

Page 1 of 45 JQA File No. : KL80160286 Issue Date : August 9, 2016

TEST REPORT

Applicant	:	SHARP CORPORATION, Consumer Electronics Company, Communication Systems Division	
Address	:	2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan	
Products	:	Cellular Phone	
Model No.	:	HR241	
Serial No.	:	004401/11/587375/0	
		004401/11/587367/7	
FCC ID	:	APYHRO00241	
Test Standard	:	CFR 47 FCC Rules and Regulations Part 24	
Test Results	:	Passed	
Date of Test	:	July 17 ~ August 3, 2016	

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The test results in this test report was made by using the measuring instruments which are traceable to national standards of measurement in accordance with ISO/IEC 17025.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

JAPAN QUALITY ASSURANCE ORGANIZATION

Page 2 of 45

TABLE OF CONTENTS

Page

1	Description of the Equipment Under Test	3
2	Summary of Test Results	4
3	Test Procedure	
4	Test Location	
5	Recognition of Test Laboratory	5
	Description of Test Setup	
	Test Requirements	

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

- $\textbf{EUT} \quad : \textbf{Equipment Under Test}$
- **AE** : Associated Equipment
- N/A : Not Applicable
- N/T : Not Tested

- **EMC** : Electromagnetic Compatibility
- **EMI** : Electromagnetic Interference
- **EMS** : Electromagnetic Susceptibility
- $\ensuremath{\boxtimes}$ $\ensuremath{$ indicates that the listed condition, standard or equipment is applicable for this report.
- \Box indicates that the listed condition, standard or equipment is not applicable for this report.

Page 3 of 45

1 Description of the Equipment Under Test

1.	Manufacturer	:	SHARP CORPORATION, Consumer Electronics Company,Communication Systems Division2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,739-0192, Japan
2.	Products	:	Cellular Phone
3.	Model No.	:	HR241
4.	Serial No.	:	004401/11/587375/0
			004401/11/587367/7
5.	Product Type	:	Pre-production
6.	Date of Manufacture	:	June, 2016
7.	Power Rating	:	4.0VDC (Lithium-ion Battery SHBGC1 1800mAh)
8.	Grounding	:	None
9.	Transmitting Frequency	:	1850.2 MHz(512CH) – 1909.8MHz(810CH)
10.	Receiving Frequency	:	1930.2 MHz(512CH) – 1989.8MHz(810CH)
11.	Emission Designations	:	245KGXW
12.	Max. RF Output Power	:	1.413 W(EIRP)
13.	Category	:	Broadband PCS
14.	EUT Authorization	:	Certification
15.	Received Date of EUT	:	July 14, 2016

16. Channel Plan

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

 $\begin{array}{ll} \mbox{Transmitting Frequency (in MHz)} &= 1850.2 + 0.2 \times (n-512) \\ \mbox{Receiving Frequency (in MHz)} &= 1930.2 + 0.2 \times (n-512) \\ \mbox{where, n : channel number } (512 \le n \le 810) \end{array}$

Page 4 of 45

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 24 Subpart E - Broadband PCS

The EUT described in clause 1 was tested according to the applied standard shown above. Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \square - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

 \Box - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Assistant Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

higen Osawa

Shigeru Osawa Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Page 5 of 45

3 Test Procedure

Test Requirements	:	CFR 47 FCC Rules and Regulations Part 2 §2.1046, §2.1047, §2.1049, §2.1051, §2.1053, §2.1055 and §2.1057
Test Procedure	:	ANSI/TIA–603-D-2010 FCC KDB 971168 D01 Power Meas License Digital Systems v02r02, released October 17, 2014

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2018)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2018)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2016)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2019)

Page 6 of 45

6 Description of Test Setup

6.1 Test Configuration

The equipment under test (EUT) consists of :

	Item	Manufacturer	Model No.	Serial No.	FCC ID
А	Cellular Phone	Sharp	HR241	004401/11/587375/0 *1) 004401/11/587367/7 *2)	APYHRO00241
В	AC Adapter	Sharp	SHCEJ1		N/A
С	Earphone (Including Conversion cable)	Softbank	ZTCAA1		N/A

*1) Used for Field Strength of Spurious Emission

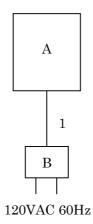
*2) Used for Antenna Conducted Emission and Frequency Stability

The auxiliary equipment used for testing :

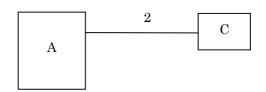
None

Type of Cable:

No.	Description	Identification	Connector	Cable	Ferrite	Length
110.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	USB conversion cable			NO	NO	1.5
2	Earphone Cable			NO	NO	0.6


Page 7 of 45

6.2 Test Arrangement (Drawings)


a) Single Unit

b) AC Adapter used

c) Earphone used

Page 8 of 45

6.3 Operating Condition

Power Supply Voltage : 4.0 VDC (for Battery) 120 VAC, 60 Hz (For AC Adapter)

The test were carried under one modulation type shown as follows: Modulation Burst Signal : DATA TSC 5 in accordance with GSM 05.02. (Maximum Power Setting)

The Radiated Emission test were carried under 3 test configurations shown in clause 6.2. In all tests, the fully charged battery is used for the EUT.

Other Clock Frequency 19.2MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

Page 9 of 45

7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
RF Power Output	Section 24.232(c)	Section 7.1	Passed	-
ERP / EIRP RF Power	Section 24.232(c)	Section 7.2	Passed	-
Output				
Modulation Characteristics	-	-	-	-
Occupied Bandwidth	Section 24.238	Section 7.4	Passed	-
Spurious Emissions at	Section 24.238	Section 7.5	Passed	-
Antenna Terminals				
Band-Edge Emission	Section 24.238	Section 7.6	Passed	-
Field Strength of Spurious	Section 24.238	Section 7.7	Passed	-
Radiation				
Frequency Stability	Section 24.235	Section 7.8	Passed	-

7.1 RF Power Output (§2.1046)

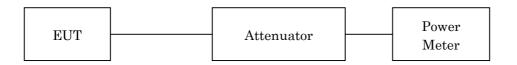
For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.1.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not judg	ged			
Transmitter Power is			<u>1006.9</u> m	nW	at	1909.800	MHz
Uncertainty of Measure	ement Results					± 0.9	dB(2σ)

Remarks:

Page 10 of 45


7.1.2 Test Instruments

Shielded Room S4							
Туре	Manufacturer	Cal. Due					
Power Meter	N1911A	GB45100291 (B-63)	Agilent	2017/07/10			
Power Sensor	N1921A	US44510470 (B-64)	Agilent	2017/07/10			
Attenuator	43KC-20	1418003 (D-41)	Anritsu	2017/07/10			
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16			

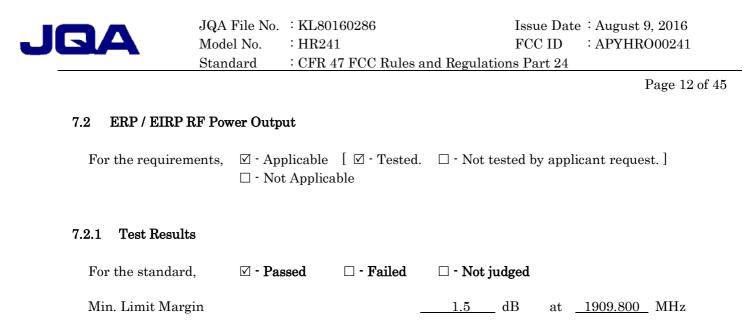
NOTE : The calibration interval of the above test instruments is 12 months.

7.1.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.

Page 11 of 45

7.1.4 Test Data


(GSM-PCS1900)

					est Date: July 17, np.: 26 °C, Humi:
Transn	nitting Frequency	Correction Factor	Meter Reading (Peak)	Result	s (Peak)
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]
512	1850.200	20.32	9.40	29.72	937.6
661	1880.000	20.32	9.46	29.78	950.6
810	1909.800	20.32	9.71	30.03	1006.9

Calculated result at 1909.800 MHz, as the maximum level point shown on underline:

Correction Factor	=	20.32 dB
+) Meter Reading	=	9.71 dBm
Result	=	30.03 dBm = 1006.9 mW

 NOTE : The correction factor shows the attenuation pad loss including the short, low loss cable or adapter.

Remarks: <u>The maximum EIRP is 1.413 W at 1909.8 MHz</u>. Y-axis position. The measurement result is within the range of measurement uncertainty.

 ± 1.8 dB(2 σ)

7.2.2 Test Instruments

Uncertainty of Measurement Results

Anechoic Chamber A2								
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2017/04/27				
Signal Generator	E8257D	MY45140309 (B-39)	Agilent	2016/08/10				
Power Meter	N1911A	GB45100291 (B-63)	Agilent	2017/07/10				
Power Sensor	N1921A	US44510470 (B-64)	Agilent	2017/07/10				
Horn Antenna (TX)	91888-2	560 (C-40-1)	EATON	2017/06/12				
Horn Antenna (RX)	91888-2	562 (C-41-1)	EATON	2017/06/12				
Attenuator (TX)	2-10	BA6214 (D-79)	Weinschel	2016/11/19				
Attenuator (RX)	2-10	BF7557 (D-80)	Weinschel	2016/11/19				
RF Cable (RX)	SUCOFLEX104	267479/4 (C-66)	HUBER+SUHNER	2017/01/06				
RF Cable (TX)	SUCOFLEX102E	6683/2E (C-70)	HUBER+SUHNER	2016/11/19				

NOTE : The calibration interval of the above test instruments is 12 months.

Page 13 of 45

7.2.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1:

In order to obtain the maximum emission, the EUT was placed at the height 1.5 m on the non-conducted support and was varying at three orthogonal axes, at the distance 3 m from the receiving antenna and rotated around 360 degrees.

The receiving antenna height was varied from 1 m to 4 m.

The EUT on the table was placed to be maximum emission against at the receiving antenna polarized (vertical and horizontal).

Then the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V).

Step 2:

The EUT was replaced to substitution antenna at the same polarized under the same condition as step 1.

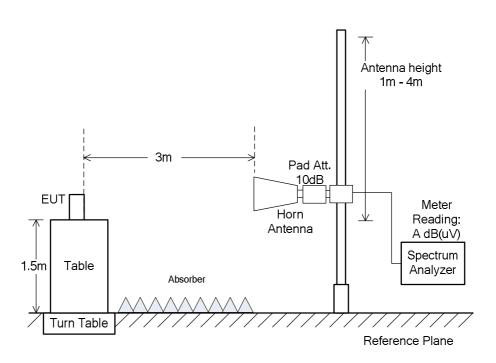
The RF power was fed to the transmitting antenna through the RF amplifier from the signal generator.

In order to obtain the maximum emission level, the height of the receiving antenna was varied from 1 m to 4 m.

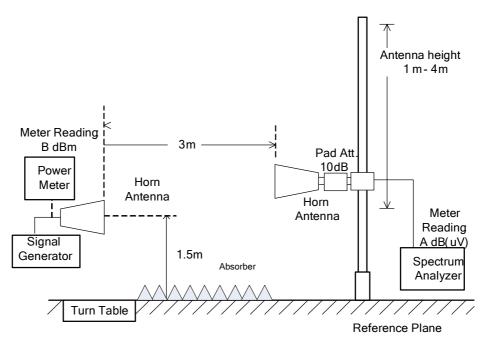
The level of maximum emission was A $dB(\mu V)$, same as the recorded level in the step 1.

Then the RF power into the substitution horn antenna was P (dBm).

The ERP/EIRP output power was calculated in the following equation.


 $\begin{array}{l} {\rm ERP}\;({\rm dBm})={\rm P}\;({\rm dBm})-{\rm Balun\;loss\;of\;the\;tuned\;dipole\;antenna\;({\rm dB})+{\rm Cable\;loss\;({\rm dB})}\\ {\rm EIRP}\;({\rm dBm})={\rm P}\;({\rm dBm})+{\rm Gh\;({\rm dBi})} \end{array} \end{array}$

where, Gh (dBi) : Gain of the substitution horn antenna.



Page 14 of 45

(a)EUT

(b) Substitution Horn Antenna

Page 15 of 45

7.2.4 Test Data

(GSM-PCS1900)

1. Measurement Results

<u>Test Date: July 21, 2016</u> Temp.: 25 °C, Humi: 68 %

	Fransmitting Frequency	Emission Measurement Substi [dB(uV)]			Measurement (uV)]	Supplied Power to Substitution Antenna	Gain of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dB m]	[dBi]
512	1850.200	93.2	92.7	72.1	72.3	- 5.0	14.3
661	1880.000	93.3	92.8	72.4	72.6	- 5.0	14.4
810	1909.800	94.4	94.6	72.6	72.6	- 5.0	14.5

2. Calculation Results

Transm	Transmitting Frequency Peak EIRP [dBm]		RP [dBm]	Maximum Peak EIRP	Limits	Margin
СН	[MHz]	Hori. (EIRPh)	Vert. (EIRPv)	[W]	[dBm]	[dB]
512	1850.200	30.4	29.7	1.096	33.0	+ 2.6
661	1880.000	30.3	29.6	1.072	33.0	+ 2.7
810	1909.800	31.3	31.5	1.413	33.0	+ 1.5

	Emission Measurment (Mv)	=	94.6	dB(uV)
	Substitution Measurement (Msv)	=	-72.6	dB(uV)
	Supplied Power to Substitution Antenna		-5.0	dBm
+) Gain of Substitution Antenna	=	14.5	dB
Result (EIRPv)		=	31.5	dBm = 1.413 W
Minimu	m Margin: 33.0 - 31.5 = 1.5 (dB)			
NOTE :	Setting of measuring instrument(s)			
			V D W	Sweep Time
	Detector Function	Resolution B.W.	V.B.W.	Sweep Time

Page 16 of 45

7.3 Modulation Characteristics (§2.1047)

For the requirements, \Box - Applicable [\Box - Tested. \Box - Not tested by applicant request.] \Box - Not Applicable

7.4 Occupied Bandwidth (§2.1049)

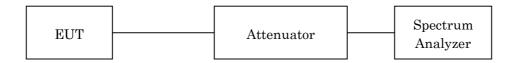
Remarks :

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.4.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not judg	ged		
The 99% Bandwidth is The 26dB Bandwidth i					<u>1909.800</u> 1880.000	MHz MHz
Uncertainty of Measur	ement Results				± 0.9	%(2σ)

Page 17 of 45


7.4.2 Test Instruments

Shielded Room S4								
TypeModelSerial No. (ID)ManufacturerCal. Due								
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11				
Attenuator	43KC-20	1418003 (D-41)	Anritsu	2017/07/10				
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16				

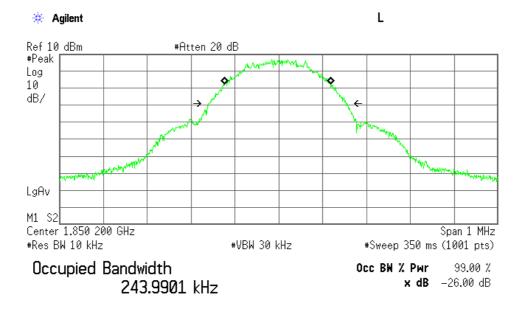
NOTE : The calibration interval of the above test instruments is 12 months.

7.4.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	10 kHz
Video Bandwidth	$30 \mathrm{kHz}$
Span	1 MHz
Sweep Time	AUTO
Trace	Maxhold

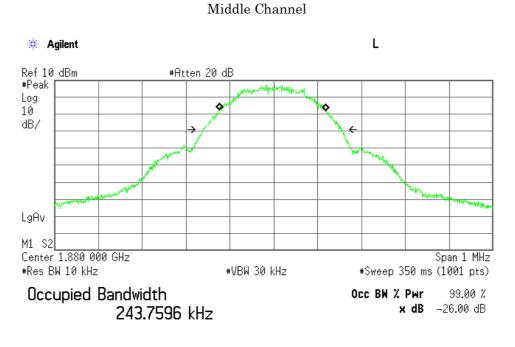

Page 18 of 45

7.4.4 Test Data

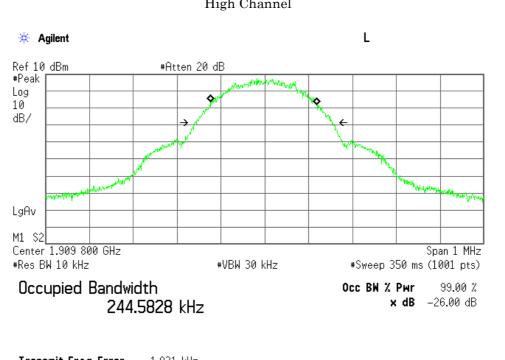
The resolution bandwidth was set to about 1% of emission bandwidth, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

<u>Test Date :July 17, 2016</u> <u>Temp.:26°C, Humi:68%</u>

Channel	Frequency (MHz)	99% Bandwidth (kHz)	-26dBc Bandwidth (kHz)
512	1850.200	244.0	320.3
661	1880.000	243.8	320.4
810	1909.800	244.6	316.7



Low Channel


Transmit Freq Error	–2.185 kHz	
Occupied Bandwidth	320.348 kHz	

Page 19 of 45

Transmit Freq Error	–2.797 kHz
Occupied Bandwidth	320.407 kHz

High Channel

Transmit Freq Error -1.931 kHz **Occupied Bandwidth** 316.656 kHz

Page 20 of 45

7.5 Spurious Emissions at Antenna Terminals (§2.1051)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.5.1 Test Results

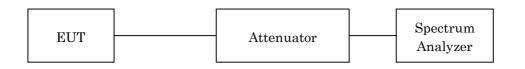
For the standard,	\square - Passed	\Box - Failed	🗆 - Not j	udged			
Min. Limit Margin		-	19.5	_ dB	at	7639.200	MHz
Uncertainty of Measur	ement Results		1 GHz	Hz – 1 C z – 18 C z – 40 C	Hz		$\begin{array}{c} dB(2\sigma) \\ dB(2\sigma) \\ dB(2\sigma) \end{array}$

Remarks :

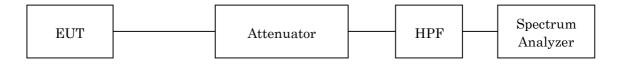
7.5.2 Test Instruments

Shielded Room S4								
Туре	Manufacturer	Cal. Due						
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11				
Attenuator	43KC-20	1418003 (D-41)	Anritsu	2017/07/10				
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16				
High Pass Filter	HPM13899	001 (D-96)	MICRO-TRONICS	2017/02/17				

NOTE : The calibration interval of the above test instruments is 12 months.



Page 21 of 45


7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Antenna Conducted Emission was measured with a spectrum analyzer. The test system is shown as follows:

a) Frequency Range: 9 kHz – 2 GHz

b) Frequency Range: 2 GHz – 20 GHz

The setting of the spectrum analyzer are shown as follows:

Frequency Range	9 kHz - 150 kHz	150 kHz - 30 MHz	30 MHz - 20 GHz
Res. Bandwidth	200 Hz	$10 \mathrm{kHz}$	1 MHz
Video Bandwidth	1 kHz	30 kHz	3 MHz
Sweep Time	AUTO	AUTO	AUTO
Trace	Maxhold	Maxhold	Maxhold

Page 22 of 45

7.5.4 Test Data

(GSM-PCS1900)

<u>Test Date: July 17, 2016</u> <u>Temp.: 26 °C, Humi: 68 %</u>

	ransmitting Fre que ncy	Measured Frequency	Corr. Factor	Meter Readings [dBm]	Limits [dB m]	Results [dBm]	Margin [dB]	Remark
СН	[MHz]	[MHz]	[dB]					
512	1850.200	3700.400	21.3	-62.1	-13.0	-40.8	+27.8	С
		5550.600	21.4	-65.9	-13.0	-44.5	+31.5	С
		7400.800	21.5	-57.5	-13.0	-36.0	+23.0	С
		9251.000	21.7	-62.4	-13.0	-40.7	+27.7	С
		11101.200	21.9	-68.2	-13.0	-46.3	+33.3	С
		12951.400	22.2	< -70.0	-13.0	< -47.8	> +34.8	С
		14801.600	22.4	< -70.0	-13.0	< -47.6	> +34.6	С
		16651.800	22.8	< -70.0	-13.0	< -47.2	> +34.2	С
		18502.000	23.1	< -70.0	-13.0	< -46.9	> +33.9	С
661	1880.000	3760.000	21.3	-63.0	-13.0	-41.7	+28.7	С
		5640.000	21.4	-69.7	-13.0	-48.3	+35.3	С
		7520.000	21.5	-55.5	-13.0	-34.0	+21.0	С
		9400.000	21.7	-62.2	-13.0	-40.5	+27.5	С
		11280.000	21.9	-63.3	-13.0	-41.4	+28.4	С
		13160.000	22.2	< -70.0	-13.0	< -47.8	> +34.8	С
		15040.000	22.5	< -70.0	-13.0	< -47.5	> +34.5	С
		16920.000	22.8	< -70.0	-13.0	< -47.2	> +34.2	С
		18800.000	23.1	< -70.0	-13.0	< -46.9	> +33.9	С
810	1909.800	3819.600	21.3	-58.9	-13.0	-37.6	+24.6	С
		5729.400	21.4	< -70.0	-13.0	< -48.6	> +35.6	С
		7639.200	21.5	-54.0	-13.0	-32.5	+19.5	С
		9549.000	21.7	-60.8	-13.0	-39.1	+26.1	С
		11458.800	21.9	-69.5	-13.0	-47.6	+34.6	С
		13368.600	22.2	< -70.0	-13.0	< -47.8	> +34.8	С
		15278.400	22.6	< -70.0	-13.0	< -47.4	> +34.4	С
		17188.200	22.9	< -70.0	-13.0	< -47.1	> +34.1	С
		19098.000	23.2	< -70.0	-13.0	< -46.8	> +33.8	С

Г

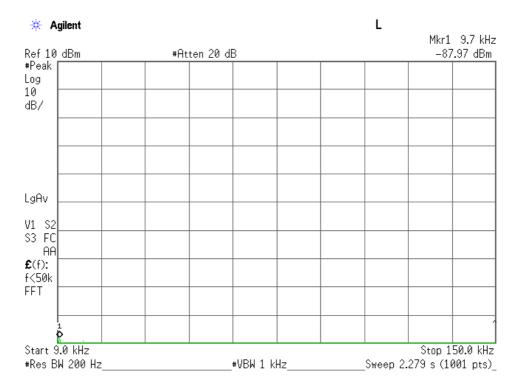
Page 23 of 45

٦

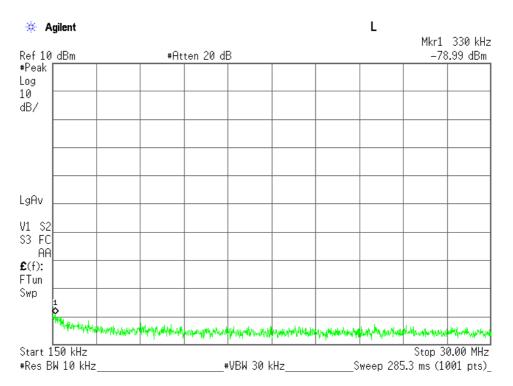
Corr. Factor	=	21.5 dB	
+) Meter Reading	=	-54.0 dBm	
Result	=	-32.5 dBm	
ES			
The spectrum was checked fr			
Applied limits : -13.0 [dBm] = where, tp[W] = TP[mW] / 1	0	0.1-	V])) = 10log(TP[mW]) - (43 + (10 log(TP[mW]) - 30 na terminal
The correction factor is show	n as follows:		
Corr. Factor [dB] = Cable L	oss + Pad Att.	[dB] (9 kHz - 2 GI	Iz)

Corr. Factor [dB] = Cable Loss + Pad Att. + High Pass Filter Loss [dB] (over 2 GHz)

4. The symbol of "<" means "or less".

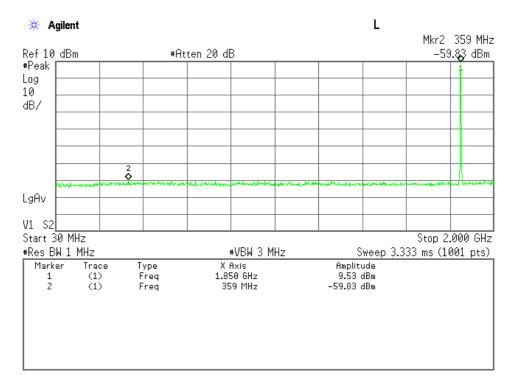

5. The symbol of ">" means "more than".

6. Setting of measuring instrument(s) :

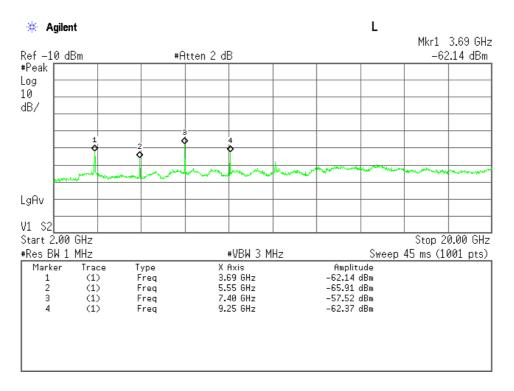

	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	200 Hz	1 kHz	AUTO
В	Peak	10 kHz	30 kHz	AUTO
С	Peak	1 MHz	3 MHz	AUTO

Low Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

Low Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

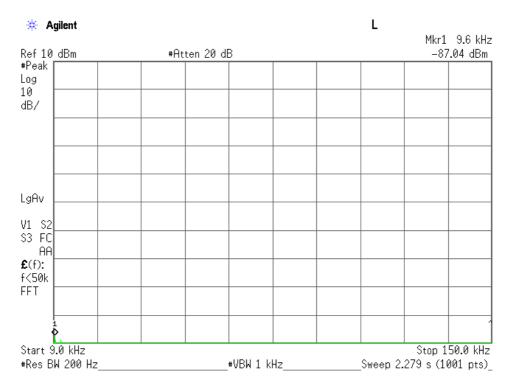


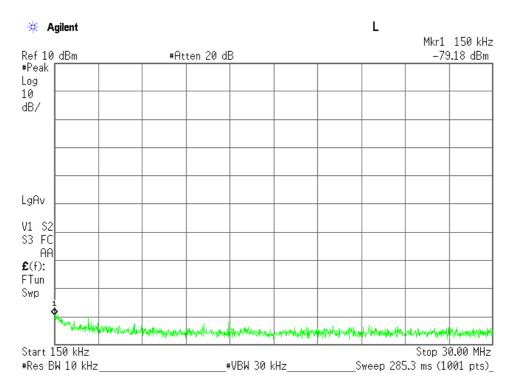
Page 24 of 45



Page 25 of 45

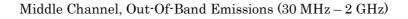
Low Channel, Out-Of-Band Emissions (30 MHz – 2 GHz)

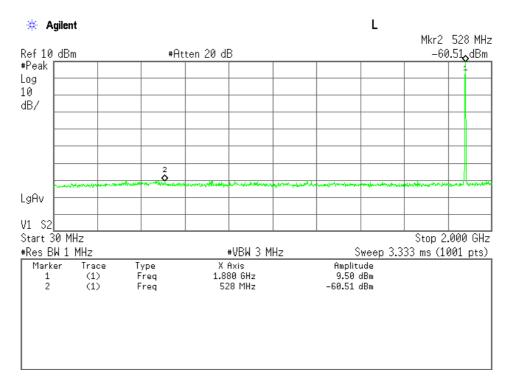

Low Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)

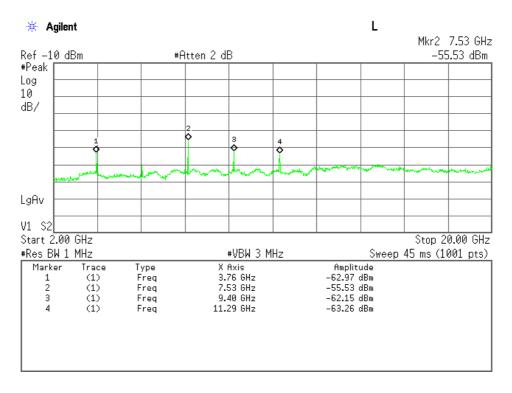


Page 26 of 45

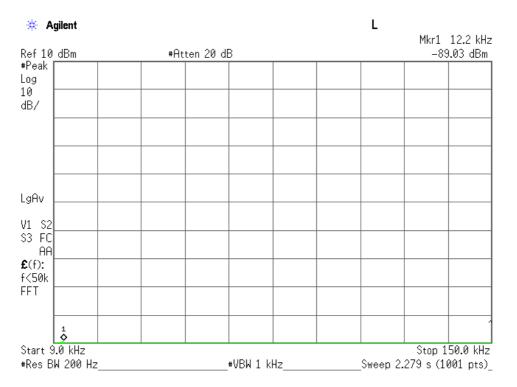
Middle Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

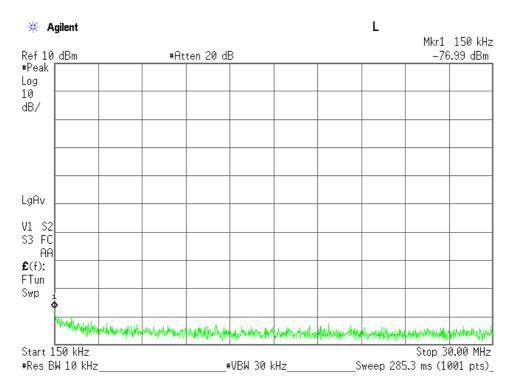



Middle Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)



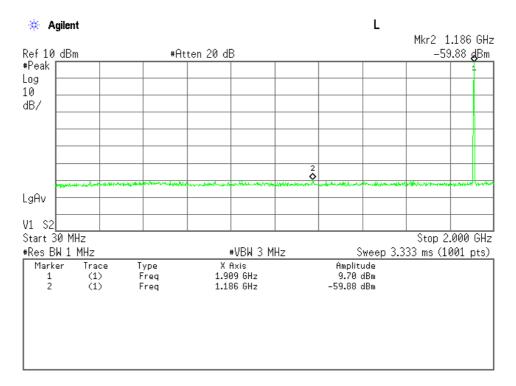
Page 27 of 45

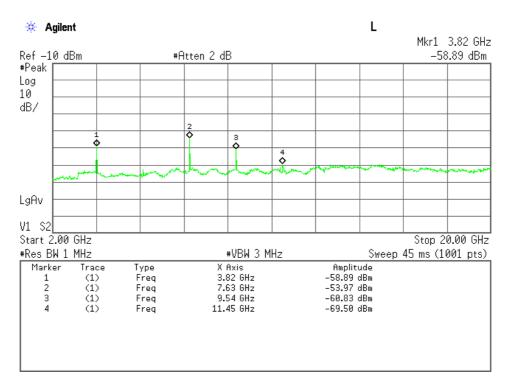

Middle Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)



Page 28 of 45

High Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)


High Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)



Page 29 of 45

High Channel, Out-Of-Band Emissions (30 MHz $-\,2$ GHz)

High Channel, Out-Of-Band Emissions (2 GHz - 20 GHz)

Page 30 of 45

7.6 Band-Edge Emission (§2.1051)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

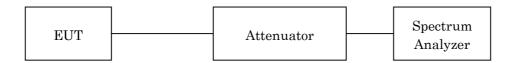
7.6.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not j	udged			
Min. Limit Margin		-	2.1	dB	at	1910.0	MHz
The Band-Edge level is		-	-15.1	dBm	at	1910.0	MHz
Uncertainty of Measure	ement Results					± 1.7	_ dB(2σ)

Remarks :

7.6.2 Test Instruments

Shielded Room S4								
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Spectrum Analyzer	E4446A	US44300388 (A-39)	Agilent	2016/08/11				
Attenuator	43KC-20	1418003 (D-41)	Anritsu	2017/07/10				
RF Cable	SUCOFLEX102	14253/2 (C-52)	HUBER+SUHNER	2016/08/16				


NOTE : The calibration interval of the above test instruments is 12 months.

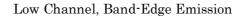
Page 31 of 45

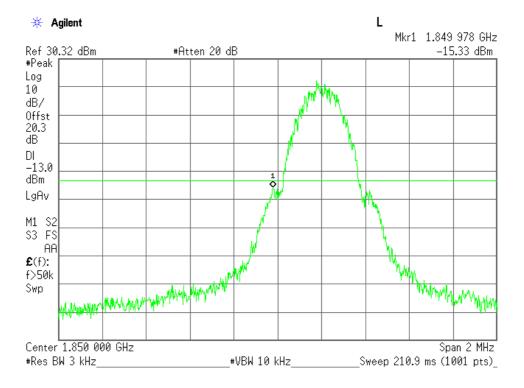
7.6.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

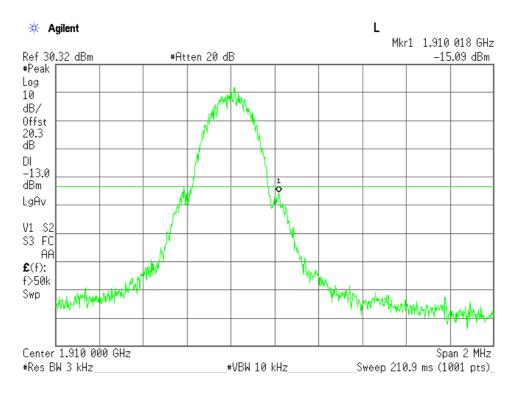
TX Frequency	1850.20 MHz / 1909.80 MHz
Band-Edge Frequency	$1850.00 \mathrm{MHz}$ / $1910.00 \mathrm{MHz}$
Res. Bandwidth	3 m kHz
Video Bandwidth	$10 \mathrm{kHz}$
Span	$2 \mathrm{~MHz}$
Sweep Time	AUTO
Trace	Maxhold




Page 32 of 45

7.6.4 Test Data

<u>Test Date</u> :July 17, 2016 <u>Temp.:26°C, Humi:68%</u>


Channel	Frequency (MHz)	Band-Edge Frequency (MHz)	Band-Edge Level (dBm)	Limits (dBm)	Margin (dB)
512	1850.200	1850.00	-15.3	-13.0	+2.3
810	1909.800	1910.00	-15.1	-13.0	+2.1

Page 33 of 45

High Channel, Band-Edge Emission

Page 34 of 45

7.7 Field Strength of Spurious Radiation (§2.1053)

For the requirements, \square - Applicable [\square - Tested. \square - Not tested by applicant request.] \square - Not Applicable

7.7.1 Test Results

For the standard,	\square - Passed	\Box - Failed	🗆 - Not j	udged			
Min. Limit Margin			>21.2	dB	at	17188.200	MHz
Uncertainty of Measur	ement Results		30 MHz – 1 GHz 18 GHz	z – 18 G	Hz	$ \begin{array}{r} \pm 1.6 \\ \pm 1.8 \\ \pm 2.7 \\ \end{array} $	dB(2σ) dB(2σ) dB(2σ)

Remarks :

Page 35 of 45

7.7.2 Test Instruments

	Anechoic Chamber A2							
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due				
Test Receiver	ESU 26	100170 (A-6)	Rohde & Schwarz	2017/04/27				
Signal Generator	E8257D	MY45140309 (B-39)	Agilent	2016/08/10				
Power Meter	N1911A	GB45100291 (B-63)	Agilent	2017/07/10				
Power Sensor	N1921A	US44510470 (B-64)	Agilent	2017/07/10				
Biconical Antenna	VHA9103/BBA9106	2355 (C-30)	Schwarzbeck	2017/05/18				
Log-periodic Antenna	UHALP9108-A1	0694 (C-31)	Schwarzbeck	2017/05/18				
Dipole Antenna (TX)	KBA-511A	0-273-2 (C-17)	Kyoritsu	2017/05/24				
Dipole Antenna (TX)	KBA-611	0-248-2 (C-20)	Kyoritsu	2017/05/24				
RF Cable	S 10162 B-11 etc.	(H-4)	HUBER+SUHNER	2017/04/03				
Pre-Amplifier	TPA0118-36	1010 (A-37)	ΤΟΥΟ	2017/05/17				
Horn Antenna	91888-2	562 (C-41-1)	EATON	2017/06/12				
Horn Antenna	91889-2	568 (C-41-2)	EATON	2017/06/12				
Horn Antenna	3160-04	9903-1053 (C-55)	ЕМСО	2017/06/13				
Horn Antenna	3160-05	9902-1061 (C-56)	ЕМСО	2017/06/13				
Horn Antenna	3160-06	9712-1045 (C-57)	EMCO	2017/06/13				
Horn Antenna	3160-07	9902-1113 (C-58)	EMCO	2017/06/13				
Horn Antenna	3160-08	9904-1099 (C-59)	EMCO	2017/06/13				
Horn Antenna	3160-09	9808-1117 (C-48)	EMCO	2017/06/15				
Attenuator	2-10	AW7937 (D-40)	Weinschel	2016/10/12				
Attenuator	54A-10	W5713 (D-29)	Weinschel	2016/08/16				
Attenuator	2-10	BA6214 (D-79)	Weinschel	2016/11/19				
RF Cable	SUCOFLEX102E	6683/2E (C-70)	HUBER+SUHNER	2016/11/19				
RF Cable	SUCOFLEX104	267479/4 (C-66)	HUBER+SUHNER	2017/01/06				
RF Cable	SUCOFLEX104	267414/4 (C-67)	HUBER+SUHNER	2017/01/06				
RF Cable	SUCOFLEX102EA	3041/2EA (C-69)	HUBER+SUHNER	2017/01/06				
High Pass Filter	HPM13899	001 (D-96)	MICRO-TRONICS	2017/02/17				

NOTE : The calibration interval of the above test instruments is 12 months.

Page 36 of 45

7.7.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 0.8 m in height and was varying at three orthogonal axes. The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

This test was carried out using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

Step 2)

A) Up to 1 GHz

The ERP measurement was carried out with according to Step 2 in Clause 7.2.3. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The ERP is calculated in the following equation.

ERP(dBm) = P(dBm) - (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss(dB)

B) Above 1 GHz

The ERP is calculated from the maximum emission level by the following formula.

$$\frac{e^2}{120\pi} = \frac{eirp}{4\pi d^2} \quad \dots \quad (\text{Eq.1})$$

 $erp = eirp - Gd \cdots (Eq.2)$

Where, e[V/m]: Field Strength at measuring distance(d=3m)

eirp[W]: Equivalent Isotropic Radiated Power

erp[W] : Effective Radiated Power

Gd(dBi): Gain of the substitution half-wave dipole antenna(2.15dBi)

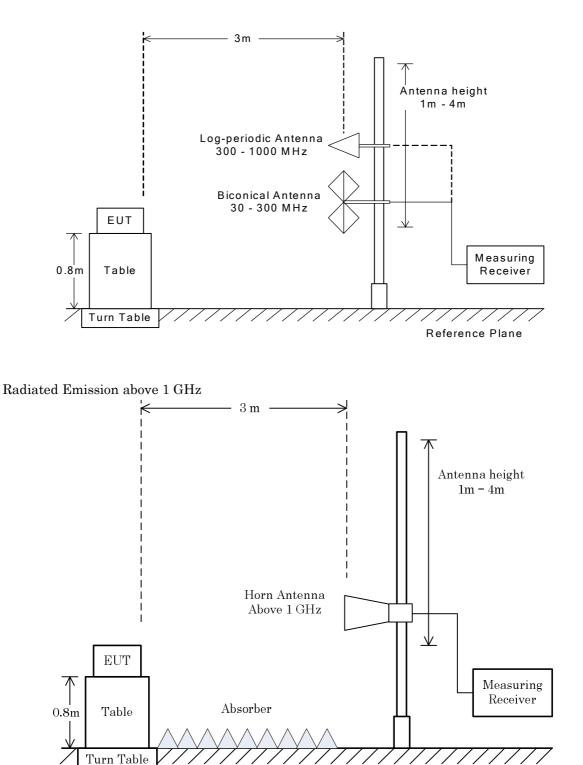
$$eirp = \frac{(de)^2}{30} = \frac{3}{10}e^2$$

$$\therefore 10 \log(eirp) = 20 \log(e) + 10 \log(3/10) = 20 \log(e) - 5.23$$

$$10 \log(eirp) = EIRP[dBm] - 30$$

$$20 \log(e) = E[dB(\mu V / m)] - 120$$

$$EIRP = E - 120 + 30 - 5.23 = E - 95.23$$

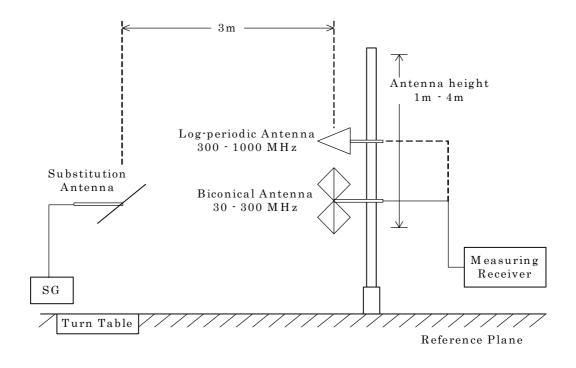

$$ERP[dBm] = EIRP - 2.15 = E - 97.38$$

The respective calculated ERP of the spurious and harmonics were compared with the ERP of fundamental frequency by specified attenuation limits, $43+10\log_{10}$ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.

Radiated Emission 30 MHz to 1000 MHz

Page 37 of 45

Reference Plane



The antenna height is scanned depending on the EUT's size and mounting height.

Radiated Emission 30 to 1000 MHz – Substitution Method

Page 38 of 45

Page 39 of 45

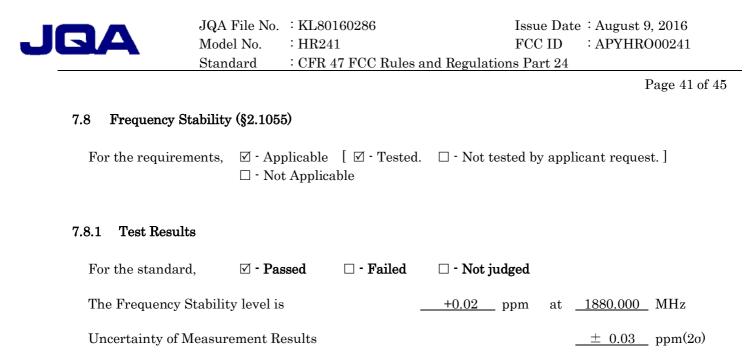
7.7.4 Test Data

(GSM-PCS1900)

Test Configuration : Single Unit

Test Date: July 21, 2016 Temp.: 25 °C, Humi: 68 %

	`rans mitting Freque ncy	M e as ure d Fre que nc y		CRP [Bm]	Limits [dBm]	Margin [dB]	Remarks
СН	[MHz]	[MHz]	Hori.	Vert.			
512	1850.200	3700.400	-47.0	-49.0	-13.0	+34.0	С
		5550.600	< -47.1	< -47.1	-13.0	> +34.1	С
		7400.800	< -45.5	< -45.5	-13.0	> +32.5	С
		9251.000	< -41.8	< -41.8	-13.0	> +28.8	С
		11101.200	< -40.3	< -40.3	-13.0	> +27.3	С
		12951.400	< -38.7	< -38.7	-13.0	> +25.7	С
		14801.600	< -37.5	< -37.5	-13.0	> +24.5	С
		16651.800	< -35.8	< -35.8	-13.0	> +22.8	С
		18502.000	< -40.0	< -40.0	-13.0	> +27.0	С
661	1880.000	3760.000	-49.3	-50.3	-13.0	+36.3	С
		5640.000	< -47.0	< -47.0	-13.0	> +34.0	С
		7520.000	-42.9	-42.7	-13.0	+29.7	С
		9400.000	< -41.7	< -41.7	-13.0	> +28.7	С
		11280.000	< -40.3	< -40.3	-13.0	> +27.3	С
		13160.000	< -38.8	< -38.8	-13.0	> +25.8	С
		15040.000	< -37.5	< -37.5	-13.0	> +24.5	С
		16920.000	< -35.0	< -35.0	-13.0	> +22.0	С
		18800.000	< -39.9	< -39.9	-13.0	> +26.9	С
810	1909.800	3819.600	-50.0	-51.5	-13.0	+37.0	С
		5729.400	< -47.1	< -47.1	-13.0	> +34.1	С
		7639.200	-41.6	-40.6	-13.0	+27.6	С
		9549.000	< -41.6	< -41.6	-13.0	> +28.6	С
		11458.800	< -40.3	< -40.3	-13.0	> +27.3	С
		13368.600	< -38.7	< -38.7	-13.0	> +25.7	С
		15278.400	< -37.4	< -37.4	-13.0	> +24.4	С
		17188.200	< -34.2	< -34.2	-13.0	> +21.2	С
		19098.000	< -39.8	< -39.8	-13.0	> +26.8	С


Page 40 of 45

Calculated result at 17188.2 MHz, as the worst point shown on underline: Minimum Margin: -13.0 - (<-34.2) = >21.2 (dB)

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from $30~\mathrm{MHz}$ to the tenth harmonic of the highest fundamental frequency.
- 3. All emissions not reported were more than 20 dB below the applied limits.
- 4. Applied limits : -13.0 [dBm] = $10\log(TP[mW]) \cdot (43 + 10\log(tp[W])) = 10\log(TP[mW]) \cdot (43 + (10\log(TP[mW]) \cdot 30))$ where, tp[W] = TP[mW] / 1000: Transmitter power at anttena terminal
- 5. The symbol of "<" means "or less".
- 6. The symbol of ">" means "more than".
- 7. Setting of measuring instrument(s):

	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	$10\mathrm{kHz}$	30 kHz	20 msec.
В	Peak	$100 \mathrm{kHz}$	300 kHz	20 msec.
С	Peak	$1\mathrm{MHz}$	3 MHz	20 msec.

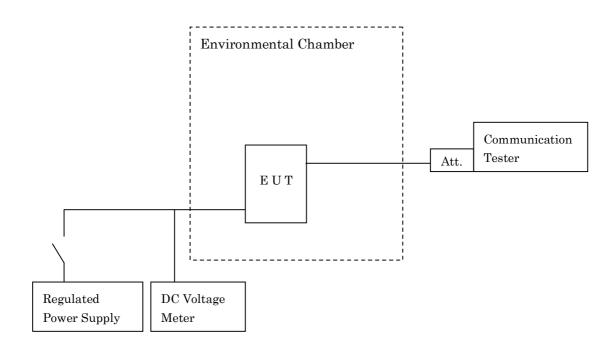
Remarks :

7.8.2 Test Instruments

Shielded Room S4							
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due			
Base Station Simulator	CMU200	103210 (B-21)	Rohde & Schwarz	2017/05/29			
Environmental Chamber	SH-641	92010990 (F-32)	ESPEC	2017/07/13			
DC Voltage Meter	2011	02247S (B-33)	YOKOGAWA	2017/04/05			
DC Power Supply	NL035-10	35883293 (F-4)	TAKASAGO	N/A			

NOTE : The calibration interval of the above test instruments is 12 months.

Page 42 of 45


7.8.3 Test Method and Test Setup (Diagrammatic illustration)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

Frequency Stability versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the ending voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

Page 43 of 45

7.8.4 Test Data

(GSM-PCS1900)

Test Date: August 3, 2016

1. Frequency Stability Measurement versus Temperature

Transmitting Freq DC Supply Voltage		: 1880.000 MHz (: 4.0 VDC	661 ch)			
Ambient Temperature [°C]	Startup	Deviat 2 minutes	tion [ppm] 5 minutes	10 minutes	Limits [ppm]	Margin [ppm]
-30	+ 0.02	+ 0.01	+ 0.01	+ 0.01	N/A	N/A
-20 -10	+ 0.01 + 0.01	+ 0.01 - 0.01	+ 0.01 - 0.01	- 0.01 + 0.00	N/A N/A	N/A N/A
0 10	+ 0.01	- 0.01 - 0.01	+ 0.01 - 0.01	- 0.01 - 0.01	N/A N/A	N/A N/A
20	- 0.01	- 0.01	- 0.01	- 0.01	N/A	N/A
30 40	- 0.01 - 0.01	- 0.01 - 0.01	- 0.01 - 0.01	- 0.01 - 0.01	N/A N/A	N/A N/A
50	- 0.01	- 0.01	+ 0.01	+ 0.01	N/A	N/A

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Freq Ambient Temperatu		: 1880.000 MHz (6 : 20 °C	661 ch)			
DC Supply		Deviat	ion [ppm]		Limits	Margin
Voltage	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
[V]						
4.0	- 0.01	- 0.01	- 0.01	- 0.01	N/A	N/A
3.7(Ending)	+ 0.01	+ 0.01	+ 0.01	+ 0.01	N/A	N/A

Test condition example as the maximum deviation point shown on underline:Ambient Temperature: -30 °CDC Supply Voltage: 4 VDC

NOTE: The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.