SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AF8BDIONE Report No.: LCS1609180999E

FCC TEST REPORT

For

Karacus LLC

Dione

Model No.: K2

Prepared for	:	Karacus LLC
Address	:	428, Ridgefield Rd, Chapel Hill, NC 27517, USA
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an
		District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	September 01, 2016
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	September 01, 2016~September 18, 2016
Date of Report	:	September 18, 2016

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 1 of 40

 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: 2AF8BDIONE

Report No.: LCS1609180999E

FCC TEST REPORT FCC CFR 47 PART 15 C(15.247): 2015					
Report Reference No:	LCS1609010063E				
Date of Issue:	September 18, 2016				
Testing Laboratory Name: :	Shenzhen LCS Compliance Testing Laboratory Ltd.				
	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Full application of Harmonised standards ■ Partial application of Harmonised standards □				
Applicant's Name::	Other standard testing method Karacus LLC				
	428, Ridgefield Rd, Chapel Hill, NC 27517, USA				
Test Specification					
-	FCC CFR 47 PART 15 C(15.247): 2015				
Test Report Form No:					
-	Shenzhen LCS Compliance Testing Laboratory Ltd.				
Master TRF:	: Dated 2011-03				
This publication may be reproduced Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance	g Laboratory Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the _aboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes no responsibility for and will not g from the reader's interpretation of the reproduced material due to its				
EUT Description:	Dione				
Trade Mark: :	Karacus				
Model/ Type reference :	K2				
Ratings:	DC 3.7V by battery (200mAh) Charging voltage: DC 5.0V				
Result:	Positive				
Compiled by:	Supervised by: Approved by:				
Jacky Li	Cath Grim Ling				
Jacky Li/ File administrators	Glin Lu/ Technique principal Gavin Liang/ Manager				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 2 of 40

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 3 of 40

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AF8BDIONE

FCC -- TEST REPORT

Test Report No.: LCS1609010063E

September 18, 2016 Date of issue

Type / Model	: K2
EUT	: Dione
Applicant	: Karacus LLC
Address	: 428, Ridgefield Rd, Chapel Hill, NC 27517, USA
Telephone	: +919899859919
Fax	: +86-755-83591090
Manufacturer	: Karacus LLC
Address	: 428, Ridgefield Rd, Chapel Hill, NC 27517, USA
Telephone	: +919899859919
Fax	: +86-755-83591090
Factory	: Karacus LLC
Address	: 428, Ridgefield Rd, Chapel Hill, NC 27517, USA
Telephone	: +919899859919
Fax	: +86-755-83591090

|--|

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: LCS1609180999E

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AF8BDIONE Report No.: LCS1609180999E

Revision History

Revision	Issue Date	Revisions	Revised By
00	2016-09-18	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	.6
1.1. DESCRIPTION OF DEVICE (EUT) 1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS	
1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS	
1.4. DESCRIPTION OF TEST FACILITY	6
1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
1.6. MEASUREMENT UNCERTAINTY	
1.7. DESCRIPTION OF TEST MODES	
2. TEST METHODOLOGY	
2.1. EUT CONFIGURATION	
2.2. EUT EXERCISE	
3. SYSTEM TEST CONFIGURATION	
3.1. JUSTIFICATION	
3.2. EUTEXERCISE SOFTWARE	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. EQUIPMENT MODIFICATIONS	9
3.6. TEST SETUP	
4. SUMMARY OF TEST RESULTS	
5. TEST RESULT	11
5.1. ON TIME AND DUTY CYCLE	
5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	
5.3. POWER SPECTRAL DENSITY MEASUREMENT	
5.5. RADIATED E MISSIONS MEASUREMENT	
5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST	31
5.7. POWER LINE CONDUCTED EMISSIONS	
5.8. ANTENNA REQUIREMENTS	
6. LIST OF MEASURING EQUIPMENTS	
7. TEST SETUP PHOTOGRAPHS OF EUT4	40
8. EXTERIOR PHOTOGRAPHS OF THE EUT4	40
9. INTERIOR PHOTOGRAPHS OF THE EUT4	40

 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: 2AF8BDIONE

Report No.: LCS1609180999E

1. GENERAL INFORMATION

1.1. Description of Device (EUT)					
EUT	: Dione				
Model Number	: K2				
Model Declaration	: /				
Test Model	: K2				
Power Supply	: DC 3.7V by battery (200mAh) Charging voltage: DC 5.0V				
Frequency Range	: 2402~2480MHz				
Channel Number	: 79 Channels for BT V 3.0; 40 Channels for BT LE				
Modulation Technology	: BT V3.0: FHSS(GFSK, π/4-DQPSK, 8-DPSK) BT LE: DSSS(GFSK)				
Data Rates	: BT V3.0: 1~3Mbps BT LE: 1Mbps				
Antenna Type And Gain	: FPC antenna, 0 dBi				

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
Lenovo	PC	B470		DoC

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
USB	1	0.8m, Shielded

1.4. Description of Test Facility

CNAS Registration Number. is L4595. FCC Registration Number. is 899208. Industry Canada Registration Number. is 9642A-1. VCCI Registration Number. is C-4260 and R-3804. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of The Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
Radiation Uncertainty	:	30MHz~200MHz	±2.96dB	(1)
		200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description Of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be BT LE mode(Low Channel).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be BT LE mode(Low Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case datarates used during the testing are as follows:

BT LE: 1 Mbps, DSSS.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas. Guidance v03r05 and KDB 6622911 are required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AF8BDIONE

Report No.: LCS1609180999E

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

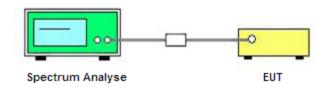
Please refer to the test setup photo.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AF8BDIONE Report No.: LCS1609180999E

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C					
FCC Rules	FCC Rules Description of Test				
§15.247(b)	Maximum Conducted Output Power	Compliant			
§15.247(e)	Power Spectral Density	Compliant			
§15.247(a)(2)	6dB Bandwidth	Compliant			
§15.247(a)	Occupied Bandwidth	Compliant			
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant			
§15.205	Emissions at Restricted Band	Compliant			
§15.207(a)	Conducted Emissions	Compliant			
§15.203	Antenna Requirements	Compliant			
§15.247(i)§2.1093	RF Exposure	Compliant			

5. TEST RESULT


- 5.1. On Time and Duty Cycle
- 5.1.1. Standard Applicable

None; for reporting purpose only.

5.1.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the spectrum analyse.

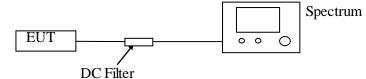
- 5.1.3. Test Procedures
- 1. Set the centre frequency of the spectrum analyse to the transmiting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.
- 5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test result

	On Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
Mode	В		x	Cycle	Correction	Minimum
	(ms)	(ms)	(Linear)	(%)	Factor (dB)	VBW(KHz)
BT LE	0.3746	0.6252	1	59.92	2.224	2.670


Report No.: LCS1609180999E

		Test plat	of On Tim	and Duty Cyclo
		rest plot d		ne and Duty Cycle
Ref Offset 0.5 dB	40: Fast →→ Trig: Free Run aln:Low Atten: 20 dB	АЦЗИАЛТО (06:44:13 PM Sep 18, 2016 Туре: Log-Pwr тик (12 2 3 4 5 6 тик (10 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Select I race	
29			Clear Write	
0.0 0.0 0.0 0.0	lana vakimusi		Trace Average	
70.0 30.0 30.0			Max Hold	
Center 2.440000000 GHz Res BW 8 MHz		Span 0 Hz Sweep 2.000 ms (10001 pts)	Min Hold	
2 F t 504 3 Δ4 t (Δ) 625	4.6 μs (Δ) 1.00 dB 4.6 μs -1.22 dBm 5.2 μs (Δ) 0.54 dB 4.6 μs -1.22 dBm		View Blank Trace On	
7 8 9 9 0 1		×	More 1 of 3	
iG		STATUS		
	BT LE			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 12 of 40

5.2. Maximum Conducted Output Power Measurement

5.2.1 Block Diagram of Test Setup

5.2.2 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

5.2.3 Test Procedure

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW \geq DTS bandwidth.
- b) Set VBW \geq 3 RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

5.2.4. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidty	60%
Test Engineer	Jacky	Configurations	BT LE

ΒT	LE

Channel	Frequency (MHz)	Conducted Power (Peak, dBm)	Max. Limit (dBm)	Result
1	2402	-0.035	30	Complies
19	2440	0.045	30	Complies
40	2480	-0.112	30	Complies

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 13 of 40
 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: 2AF8BDIONE

Report No.: LCS1609180999E

Test plot of Peak Output Power					
Agilent Spectrum Analyzer - Swept SA			Agilent Spectrum Analyzer - Swept SA		
Marker 1 2.401870000000 GHz PN0: Fast IFGaint.low	ALIGNAUTO 06:50:49 PM Sep 18, 2016 Avg Type: Log-Pwr TRACE 12 3 4 5 n Avg[Hold>100/100 TYPE MANNANA DET P N N N DET P N N N	Trace/Detector	Marker 1 2.439850000000 GHz PN0: Fast IFGain:Low Atten: 20 dB	ALIGNAUTO 06:50:04 PM Sep 18, 2016 Avg Type: Log-Pwr TRACE 1:2:3:4:5 Avg Hold>100/100 TYPE Mwwww DETP NNNNN	
Ref Offset 0.5 dB	Mkr1 2.401 87 GH		IFGain:Low Atten: 20 dB	Mkr1 2.439 85 GHz	
10 dB/div Ref 10.00 dBm	-0.035 dBn		10 dB/div Ref 10.00 dBm	0.045 dBm	
0.00		Clear Write	0.00	Clear Write	
-10.0			-10.0		
-20.0		Trace Average	-20.0	Trace Average	
30.0			30.0		
-40.0		Max Hold	-40.0	Max Hold	
-50.0		Min Hold	-50.0	Min Hold	
60.0		Mill Hold	-60.0	MillHold	
-70.0		View Blank	-70.0	View Blank	
-80.0		Trace On	-80.0	Trace On	
		More 1 of 3		More 1 of 3	
Center 2.402000 GHz #Res BW 2.4 MHz #VBW 8.0 MHz	Span 10.00 MH Sweep 1.000 ms (1001 pts	41 1	Center 2.440000 GHz #Res BW 2.4 MHz #VBW 8.0 MHz	Sweep 1.000 ms (1001 pts)	
MSG	STATUS		MSG	STATUS	
Low d	channel		Middle c	hannel	
Agilent Spectrum Analyzer - Swept SA Sector SENSE:IN Ø RF 50.2 AC SENSE:IN	NT ALIGN AUTO 06:50:32 PM Sep 18, 2016	Trace/Detector			
Marker 1 2.479900000000 GHz PNO: Fast IFGain:Low Atten: 20 dB	Avg Type: Log-Pwr n Avg Hold>100/100 TYPE MWWWW DET P N N N	Select Trace			
Ref Offset 0.5 dB 10 dB/div Ref 10.00 dBm Log	Mkr1 2.479 90 GH: -0.112 dBn	z 1 [*]			
		Clear Write			
0.00					
-10.0		Trace Average			
-20.0					
30.0		Max Hold			
-40.0					
-50.0		Min Hold			
-60.0		View Blank			
-70.0		Trace On			
-80.0		More			
Center 2.480000 GHz #Res BW 2.4 MHz #VBW 8.0 MHz	Span 10.00 MH Sweep 1.000 ms (1001 pts	1 of 3			
MSG	STATUS	4			
Hiah	channel				
	-				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 14 of 40

FCC ID: 2AF8BDIONE

5.3. Power Spectral Density Measurement

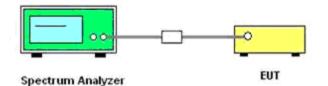
5.3.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of Spectrum Analyzer.

5.3.3. Test Procedures


1. The transmitter was connected directly to a Spectrum Analyzer through a directional couple.

2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.

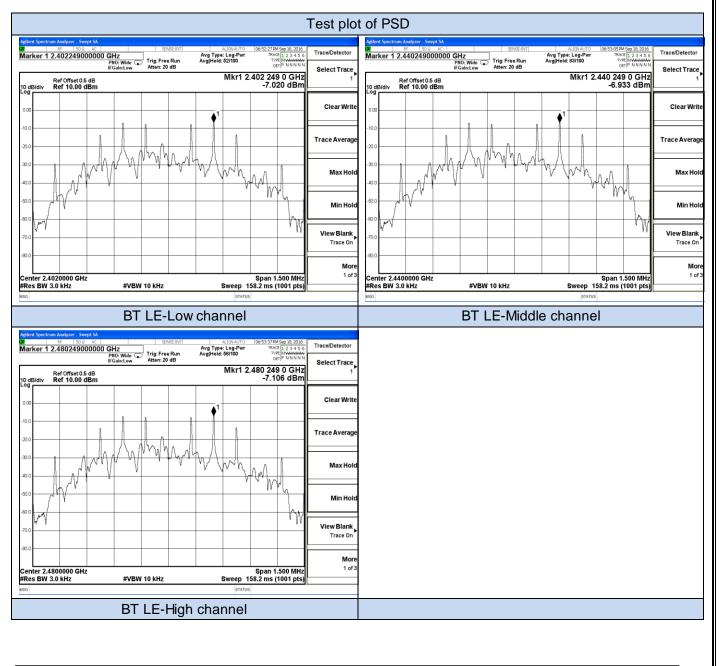
- 3. Set the RBW = $3 \text{ kHz} \sim 100 \text{ kHz}$.
- 4. Set the VBW ≥ 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.

10. Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


Report No.: LCS1609180999E

5.3.6. Test Result of Power Spectral Density

Temperature	25°C	Humidity	60%
Test Engineer	Jakcy	Configurations	BT LE

BT LE

Channel	Frequency (MHz)	Mearsured Power Density (dBm/3KHz)	Max. Limit (dBm/100KHz)	Result
1	2402	-7.020	8	Complies
19	2440	-6.933	8	Complies
40	2480	-7.106	8	Complies

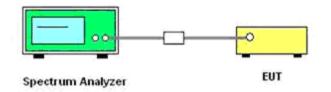
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 16 of 40

5.4. 6 dB Spectrum Bandwidth Measurement

5.4.1. Standard Applicable

According to 15.247(a)(2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2. Measuring Instruments and Setting


Please refer to section 6 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

FCC ID: 2AF8BDIONE

Report No.: LCS1609180999E

5.4.6. Test Result of 6dB Spectrum Bandwidth

Temperature	25°C	Humidity	60%
Test Engineer	Jacky	Configurations	BT LE

BT LE					
Channel	Frequency	6dB Bandwidth (kHz)	Min. Limit (kHz)	Result	
1	2402	641.9	500	Complies	
19	2440	641.0	500	Complies	
40	2480	648.2	500	Complies	

Test plot of 6 dB Bandwidth						
Aplent Spectrum Analyzer - Decepted BW BP ISO 3 AC ISO 45253PH Sep 18, 201 Ref Value 10.00 dBm Center Free; 2.402000000 GHz Radio Set: None #IF Galics Free Run Avg Hold>10/10 Radio Set: None #IF Galics Free Run Avg Hold>10/10 Radio Device: BTS Ref Offset 0.5 dB Ref Offset 0.5 dB Ref Ref Set 0.5 dB Ref	5 Trace/Detector	Agilent Spectrum Analyzer - Occupied BW SPISE/INT ALIGNAUTO 06/53/24PM Sep 18, 2016 Trace/Detector Center Freq 2.440000000 GHz Center Freq: 2.44000000 GHz Radio Std: None Trace/Detector // Center Freq 2.440000000 GHz Frequencies AugiHold>10/10 Radio Std: None Trace/Detector // Center Freq: Center Freq: Center Freq: 2.44000000 GHz Radio Std: None Radio Device: BTS Radio Device: BTS // Odb/div Ref Offset 0.5 dB Ref 10.00 dBm Ref 10.00 dBm Ref 10.00 dBm				
10 dB/div Ref 10.00 dBm	ClearWrite	Log Clear Write				
	Average	300 400 600 600				
00 00<		700 Max Hold 800 Span 3 MHz Center 2.44 GHz #VBW 300 kHz #Res BW 100 kHz #VBW 300 kHz				
Occupied Bandwidth 1.0486 MHz	Detector	Occupied Bandwidth				
Transmit Freq Error 8.984 kHz OBW Power 99.00 % x dB Bandwidth 641.9 kHz x dB -6.00 dB	Average ► <u>Auto</u> Man	Average⊁ Transmit Freq Error 8.287 kHz OBW Power 99.00 % Auto Man x dB Bandwidth 641.0 kHz x dB -6.00 dB				
BT LE-Low channel		BT LE-Middle channel				
Ageint Spectrum Audyzer - Occupied BW ISBACE NTI ALIGNATIO (06.5449 MV Sep 18, 2000) Center Freq 2.480000000 GHz Genter Freq 2.48000000 GHz Radio Skti. None If Galand, ow Freq Freq 2.48000000 GHz Radio Device: BTS It o BKdiv Ref Offset 0.5 dB Clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv Ref 10.00 dBm It clear Write It o BKdiv It clear Write It clear Write It o BKdiv It clear Write It clear Write It o BKdiv It clear Write It clear Write It o BKdiv It clear Write It clear Write It o BKdiv It clear Write It clear Write It o BKdiv It clear Wri						
Transmit Freq Error 8.633 kHz OBW Power 99.00 % x dB Bandwidth 648.2 kHz x dB -6.00 dB	Average► <u>Auto</u> Man					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 18 of 40

5.5. Radiated Emissions Measurement

5.5.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Start ~ Stop Frequency

Please refer to section 6 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/AVG

30MHz~1000MHz / RB 100kHz for QP

5.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^{\circ})$ and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turnt able.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^{\circ})$ and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

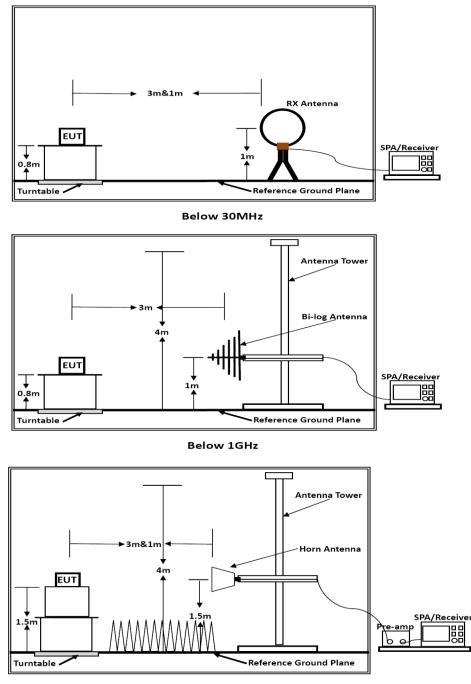
Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.


Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

FCC ID: 2AF8BDIONE

5.5.4. Test Setup Layout

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 25 of 40

5.5.5. EUT Operation during Test

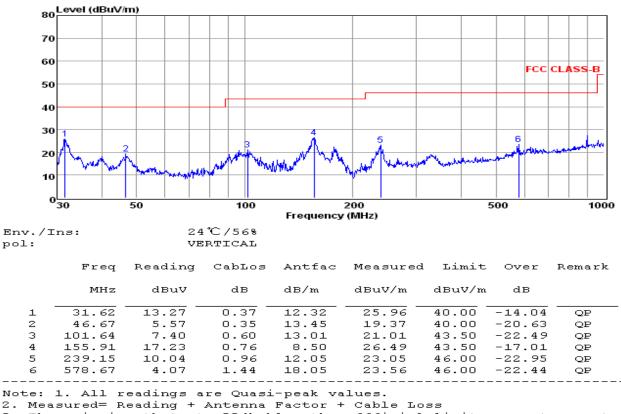
The EUT was programmed to be in continuously transmitting mode.

5.5.6. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25°C	Humidty	60%
Test Engineer	Jacky	Configurations	BT LE

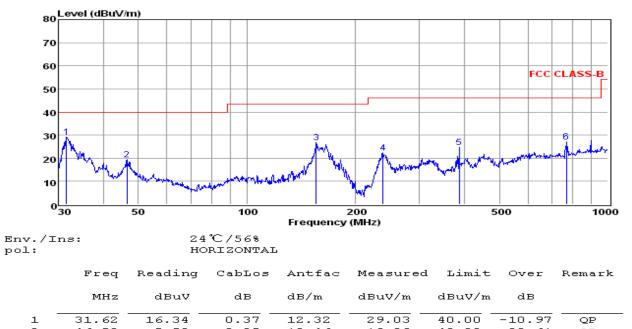
Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:


The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = $40 \log (\text{specific distance / test distance}) (dB);$ Limit line = specific limits (dBuV) + distance extrapolation factor.

5.5.7. Results of Radiated Emissions (30MHz~1GHz)


Temperature	25°C	Humidty	60%
Test Engineer	Jacky	Configurations	BT LE (Low CH)

Test result for 802.11b (Low Channel)

3. The emission that ate 20db blow the offficial limit are not reported

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 26 of 40

	31.62	10.34	0.37	12.32	22.03	40.00	-10.27	QF	
2	46.50	5.58	0.35	13.46	19.39	40.00	-20.61	QP	
3	155.36	17.61	0.76	8.48	26.85	43.50	-16.65	QP	
4	238.31	9.34	0.96	12.01	22.31	46.00	-23.69	QP	
5	386.63	8.48	1.32	14.75	24.55	46.00	-21.45	QP	
6	766.06	5.80	1.71	19.64	27.15	46.00	-18.85	QP	
NT	1 877	1			1				

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

Note:

1). Pre-scan all mode and recorded the worst case results in this report (BT LE (Low Channel)). Emission level $(dBuV/m) = 20 \log Emission \, level (uV/m)$.

2). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: 2AF8BDIONE

Report No.: LCS1609180999E

5.5.8. Results for Radiated Emissions (Above 1GHz)

BT LE

Channel 1

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4804.00	56.40	33.06	35.04	3.94	58.36	74	-15.64	Peak	Horizontal
4804.00	42.45	33.06	35.04	3.94	44.41	54	-9.59	Average	Horizontal
4804.00	55.12	33.06	35.04	3.94	57.08	74	-16.92	Peak	Vertical
4804.00	40.42	33.06	35.04	3.94	42.38	54	-11.62	Average	Vertical

Channel 19

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4880.00	56.31	33.16	35.15	3.96	58.28	74	-15.72	Peak	Horizontal
4880.00	42.06	33.16	35.15	3.96	44.03	54	-9.97	Average	Horizontal
4880.00	54.14	33.16	35.15	3.96	56.11	74	-17.89	Peak	Vertical
4880.00	40.77	33.16	35.15	3.96	42.74	54	-11.26	Average	Vertical

Channel 40

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4960.00	56.36	33.26	35.14	3.98	58.46	74	-15.54	Peak	Horizontal
4960.00	42.25	33.26	35.14	3.98	44.35	54	-9.65	Average	Horizontal
4960.00	54.06	33.26	35.14	3.98	56.16	74	-17.84	Peak	Vertical
4960.00	40.37	33.26	35.14	3.98	42.47	54	-11.53	Average	Vertical

Notes:

1). Measuring frequencies from 9k~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.

2). Radiated emissions measured in frequency range from 9k~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.

3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

	BT LE									
Freq. MHz	Reading Level dBm	Antenna Gain dBi	Measured E dBuV/m	Limit dBuV/m	Margin dB	Remark				
2310.000	-61.569	2.0	35.731	74	-38.269	Peak				
2310.000	-71.493	2.0	25.807	54	-28.193	Average				
2390.000	-58.987	2.0	38.313	74	-35.687	Peak				
2390.000	-69.246	2.0	28.054	54	-25.946	Average				
2483.500	-55.872	2.0	41.428	74	-32.572	Peak				
2483.500	-66.036	2.0	31.264	54	-22.736	Average				
2500.000	-61.023	2.0	36.277	74	-37.723	Peak				
2500.000	-70.517	2.0	26.783	54	-27.217	Average				

5.5.9. Results of Restricted Bands Test (Conducted)

Note:

1). All modes have been tested and we only record the worst test result;

2). Measured E=Reading Level+Antenna Gain+104.8-(20LogD), Where D is 3

 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: 2AF8BDIONE

Report No.: LCS1609180999E

Test p	lot of Re	stricted Bands	
Agilent Spectrum Analyzer - Swept SA SENEEINT ALISHAUTO (07:01-34 PM Sep 18, 2016 Warker 1 2.402157600000 GHz Fig: Free Run PH0: Feet Content of Sectors Avg Type: Leg-Pwr Avg Held>100/100 TMXXE[12:3:4:5:6] Trig: Free Run Atten: 20 dB Mkr1 2.402 157.6 GH2	Peak Search Next Peak	Marker 1 2.40/20000000 BHZ HG fast Low Aren 20 dB Mkr1 2.402 026 0 GHZ	Trace/Detector Select Trace
10 dB/div Ref 10.00 dBm -0.187 dBm	Next Pk Right	10 dB/div Ref 10.00 dBm -0.987 dB	Clear Write
300 400 500 3	Next Pk Left	-50.0	Trace Average
40.0 (2004) 700	Marker Delta		Max Hold
Start 2.31000 GHz Stop 2.40400 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.333 ms (10001 pts) MRR MODE TRC SEL X Y Punction Function value ~ INFR MODE TRC SEL X Y Punction Function value ~	Mkr→CF	Start 2.31000 GHz Stop 2.40400 GHz #Res BW 1.0 MHz #VBW 2.7 kHz Sweep 27.33 ms (10001 pts) wsR wode: TRC SQL × ¥ N f 2.4020250 GHz 0997 dBm	Min Hold
1 N f 2.402 157 6 Hz 0.187 dBm 2 N f 2.589 0000 6 Hz 58.987 dBm 3 N f 2.310 0000 6 Hz 451.669 dBm 4 5	Mkr→RefLvl	1 N f 2.402.026 0 GHz 0.997 dBm 2 N f 2.380000 0 GHz - 69.246 dBm 3 N f 2.310 000 0 GHz - 71.483 dBm 4 6	View Blank Trace On
8 9 10 11 11 11	More 1 of 2	∮ 9 10 11 €	More 1 of 3
BT LE-Low channel(Peak)		BT LE-Low channel(Average)	
Addlet Spectrum Analyzer - Swept SA. Spectrum Analyzer - Swept SA. Marker 1 2.479852400000 GHz Prio: Fast _ Prio: Fast	Trace/Detector Select Trace	Marker 1 2.480017400000 GHZ Trig: Free Run Avglieides 100100 Tree International Free Run Avglieides 100100 Tree Run Avglieides 100100	Trace/Detector Select Trace
Marker 1 2.479852400000 GHz Several and the severa and the severa and the several and the severa and		Marker 1 2.480017400000 GHz States 20 dB Aussund (Control of the control of the cont	
Marker 1 2.479852400000 GHz SPECENT ALSHAUTO OTOVESTIME Set 2010 PROD Fast PROD Fast Trig: Free Run Avg1Prei.Log-Put Trig: Free Run	Select Trace	Image:	Select Trace
Marker 1 2.479852400000 GHz Sector AllPAND (700-11) (70	Select Trace	Image: Process of the state of the	Select Trace
Marker 1 2.479852400000 GHz Trig: Free Run Her Stoll 200100 Auguno Proc. Free Free Run Atten: 20 dB Auguno Auguno Atten: 20 dB Cross Auguno Au	Select Trace	Image: Product of the state of the	Select Trace
Marker 1 2.47985240000 GHz Specent AlsPAND Procession C/0704-t1M web 18,200 c Marker 20 dB Marker 10,203 c Marker 20 dB Marker 1 2.479852400000 GHz Trig: Free Run Hold: Log Avg/Hold> Trig: Free Run Atten: 20 dB Marker 20 dB 0.271 dBm Marker 20 dB 0.271 dBm	Select Trace, 1 Clear Write Trace Average Max Hold	Image: Process proces process proces process process process process process process pr	Select Trace 1 Clear Write Trace Average Max Hold
Marker 1 2.47985240000 GHz Trig: Free Run (FG) Free Co (FG) Free Co (Select Trace, 1 Clear Write Trace Average Max Hold Min Hold View Blank,	Image: Process of the standard sta	Select Trace 1 Clear Write Trace Average Max Hold Min Hold View Blank
Marker 1 2.479852400000 GHz PRO: Fast Biolandow Sector Trig: Free Run Atten: 20 dB Atten/Top: Log-Por Avg Held>100100 (700+11) Map 18 202 6 Trig: Free Run Atten: 20 dB Ref Offset 0.5 dB 10 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 10.00 dBm -0.271 dBm -0.271 dBm 0 dB/dv Ref 2.47800 GHz #VBW 3.0 MHz Storp 2.50000 GHz WRM MOR FS L Y Y PARCINN RACION 10 MR MOR FS L Y Y PARCINN RACION VALE	Select Trace, 1 Clear Write Trace Average Max Hold Min Hold View Blank, Trace On More	Image: Process of the standard sta	Select Trace 1 Clear Write Trace Average Max Hold Min Hold View Blank Trace On More

5.6. Conducted Spurious Emissions and Band Edges Test

5.6.1. Standard Applicable

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.6.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

5.6.3. Test Procedures

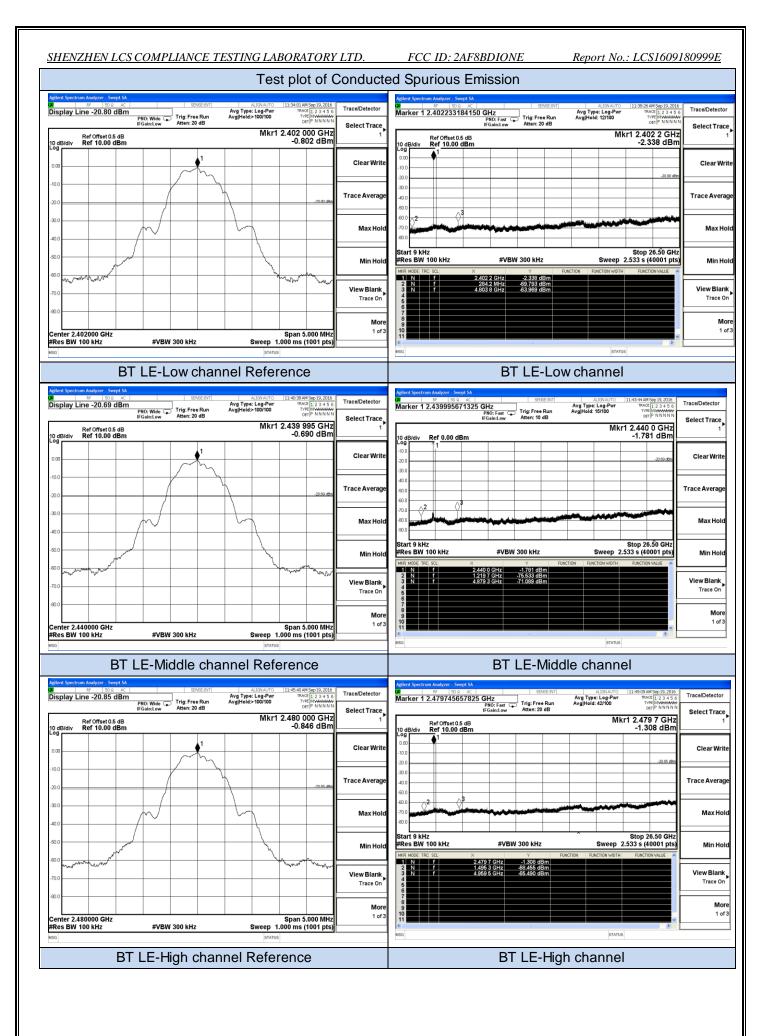
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

5.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 5.4.4.

5.6.5. EUT Operation during Test

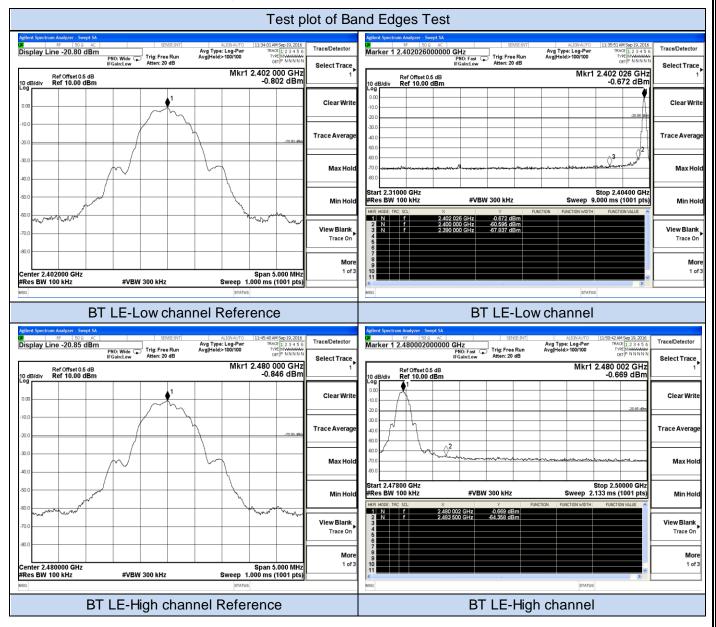

The EUT was programmed to be in continuously transmitting mode.

5.6.6. Test Results of Conducted Spurious Emissions

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LT	TD. FCC ID: 2AF8BDIONE	
<u>SHENZHEN LCS COMI LIANCE TESTING LADORATORT LI</u>	D. TCC ID. ZAFODDIONE	

Report No.: LCS1609180999E

Test plot of Conducted Spurious Emission(9K-10M)							
Agilent Spectrum Analyzer - Swept SA		Agilent Spectrum Analyzer - Swept SA					
RF 50 Ω Δ DC SENSE:INT ALIGN AUTO 06:31:39 PM Sep 30, 2016	Peak Search	RF 50 Ω ▲ DC SENSE:INT ALIGNAUTO 06:31:50 PM Sep 30, 2016					
PNO: Wide Trig: Free Run Avg[Hold: 56/100 PPE] IFGain:Low Atten: 10 dB	NextPeak	PNO: Wide Trig: Free Run Avgirola: 32/100 Det PNNNN IFGain:Low Atten: 10 dB					
Ref 0ffset0.5 dB Mkr1 59 kHz 10 dB/div Ref 0.00 dBm -74.244 dBm Log -74.244 dBm -74.244 dBm	NextPeak	Ref Offset 0.5 dB Mkr1 69 kHz NextPeak 10 dB/div Ref 0.00 dBm75.311 dBm					
-100 	Next Pk Right	100					
400	Next Pk Left	400					
-700 -000 	Marker Delta	700 M 800 M 80					
Start 9 kHz Stop 10.000 MHz #Res BW 10 kHz #VBW 30 kHz Sweep 95.53 ms (1001 pts) MRR MODELTRC SCL X Y PUNCTION PUNCTION VALUE	Mkr→CF	Start 9 kHz Stop 10.000 MHz #Res BW 10 kHz #VBW 30 kHz Sweep 95.53 ms (1001 pHs) MR HOLE THE SEL × Y Function Vector Ve					
1 N 7 69 kHz -74.244 dBm	Mkr→RefLvl	1 N f 69 kHz -75 311 dBm 2 Mkr→Ref Lvl					
9 9 10 11 11	More 1 of 2	8 More 10 1 11 1					
MSG STATUS 🔥 DC Coupled		MSG STATUS					
BT LE-Low channel		BT LE-Middle channel					
Agilent Spectrum Analyzer - Swept SA Sense Int ALIGNAUTO 06:31:59 PM Sep 30, 2016 Warker 1 58.955000 kHz Frig: Free Run IFGaint.ow Avg Type: Log-Pwr IFGaint.ow Trig: Free Run Atten: 10 B Avg Type: Log-Pwr rter: 10 B Trig: Free Run Proc Hymer Network	Peak Search						
Ref Offset 0.5 dB Mkr1 59 kHz 10 dB/div Ref 0.00 dBm -74.316 dBm	NextPeak						
100	Next Pk Right						
400	Next Pk Left						
-200 - 400 - 400 -	Marker Delta						
Start 9 kHz Stop 10.000 MHz #Res BW 10 kHz #VBW 30 kHz Sweep 95.53 ms (1001 pts)	Mkr→CF						
MRR MODE TRC: SCI. X Y PUNCTION Function width Function width 1 N F 69 kHz -74.316 dBm - <	Mkr→RefLvl						
x 9 10 11 11	More 1 of 2						
MSG STATUS 🔔 DC Coupled							
BT LE-High channel							



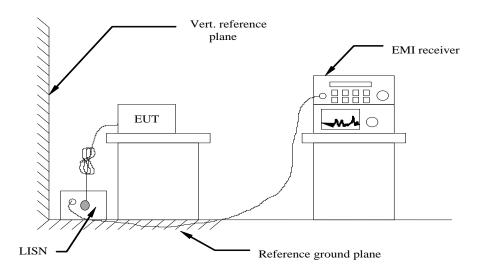
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 33 of 40

FCC ID: 2AF8BDIONE

Report No.: LCS1609180999E

5.6.7. Test Results of Band Edges Test

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 34 of 40

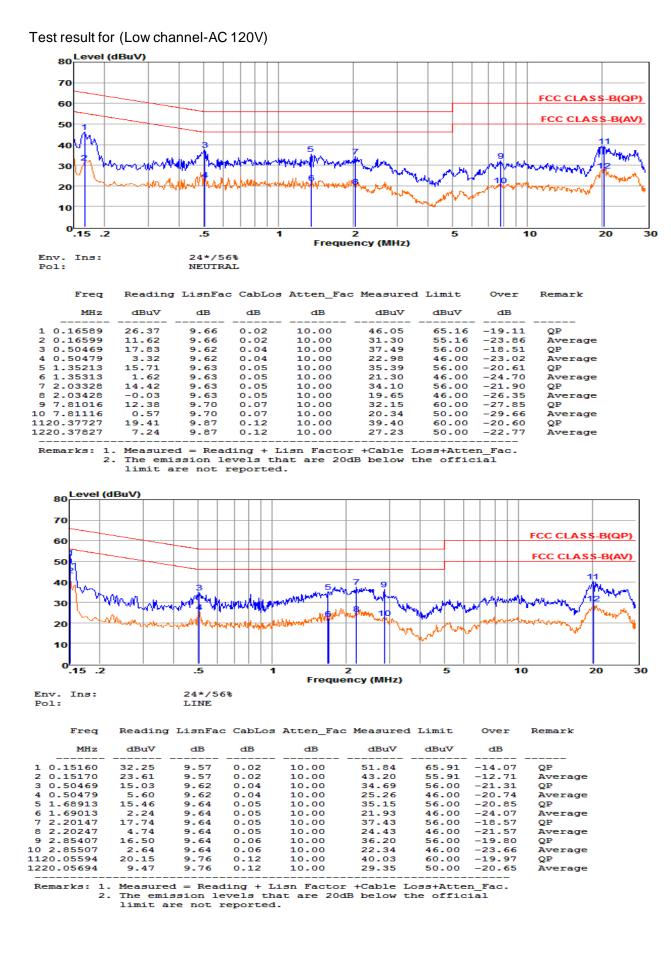

5.7. Power line conducted emissions

5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

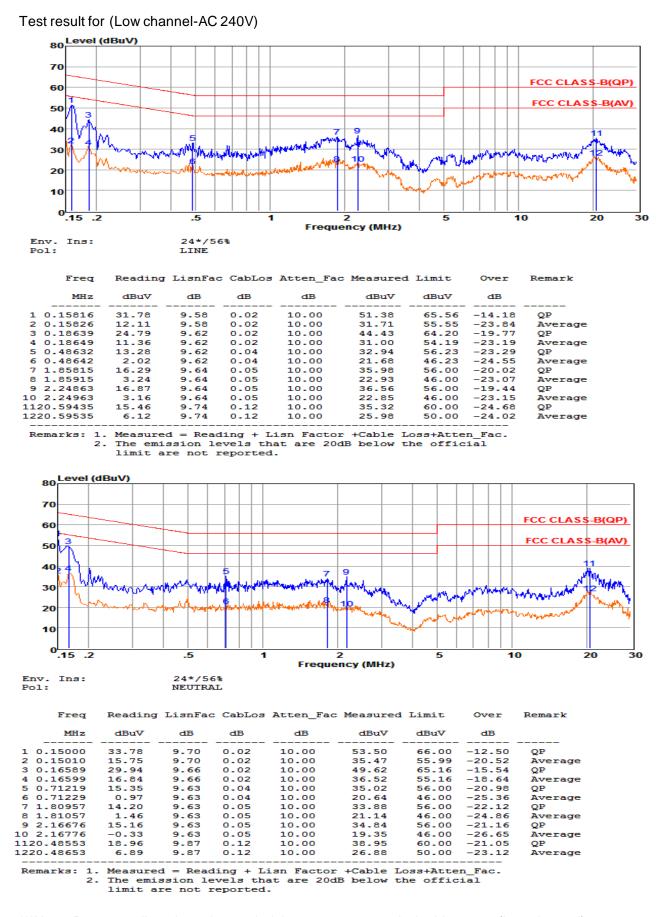
Frequency Range	Limits (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

5.7.2 Block Diagram of Test Setup



5.7.3 Test Results

PASS.


The test data please refer to following page.

Report No.: LCS1609180999E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 36 of 40

Report No.: LCS1609180999E

***Note: Pre-scan all mode and recorded the worst case results in this report (Low channel).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 37 of 40

FCC ID: 2AF8BDIONE

5.8. Antenna Requirements

5.8.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.8.2 Antenna Connected Construction

5.8.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.8.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0 dBi, and the antenna is an FPC antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.8.2.3. Results: Compliance.

6. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No. Characteristics		Cal Date	Due Date		
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz June 18, 2016		June 17, 2017		
Signal analyzer	Agilent	E4448A(Exter nal mixers to 40GHz)	US44300469			July 15, 2017		
Signal analyzer	Agilent	N9020A	MY50510140 9kHz~26.5GHz		October 27, 2015	October 27, 2016		
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 18, 2016	June 17, 2017		
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 18, 2016	June 17, 2017		
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 18, 2016	June 17, 2017		
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 18, 2016	June 17, 2017		
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY 30M-18GHz 3m		June 18, 2016	June 17, 2017		
Amplifier	SCHAFFNER	COA9231A	18667 9kHz-2GHzz		June 18, 2016	June 17, 2017		
Amplifier	Agilent	8449B	3008A02120	3008A02120 1GHz-26.5GHz		July 15, 2017		
Amplifier	MITEQ	AMF-6F-2604 00	9121372	26.5GHz-40GH z	July 16, 2016	July 15, 2017		
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 18, 2016	June 17, 2017		
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	June 10, 2016	June 09, 2017		
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 10, 2016	June 09, 2017		
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154 15GHz-40G		June 10, 2016	June 09, 2017		
RF Cable-R03m	Jye Bao	RG142	CB021 30MHz-1GH		June 18, 2016	June 17, 2017		
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY 1GHz-40GHz		June 18, 2016	June 17, 2017		
Power Meter	R&S	NRVS	100444	DC-40GHz	June 18, 2016	June 17, 2017		
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	June 18, 2016	June 17, 2017		
Power Sensor	R&S	NRV-Z32	10057 30MHz-6GH		June 18, 2016	June 17, 2017		
AC Power Source	HPC	HPA-500E	HPA-9100024	AC 0~300V	June 18, 2016	June 17, 2017		
DC power Soure	GW	GPC-6030D	C671845 DC 1V-60V		June 18, 2016	June 17, 2017		
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103-00 N/A Ju		June 18, 2016	June 17, 2017		
RFCABLE-1m	JYE Bao	RG142	CB034-1m 20MHz-7GHz June 18, 20		June 18, 2016	June 17, 2017		
RF CABLE-2m	JYE Bao	RG142	CB)35-2m 20MHz-1GHz June 18, 2016 June 1		June 17, 2017			
Note: All equipme	Note: All equipment through GRGT EST calibration							

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 39 of 40
 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: 2AF8BDIONE

Report No.: LCS1609180999E

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT------