Vector Signal Generator	5/23/2019	Annual	5/23/2020	MY47270002
Agilent	E4438C		3/8/2019		3/8/2021	MY42082385
Agilent	E4438C	ESG Vector Signal Generator	3/11/2019	Biennial Biennial	3/11/2021	MY45090700
Agilent		ESG Vector Signal Generator				
Agilent	E5515C	Wireless Communications Test Set	6/26/2019	Annual	6/26/2020	MY50267125
Agilent	E5515C	Wireless Communications Test Set	9/25/2019	Annual	9/25/2020	GB43304278
Agilent	E5515C	Wireless Communications Test Set	2/7/2018	Triennial	2/7/2021	GB43304447
Agilent	N5182A	MXG Vector Signal Generator	7/10/2019	Annual	7/10/2020	MY47420800
Agilent	N9020A	MXA Signal Analyzer	4/20/2019	Annual	4/20/2020	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	6/12/2019	Annual	6/12/2020	MY52350166
Agilent	E5515C	Wireless Communications Test Set	2/28/2018	Biennial	2/28/2020	GB41450275
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433972
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433974
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433975
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433976
Anritsu	MA24106A	USB Power Sensor	5/6/2019	Annual	5/6/2020	1231538
Anritsu	MA24106A	USB Power Sensor	7/8/2019	Annual	7/8/2020	1248508
Anritsu Anritsu	MA24106A MA24106A		4/17/2019	Annual	4/17/2020	1344556
		USB Power Sensor				
Anritsu	MA24106A	USB Power Sensor	7/15/2019	Annual	7/15/2020	1349513
Anritsu	MA2411B	Pulse Power Sensor	6/11/2019	Annual	6/11/2020	1207364
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	MT8820C	Radio Communication Analyzer	3/29/2019	Annual	3/29/2020	6201300731
Anritsu	MT8821C	Radio Communication Analyzer	8/16/2019	Annual	8/16/2020	6201144418
Anritsu	MT8821C	Radio Communication Analyzer	11/22/2019	Annual	11/22/2020	6262044715
Anritsu	MT8821C	Radio Communication Analyzer	5/13/2019	Annual	5/13/2020	6201524637
Anritsu	MT8862A	Wireless Connectivity Test Set	8/8/2019	Annual	8/8/2020	6261782395
Anritsu	ML2496A	Power Meter	11/6/2019	Annual	11/6/2020	1405003
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291455
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291460
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291463
Control Company	4352	Long Stem Thermometer	6/26/2019	Biennial	6/26/2021	192282744
Control Company	4352	Long Stem Thermometer	6/26/2019	Biennial	6/26/2021	192282753
Control Company	4352	Ultra Long Stem Thermometer	11/29/2018	Biennial	11/29/2020	181766801
Control Company	4352	Ultra Long Stem Thermometer	11/29/2018	Biennial	11/29/2020	181766777
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Keysight Technologies	N6705B	DC Power Analyzer	4/27/2019	Biennial	4/27/2021	MY53004059
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mitutoyo	CD-6"CSX	Digital Caliper	4/18/2018	Biennial	4/18/2020	13264165
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
Pasternack	PE2209-10	Bidirectional Coupler	5/23/2018 CBT	N/A	5/23/2020 CBT	N/A
Pasternack	PE2209-10 PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	CMW500	Radio Communication Tester	8/26/2019	Annual	8/26/2020	100976
Rohde & Schwarz	CMW500	Radio Communication Tester	8/27/2019	Annual	8/27/2020	116743
Rohde & Schwarz	CMW500	Radio Communication Tester	10/4/2019	Annual	10/4/2020	166462
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Rohde& Schwarz	CMW500	Wideband Radio Communication Tester	7/12/2019	Annual	7/12/2020	145645
Rohde& Schwarz	CMW500	Wideband Radio Communication Tester	7/24/2019	Annual	7/24/2020	151849
Rohde & Schwarz	CMU200	Base Station Simulator	6/3/2019	Annual	6/3/2020	109892
SPEAG	DAK-3.5	Dielectric Assessment Kit	5/7/2019	Annual	5/7/2020	1070
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/22/2019	Annual	10/22/2020	1091
SPEAG	D750V3	750 MHz Dipole	3/18/2019	Annual	3/18/2020	1051
			3/18/2019 10/19/2018			1054 4d133
SPEAG	D835V2	835 MHz SAR Dipole		Biennial	10/19/2020	
SPEAG	D1750V2	1750 MHz SAR Dipole	10/22/2018	Biennial	10/22/2020	1150
SPEAG	D1900V2	1900 MHz SAR Dipole	10/23/2018	Biennial	10/23/2020	5d080
SPEAG	D2450V2	2450 MHz SAR Dipole	8/14/2019	Annual	8/14/2020	719
SPEAG	D2600V2	2600 MHz SAR Dipole	6/14/2019	Annual	6/14/2020	1064
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/16/2018	Triennial	1/16/2021	1057
SPEAG	D750V3	750 MHz SAR Dipole	10/19/2018	Biennial	10/19/2020	1161
SPEAG	D835V2	835 MHz SAR Dipole	3/13/2019	Annual	3/13/2020	4d047
SPEAG	D835V2	835 MHz SAR Dipole	1/13/2020	Annual	1/13/2021	4d132
SPEAG	D1750V2	1750 MHz SAR Dipole	5/15/2019	Annual	5/15/2020	1148
SPEAG	D1900V2	1900 MHz SAR Dipole	2/21/2019	Biennial	2/21/2021	5d148
SPEAG	D1900V2	1900 MHz SAR Dipole	10/23/2018	Biennial	10/23/2020	5d149
SPEAG	D1900V2 D2450V2	2450 MHz SAR Dipole	9/11/2017	Triennial	9/11/2020	797
SPEAG	D2450V2 D2600V2			Biennial		
SPEAG		2600 MHz SAR Dipole	4/11/2018		4/11/2020	1004
	D5GHzV2	5 GHz SAR Dipole	9/17/2019	Annual	9/17/2020	1191
SPEAG					8/10/2020	1237
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/10/2018	Biennial		
SPEAG SPEAG	D5GHzV2 EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4 EX3DV4	SAR Probe SAR Probe	7/16/2019 5/16/2019	Annual Annual	7/16/2020 5/16/2020	7406
SPEAG SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4 EX3DV4 EX3DV4	SAR Probe SAR Probe SAR Probe	7/16/2019 5/16/2019 6/19/2019	Annual Annual Annual	7/16/2020 5/16/2020 6/19/2020	7406 7409
SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4 EX3DV4	SAR Probe SAR Probe	7/16/2019 5/16/2019	Annual Annual	7/16/2020 5/16/2020	7406
SPEAG SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4 EX3DV4 EX3DV4	SAR Probe SAR Probe SAR Probe	7/16/2019 5/16/2019 6/19/2019	Annual Annual Annual	7/16/2020 5/16/2020 6/19/2020	7406 7409
SPEAG SPEAG SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4 EX3DV4 EX3DV4 EX3DV4	SAR Probe SAR Probe SAR Probe SAR Probe	7/16/2019 5/16/2019 6/19/2019 1/21/2020	Annual Annual Annual Annual	7/16/2020 5/16/2020 6/19/2020 1/21/2021	7406 7409 3589
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	SAR Probe	7/16/2019 5/16/2019 6/19/2019 1/21/2020 7/15/2019	Annual Annual Annual Annual Annual Annual	7/16/2020 5/16/2020 6/19/2020 1/21/2021 7/15/2020	7406 7409 3589 7547
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	SAR Probe	7/16/2019 5/16/2019 6/19/2019 1/21/2020 7/15/2019 1/21/2020 4/24/2019	Annual Annual Annual Annual Annual Annual Annual Annual Annual	7/16/2020 5/16/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 4/24/2020	7406 7409 3589 7547 7488 7357
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4 EX3DV4	SAR Probe	7/16/2019 5/16/2019 6/19/2019 1/21/2020 7/15/2019 1/21/2020 4/24/2019 12/11/2019	Annual	7/16/2020 5/16/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 4/24/2020 12/11/2020	7406 7409 3589 7547 7488 7357 7571
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4	SAR Probe	7/16/2019 5/16/2019 6/19/2019 1/21/2020 7/15/2019 1/21/2020 4/24/2019 12/11/2019 9/19/2019	Annual	7/16/2020 5/16/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 4/24/2020 12/11/2020 9/19/2020	7406 7409 3589 7547 7488 7357 7571 7551
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4	SAR Probe	7/16/2019 5/16/2019 6/19/2019 1/21/2020 7/15/2019 1/21/2020 4/24/2019 1/211/2019 9/19/2019 7/11/2019	Annual	7/16/2020 5/16/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 4/24/2020 12/11/2020 9/19/2020 7/11/2020	7406 7409 3589 7547 7488 7357 7571 7551 1322
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	D5GHzV2 EX3DV4	SAR Probe DAY Day Data Acquisition Electronics Day Data Acquisition Electronics Day Data Acquisition Electronics	7/16/2019 5/16/2019 6/19/2019 1/21/2020 7/15/2019 1/21/2020 4/24/2019 12/11/2019 1/21/2019 7/11/2019 5/8/2019	Annual	7/16/2020 5/16/2020 6/19/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 4/24/2020 12/11/2020 9/19/2020 7/11/2020 5/8/2020	7406 7409 3589 7547 7488 7357 7571 7551 1322 728
SPEAG	D5GHzV2 EX3DV4 DAE4 DAE4 DAE4 DAE4	SAR Probe Day Data Acquisition Electronics Day Data Acquisition Electronics Day Data Acquisition Electronics	7/16/2019 5/16/2019 6/19/2019 1/21/2020 1/21/2020 1/21/2020 4/24/2019 12/11/2019 9/19/2019 5/8/2019 6/20/2019	Annual	7/16/2020 5/16/2020 6/19/2020 1/21/2021 1/21/2021 1/21/2021 4/24/2020 1/21/2020 9/19/2020 5/8/2020 6/20/2020	7406 7409 3589 7547 7488 7357 7571 7551 1322 728 1334
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DSGHzV2 EX3DV4 DAE4 DAE4 DAE4 DAE4	SAR Probe Day Data Acquistion Electronics	7/16/2019 5/16/2019 5/16/2019 6/19/2019 6/19/2019 1/21/2020 7/15/2019 1/21/2020 4/24/2019 12/11/2019 9/19/2019 7/11/2019 5/8/2019 1/3/2020 1/3/2020	Annual	7/16/2020 5/16/2020 6/19/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 4/24/2020 9/19/2020 7/11/2020 5/8/2020 1/3/2021 1/3/2021	7406 7409 3589 7547 7488 7357 7571 7551 1322 728 1334
SPEAG	D5GH1V2 EX3DV4 DAE4 DAE4 DAE4 DAE4 DAE4	SAR Probe Day Data Acquisition flectronics	7/16/2019 5/16/2019 5/16/2019 1/21/2020 1/21/2020 1/21/2020 1/21/2020 1/21/2019 9/19/2019 5/8/2019 5/8/2019 6/20/2019 1/31/2020 7/31/2019	Annual	7/16/2020 5/16/2020 5/16/2020 6/19/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 4/24/2020 12/11/2020 9/19/2020 7/11/2020 5/8/2020 1/33/2021 7/11/2020	7406 7409 3589 7547 7488 7357 7571 7551 1322 728 1334 1558
SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG SPEAG	DSGHzV2 EX3DV4 DAE4 DAE4 DAE4 DAE4	SAR Probe Day Data Acquistion Electronics	7/16/2019 5/16/2019 5/16/2019 6/19/2019 6/19/2019 1/21/2020 7/15/2019 1/21/2020 4/24/2019 12/11/2019 9/19/2019 7/11/2019 5/8/2019 1/3/2020 1/3/2020	Annual	7/16/2020 5/16/2020 5/16/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 1/21/2021 1/21/2020 12/11/2020 9/19/2020 7/11/2020 6/20/2020 1/33/2021 1/33/2021	7406 7409 3589 7547 7488 7357 7571 7551 1322 728 1334
SPEAG	D5GH1V2 EX3DV4 DAE4 DAE4 DAE4 DAE4 DAE4	SAR Probe Day Data Acquisition flectronics	7/16/2019 5/16/2019 5/16/2019 1/21/2020 1/21/2020 1/21/2020 1/21/2020 1/21/2019 9/19/2019 5/8/2019 5/8/2019 6/20/2019 1/31/2020 7/31/2019	Annual	7/16/2020 5/16/2020 5/16/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 1/21/2021 1/21/2020 12/11/2020 9/19/2020 7/11/2020 6/20/2020 1/33/2021 1/33/2021	7406 7409 3589 7547 7488 7357 7571 7551 1322 728 1334 1558
SPEAG	D5GH1V2 EX3DV4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE4 DAE	SAR Probe Day Data Acquistion Electronics Day Data Acquistion Electronics	7/16/2019 5/16/2019 5/16/2019 1/21/2020 7/15/2019 1/21/2020 7/15/2019 1/21/2020 1/21/2020 1/21/2020 1/21/2019 1/11/2019 5/8/2019 1/13/2020 1/13/2020	Annual	7/16/2020 5/16/2020 5/16/2020 6/19/2020 6/19/2020 1/21/2021 7/15/2020 1/21/2021 4/24/2020 12/11/2020 9/19/2020 7/11/2020 5/8/2020 1/33/2021 7/11/2020	7406 7409 3589 7547 7488 7357 7571 1322 728 1334 1558 1323

Note:

1. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

2. E	ach equipment item was	used sole	ly within it	s respective	calibration	period.

FCC ID: ZNFK300TM	PCTEST* Proud to be part of serieses	SAR EVALUATION REPORT LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 404 of 405
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 101 of 105

a	С	d	e=	f	g	h =	i =	k
			f(d,k)			c x f/e	c x g/e	
	Tol.	Prob.		ci	ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	v _i
						(± %)	(± %)	·
Measurement System								
Probe Calibration	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	∞
Linearity	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	∞
Readout Electronics	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Test Sample Related								
Test Sample Positioning	2.7	N	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	∞
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	N	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	× ×
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	× ×
Combined Standard Uncertainty (k=1)		RSS				11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)		-						

FCC ID: ZNFK300TM	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dage 402 of 405	
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 102 of 105	

17 CONCLUSION

17.1 **Measurement Conclusion**

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID: ZNFK300TM	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 103 of 105	
	1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset			
© 202	© 2020 PCTEST					

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including p microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or asset thereof, please contact INFO@PCTEST.COM.

18 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFK300TM	PCTEST* Proud to be part of received	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 404 - 4405	
1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset	Page 104 of 105	

© 2020 PCTEST REV 21.4 M 09/11/2019

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID: ZNFK300TM	PCTEST* Provid to be part of the recess	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Page 105 of 105	
	1M2002250026-01-R1.ZNF	02/26/20 - 03/17/20	Portable Handset			
© 202	© 2020 PCTEST					