

# **FCC Test Report**

# (PART 24)

Report No.: RFBGTL-WTW-P22050889-3 R1

FCC ID: APYHRO00320

| Received | Date: | 2022/7/21 |
|----------|-------|-----------|
|          |       |           |

Test Date: 2022/8/8 ~ 2022/8/19

Issued Date: 2022/9/8

Applicant: SHARP Corporation Mobile Communication BU

Address: 2-13-1 lida Hachihonmatsu Higashi-hiroshima City, Hiroshima 730-0192, Japan

Manufacturer: Sharp Corporation

Address: 1 Takumi-cho, Sakai-ku, Sakai City, Osaka 590-8522, Japan

 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
 Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
 Test Location (1): No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan
 Test Location (2): B2F., No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan
 FCC Registration / 788550 / TW0003
 Designation Number: 427177 / TW0011



This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <a href="http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/">http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/</a> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report to notify us of any material error or mises of the report contents.



## **Table of Contents**

| Re | leas | e Control Record                                                                  | 4   |
|----|------|-----------------------------------------------------------------------------------|-----|
| 1  | Cer  | tificate of Conformity                                                            | 5   |
| 2  | Sun  | nmary of Test Results                                                             | 6   |
|    | 21   | Measurement Uncertainty                                                           | 6   |
|    |      | Test Site and Instruments                                                         |     |
| 2  | Gor  | neral Information                                                                 | 8   |
| 5  |      |                                                                                   |     |
|    |      | General Description of EUT<br>Configuration of System under Test                  |     |
|    | 3.Z  | 3.2.1 Description of Support Units                                                |     |
|    | 3.3  | Test Mode Applicability and Tested Channel Detail                                 | 10  |
|    | 3.4  | EUT Operating Conditions                                                          | 10  |
|    | 3.5  | General Description of Applied Standards and references                           | .11 |
| 4  | Tes  | t Types and Results                                                               | 12  |
|    | 41   | Output Power Measurement                                                          | 12  |
|    |      | 4.1.1 Limits of Output Power Measurement                                          |     |
|    |      | 4.1.2 Test Procedures                                                             |     |
|    |      | 4.1.3 Test Setup                                                                  |     |
|    |      | 4.1.4 Test Results                                                                |     |
|    | 4.2  | Modulation Characteristics Measurement                                            |     |
|    |      | <ul><li>4.2.1 Limits of Modulation Characteristics</li></ul>                      |     |
|    |      | 4.2.3 Test Procedure                                                              |     |
|    |      | 4.2.4 Test Results                                                                |     |
|    | 4.3  | Frequency Stability Measurement                                                   |     |
|    |      | 4.3.1 Limits of Frequency Stability Measurement                                   |     |
|    |      | 4.3.2 Test Procedure                                                              |     |
|    |      | 4.3.3 Test Instruments                                                            |     |
|    |      | 4.3.4 Test Setup<br>4.3.5 Test Results                                            |     |
|    | 44   | Occupied Bandwidth Measurement                                                    |     |
|    | 7.7  | 4.4.1 Limits of Occupied Bandwidth Measurement                                    |     |
|    |      | 4.4.2 Test Procedure                                                              |     |
|    |      | 4.4.3 Test Setup                                                                  | 19  |
|    |      | 4.4.4 Test Result                                                                 | -   |
|    | 4.5  | Band Edge Measurement                                                             |     |
|    |      | <ul><li>4.5.1 Limits of Band Edge Measurement</li><li>4.5.2 Test Setup</li></ul>  |     |
|    |      | 4.5.3 Test Procedures                                                             |     |
|    |      | 4.5.4 Test Results                                                                |     |
|    | 4.6  | Peak to Average Ratio                                                             | 23  |
|    |      | 4.6.1 Limits of Peak to Average Ratio Measurement                                 |     |
|    |      | 4.6.2 Test Setup                                                                  |     |
|    |      | 4.6.3 Test Procedures                                                             |     |
|    | 17   | 4.6.4 Test Results<br>Conducted Spurious Emissions                                |     |
|    | 4.7  | 4.7.1 Limits of Conducted Spurious Emissions Measurement                          |     |
|    |      | 4.7.2 Test Setup                                                                  |     |
|    |      | 4.7.3 Test Procedure                                                              |     |
|    |      | 4.7.4 Test Results                                                                |     |
|    | 4.8  | Radiated Emission Measurement                                                     |     |
|    |      | 4.8.1 Limits of Radiated Emission Measurement                                     |     |
|    |      | <ul><li>4.8.2 Test Procedure</li><li>4.8.3 Deviation from Test Standard</li></ul> |     |
|    |      | T.U.U DEVIALIUTI TUTTI TESI STATUATU                                              | 20  |



|   | 4.8.4 Test Setup<br>4.8.5 Test Results            |    |
|---|---------------------------------------------------|----|
| 5 | Pictures of Test Arrangements                     |    |
| A | ppendix – Information of the Testing Laboratories | 35 |



## **Release Control Record**

| Issue No.                 | Description         | Date Issued |
|---------------------------|---------------------|-------------|
| RFBGTL-WTW-P22050889-3    | Original Release    | 2022/9/6    |
| RFBGTL-WTW-P22050889-3 R1 | Adding 2G GPRS Data | 2022/9/8    |



| 1 | Certificate of Co | nformity                                  |
|---|-------------------|-------------------------------------------|
|   | Product:          | Cellular Phone                            |
|   | Brand:            | SHARP                                     |
|   | Sample Status:    | Engineering Sample                        |
|   | Applicant:        | SHARP Corporation Mobile Communication BU |

Test Date: 2022/8/8 ~ 2022/8/19

Standards: FCC Part 24, Subpart E

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Lena Wan

Date: 2022/9/8

Lena Wang / Specialist

2022/9/8

Date:

Approved by :

Jeremy Lin / Project Engineer



# 2 Summary of Test Results

|                                                        | Applied Standard: FCC Part 24 & Part 2 |                                                        |                                                                                        |  |  |
|--------------------------------------------------------|----------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| FCC Test Item                                          |                                        | Result                                                 | Remarks                                                                                |  |  |
| 2.1046Equivalent Isotropic RadiatedPass24.232PowerPass |                                        | Pass                                                   | Meet the requirement of limit.                                                         |  |  |
| 2.1047                                                 | Modulation Characteristics             | Pass                                                   | Meet the requirement.                                                                  |  |  |
| 24.232(d)                                              | Peak to Average Ratio                  | Pass                                                   | Meet the requirement of limit.                                                         |  |  |
| 2.1055<br>24.235                                       | Erequency Stability                    |                                                        | Meet the requirement of limit.                                                         |  |  |
| 2.1049                                                 | Occupied Bandwidth                     | Occupied Bandwidth Pass Meet the requirement of limit. |                                                                                        |  |  |
| 24.238                                                 | Band Edge Measurements                 | Pass                                                   | Meet the requirement of limit.                                                         |  |  |
| 2.1051<br>24.238                                       | Conducted Spurious Emissions           | Pass                                                   | Meet the requirement of limit.                                                         |  |  |
| 2.1053<br>24.238                                       | Radiated Sourious Emissions Pass       |                                                        | Meet the requirement of limit.<br>Minimum passing margin is -30.10 dB<br>at 34.06 MHz. |  |  |

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

## 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                    | Frequency          | Expanded Uncertainty<br>(k=2) (±) |
|--------------------------------|--------------------|-----------------------------------|
|                                | 9 kHz ~ 30 MHz     | 3.0400 dB                         |
| Radiated Emissions up to 1 GHz | 30 MHz ~ 200 MHz   | 2.0153 dB                         |
|                                | 200 MHz ~ 1000 MHz | 2.0224 dB                         |
| Radiated Emissions above 1 GHz | 1 GHz ~ 18 GHz     | 1.0121 dB                         |
| Radiated Emissions above 1 GHz | 18 GHz ~ 40 GHz    | 1.1508 dB                         |



### 2.2 Test Site and Instruments

| Description &<br>Manufacturer                 | Model No.                        | Serial No.                                                         | Date of<br>Calibration | Due Date of<br>Calibration |
|-----------------------------------------------|----------------------------------|--------------------------------------------------------------------|------------------------|----------------------------|
| Test Receiver N9038A                          |                                  | MY52260177                                                         | 2021/9/1               | 2022/8/31                  |
| Spectrum Analyzer<br>R&S                      | FSU43                            | 101261                                                             | 2022/4/11              | 2023/4/10                  |
| Horn Antenna<br>ETS-Lindgren                  | 3117                             | 00143293                                                           | 2021/11/14             | 2022/11/13                 |
| Bi_Log Antenna<br>Schwarzbeck                 | VULB9168                         | 9168-616                                                           | 2021/10/27             | 2022/10/26                 |
| Horn Antenna<br>Schwarzbeck                   | BBHA 9170                        | 9170-480                                                           | 2021/11/14             | 2022/11/13                 |
| Attenuator<br>WOKEN                           | MDCS18N-10                       | MDCS18N-10-01                                                      | 2022/4/5               | 2023/4/4                   |
| Loop Antenna<br>EMCI                          | EM-6879                          | 269                                                                | 2021/9/16              | 2022/9/15                  |
| MXG Vector signal<br>generator<br>Agilent     | N5182B                           | MY53050430                                                         | 2021/11/25             | 2022/11/24                 |
| Preamplifier<br>Agilent                       | 310N                             | 187226                                                             | 2022/6/14              | 2023/6/13                  |
| Preamplifier<br>Agilent                       | 83017A                           | MY39501357                                                         | 2022/6/14              | 2023/6/13                  |
| Pre-Ammlifier<br>EMCI                         | EMC 184045                       | 980116                                                             | 2021/10/5              | 2022/10/4                  |
| Power Meter<br>Anritsu                        | ML2495A                          | 1012010                                                            | 2021/9/9               | 2022/9/8                   |
| Power Sensor<br>Anritsu                       | MA2411B                          | 1315050                                                            | 2021/9/9               | 2022/9/8                   |
| RF Coaxial Cable<br>ETS-Lindgren              | EMC104-SM-SM-<br>10000           | Cable-CH1-<br>01(RFC-SMS-<br>100-SMS-<br>120+RFC-SMS-<br>100-SMS-4 | 2022/6/14              | 2023/6/13                  |
| RF Coaxial Cable<br>ETS-Lindgren              | RFC-SMS-100-SMS-<br>24-IN        | Cable-CH1-<br>02(RFC-SMS-<br>100-SMS-24)                           | 2022/6/14              | 2023/6/13                  |
| Fix tool for Boresight<br>antenna tower<br>BV | BAF-01                           | 10                                                                 | NA                     | NA                         |
| E3 Software<br>AUDIX                          | E3                               | NA                                                                 | NA                     | NA                         |
| Software<br>BVADT                             | ADT_Radiated_V8.7.<br>08         | NA                                                                 | NA                     | NA                         |
| Software<br>BVADT                             | ADT_RF Test<br>Software V6.6.5.4 | NA                                                                 | NA                     | NA                         |
| Antenna Tower<br>MF                           | NA                               | NA                                                                 | NA                     | NA                         |
| Turn Table<br>MF                              | NA                               | NA                                                                 | NA                     | NA                         |
| Controller<br>Max-Full                        | MF-7802                          | NA                                                                 | NA                     | NA                         |
| Radio Communication<br>Analyzer<br>Anritsu    | MT8821C                          | 6261806803                                                         | 2022/2/16              | 2023/2/15                  |

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HsinTien 966 chamber 6.



## 3 General Information

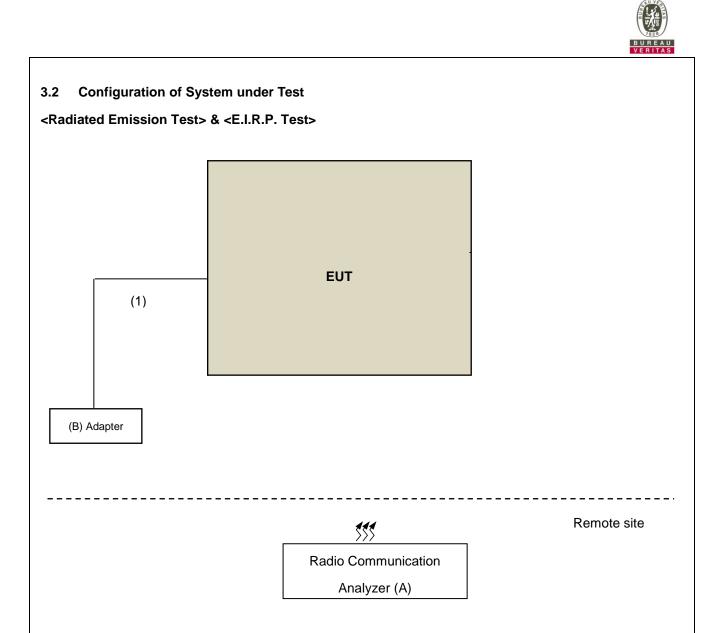
## 3.1 General Description of EUT

| Product             | Cellular Phone                            |                     |  |
|---------------------|-------------------------------------------|---------------------|--|
| Brand               | SHARP                                     |                     |  |
| Status of EUT       | Engineering Sample                        |                     |  |
| Dower Supply Dating | 5.0 Vdc (adapter)                         |                     |  |
| Power Supply Rating | 3.8 Vdc (battery)                         |                     |  |
| Modulation Type     | GSM/GPRS                                  | GMSK                |  |
| Frequency Range     | GSM/GPRS                                  | 1850.2 ~ 1909.8 MHz |  |
| May EIDD Dawar      | GSM                                       | 1452.112 mW         |  |
| Max. EIRP Power     | GPRS                                      | 1442.115 mW         |  |
| Emission Designator | GSM                                       | 250KGXW             |  |
| Emission Designator | GPRS 244KGXW                              |                     |  |
| Antenna Type        | Inverted-L Type Antenna with 1.7 dBi gain |                     |  |
| Accessory Device    | Refer to Note as below                    |                     |  |
| Data Cable Supplied | Refer to Note as below                    |                     |  |

#### Note:

1. The EUT uses following accessories.

| Batter  | y                                           |       |                 |  |  |
|---------|---------------------------------------------|-------|-----------------|--|--|
| В       | rand                                        | Model | Specification   |  |  |
| 1       | N/A                                         | N/A   | 3.8Vdc, 1680mAh |  |  |
| 2. The  | 2. The EUT Configuration are list as below. |       |                 |  |  |
| Ocution |                                             |       | Description     |  |  |


| Config. | Description                  |  |
|---------|------------------------------|--|
| 1       | Main Source (EUT with LCD 1) |  |
| 2       | 2nd Source (EUT with LCD 2)  |  |

\*From the above samples the worst cases were found in Main source. Therefore only the test of the mode was recorded in the report.

3. Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

4. The above EUT information is declared by manufacturer and for more detailed features description,

please refers to the manufacturer's specifications or user's manual.



## 3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| No. | Product                         | Brand   | Model No. | Serial No. | FCC ID |
|-----|---------------------------------|---------|-----------|------------|--------|
| А   | Radio Communication<br>Analyzer | Anritsu | MT8821C   | 6261806803 | N/A    |
| В   | Adapter                         | Salom   | XN-2QC25  | N/A        | N/A    |

| ID | Cable Descriptions | Qty. | Length<br>(m) | Shielding<br>(Yes/No) | Cores<br>(Qty.) | Remarks               |
|----|--------------------|------|---------------|-----------------------|-----------------|-----------------------|
| 1  | USB Cable          | 1    | 0.95          | Y                     | 0               | Supplied by applicant |

Note:

1. All power cords of the above support units are non-shielded (1.8m).



# 3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis, and antenna ports.

The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

| Band | EIRP   | Radiated Emission |
|------|--------|-------------------|
| GSM  | X-axis | X-axis            |

| EUT<br>Configure<br>Mode | Test Item                     | Available Channel | Tested Channel | Mode      |
|--------------------------|-------------------------------|-------------------|----------------|-----------|
| -                        | EIRP                          | 512 to 810        | 512, 661, 810  | GSM, GPRS |
| -                        | Modulation<br>Characteristics | 512 to 810        | 661            | GSM, GPRS |
| -                        | Frequency Stability           | 512 to 810        | 512, 810       | GSM, GPRS |
| -                        | Occupied Bandwidth            | 512 to 810        | 512, 661, 810  | GSM, GPRS |
| -                        | Band Edge                     | 512 to 810        | 512, 810       | GSM, GPRS |
| -                        | Peak to Average Ratio         | 512 to 810        | 512, 661, 810  | GSM, GPRS |
| -                        | Conducted Emission            | 512 to 810        | 512, 661, 810  | GSM, GPRS |
| -                        | Radiated Emission             | 512 to 810        | 512, 661, 810  | GSM       |

#### GSM

## Test Condition:

| Test Item                  | Environmental Conditions | Input Power    | Tested By     |
|----------------------------|--------------------------|----------------|---------------|
| EIRP                       | 26 deg. C, 58 % RH       | 120 Vac, 60 Hz | Willy Cheng   |
| Modulation Characteristics | 26 deg. C, 58 % RH       | 120 Vac, 60 Hz | Willy Cheng   |
| Frequency Stability        | 26 deg. C, 58 % RH       | 120 Vac, 60 Hz | Willy Cheng   |
| Occupied Bandwidth         | 26 deg. C, 58 % RH       | 120 Vac, 60 Hz | Willy Cheng   |
| Band Edge                  | 26 deg. C, 58 % RH       | 120 Vac, 60 Hz | Willy Cheng   |
| Peak to Average Ratio      | 26 deg. C, 58 % RH       | 120 Vac, 60 Hz | Willy Cheng   |
| Conducted Emission         | 26 deg. C, 58 % RH       | 120 Vac, 60 Hz | Willy Cheng   |
| Radiated Emission          | 25 deg. C, 61 % RH       | 120 Vac, 60 Hz | Charles Hsiao |

## 3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency



## 3.5 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard: FCC 47 CFR Part 2 FCC 47 CFR Part 24 ANSI 63.26-2015

**NOTE:** All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 971168 D01 Power Meas License Digital Systems v03r01 ANSI/TIA/EIA-603-E 2016

**NOTE:** All test items have been performed as a reference to the above KDB test guidance.



# 4 Test Types and Results

## 4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

Mobile / Portable station are limited to 2 watts e.i.r.p.

# 4.1.2 Test Procedures

# **Conducted Power Measurement:**

The EUT was set up for the maximum power with GSM link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

# Maximum EIRP / ERP

The relevant equation for determining the maximum ERP or EIRP from the measured RF output power is given in Equation as follows:

 $EIRP = P_{Meas} + G_T$  $ERP = P_{Meas} + G_T - 2.15$ 

where

ERP or EIRP effective radiated power or equivalent isotropically radiated power, respectively (expressed in the same units as  $P_{Meas}$ , e.g., dBm or dBW)

P<sub>Meas</sub> measured transmitter output power or PSD, in dBm or dBW

G<sub>T</sub> gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP)

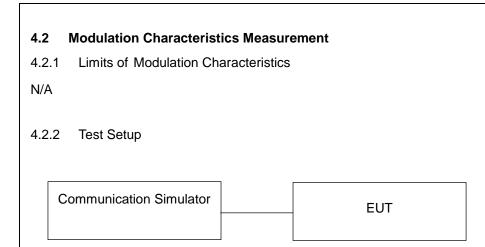
4.1.3 Test Setup

# **Conducted Power Measurement:**





### 4.1.4 Test Results


## Conducted Output Power (dBm)

| Band                  | GSM1900 |        |        |  |  |
|-----------------------|---------|--------|--------|--|--|
| Channel               | 512     | 661    | 810    |  |  |
| Frequency (MHz)       | 1850.2  | 1880.0 | 1909.8 |  |  |
| GSM (GMSK, 1Tx-slot)  | 29.81   | 29.92  | 29.66  |  |  |
| GPRS (GMSK, 1Tx-slot) | 29.75   | 29.89  | 29.71  |  |  |
| GPRS (GMSK, 2Tx-slot) | 27.58   | 27.45  | 27.42  |  |  |
| GPRS (GMSK, 3Tx-slot) | 25.50   | 25.47  | 25.27  |  |  |
| GPRS (GMSK, 4Tx-slot) | 24.12   | 24.29  | 24.19  |  |  |

#### EIRP Power (dBm)

| Band                  | GSM1900 |        |        |  |  |
|-----------------------|---------|--------|--------|--|--|
| Channel               | 512     | 661    | 810    |  |  |
| Frequency (MHz)       | 1850.2  | 1880.0 | 1909.8 |  |  |
| GSM (GMSK, 1Tx-slot)  | 31.51   | 31.62  | 31.36  |  |  |
| GPRS (GMSK, 1Tx-slot) | 31.45   | 31.59  | 31.41  |  |  |
| GPRS (GMSK, 2Tx-slot) | 29.28   | 29.15  | 29.12  |  |  |
| GPRS (GMSK, 3Tx-slot) | 27.20   | 27.17  | 26.97  |  |  |
| GPRS (GMSK, 4Tx-slot) | 25.82   | 25.99  | 25.89  |  |  |

\*EIRP = Conducted + antenna gain (1.7dBi)



# 4.2.3 Test Procedure

Connect the EUT to Communication Simulator via the antenna connector. The frequency band is set as EUT supported Modulation and Channels, the EUT output is matched with 50 ohm load, the waveform quality and constellation of the EUT was tested.



#### 4.2.4 Test Results

|                                                                     | Spectrum Plot of Measurement                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                     |                                                                                                                     | GSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                               |                                            | GPRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                     |                                                                                                                     | Channel 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                               |                                            | Channel 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Phone2                                                              | Phone1<br>GSM<br>40.00 #013                                                                                         | TCH Channel TCH UL Frequency Input Level Leep Back On/OH QL 0027<br>661 CH 1280620 000 Mile 100 Allon Sets the Icop back On/OH<br>Splarm Cumbination TCH UL Frequency Output Level<br>GSALIFS21003 1 source coates Miler - 350 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 203        | 1 MT8821C<br>022/08/19 15:51<br>F Output : On | Phone2 Phone1<br>GSM<br>40.00 #013         | TCH Channel TCH UL Frequency Input Level States Operating Mode Q 0PMX000 States Operating Mode Q 0PMX000 States Operating Mode. States Op | MTE821C<br>2022/08/19 15:53<br>RF Output: On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Conmon<br>Call Processing<br>TX<br>Measurement<br>RX<br>Measurement | Gararal  Gararal | Measurement  Signaling    Fundamental ) Constrainen  -340.5pmc0    *10.130 (0.000)  Moss. Count;    Q  Moss. Count;    Moss. Count;  Moss. Count;    Q  Moss. Count;    Moss. Count;  Moss. Count;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sab Sovern | Home<br>Home<br>< Preset<br>Measuring<br>Tx   | Canada D D D D D D D D D D D D D D D D D D | Measurement Signaling        Measurement      Signaling        Purdamental ) Constitution      *Add synthet        *Add synthet      Measurement        ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MS Rover: 28.11 dfm<br>Mar Sover:<br>Consultation<br>Saster<br>Sarage<br>Consultation<br>Reserved:<br>Consultation<br>Reserved:<br>Consultation<br>Reserved:<br>Consultation<br>Reserved:<br>Consultation<br>Reserved:<br>Consultation<br>Reserved:<br>Consultation<br>Reserved:<br>Consultation<br>Reserved:<br>Consultation<br>Reserved:<br>Consultation<br>Reserved:<br>Consultation<br>Consultation<br>Reserved:<br>Consultation<br>Consultation<br>Reserved:<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Consultation<br>Con |  |
| External<br>Loss<br>System<br>Config                                |                                                                                                                     | Ang.      Max.      Min.        Camber Frequency From      -0.001      -0.0013      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014      -0.0014 | ▼ 4 Views  | < Menu                                        | External<br>Loss<br>System<br>Config       | Ang      Max      Min.        Carrier Enquency Drov      0.0041      0.0041      0.0041      10.0041        Carrier Enquency Drov      0.00      0.00      0.00      0.00      pass        RMS Passe Enror      0.63      0.63      0.63 dog/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ▼ 4 Views                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |



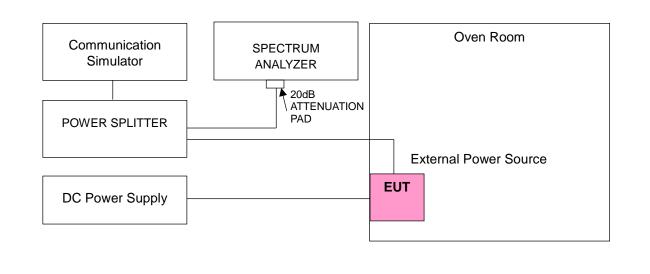
# 4.3 Frequency Stability Measurement

## 4.3.1 Limits of Frequency Stability Measurement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

## 4.3.2 Test Procedure

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ±0.5°C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.


**NOTE:** The frequency error was recorded frequency error from the communication simulator.

#### 4.3.3 Test Instruments

| Description & Manufacturer                  | Model No. | Serial No. | Cal. Date     | Cal. Due      |
|---------------------------------------------|-----------|------------|---------------|---------------|
| Radio Communication<br>Analyzer<br>Anritsu  | MT8821C   | 6261806803 | Feb. 16, 2022 | Feb. 15, 2023 |
| Temperature & Humidity<br>Chamber<br>TERCHY | HRM-120RF | 931022     | Jan. 03, 2022 | Jan. 02, 2023 |
| Digital Multimeter<br>Fluke                 | 87-III    | 70360742   | Jun. 23, 2022 | Jun. 22, 2023 |
| DC Power Supply<br>Topward                  | 6306A     | 727263     | NA            | NA            |

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

#### 4.3.4 Test Setup





# 4.3.5 Test Results

# Frequency Error vs. Voltage

|         | GSM             |                          |                 |                          |  |  |  |
|---------|-----------------|--------------------------|-----------------|--------------------------|--|--|--|
| Voltage | Low C           | hannel                   | High Channel    |                          |  |  |  |
| (Volts) | Frequency (MHz) | Frequency Error<br>(ppm) | Frequency (MHz) | Frequency Error<br>(ppm) |  |  |  |
| 3.23    | 1850.2000030    | 0.002                    | 1909.8000040    | 0.002                    |  |  |  |
| 3.80    | 1850.2000020    | 0.001                    | 1909.7999980    | -0.001                   |  |  |  |
| 4.37    | 1850.1999980    | -0.001                   | 1909.7999960    | -0.002                   |  |  |  |

Note: The applicant defined the normal working voltage of the battery is from 3.23 Vdc to 4.37 Vdc.

# Frequency Error vs. Temperature

|            | GSM             |                          |                 |                          |  |  |
|------------|-----------------|--------------------------|-----------------|--------------------------|--|--|
| Temp. (°C) | Low C           | hannel                   | High Channel    |                          |  |  |
|            | Frequency (MHz) | Frequency Error<br>(ppm) | Frequency (MHz) | Frequency Error<br>(ppm) |  |  |
| -30        | 1850.1999980    | -0.001                   | 1909.8000020    | 0.001                    |  |  |
| -20        | 1850.2000010    | 0.001                    | 1909.7999980    | -0.001                   |  |  |
| -10        | 1850.2000030    | 0.002                    | 1909.8000040    | 0.002                    |  |  |
| 0          | 1850.2000040    | 0.002                    | 1909.8000020    | 0.001                    |  |  |
| 10         | 1850.1999980    | -0.001                   | 1909.7999970    | -0.002                   |  |  |
| 20         | 1850.2000010    | 0.001                    | 1909.8000010    | 0.001                    |  |  |
| 30         | 1850.1999990    | -0.001                   | 1909.8000010    | 0.001                    |  |  |
| 40         | 1850.1999980    | -0.001                   | 1909.7999990    | -0.001                   |  |  |
| 50         | 1850.2000040    | 0.002                    | 1909.8000010    | 0.001                    |  |  |



## Frequency Error vs. Voltage

|         | GPRS            |                          |                 |                          |  |  |
|---------|-----------------|--------------------------|-----------------|--------------------------|--|--|
| Voltage | Low C           | hannel                   | High Channel    |                          |  |  |
| (Volts) | Frequency (MHz) | Frequency Error<br>(ppm) | Frequency (MHz) | Frequency Error<br>(ppm) |  |  |
| 3.80    | 1850.2000030    | 0.002                    | 1909.8000010    | 0.001                    |  |  |
| 3.23    | 1850.1999960    | -0.002                   | 1909.7999960    | -0.002                   |  |  |
| 4.37    | 1850.2000040    | 0.002                    | 1909.8000020    | 0.001                    |  |  |

Note: The applicant defined the normal working voltage of the battery is from 3.23 Vdc to 4.37 Vdc.

Frequency Error vs. Temperature

|            | GPRS            |                          |                 |                          |  |  |  |
|------------|-----------------|--------------------------|-----------------|--------------------------|--|--|--|
| Temp. (°C) | Low C           | hannel                   | High Channel    |                          |  |  |  |
|            | Frequency (MHz) | Frequency Error<br>(ppm) | Frequency (MHz) | Frequency Error<br>(ppm) |  |  |  |
| -30        | 1850.2000040    | 0.002                    | 1909.7999990    | -0.001                   |  |  |  |
| -20        | 1850.1999980    | -0.001                   | 1909.8000040    | 0.002                    |  |  |  |
| -10        | 1850.1999980    | -0.001                   | 1909.8000010    | 0.001                    |  |  |  |
| 0          | 1850.2000010    | 0.001                    | 1909.8000040    | 0.002                    |  |  |  |
| 10         | 1850.2000040    | 0.002                    | 1909.8000040    | 0.002                    |  |  |  |
| 20         | 1850.2000020    | 0.001                    | 1909.7999980    | -0.001                   |  |  |  |
| 30         | 1850.1999990    | -0.001                   | 1909.7999960    | -0.002                   |  |  |  |
| 40         | 1850.2000030    | 0.002                    | 1909.7999960    | -0.002                   |  |  |  |
| 50         | 1850.1999990    | -0.001                   | 1909.7999990    | -0.001                   |  |  |  |

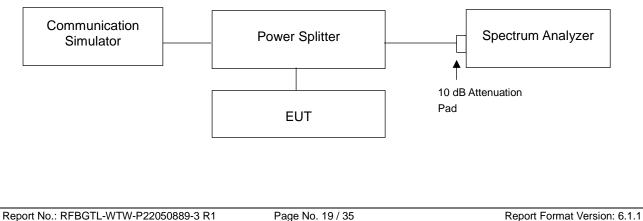


## 4.4 Occupied Bandwidth Measurement

#### 4.4.1 Limits of Occupied Bandwidth Measurement

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

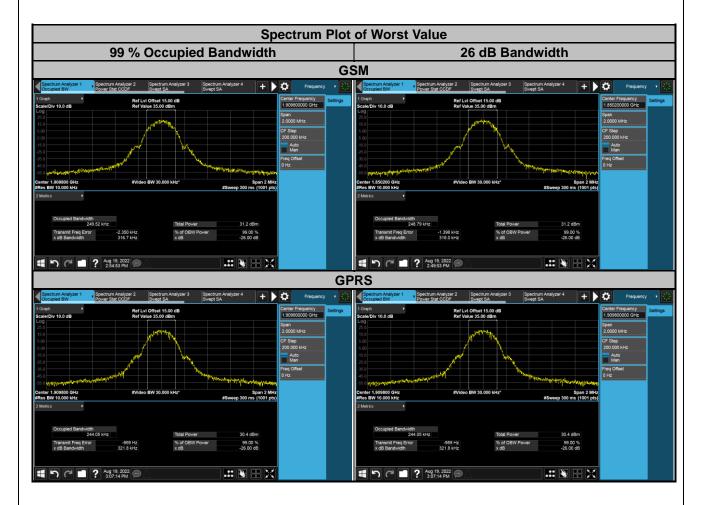
#### 4.4.2 Test Procedure


The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

For the 26dBc bandwidth measurement method, please refer to section 5.4.3 of ANSI C63.26.

- a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be wide enough to see sufficient roll off of the signal to make the measurement.
- b) The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set ≥ 3 × RBW.
- c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3.
- d) The dynamic range of the spectrum analyzer at the selected RBW shall be more than 10 dB below the target "-X dB" requirement, i.e., if the requirement calls for measuring the -26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference level.
- e) Set spectrum analyzer detection mode to peak, and the trace mode to max hold.
- f) Determine the following reference values: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
- g) Determine the "-X dB amplitude" as equal to (Reference Value X). Alternatively, this calculation can be performed on the spectrum analyzer using the delta-marker measurement function.
- h) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB amplitude" determined in step f). If a marker is below this "-X dB amplitude" value it should be as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- i) The OBW shall be reported by providing plot(s) of the measuring instrument display, to include markers depicting the relevant frequency and amplitude information (e.g., marker table). The frequency and amplitude axis and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

For the occupied bandwidth measurement method, please refer to section 5.4.4 of ANSI C63.26.


4.4.3 Test Setup

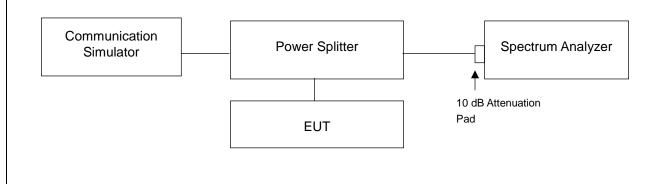




### 4.4.4 Test Result

|         |                    | GSM                                    |                             | GPRS    |                    |                                        |                             |  |
|---------|--------------------|----------------------------------------|-----------------------------|---------|--------------------|----------------------------------------|-----------------------------|--|
| Channel | Frequency<br>(MHz) | 99 %<br>Occupied<br>Bandwidth<br>(kHz) | 26 dB<br>Bandwidth<br>(kHz) | Channel | Frequency<br>(MHz) | 99 %<br>Occupied<br>Bandwidth<br>(kHz) | 26 dB<br>Bandwidth<br>(kHz) |  |
| 512     | 1850.2             | 248.79                                 | 318.00                      | 512     | 1850.2             | 244.01                                 | 317.40                      |  |
| 661     | 1880.0             | 246.77                                 | 315.00                      | 661     | 1880.0             | 243.79                                 | 316.00                      |  |
| 810     | 1909.8             | 249.52                                 | 316.70                      | 810     | 1909.8             | 244.05                                 | 321.80                      |  |



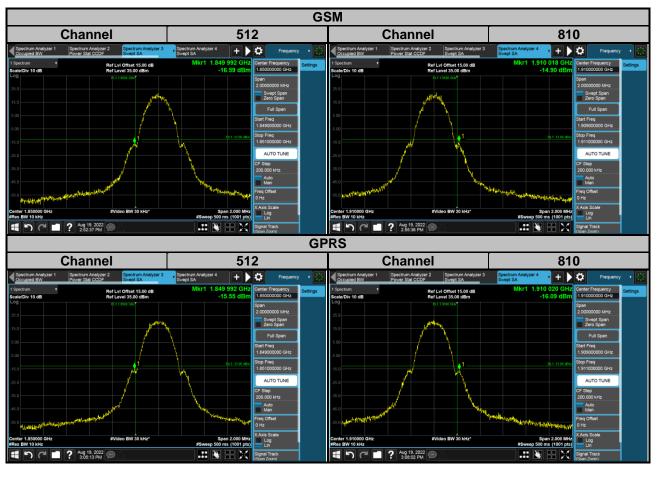



# 4.5 Band Edge Measurement

## 4.5.1 Limits of Band Edge Measurement

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ . In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

## 4.5.2 Test Setup



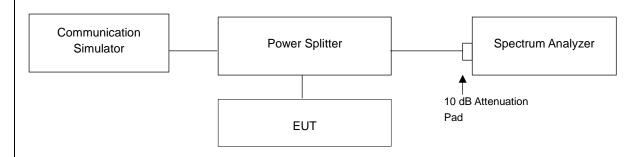

## 4.5.3 Test Procedures

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 2 MHz. RB of the spectrum is 10 kHz and VB of the spectrum is 30 kHz (GSM/GPRS).
- c. Record the max trace plot into the test report.



### 4.5.4 Test Results





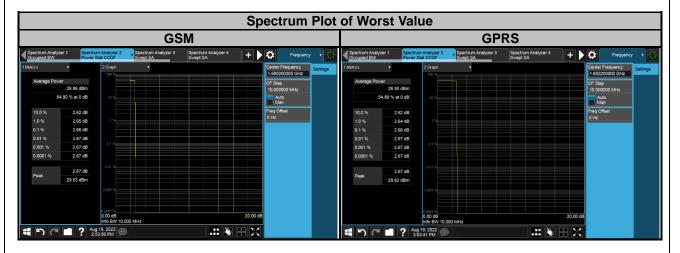

# 4.6 Peak to Average Ratio

4.6.1 Limits of Peak to Average Ratio Measurement

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

# 4.6.2 Test Setup




#### 4.6.3 Test Procedures

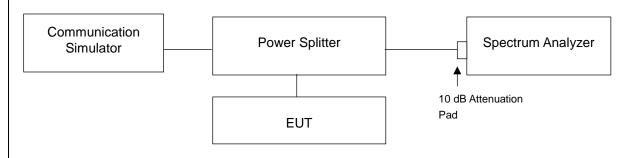
- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1 %.



#### 4.6.4 Test Results

| Channel | Frequency | Peak to Ave<br>(di | -    |  |
|---------|-----------|--------------------|------|--|
|         | (MHz)     | GSM                | GPRS |  |
| 512     | 1850.2    | 2.66               | 2.66 |  |
| 661     | 1880.0    | 2.66               | 2.66 |  |
| 810     | 1909.8    | 2.65               | 2.66 |  |






# 4.7 Conducted Spurious Emissions

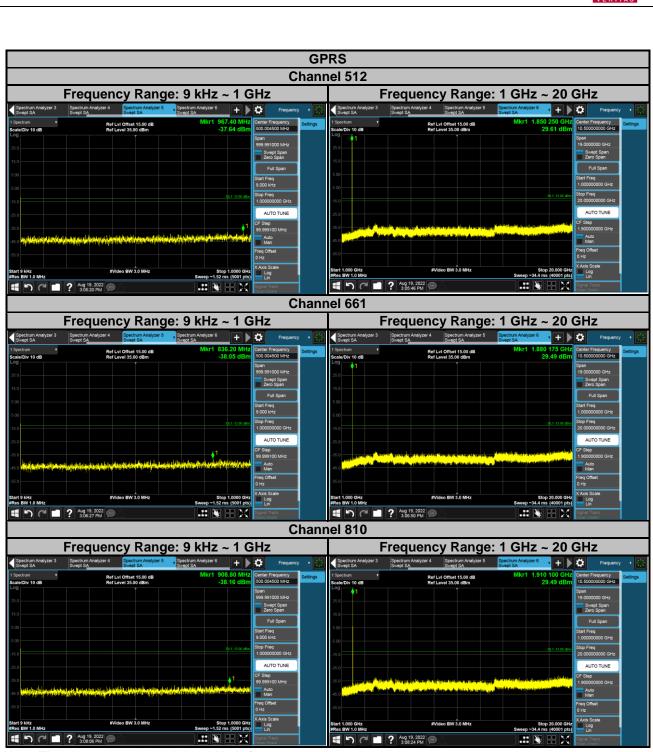
4.7.1 Limits of Conducted Spurious Emissions Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ . The emission limit equal to -13 dBm.

# 4.7.2 Test Setup



#### 4.7.3 Test Procedure


- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- Measuring frequency range is from 9 kHz to 1 GHz. 10 dB attenuation pad is connected with spectrum.
  RBW = 1 MHz and VBW = 3 MHz is used for conducted emission measurement.
- c. Measuring frequency range is from 1 GHz to 20 GHz. 10 dB attenuation pad is connected with spectrum. RBW = 1 MHz and VBW = 3 MHz is used for conducted emission measurement.



#### 4.7.4 Test Results



Note: The signal over the limit in 9 kHz is from spectrum analyzer.



Note: The signal over the limit in 9 kHz is from spectrum analyzer.



## 4.8 Radiated Emission Measurement

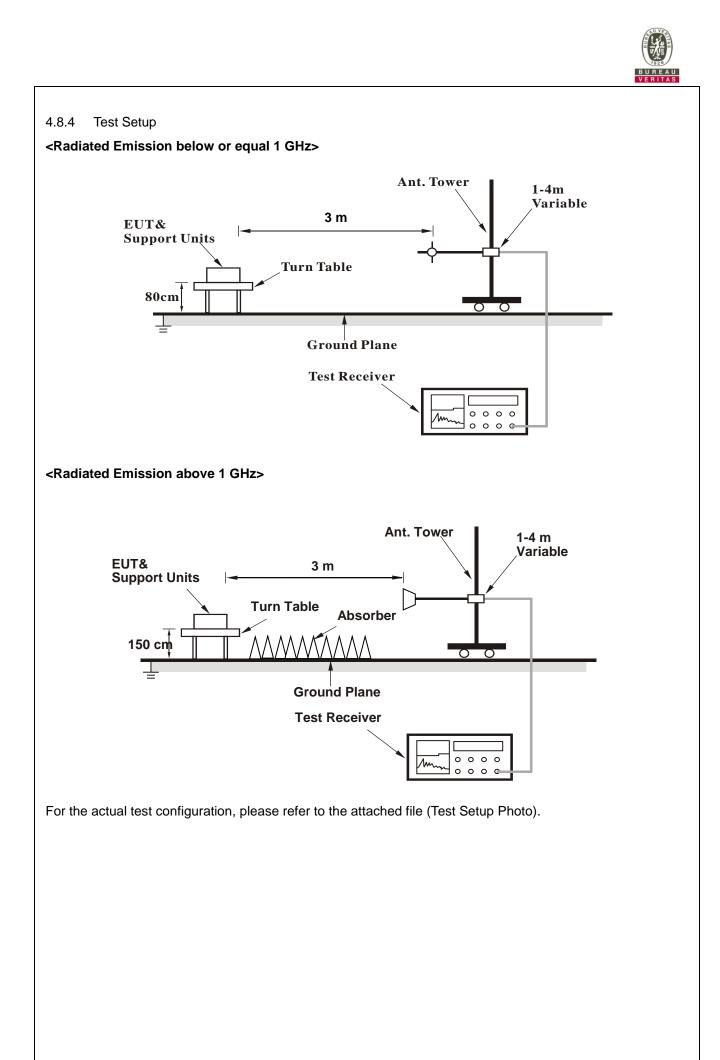
## 4.8.1 Limits of Radiated Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ . The emission limit is equal to -13 dBm.

## 4.8.2 Test Procedure

- a. In the semi-anechoic chamber, EUT placed on the 0.8m(below or equal 1GHz) and/or 1.5m(above 1GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP/ERP level.
- d. Following C63.26 section 5.5 and 5.2.7 EIRP (dBm) = E (dBµV/m) + 20log(D) - 104.8; where D is the measurement distance (in the far field region) in m.

ERP (dBm) = E (dB $\mu$ V/m) + 20log(D) - 104.8 - 2.15; where D is the measurement distance (in the far field region) in m.


#### NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz/3 MHz.
- 2. The emission levels were against the limit of frequency range 9 kHz ~ 30 MHz:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

4.8.3 Deviation from Test Standard

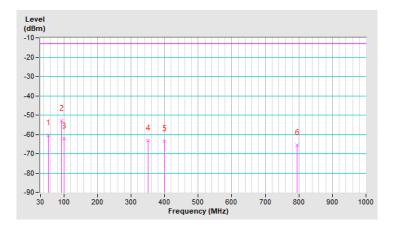
No deviation.





## 4.8.5 Test Results

Below 1GHz


#### GSM:

| RF Mode            | TX PCS 1900    | Channel | CH 661:1880 MHz |
|--------------------|----------------|---------|-----------------|
| Frequency<br>Range | 30 MHz ~ 1 GHz |         |                 |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |               |                |                |                          |                            |                        |                                |  |  |
|----|------------------------------------------------------|---------------|----------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No | Frequency<br>(MHz)                                   | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | 54.11                                                | -60.42        | -13.00         | -47.42         | 1.10 H                   | 317                        | 53.32                  | -113.74                        |  |  |
| 2  | 91.74                                                | -53.00        | -13.00         | -40.00         | 1.87 H                   | 164                        | 65.63                  | -118.63                        |  |  |
| 3  | 99.74                                                | -62.22        | -13.00         | -49.22         | 1.12 H                   | 214                        | 55.32                  | -117.54                        |  |  |
| 4  | 349.77                                               | -63.33        | -13.00         | -50.33         | 1.06 H                   | 104                        | 47.94                  | -111.27                        |  |  |
| 5  | 399.85                                               | -63.51        | -13.00         | -50.51         | 1.78 H                   | 348                        | 46.48                  | -109.99                        |  |  |
| 6  | 794.40                                               | -65.44        | -13.00         | -52.44         | 1.15 H                   | 101                        | 37.68                  | -103.12                        |  |  |

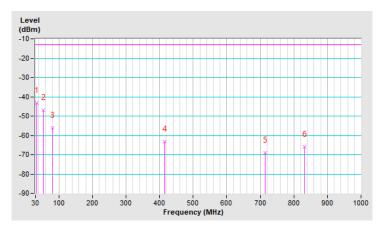
## Remarks:

- 1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + 20log(D) – 104.8
- 3. Margin value = EIRP Limit value
- 4. The other EIRP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The EIRP levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





| RF Mode            | TX PCS 1900    | Channel | CH 661:1880 MHz |
|--------------------|----------------|---------|-----------------|
| Frequency<br>Range | 30 MHz ~ 1 GHz |         |                 |


|    | Antenna Polarity & Test Distance : Vertical at 3 m |               |                |                |                          |                            |                        |                                |  |  |  |
|----|----------------------------------------------------|---------------|----------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|
| No | Frequency<br>(MHz)                                 | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |  |
| 1  | 34.06                                              | -43.10        | -13.00         | -30.10         | 1.84 V                   | 114                        | 71.74                  | -114.84                        |  |  |  |
| 2  | 54.15                                              | -46.86        | -13.00         | -33.86         | 1.63 V                   | 33                         | 66.88                  | -113.74                        |  |  |  |
| 3  | 80.50                                              | -56.07        | -13.00         | -43.07         | 1.18 V                   | 307                        | 62.00                  | -118.07                        |  |  |  |
| 4  | 415.54                                             | -63.38        | -13.00         | -50.38         | 1.09 V                   | 38                         | 46.34                  | -109.72                        |  |  |  |
| 5  | 714.60                                             | -69.14        | -13.00         | -56.14         | 1.45 V                   | 104                        | 34.92                  | -104.06                        |  |  |  |
| 6  | 832.41                                             | -66.00        | -13.00         | -53.00         | 1.00 V                   | 22                         | 36.35                  | -102.35                        |  |  |  |

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + 20log(D) – 104.8

- 3. Margin value = EIRP Limit value
- 4. The other EIRP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The EIRP levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





#### Above 1GHz

| RF Mode            | TX PCS 1900    | Channel | CH 512:1850.2 MHz |
|--------------------|----------------|---------|-------------------|
| Frequency<br>Range | 1 GHz ~ 20 GHz |         |                   |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m                                                                                                                                                                 |               |                |                |                          |                            |                        |                                |  |  |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--|--|--|--|--|--|--|
| No | Frequency<br>(MHz)                                                                                                                                                                                                   | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |  |  |  |  |  |  |  |
| 1  | 3700.40                                                                                                                                                                                                              | -52.13        | -13.00         | -39.13         | 1.37 H                   | 124                        | 34.16                  | -86.29                         |  |  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                      | An            | tenna Polari   | ty & Test Dis  | stance : Vert            | ical at 3 m                |                        |                                |  |  |  |  |  |  |  |  |  |
| No | NoFrequency<br>(MHz)EIRP<br>(dBm)Limit<br>(dBm)Margin<br>(dBm)Antenna<br>(dB)TableRaw<br>ValueCorrection<br>Factor<br>(m)NoFrequency<br>(dBm)(dBm)Margin<br>(dB)Antenna<br>(dB)TableRaw<br>ValueCorrection<br>Factor |               |                |                |                          |                            |                        |                                |  |  |  |  |  |  |  |  |  |
| 1  | 3700.40                                                                                                                                                                                                              | -52.06        | -13.00         | -39.06         | 1.18 V                   | 166                        | 34.23                  | -86.29                         |  |  |  |  |  |  |  |  |  |
| _  | _                                                                                                                                                                                                                    |               |                |                |                          |                            |                        |                                |  |  |  |  |  |  |  |  |  |

#### Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + 20log(D) – 104.8

3. Margin value = EIRP – Limit value

4. The other EIRP levels were very low against the limit.

| RF Mode            | TX PCS 1900    | Channel | CH 661:1880 MHz |
|--------------------|----------------|---------|-----------------|
| Frequency<br>Range | 1 GHz ~ 20 GHz |         |                 |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m                                                                                   |               |                |                |                          |                            |                        |                                |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No | Frequency<br>(MHz)                                                                                                                     | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | 3760.00                                                                                                                                | -50.74        | -13.00         | -37.74         | 2.15 H                   | 189                        | 35.32                  | -86.06                         |  |  |
|    |                                                                                                                                        | An            | tenna Polari   | ty & Test Dis  | stance : Vert            | ical at 3 m                |                        |                                |  |  |
| No | No Frequency EIRP (dBm) Limit (dBm) Margin (dB) Antenna Table Raw Correction Factor (dBm) (dBm) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB |               |                |                |                          |                            |                        |                                |  |  |
| 1  | 3760.00                                                                                                                                | -50.72        | -13.00         | -37.72         | 1.63 V                   | 58                         | 35.34                  | -86.06                         |  |  |

### Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + 20log(D) – 104.8

3. Margin value = EIRP - Limit value

4. The other EIRP levels were very low against the limit.



| RF Mode            | TX PCS 1900    | Channel | CH 810:1909.8 MHz |
|--------------------|----------------|---------|-------------------|
| Frequency<br>Range | 1 GHz ~ 20 GHz |         |                   |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m                                                                                                                                                                           |               |                |                |                          |                            |                        |                                |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No | Frequency<br>(MHz)                                                                                                                                                                                                             | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | 3819.60                                                                                                                                                                                                                        | -51.79        | -13.00         | -38.79         | 1.38 H                   | 34                         | 34.01                  | -85.80                         |  |  |
|    |                                                                                                                                                                                                                                | An            | tenna Polari   | ty & Test Dis  | stance : Vert            | ical at 3 m                |                        |                                |  |  |
| No | NoFrequency<br>(MHz)EIRP<br>(dBm)Limit<br>(dBm)Margin<br>(dBm)Antenna<br>(dB)TableRaw<br>ValueCorrection<br>Factor<br>(m)NoFrequency<br>(dBm)(dBm)Margin<br>(dB)Antenna<br>(dB)TableRaw<br>ValueCorrection<br>Factor<br>(dB/m) |               |                |                |                          |                            |                        |                                |  |  |
| 1  | 3819.60                                                                                                                                                                                                                        | -51.32        | -13.00         | -38.32         | 1.58 V                   | 20                         | 34.48                  | -85.80                         |  |  |

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + 20log(D) – 104.8

3. Margin value = EIRP – Limit value

4. The other EIRP levels were very low against the limit.



## 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



## Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <a href="mailto:service.adt@tw.bureauveritas.com">service.adt@tw.bureauveritas.com</a> Web Site: <a href="mailto:www.bureauveritas-adt.com">www.bureauveritas-adt.com</a>

The address and road map of all our labs can be found in our web site also.

---- END ----