

RASTAR GROUP

TEST REPORT

SCOPE OF WORK FCC TESTING- MODEL: 80445B308D8(92900),92900

REPORT NUMBER GZHH00536228-002

ISSUE DATE June 19, 2024

PAGES 26

DOCUMENT CONTROL NUMBER FCC ID 249_C © 2017 INTERTEK

RASTAR GROUP

Application for Certification

FCC ID: 2AENTXH929001RX

Model R/C Car

Model: 80445B308D8(92900),92900 Additional Model: See Page 5

2.4GHz Transceiver

Report No.: GZHH00536228-002

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-23]

Prepared and Checked by:

Approved by:

Sign on file

Maura Wang Engineer Ryan Chen Senior Project Engineer Date: June 19, 2024

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

Version: 01-November-2017

Page: 1 of 26

MEASUREMENT/TECHNICAL REPORT

This report concerns (che	ck one:)	Original Grant	<u>x</u>	Class II Ch	nange _	
Equipment Type: <u>DXX - P</u>	art 15 Low Po	ower Communicat	ion Devic	e Transmitt	<u>er</u>	
Deferred grant requested	per 47 CFR 0				_	
Company Name agrees to	o notify the Co	ommission by:		date		
of the intended date of an date.	nouncement	of the product so	that the g		issued	on that
Transition Rules Request	per 15.37?		Yes		No _	<u>X</u>
If no, assumed Part 15, Edition] provision.	Subpart C fo	or intentional rad	iator – tł	ne new 47	CFR [′	10-1-23
Report prepared by:						
	101, 201, E Community People's Re	g ting Services Sher Building B, No. 3 GuanHu Subdist public of China 5-755-8601 6288/8	08 Wuh rict, Lon	e Avenue, gHua Distri	Zhangk	0, 0

Table of Contents

1.0 Summary of Test Result	4
2.0 General Description	5
 2.1 Product Description 2.2 Related Submittal(s) Grants 2.3 Test Methodology 2.4 Test Facility 	7 7
3.0 System Test Configuration	
 3.1 Justification 3.2 EUT Exercising Software 3.3 Special Accessories 3.4 Equipment Modification	8 8 8 8 8 8 8 8
4.0 Emission Results	9
 4.1 Radiated Test Results	9 10 10
5.0 Equipment Photographs	17
6.0 Product Labelling	17
7.0 Technical Specifications	17
8.0 Instruction Manual	17
9.0 Miscellaneous Information	
 9.1 Bandedge Plot 9.2 20dB Bandwidth 9.3 Discussion of Pulse Desensitization 9.4 Calculation of Average Factor 9.5 Emissions Test Procedures 	20 21 21
10.0 Test Equipment List	

1.0 <u>Summary of Test Result</u>

Applicant: RASTAR GROUP Applicant Address: Xinghui Industrial Park, Xiadao Road,Shanghua,Chenghai,Shantou,GuangDong,China.

Manufacturer: RASTAR GROUP Manufacturer Address: Xinghui Industrial Park, Xiadao Road, Shanghua, Chenghai, Shantou, GuangDong, China.

MODEL: 80445B308D8(92900),92900

FCC ID: 2AENTXH929001RX

Test Specification	Reference	Results
Transmitter Radiated Emission	15.249 &15.209 &15.205	Pass
Bandedge		
20dB Bandwidth	15.215(c)	Pass

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

2.0 General Description

2.1 Product Description

The equipment under test (EUT) is an Model R/C Car operating at 2.4G Band. The EUT can be powered by DC 4.5V (3 x 1.5V AA batteries). For more detail information pls. refer to the user manual.

Antenna Type: Integral antenna Modulation Type: GFSK Antenna Gain: 0dBi

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

The additional Models are the same as the Model:80445B308D8(92900),92900 in hardware and electrical aspect. The difference in appearance, model number and names serve as marketing strategy.

Additional name:	Additional model:
BMW 3.0CSL	80445B308D8 (92900),92900
BMW I8	48400-4
Volkswagen Beetle	76200-4
JEEP Wrangler Rubicon	79500-4
Mercedes-Benz G63	95800-4
Lamborghini Huracan STO	98800
Bugatti Divo	98900
Lamborghini Sián FKP 37	97800
Ferrari SF90 Stradale	97600
McLaren Senna	96700
Ferrari FXX K EVO	79300
JEEP Wrangler Rubicon	79500
Mercedes-Benz G63	95800
Lamborghini Aventador SVJ	96100
Lamborghini Aventador SVJ Performance	96110
BMW Z4 Roadster	96200
MINI COOPER S	15000
Lamborghini Superleggera	26300
Audi Q7	27300
Range Rover Sport	30300
BMW X6	31700
Pagani Zonda R	38010
Audi Q5	38600
Lamborghini Murcielago LP670-4	39000
Lamborghini Murcielago LP670-4	39001
Porsche GT3 RS	39900
Mercedes-Benz SLS AMG	40100
Porsche Cayenne Turbo	46100
Lamborghini Aventador LP700	46300
Ferrari 458 Italia	46600
AUDI R8	46800
Range Rover Evoque	46900
Bugatti Grand Sport Vitesse	47000
Lamborghini Sesto	48200
BMW M3	48300
BMW I8	48400
Range Rover Sport 2013 Version	48500
Bentley Confinental GT speed	48600
Ferrari LaFerrari	48900
Porsche 918 Spyder	71400
Lamborghini HURACÁN LP610-4	71500
MINI Countryman	71700

Porsche Macan Turbo	71800
Ferrari 458 Speciale A	71900
AUDI R8 2015 Version	72300
Mercedes-Benz Actros with 1/24 scale Car	74920
Mercedes-Benz Actros with 1/24 scale Car	74940
McLaren P1	75200
Ferrari 488 GTB	76000
Bugatti Veyron Chiron	76100
Volkswagen Beetle	76200
Ford GT	78200
Land Rover Defender	78500
Ferrari F40	78800
Mercedes-Benz Antos Fire Engine & Rescue car	78620
Mercedes-Benz Antos Fire Engine & Rescue car	78640
Hummer EV	93100
Porsche 911 GT2 RS Clubsport 25	99700
Remote control car in 24 scale	RC124
Remote control car in 26 scale	RC126
Porsche 911 Dakar	10140
Lamborghini SC63 LMDH	10160
BMW i5 M60	80445B5D139 (10180)
BMW i5 M60	10180
Mercedes AMG GT2	10230
BMW XM	10230
BMW XM	80445B308D9 (10240)
Range Rover SV Red Bull F1 RB19	10270
	92600
BMW M8 GTE	80445A627A0 (97200)
Ferrari FXXK	96900
Land Rover	96800
Ferrari F1	97000
Lamborghini Sian	97400
BMW M8 GTE	97200
Porsche 911 GT2 RS Clubsport 25	99600
Lamborghini Veneno	98100
Mercedes-AMG F1 W11 EQ Performance	98500
McLaren F1 MCL36	93300
Ferrari F1 75	93400
Ferrari F1	53800
Red Bull F1 RB18	94800
BMW M4 CSL	94500
Ferrari 296 GTS	94600
Porsche 911 Sport Classic	94900
Lamborghini COUNTACH LPI 800-4	92000
RS Robot - Spaceman	76900
RS Intelligent dinosaur	79700
Lamborghini Set (53700/58900/71500)	96400
Mercedes-Benz GT3 Transformable car	74820
Land Rover Defender Transformable Car	76420
Maserati MC20	93500
Hummer EV	93600
Hummer EV	93600-W
Alfa Romeo F1 C42	94400
Pagani Huayra BC	97900-G
Redbull F1 RB19	92400
AUDI RS Q e-tron	92700

2.2 Related Submittal(s) Grants

This is an application for certification of car unit for the Model R/C Car, and the other Digital Function is Subject to FCC Part 15B SDOC, and the corresponding controller unit which associated with this EUT is subjected to FCC certification with FCC ID: 2AENTXH915002TX.

2.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in Semi-anechoic chamber. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The Semi-anechoic chamber used to collect the radiated data is **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: CN1188).

3.0 System Test Configuration

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT was powered by DC 4.5V (3 x 1.5V AA batteries) during the test, only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the bottom of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section 4.

The EUT was operated standalone and placed in the central of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

There was no special software to exercise the device.

3.3 Special Accessories

No special accessories used.

3.4 Equipment Modification

Any modifications installed previous to testing by RASTAR GROUP will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd Longhua Branch.

- 3.5 Measurement Uncertainty When determining the test conclusion, the Measurement Uncertainty of test has been considered.
- 3.6 Support Equipment List and Description

Description	Manufacturer	Model No.
N/A	N/A	N/A

4.0 Emission Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where FS = Field Strength in $dB\mu V/m$ RA = Receiver Amplitude (including preamplifier) in $dB\mu V$ CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB AG = Amplifier Gain in dB PD = Pulse Desensitization in dBAV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Assume a receiver reading of 62.0 dBµV is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dBµV/m. This value in dBµV/m was converted to its corresponding level in μ V/m.

RA = $62.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB FS = $62 + 7.4 + 1.6 - 29 + 0 = 42 \text{ dB}\mu\text{V/m}$

Level in μ V/m = Common Antilogarithm [(42 dB μ V/m)/20] = 125.9 μ V/m

4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

4.1.3 Radiated Emissions

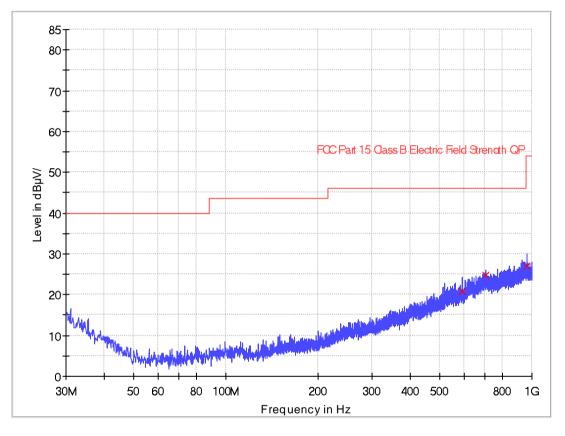
The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission at 699.057500 MHz

Judgement: Passed by 21.1 dB

TEST PERSONNEL:

Sign on file

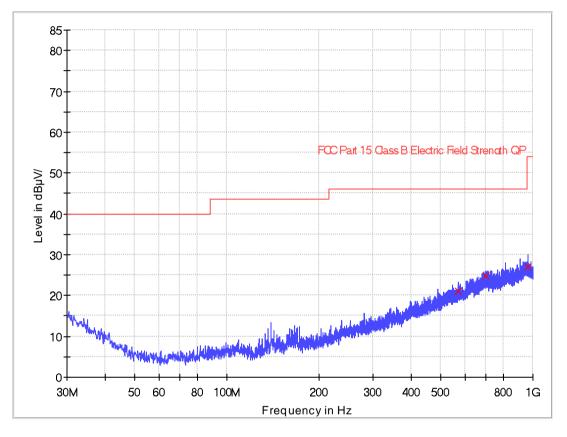

Maura Wang, Engineer Typed/Printed Name

April 26, 2024 Date

Applicant: RASTAR GROUP Date of Test: April 26, 2024 Model: 80445B308D8(92900),92900 Worst Case Operating Mode: Transmitting(2429.000MHz)

ANT Polarity: Horizontal

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
590.660000	20.7	1000.0	120.000	Н	22.4	25.3	46.0
708.393750	24.8	1000.0	120.000	Н	25.5	21.2	46.0
963.746250	27.0	1000.0	120.000	Н	27.9	27.0	54.0


Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dB μ V/m) Level (dB μ V/m)

Applicant: RASTAR GROUP Date of Test: April 26, 2024 Model: 80445B308D8(92900),92900 Worst Case Operating Mode: Transmitting(2429.000MHz)

ANT Polarity: Vertical

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
571.017500	21.1	1000.0	120.000	V	21.9	24.9	46.0
699.057500	24.9	1000.0	120.000	V	25.7	21.1	46.0
964.110000	27.1	1000.0	120.000	V	27.9	26.9	54.0

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dB μ V/m) Level (dB μ V/m)

4.1.4 Transmitter Spurious Emissions (Radiated)

Worst Case Radiated Emission at 2483.500 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 4.6 dB

TEST PERSONNEL:

Sign on file

Maura Wang, Engineer Typed/Printed Name

April 26, 2024 Date

Applicant: RASTAR GROUP Date of Test: April 26, 2024 Model: 80445B308D8(92900),92900 Worst Case Operating Mode: Transmitting

Table 1

	Radiated Emissions (2429 MHz)												
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)						
Horizontal	2429.000	108.0	36.7	28.1	99.4	114.0	-14.6						
Horizontal	4858.000	43.6	36.7	35.5	42.4	74.0	-31.6						

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2429.000	108.0	36.7	28.1	32.7	66.7	94.0	-27.3
Horizontal	4858.000	43.6	36.7	35.5	32.7	9.7	54.0	-44.3

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Applicant: RASTAR GROUP Date of Test: April 26, 2024 Model: 80445B308D8(92900),92900 Worst Case Operating Mode: Transmitting

Table 2

Radiated Emissions

(2443 WITZ)												
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)					
Horizontal	2445.000	108.3	36.7	28.3	99.9	114.0	-14.1					
Horizontal	4890.000	43.0	36.7	35.7	42.0	74.0	-32.0					

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2445.000	108.3	36.7	28.3	32.7	67.2	94.0	-26.8
Horizontal	4890.000	43.0	36.7	35.7	32.7	9.3	54.0	-44.7

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Applicant: RASTAR GROUP Date of Test: April 26, 2024 Model: 80445B308D8(92900),92900 Worst Case Operating Mode: Transmitting

Table 3

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)				
Horizontal	2460.000	107.3	36.7	28.5	99.1	114.0	-14.9				
Horizontal	4920.000	43.8	36.7	35.9	43.0	74.0	-31.0				

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2460.000	107.3	36.7	28.5	32.7	66.4	94.0	-27.6
Horizontal	4920.000	43.8	36.7	35.9	32.7	10.3	54.0	-43.7

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

5.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

6.0 Product Labelling

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

7.0 <u>Technical Specifications</u>

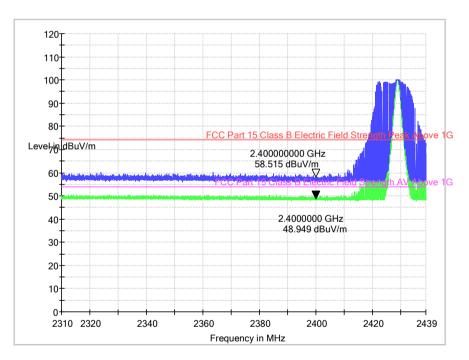
For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

9.0 <u>Miscellaneous Information</u>

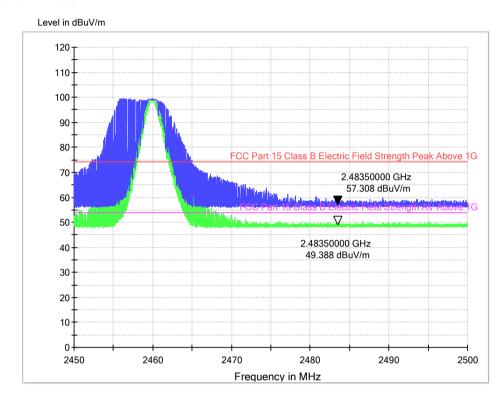

This miscellaneous information includes details of the measured bandedge, 20dB Bandwidth, the test procedure and calculation of factor such as pulse desensitization.

9.1 Bandedge Plot

The test plots are attached as below. From the plot, the field strength of any emissions outside of the specified frequency band are attenuated to the general radiated emission limits in section 15.209. It fulfils the requirement of 15.249(d).

Peak Measurement

Restricted-band band-edge tests shall be performed as radiated measurements, i.e (Band-edge Plot).


(i) Lower channel 2429.000 MHz:

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2400.000	67.1	36.7	28.1	58.5	74.0	-15.5

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m	Margin (dB)
Horizontal	2400.000	57.5	36.7	28.1	48.9	54.0	-5.1

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).

(ii) Upper channel 2460.000 MHz:

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2483.500	65.0	36.8	29.1	57.3	74.0	-16.7

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m	Margin (dB)
Horizontal	2483.500	57.1	36.8	29.1	49.4	54.0	-4.6

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).

9.2 20dB Bandwidth

Pursuant to FCC part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered. The test plots are reported as below.

Spectrum									l □ □
Ref Level 9 Att	97.00 dE		e RE		Mode Auto				(\
1Pk View	10	UD 5WI 03	.2 µs 👅 ¥t	JWY IOU KHZ	Mode Auto	JFFI			
					M1	[1]			56.17 dBµV
90 dBµV					M2			2.42	840090 GHz 76.70 dBµV
80 dBµV				M2	W12	[1]		2.42	892190 GHz
00 0000				X					
70 dBµV				$t_{\alpha}Ab$	~ ^				
				m v m	~~~~	γ			
60 dBµV	01 56.70	00 dBµV		·					
50 dBµV		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				b			
		ml				Ť	1 m		
40 dBµV	\mathcal{N}							<u>لم</u>	
30 dBµV 🦵	<u>۷</u>						·		
M M									Mr.
20 dBµV									· ~ ~ ~
10 dBuV									
то авру									
0 dBµV									
CF 2.429 G	Hz			691 pt	ts			Sp	an 3.0 MHz
1arker Type Ref	1 Tun 1	X-value	. 1	Y-value	Functi	1	F	ction Resu	IA (
M1					Functi	UN	Fun	ction Resu	n
MIT	1	2.42840	U9 GHZ	56.17 dBµV					
D1 M1 M2 Spectrum		1.08 2.42892	31 MHz 19 GHz	56.17 dBµV 0.27 dB 76.70 dBµV					
D1 M3 M2 Spectrum Ref Level 9 Att		1.00 2.42892 µV	31 MHz 19 GHz	0.27 dB 76.70 dBµV	Mode Auto	D FFT			(IIII)
D1 M3 M2 Spectrum Ref Level 9 Att	07.00 dB	1.00 2.42892 µV	31 MHz 19 GHz	0.27 dB 76.70 dBµV	Mode Auto				
D1 M3 M2 Spectrum Ref Level 9 Att 01Pk View	07.00 dB	1.00 2.42892 µV	31 MHz 19 GHz	0.27 dB 76.70 dBµV	M1	[1]		2.46	57.70 dBµ\ 049060 GH;
D1 M1 M2 Spectrum Ref Level 9 Att 1Pk View 90 dBµV	07.00 dB	1.00 2.42892 µV	31 MHz 19 GHz	0.27 dB 76.70 dBµV		[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M1 M2 Spectrum Ref Level S Att 1Pk View D0 dBµV	07.00 dB	1.00 2.42892 µV	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M1 M2 M2 Spectrum Ref Level 9 Att M2 P1Pk View M2 30 dBµV M2	07.00 dB	1.00 2.42892 µV	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M1 M2 M2 Spectrum Ref Level 9 Att M2 D1Pk View M2 30 dBµV M2 70 dBµV M2	07.00 dB	1.00 2.42892 µV	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M1 M2 M2 Spectrum Ref Level 9 Att M2 M0 BUV	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 Spectrum Ref Level SAtt M1 M3 M30 dBµV M30 dBµV S0 dBµV S0 dBµV S0 dBµV	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 Spectrum Ref Level SAtt M1 M3 M30 dBµV M30 dBµV S0 dBµV S0 dBµV S0 dBµV	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 M3 Spectrum Ref Level 9 Att 11Pk View 90 dBµV 60 dBµV 70 dBµV 60 dBµV 50 dBµV 60 dBµV 50 dBµV 60 dBµV	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 M3 Spectrum Ref Level 9 Att M3 30 dBµV M3 30 dBµV M4	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 M3 Spectrum Ref Level 9 Att M3 30 dBµV M3 30 dBµV M4	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 M2 Spectrum Ref Level 9 Att 11Pk View 90 dBµV 40 90 dBµV 60	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 M2 Spectrum Ref Level 5 Att M2 90 dBµV M30 dBµV 30 dBµV M4 50 dBµV M4 50 dBµV M4 50 dBµV M4 40 dBµV M4 20 dBµV M4 20 dBµV M4	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 M2 Spectrum Ref Level 5 Att M2 90 dBµV M30 dBµV 30 dBµV M4 50 dBµV M4 50 dBµV M4 50 dBµV M4 40 dBµV M4 20 dBµV M4 20 dBµV M4	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 M3 Spectrum Ref Level 9 Att 11Pk View 90 dBµV 90 dBµV 90 dBµV 90 dBµV	07.00 dB	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1	[1]			57.70 dBμV 049060 GHz 77.41 dBμV
D1 M3 M2 M3 Spectrum Ref Level 9 Att 910 dBµV 90 dBµV 90 dBµV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0ξ 2.42892 μV dB SWT 63.	31 MHz 19 GHz	0.27 dB 76.70 dBµV 30 kHz 30 kHz	M1 	[1]		2.45	57.70 dBμV 049060 GHz 77.41 dBμV
D1 M1 M2 M2 Spectrum Ref Level S Att 1Pk View 90 BµV 30 dBµV 30 dBµV 50 dBµV 50 dBµV 50 dBµV 50 dBµV 40 dBµV 10 dBµV	2 2	1.0¢ 2.42892 μV dB SWT 63.	<u></u>	0.27 dB 76.70 dBµV	M1 M2	[1] [1]		2.45	049060 GHz 77.41 dBµV 992190 GHz
D1 M1 M2 M2 Spectrum Ref Level 9 Att 1Pk View 90 dBµV 30 dBµV 70 dBµV 50 dBµV 50 dBµV 60 dBµV 10 dBµV 10 dBµV	2 1 1 1 1 1 1 1 1 1 1 1 1 1	1.05 2.42892 μV dB SWT 63.	 Re 2 μs VE 	0.27 dB 76.70 dBµV 30 kHz 30 kHz 30 kHz 30 kHz 40 k	M1 	[1] [1]	Fun	2.45	57.70 dBµV 049060 GHz 77.41 dBµV 992190 GHz
D1 M3 M2 M3 Spectrum RefLevel S Att M3 J1Pk View M3 30 dBµV 30 dBµV 50 dBµV 50 dBµV 50 dBµV 60 dBµV 10 dBµV 10 dBµV 10 dBµV 10 dBµV 10 dBµV 10 dBµV 11 C 12 C.46 GHZ GHZ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.05 2.42892 dB SWT 63.	31 MHz 19 GHz 19 GHz 2 μs 2 μs 9 GHz 10 GHz	0.27 dB 76.70 dBµV	M1 M2	[1] [1]	Fun	2.45	57.70 dBµV 049060 GHz 77.41 dBµV 992190 GHz

9.3 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period (T_{eff}) is approximately 463.8µs for a digital "1" bit, as shown in the plots of Section 9.4 With a resolution bandwidth (3 dB) of 100 kHz, the pulse desensitivity factor was 0 dB

9.4 Calculation of Average Factor

Averaging factor in $dB = 20 \log (duty cycle)$

The specification for output field strengths in accordance with the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.

The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 20.1159msEffective period of the cycle = $463.8\mu s x1 = 0.4638ms$ DC = 0.4638ms / 20.1159ms = 0.0231 or 2.31%

Therefore, the averaging factor is found by $20 \log_{10} (0.0231) = -32.7 dB$

The test plots are attached as below.

P Spectrum Ref Level 107.00 dBµV 👄 RBW 3 MHz Att 20 dB 😑 SWT 100 ms 😑 VBW 3 MHz SGL ⊖1Pk Max 100 dBµV 90 dBµV-Π 80 dBµV-70 dBµV-60 dBµV-und to 40 dBµV-30 dBµV-20 dBµV-10 dBµV-CF 2.46 GHz 691 pts 10.0 ms/ ₩ Spectrum Ref Level 107.00 dBµV 👄 RBW 3 MHz 20 dB 👄 SWT 40 ms 👄 VBW 3 MHz Att SGL ●1Pk Max D1[1] 0.05 dB 20.1159 ms 100 dBµV M1[1] 85.83 dBµV 7.1304 m 90 dBµV-D180 dBµV-70 dBµV-60 dBµVmak-monthistictured furging of the AR ABMINTER wet Altree halloweller gradulphy religher relight matrial malphared 40 dBµV-30 dBµV-20 dBµV

10 dBµV

691 pts

4.0 ms/

Intertek Total Quality. Assured. Test Report

SGL	Spectrum				E T
SGL D1[1] -0.04 dl 100 dBµV M1[1] 463.8 µ 90 dBµV M1[1] 85.83 dBµ 30 dBµV 7.1304 m 30 dBµV 90 dBµV 90 dBµV 100 dBµV 90 dBµV 90 dBµV 90 dBµV					· · · · · · · · · · · · · · · · · · ·
100 dBµV D1[1] -0.04 dl 100 dBµV M1[1] 85.83 dBµ 20 dBµV 7.1304 m 30 dBµV 7.1304 m 50 dBµV 7.1304 m 50 dBµV 7.1304 m 30 dBµV 7.1304 m 30 dBµV 7.1304 m 30 dBµV 7.1304 m 30 dBµV 7.1304 m 20 dBµV 7.1304 m		dB 😑 SWT 40 ms 😑 VB	3W 3 MHz		
100 dBµV 01[1] -0.04 dl 100 dBµV M1[1] 85.83 dBµ' 90 dBµV 7.1304 m 90 dBµV					
100 dBμV 463.8 μ 90 dBμV M1[1] 30 dBμV 7.1304 m 30 dBμV 1 70 dBμV 1 100 dBμV 1	●1Pk Max	1 1	1		
M1[1] 85.83 dBµ 90 dBµV M1[1] 30 dBµV 1 10 dBµV 1				D1[1]	
20 dBμV 1 7.1304 m 30 dBμV 1 1 1 70 dBμV 1 1 1 1 50 dBμV 1 1 1 1 1 70 dBμV 1 1 1 1 1 1 50 dBμV 1 1 1 1 1 1 1 50 dBμV 1 <t< td=""><td>100 dBµV</td><td></td><td></td><td>M1[1]</td><td></td></t<>	100 dBµV			M1[1]	
30 dBµV 70 dBµV 50 dBµV 30 dBµV 30 dBµV 40 dBµV 20 dBµV	90 dBµV ML	1			
	1	Å			
	80 dBµV				
	70 dBuV				
	/0 ubpv				
	60 JB 44				
40 dBμV 30 dBμV 20 dBμV	ьо авнл-				
40 dBμV 30 dBμV 20 dBμV					
20 dBµV	to the work and the second the second the second the second second second second second second second second se	have been the stand of the second stand of the	the hit has a second	and have been been	what and the state of the second states and
20 dBµV					
20 dBµV	40 dBµV				
20 dBµV					
20 dBµV	30 dBµV				
10 dBµV					
1U dBµV					
CF 2.46 GHz 691 pts 4.0 ms/	10 dBµV CF 2.46 GHz				

9.5 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10 - 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter and approximately 0.8 meter up to 1GHz and 1.5 meter above 1GHz in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Section 9.4.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

9.5 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Section 9.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used, RBW 5MHz used for fundamental emission.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

Total Quality. Assured. Test Report

Intertek Report No.: GZHH00536228-002

10.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-13	BiConiLog Antenna	ETS	3142E	00217919	13-Jul-2022	13-Jul-2025
SZ185-04	EMI Receiver	R&S	ESR7	102466	10-Nov-2023	10-Nov-2024
SZ061-09	Horn Antenna	ETS	3115	00092346	14-Oct-2022	14-Oct-2025
SZ061-06	Active Loop Antenna	Electro- Metrics	EM-6876	217	18-May-2021	18-May-2024
SZ061-15	Double- Ridged Waveguide Horn Antenna	ETS	3116C-PA	00224718	06-Jul-2021	06-Jul-2024
SZ056-06	Spectrum Analyzer	R&S	FSV40	101101	13-Dec-2023	13-Dec-2024
SZ181-04	Preamplifier	Agilent	8449B	3008A024 74	27-Apr-2023	27-Apr-2024
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	12-Dec-2021	12-Dec-2024
SZ062-02	RF Cable	RADIALL	RG 213U		1-Nov-2023	1-May-2024
SZ062-05	RF Cable	RADIALL	0.04- 26.5GHz		1-Nov-2023	1-May-2024
SZ062-12	RF Cable	RADIALL	0.04- 26.5GHz		1-Nov-2023	1-May-2024
SZ067-04	Notch Filter	Micro-Tronics	BRM5070 2-02		27-Apr-2023	27-Apr-2024