

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101581

FCC REPORT

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: Tablet

Model No.: Elite OctaX

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYELIOCTAX

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Aug., 2021

Date of Test: 13 Aug., to 30 Aug., 2021

Date of report issued: 31 Aug., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	31 Aug., 2021	Original

Tested by:	Mike ou	Date:	31 Aug., 2021	
	Test Engineer			
	,			

Reviewed by: Date: 31 Aug., 2021

Project Engineer

Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4		T SUMMARY	
- 5		ERAL INFORMATION	
၁	GEN		
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	14
	6.6	BAND EDGE	15
	6.6.1		
	6.6.2	Radiated Emission Method	16
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	34
7	TES	T SETUP PHOTO	41
0	CUT	CONSTRUCTIONAL DETAILS	42

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A - BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - BLE	Pass
Power Spectral Density	15.247 (e)	Appendix A - BLE	Pass
Conducted Band Edge	15 247 (d)	Appendix A - BLE	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	45 205 % 45 200	Appendix A - BLE	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 4 of 43

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

Product Name:	Tablet
Model No.:	Elite OctaX
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps & 2Mbps & 500Kbps & 125Kbps
Antenna Type:	Internal Antenna
Antenna gain:	0.9 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 4000mAh
AC adapter:	Model: SIWY-011
	Input: AC100-240V, 50/60Hz, 0.15A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	07-02-2021	07-01-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-26-2021	06-25-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\	ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-16-2021	07-15-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022	
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2021	06-17-2022	
Cable	HP	10503A	N/A	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	\	ersion: 6.110919t/)	

Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021	
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021	
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021	
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A	

Report No: JYTSZB-R12-2101581

PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0		
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247((b)
-----------------------	------------------------------------	-----

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

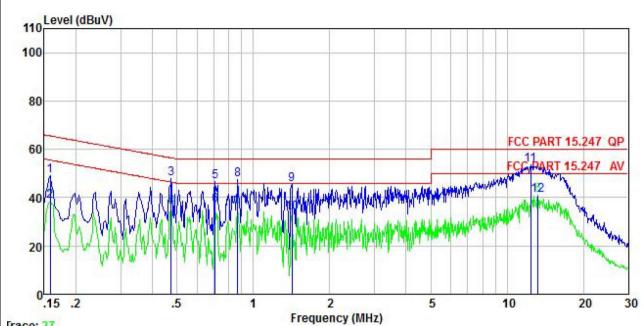
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.9dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.207						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	·	Limit (dBuV)				
-	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 						
Test setup:	Reference LISN 40cm AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	80cm LISN Filter Filter Receiver	– AC power				
Test Instruments:	Refer to section 5.9 for details	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details	·					
Test results:	Passed						

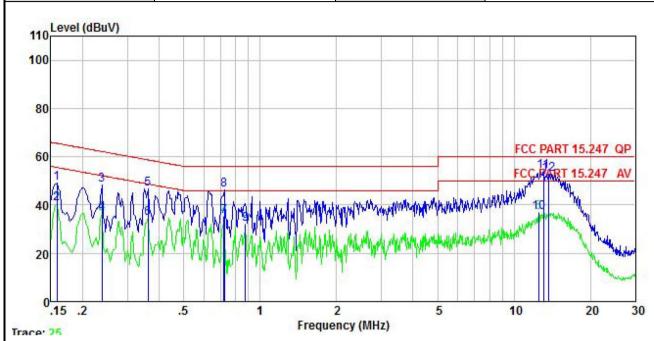
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

Product name:	Tablet	Product model:	Elite OctaX
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

Hace	. [

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>ab</u>	<u>ab</u>	<u>ap</u>	dBu₹	dBu∜	<u>dB</u>	
1	0.158	38.93	10.22	-0.07	0.01	49.09	NEVEL SUBVEY	-16.47	10 Dec 20
3	0.158 0.474	28.41 37.88	10.22 10.29	-0.07 -0.18	0.01 0.03	38.57 48.02	56.45	-8.43	
4 5	0.474 0.708	26.12 36.76	10.29 10.30	-0.18 -0.38	0.03 0.03	36.26 46.71	46.45 56.00	-10.19 -9.29	Average QP
6 7	0.708 0.862	27.17 25.25	10.30 10.31	-0.38 0.09	0.03 0.04	37.12 35.69	46.00		Average Average
1 2 3 4 5 6 7 8 9	0.866 1.418	37.06 34.75	10.31	0.11	0.04	47.52 45.28	56.00		QP
10	1.418	23.19	10.33	0.07	0.13	33.72	46.00	-12.28	Average
11 12	12.384 13.267	39.83 27.06	10.69 10.72	2.81 3.08	0.10 0.11	53.43 40.97	60.00 50.00	-6.57 -9.03	QP Average


Notes:

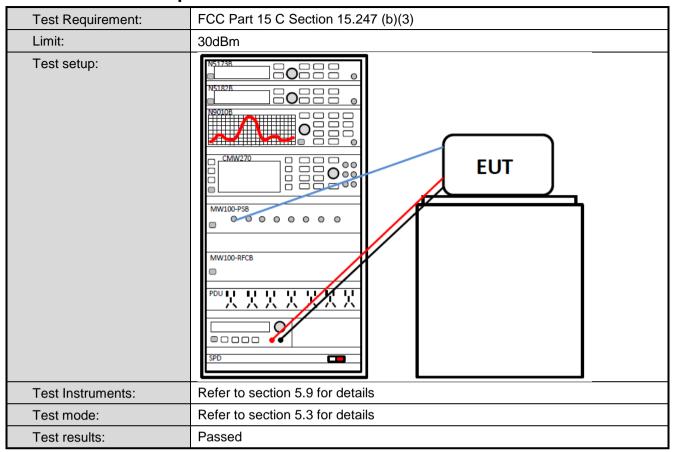
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Tablet	Product model:	Elite OctaX
Test by:	Janet	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

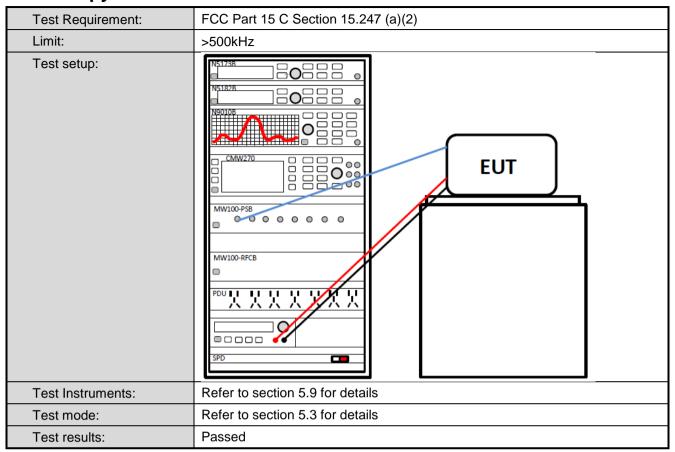
	Freq	Read Level	LISN Factor		Cable Loss	Level	Limit Line	Over Limit	Remark
,	MHz	dBu∜	<u>dB</u>	<u>ā</u> B	<u>ap</u>	dBu√	—dBu∜	<u>dB</u>	
1	0.158	38.79	10.20	0.01	0.01	49.01	65.56	-16.55	QP
2	0.158	30.52	10.20	0.01	0.01	40.74	55.56	-14.82	Average
3	0.238	37.96	10.23	0.00	0.02	48.21	62.17	-13.96	QP
1 2 3 4 5 6 7 8 9	0.238	26.31	10.23	0.00	0.02	36.56	52.17	-15.61	Average
5	0.361	36.44	10.26	-0.03	0.02	46.69	58.69	-12.00	QP
6	0.361	24.44	10.26	-0.03	0.02	34.69	48.69	-14.00	Average
7	0.720	24.80	10.30	0.04	0.03	35.17	46.00	-10.83	Average
8	0.724	35.77	10.30	0.04	0.03	46.14	56.00	-9.86	QP
9	0.876	21.70	10.31	0.06	0.04	32.11	46.00	-13.89	Average
10	12.516	23.70	10.67	2.33	0.11	36.81	50.00	-13.19	Average
11	13.057	40.72	10.68	2.50	0.11	54.01	60.00	-5.99	
12	13.695	39.43	10.70	2.71	0.12	52.96	60.00	-7.04	

Notes:


- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

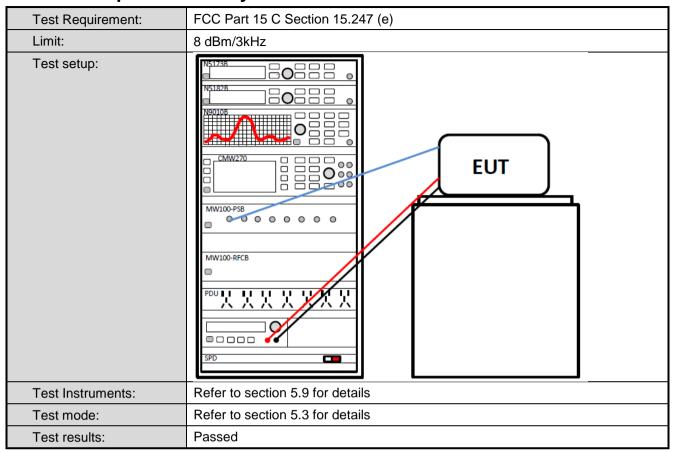
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Conducted Output Power


Measurement Data: Refer to Appendix A - BLE

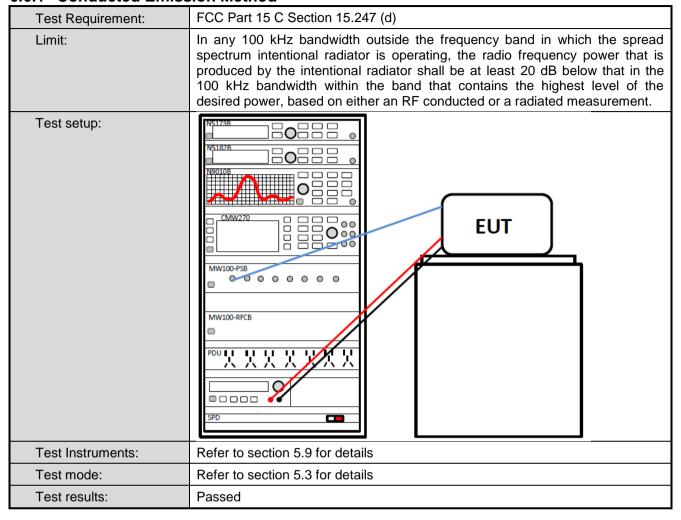
Page 12 of 43

6.4 Occupy Bandwidth


Measurement Data: Refer to Appendix A - BLE

Page 13 of 43

6.5 Power Spectral Density


Measurement Data: Refer to Appendix A - BLE

Page 14 of 43

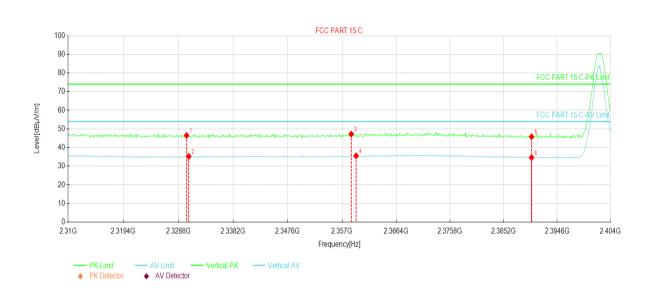
6.6 Band Edge

6.6.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 15 of 43

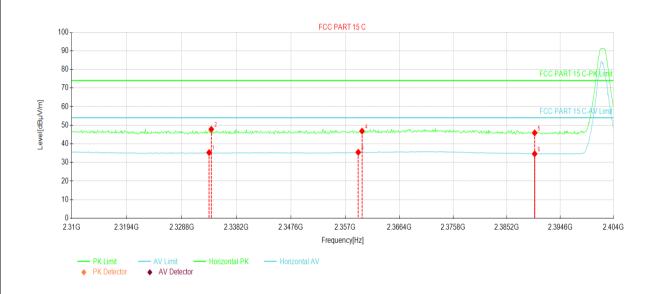
Radiated Emission Method 6.6.2


Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	2310 MHz to 2	2390 MHz an	d 2483.5MHz to :	2500 MHz	<u>7</u>		
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	' Remark		
	Above 1GHz	Peak	1MHz	3MHz			
		RMS	1MHz	3MHz			
Limit:	Frequer	ncy L	Limit (dBuV/m @:	3m)	Remark		
	Above 10	GHz —	54.00 74.00		Average Value Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 						
Test setup:	AE (T	umtable) Grou Test Receive	Horn Antenna 3m Amplifer Con	Antenna Tower	Swwwww\\		
Test Instruments:	Refer to section	on 5.9 for deta	ails				
Test mode:	Refer to section	on 5.3 for deta	ails				
	Refer to section 5.3 for details Passed						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

PHY: 1MHz

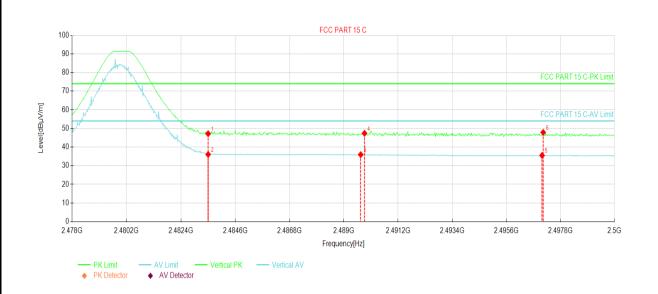
Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Suspe	Suspected Data List								
NO.∂	Freq.⊌	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Trace	Doloritu	
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]₽	[dB] <i>₀</i>	Trace	Polarity∉	
1₽	2330.21	39.60₽	46.48₽	6.88₽	74.00₽	27.52₽	PK₽	Vertical₽	
2₽	2330.58	28.38₽	35.26₽	6.88₽	54.00₽	18.74₽	AV₽	Vertical₽	
3₽	2358.59	40.28₽	47.25₽	6.97₽	74.00₽	26.75₽	PK₽	Vertical₽	
4₽	2359.44	28.58₽	35.56₽	6.98₽	54.00₽	18.44₽	AV₽	Vertical₽	
5₽	2390.08	38.74₽	45.82₽	7.08₽	74.00₽	28.18₽	PK₽	Vertical₽	
6₽	2390.08	27.55₽	34.63₽	7.08₽	54.00₽	19.37₽	AV₽	Vertical₽	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

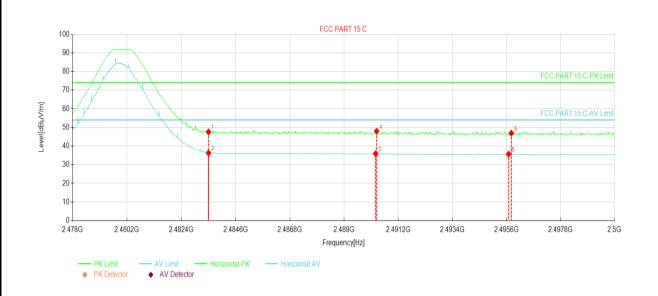
Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Suspected Data List∂								4
NO.₽	Freq.⊌	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Tropo	Dolority -
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Trace	Polarity₽
1₽	2333.50	28.41₽	35.30₽	6.89₽	54.00₽	18.70₽	AV₽	Horizontal₽⊸
2₽	2333.87	40.92₽	47.81₽	6.89₽	74.00₽	26.19₽	PK₽	Horizontal₽⊸
3₽	2359.25	28.47₽	35.45₽	6.98₽	54.00₽	18.55₽	AV₄	Horizontal₽⊸
4₽	2359.91	39.86₽	46.84₽	6.98₽	74.00₽	27.16₽	PK₽	Horizontal₽⊸
5₽	2390.08	38.82	45.90₽	7.08₽	74.00₽	28.10₽	PK₽	Horizontal₽
6₽	2390.08	27.56₽	34.64₽	7.08₽	54.00₽	19.36₽	AV₽	Horizontal₽⊸

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

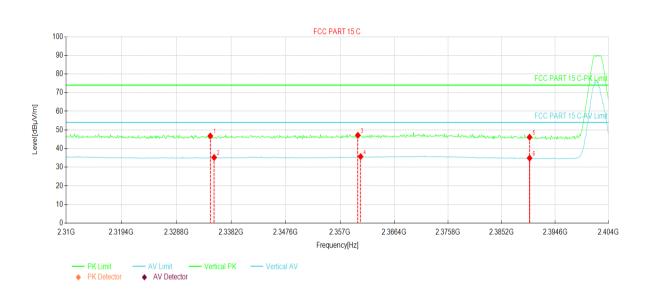

Suspe	Suspected Data List								
NO.∂	Freq.	Reading⊬	Level⊬	Factor⊬	Limit⊬	Margin⊬	Trans	Dolositu	
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]₽	Trace	Polarity∂	
1₽	2483.50	39.48₽	47.17₽	7.69₽	74.00₽	26.83₽	PK₽	Vertical∉	
2₽	2483.50	28.35₽	36.04₽	7.69₽	54.00₽	17.96₽	AV₄⊃	Vertical₽	
3₽	2489.68	28.22₽	35.95₽	7.73₽	54.00₽	18.05₽	AV₄⊃	Vertical₽	
4₽	2489.83	39.66₽	47.39₽	7.73₽	74.00₽	26.61₽	PK₽	Vertical∉	
5₽	2497.05	27.73₽	35.51₽	7.78₽	54.00₽	18.49₽	AV₄⋾	Vertical∉	
6₽	2497.09	40.09₽	47.87₽	7.78₽	74.00₽	26.13₽	PK₽	Vertical∉	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 43

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspected Data List								
NO -	Freq.⊌	Reading⊬	Level⊬	Factor⊬	Limit⊬	Margin⊬	Trans	Delerity
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]₽	[dB]∂	[dBµV/m]∂	[dB]₽	Trace	Polarity∂
1∉	2483.50	39.89₽	47.58₽	7.69₽	74.00₽	26.42₽	PK₽	Horizontal₽
2₽	2483.50	28.61₽	36.30₽	7.69₽	54.00₽	17.70₽	AV₽	Horizontal₽
3 ₽	2490.27	28.21₽	35.94₽	7.73₽	54.00₽	18.06₽	AV₽	Horizontal₽
4₽	2490.32	40.22₽	47.95₽	7.73₽	74.00₽	26.05₽	PK₽	Horizontal₽
5₽	2495.68	27.91₽	35.68₽	7.77₽	54.00₽	18.32₽	AV₽	Horizontal₽
6₽	2495.79	39.17₽	46.94₽	7.77₽	74.00₽	27.06₽	PK₽	Horizontal₽⊸

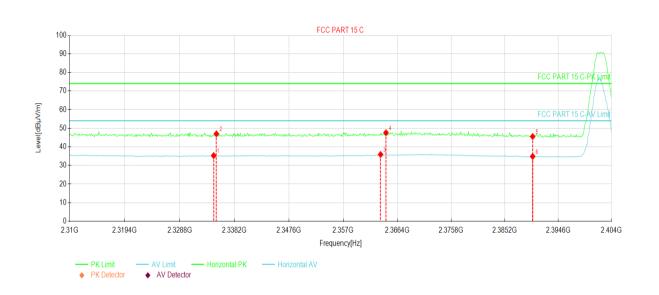

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 20 of 43

PHY: 2MHz

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

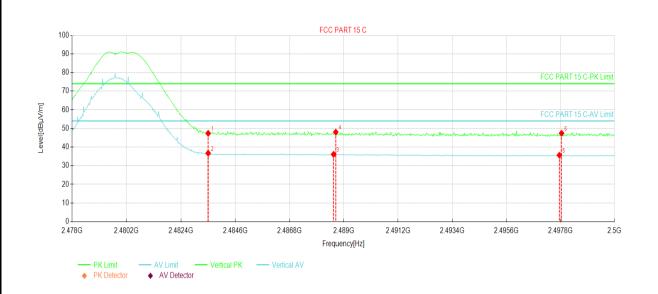
Suspe	Suspected Data List								
NO.∂	Freq.⊌	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Trans	Doloritu	
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB] <i>₀</i>	[dBµV/m]∂	[dB]₽	Trace	Polarity∂	
1₽	2334.62	39.86₽	46.75₽	6.89₽	74.00₽	27.25₽	PK₽	Vertical∉	
2₊∍	2335.28	28.32₽	35.22₽	6.90₽	54.00₽	18.78₽	AV₄	Vertical∉	
3₽	2360.10	40.16₽	47.14₽	6.98₽	74.00₽	26.86₽	PK₽	Vertical∉	
4₽	2360.57	28.73₽	35.71₽	6.98₽	54.00₽	18.29₽	AV₽	Vertical∉	
5₽	2390.08	39.02₽	46.10₽	7.08₽	74.00₽	27.90₽	PK₽	Vertical∉	
6₽	2390.08	27.81₽	34.89₽	7.08₽	54.00₽	19.11₽	AV₽	Vertical∉	


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 43

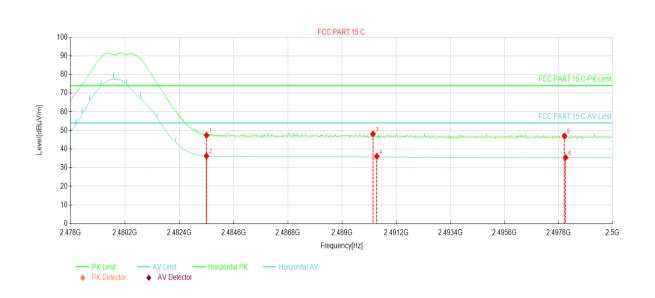
Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Suspe	Suspected Data List							
NO.₽	Freq.⊌	Reading⊬	Level⊬	Factor⊬	Limit⊬	Margin⊬	Tropo	Dolority
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB] <i>₀</i>	Trace	Polarity∉
1₽	2334.62	28.39₽	35.28₽	6.89₽	54.00₽	18.72₽	AV₽	Horizontal₽
2₊⋾	2335.09	40.07₽	46.97₽	6.90₽	74.00₽	27.03₽	PK₽	Horizontal₽
3₊□	2363.48	28.89₽	35.88₽	6.99₽	54.00₽	18.12₽	AV₽	Horizontal₽
4₽	2364.42	40.56₽	47.55₽	6.99₽	74.00₽	26.45₽	PK₽	Horizontal₽
5₽	2390.08	38.47₽	45.55₽	7.08₽	74.00₽	28.45₽	PK₽	Horizontal₽
6₽	2390.08	27.76₽	34.84₽	7.08₽	54.00₽	19.16₽	AV₽	Horizontal₽

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 22 of 43

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

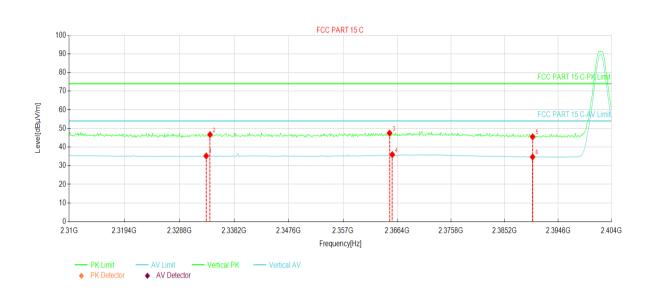


Suspe	Suspected Data List∂							
NO.₽	Freq.⊌	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Trace	Polarity∂
NO.₽	[MHz]∂	[dBµV/m]	[dBµV/m]₽	[dB]∂	[dBµV/m]₽	[dB]₽	Trace₽	Polarity
1₽	2483.50	39.69₽	47.38₽	7.69₽	74.00₽	26.62₽	PK₽	Vertical₽
2₄೨	2483.50	29.03₽	36.72₽	7.69₽	54.00₽	17.28₽	AV₄⋾	Vertical₽
3₽	2488.58	28.37₽	36.09₽	7.72₽	54.00₽	17.91₽	AV₄⋾	Vertical₽
4₽	2488.67	40.31₽	48.03₽	7.72₽	74.00₽	25.97₽	PK₽	Vertical₽
5₽	2497.75	27.84∂	35.62₽	7.78₽	54.00₽	18.38₽	AV₽	Vertical₽
6₽	2497.84	39.64₽	47.43₽	7.79₽	74.00₽	26.57₽	PK₽	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspe	Suspected Data List⊬							
NO.∂	Freq.⊌	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Trans	Dolority
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]₽	Trace	Polarity∉
1₽	2483.50	39.72₽	47.41₽	7.69₽	74.00₽	26.59₽	PK₽	Horizontal₽
2₽	2483.50	28.60₽	36.29₽	7.69₽	54.00₽	17.71₽	AV₽	Horizontal₽
3₽	2490.25	40.41₽	48.14₽	7.73₽	74.00₽	25.86₽	PK₽	Horizontal₽
4₽	2490.40	28.38₽	36.11₽	7.73₽	54.00₽	17.89₽	AV₽	Horizontal₽
5₽	2498.04	39.22₽	47.01₽	7.79₽	74.00₽	26.99₽	PK₽	Horizontal₽
6₽	2498.08	27.64₽	35.43₽	7.79₽	54.00₽	18.57₽	AV₽	Horizontal₽

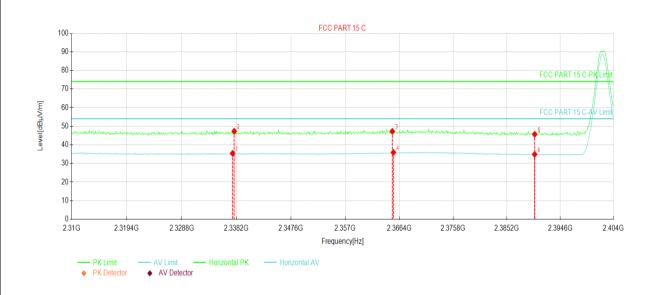

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 24 of 43

Coded PHY, S=2

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

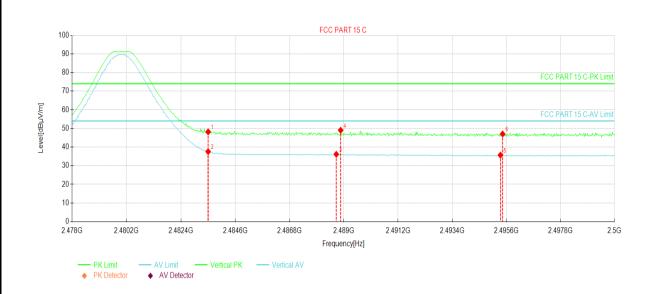
Suspe	Suspected Data List∂							
NO.₽	Freq.⊌	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Trans	Polarity∂
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]₽	[dB]∂	[dBµV/m]∂	[dB]∂	Trace	Polarity
1₽	2333.40	28.35₽	35.24₽	6.89₽	54.00₽	18.76₽	AV₄	Vertical₽
2₄೨	2334.06	39.80₽	46.69₽	6.89₽	74.00₽	27.31₽	PK₽	Vertical₽
3₀	2365.08	40.49₽	47.48₽	6.99₽	74.00₽	26.52₽	PK₽	Vertical₽
4 0	2365.55	28.95₽	35.95₽	7.00₽	54.00₽	18.05₽	AV₽	Vertical₽
5₽	2390.08	38.43₽	45.51₽	7.08₽	74.00₽	28.49₽	PK₽	Vertical₽
6₽	2390.08	27.62₽	34.70	7.08₽	54.00₽	19.30₽	AV₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 25 of 43

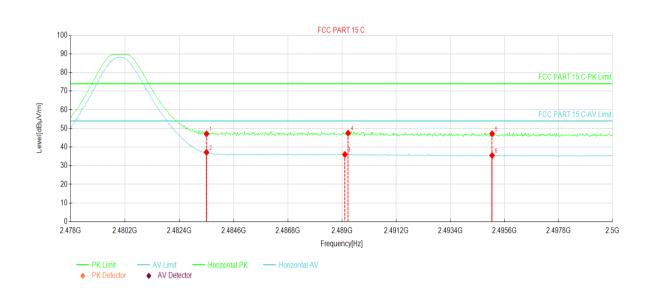
Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Suspe	Suspected Data List							
NO.₽	Freq.⊌	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Trace	Polarity∂
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB] <i>₀</i>	mace₽	Polanty
1₽	2337.54	28.51₽	35.41₽	6.90₽	54.00₽	18.59₽	AV₽	Horizontal₽
2₄೨	2337.82	40.42₽	47.32₽	6.90₽	74.00₽	26.68₽	PK₽	Horizontal₽
3₀	2365.17	40.25₽	47.25₽	7.00₽	74.00₽	26.75₽	PK₽	Horizontal₽
4.0	2365.36	28.91₽	35.91₽	7.00₽	54.00₽	18.09₽	AV₽	Horizontal₽
5₽	2390.08	38.57₽	45.65₽	7.08₽	74.00₽	28.35₽	PK₽	Horizontal₽
6₽	2390.08	27.81₽	34.89₽	7.08₽	54.00₽	19.11₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

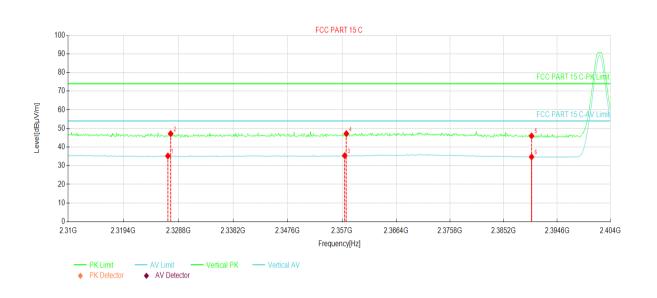


Suspe	Suspected Data List∂							
NO -	Freq.⊌	Reading⊬	Level⊬	Factor⊬	Limit⊬	Margin⊬	Trans	Dolority -
NO.₽	[MHz]	[dBµV/m]	[dBµV/m]₽	[dB] <i>₀</i>	[dBµV/m]∂	[dB]∂	Trace	Polarity∂
1 ₽	2483.50	40.47₽	48.16₽	7.69₽	74.00₽	25.84₽	PK₽	Vertical₽
2₊₃	2483.50	29.88₽	37.57₽	7.69₽	54.00₽	16.43₽	AV₄⋾	Vertical₽
3₽	2488.69	28.39₽	36.11₽	7.72₽	54.00₽	17.89₽	AV₄⊃	Vertical₽
4₽	2488.86	41.32₽	49.04₽	7.72₽	74.00₽	24.96₽	PK₽	Vertical₽
5₽	2495.35	27.91₽	35.68₽	7.77₽	54.00₽	18.32₽	AV₄⊃	Vertical₽
6₽	2495.44	39.26₽	47.03₽	7.77₽	74.00₽	26.97₽	PK₽	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspe	Suspected Data List∂							
NO.₽	Freq.⊌	Reading∉	Level⊬	Factor⊬	Limit⊬	Margin⊬	Trace	Polarity∂
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]₽	[dB] <i>₀</i>	[dBµV/m]∂	[dB]₽	Hace	Polarity
1₽	2483.50	39.41₽	47.10₽	7.69₽	74.00₽	26.90₽	PK₽	Horizontal₽
2₽	2483.50	29.48₽	37.17₽	7.69₽	54.00₽	16.83₽	AV₄⊃	Horizontal₽
3₽	2489.11	28.28₽	36.00₽	7.72₽	54.00₽	18.00₽	AV₄⊃	Horizontal₽
4₽	2489.24	39.78₽	47.51₽	7.73₽	74.00₽	26.49₽	PK₽	Horizontal₽
5₽	2495.09	39.39₽	47.16₽	7.77₽	74.00₽	26.84₽	PK₽	Horizontal₽
6₽	2495.09	27.70₽	35.47₽	7.77₽	54.00₽	18.53₽	AV₽	Horizontal₽

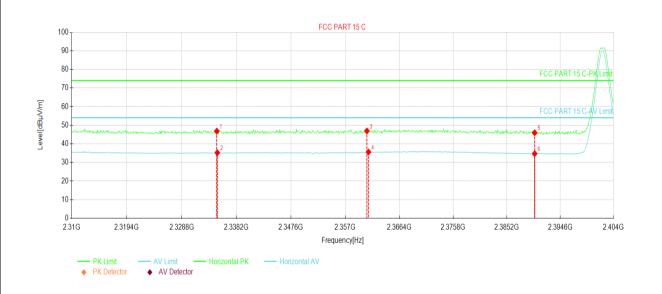

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 28 of 43

Coded PHY, S=8

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

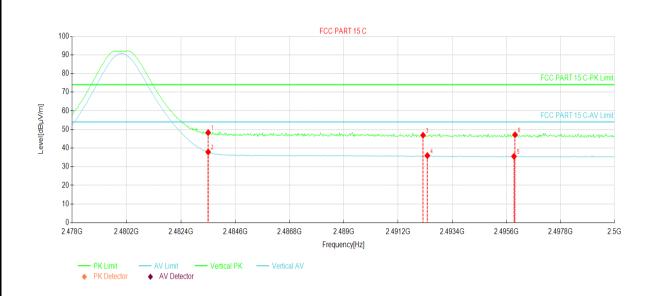
Suspected Data List								4
NO -	Freq.⊌	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Trace	Dolority
NO.₽	[MHz]∂	[dBµV/m]	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]₽	Trace	Polarity₽
1₽	2327.01	28.36₽	35.23₽	6.87₽	54.00₽	18.77₽	AV₽	Vertical₽
2↔	2327.48	40.32₽	47.19₽	6.87₽	74.00₽	26.81₽	PK₽	Vertical₽
3₊□	2357.47	28.43₽	35.40₽	6.97₽	54.00₽	18.60₽	AV₄⊃	Vertical₽
4₽	2357.75	40.24₽	47.21₽	6.97₽	74.00₽	26.79₽	PK₽	Vertical₽
5⊷	2390.08	38.89₽	45.97₽	7.08₽	74.00₽	28.03₽	PK₽	Vertical₽
6₽	2390.08	27.66₽	34.74₽	7.08₽	54.00₽	19.26₽	AV₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 29 of 43

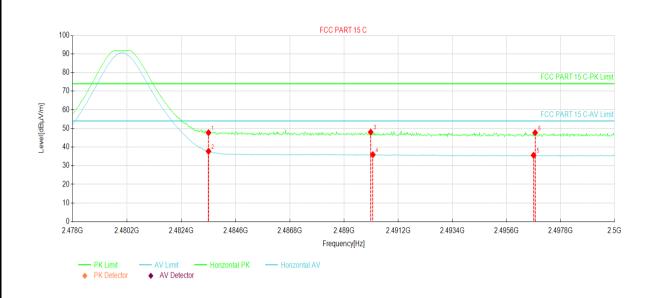
Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Suspe	ected Data	List⊬						
NO.∂	Freq.⊌	Reading⊬	Level⊬	Factor⊬	Limit⊬	Margin⊬	Trace	Polarity.
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Hace	
1₽	2334.81	39.93₽	46.82₽	6.89₽	74.00₽	27.18₽	PK₽	Horizontal₽
2₽	2334.91	28.32₽	35.22₽	6.90₽	54.00₽	18.78₽	AV₽	Horizontal₽
3₽	2360.76	39.95₽	46.93₽	6.98₽	74.00₽	27.07₽	PK₽	Horizontal₽
4₽	2361.04	28.62₽	35.60₽	6.98₽	54.00₽	18.40₽	AV₽	Horizontal₽
5₽	2390.08	38.88₽	45.96₽	7.08₽	74.00₽	28.04	PK₽	Horizontal₽
6₽	2390.08	27.64₽	34.72₽	7.08₽	54.00₽	19.28₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 30 of 43

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



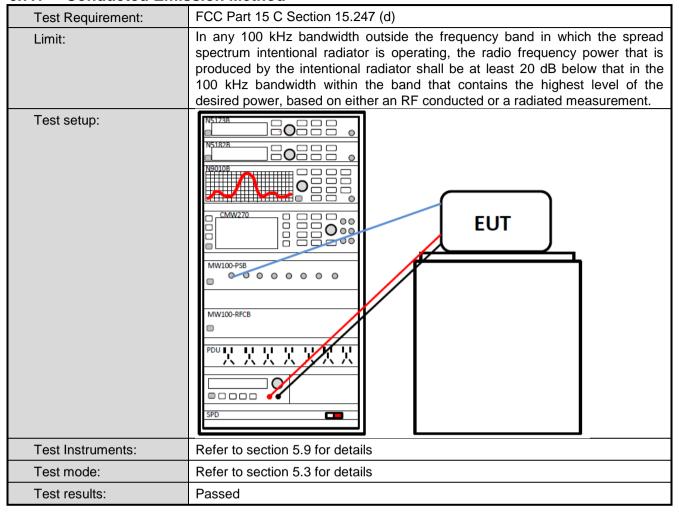
Suspe	cted Data	List∂						
NO.₽	Freq.⊌	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Trans	Polarity₽
NO.₽	[MHz]∂	[dBµV/m]	[dBµV/m]₽	[dB]∂	[dBµV/m]∂	[dB] <i>₀</i>	Trace	
1₽	2483.50	40.59₽	48.28₽	7.69₽	74.00₽	25.72₽	PK₽	Vertical₽
2₄೨	2483.50	30.20₽	37.89₽	7.69₽	54.00₽	16.11₽	AV₄⋾	Vertical₽
3₊₃	2492.21	39.12₽	46.87₽	7.75₽	74.00₽	27.13₽	PK₽	Vertical₽
4₽	2492.38	28.19₽	35.94₽	7.75₽	54.00₽	18.06₽	AV₄⋾	Vertical₽
5₽	2495.90	27.79₽	35.56₽	7.77₽	54.00₽	18.44₽	AV₄⋾	Vertical₽
6₽	2495.95	39.35₽	47.12₽	7.77₽	74.00₽	26.88₽	PK₽	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspe	cted Data	List∂						4
NO -	Freq.	Reading⊬	Level⊬	Factor	Limit⊬	Margin⊬	Trans	Polarity.
NO.₽	[MHz]∂	[dBµV/m]₽	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB] <i>₀</i>	Trace	
1₽	2483.50	40.03₽	47.72₽	7.69₽	74.00₽	26.28₽	PK₽	Horizontal₽
2₽	2483.50	30.05₽	37.74₽	7.69₽	54.00₽	16.26₽	AV₄⋾	Horizontal₽⊸
3₽	2490.07	40.30₽	48.03₽	7.73₽	74.00₽	25.97₽	PK₽	Horizontal₽⊸
4₽	2490.16	28.20₽	35.93₽	7.73₽	54.00₽	18.07₽	AV₄⋾	Horizontal₽⊸
5₽	2496.70	27.80₽	35.58₽	7.78₽	54.00₽	18.42₽	AV₽	Horizontal₽⊸
6₽	2496.76	39.92₽	47.70₽	7.78₽	74.00₽	26.30₽	PK₽	Horizontal₽⊸

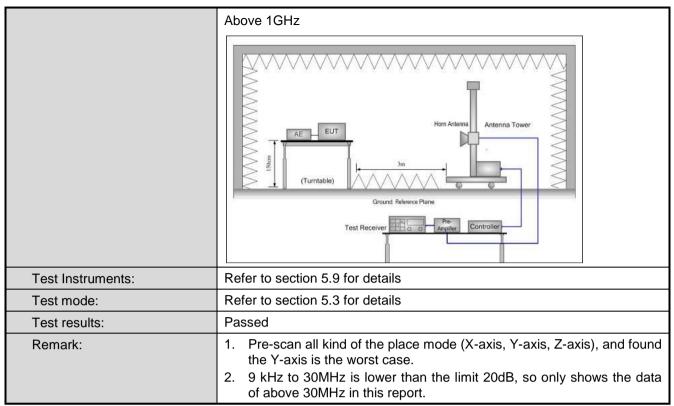
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Measurement Data: Refer to Appendix A - BLE

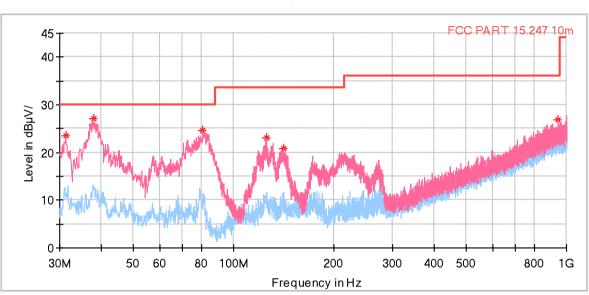


6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	.205	and 15.209				
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m or 10m							
Receiver setup:	Frequency	Detector		RBW	VBW		/ Remark	
·	30MHz-1GHz	Quasi-pea	ak	120KHz	300KHz		Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3MHz		Peak Value	
		RMS		1MHz 3M				
Limit:	Frequency		Limit (dBuV/m @10m)			_	Remark	
	30MHz-88M			30.0			Quasi-peak Value	
	88MHz-216N 216MHz-960I			33.5 36.0			Quasi-peak Value Quasi-peak Value	
	960MHz-1G			44.0			Quasi-peak Value	
	Frequency		l in	nit (dBuV/m @	3m)		Remark	
				54.0			Average Value	
	Above 1GF	lz		74.0			Peak Value	
Test Procedure:	1. The EUT	was place	ed o	on the top o	of a ro	tating	table 0.8m(below	
rest i roccadic.	1GHz)/1.5r (below 1G rotated 36 radiation. 2. The EUT waway from on the top of 3. The antend the ground Both horized make the number of the extended to find the second to find the sec	m(above 10 Hz)or 3 m 60 degrees was set 10 m the interfer of a variable had height is did to determine the and the rota tamaximum meceiver system on level of ecified, the would be 3 margin wo	GHz mete s to mete erer le-he is va mine verti ent. emi nten able read reter verti rep voulc	z) above the er chamber(a chamber(a chamber(a chamber(a chamber(a chamber(a chamber)) determined aried from one the maximulation of the maximulation of the maximulation of the chamber was turned and the chamber of th	ground above the part of the p	d at a a 1GHz a cosition of a me, where to the action of a cosition of the action of t	10 meter chamber 1). The table was in of the highest eters(above 1GHz) inich was mounted four meters above the field strength, antenna are set to anged to its worst from 1 meter to 4 les to 360 degrees tect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi- reported in a data	
Test setup:	Below 1GHz Turn Table Ground Plane	4m			S A RF	Antenna To Search Antenna Test Ceiver	ower	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



Measurement Data (worst case):

Below 1GHz:

Product Name:	Tablet	Product Model:	Elite OctaX
Test By:	Janet	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Critical_Freqs.

•	Frequency↓ (MHz)₽	MaxPeak↓ (dB µ V/m)∂	Limit↓ (dBµV/m)√	Margin↓ (dB)∂	Height↓ (cm)∂	Pol₽	Azimuth↓ (deg)∂	Corr.↓ (dB/m)∂
•	31.261000∉	23.47₽	30.00₽	6.53₽	100.0₽	V₽	350.0₽	-17.5₽
•	37.954000	27.18₽	30.00₽	2.82↩	100.0↩	V₽	350.0₽	-16.1∂
•	80.828000∉	24.56↩	30.00₽	5.44₽	100.0↩	V₽	0.0₽	-20.1∂
•	125.254000	23.10₽	33.50₽	10.40↩	100.0₽	V₽	238.0₽	-16.7₽
•	141.162000∉	20.85₽	33.50₽	12.65₽	100.0₽	V₽	254.0₽	-15.7₽
•	945.195000₽	26.78₽	36.00₽	9.22₽	100.0₽	V₽	246.0₽	-0.1∂

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

PHY: 1MHz

	Test channel: Lowest channel									
		Det	tector: Peak Valu	ie						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4804.00	55.86	-9.60	46.26	74.00	27.74	Vertical				
4804.00	55.37	-9.60	45.77	74.00	28.23	Horizontal				
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4804.00	47.86	-9.60	38.26	54.00	15.74	Vertical				
4804.00	47.93	-9.60	38.33	54.00	15.67	Horizontal				
			annel: Middle ch							
		Det	tector: Peak Valu		Π	T				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	56.26	-9.04	47.22	74.00	26.78	Vertical				
4884.00	55.16	-9.04	46.12	74.00	27.88	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4884.00	48.30	-9.04	39.26	54.00	14.74	Vertical				
4884.00	47.98	-9.04	38.94	54.00	15.06	Horizontal				
		Test cha	annel: Highest cl	hannel						
		Det	tector: Peak Valu	ıe						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	56.58	-8.45	48.13	74.00	25.87	Vertical				
4960.00	55.03	-8.45	46.58	74.00	27.42	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				

39.81

39.44

54.00

54.00

Remark:

4960.00

4960.00

48.26

47.89

-8.45

-8.45

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

14.19

14.56

Vertical

Horizontal

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

PHY: 2MHz

		Test ch	annel: Lowest ch	nannel					
			ector: Peak Valu						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	55.98	-9.60	46.38	74.00	27.62	Vertical			
4804.00	55.71	-9.60	46.11	74.00	27.89	Horizontal			
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	47.93	-9.60	38.33	54.00	15.67	Vertical			
4004.00	47.93	5.00							
4804.00	46.68	-9.60	37.08	54.00	16.92	Horizontal			
		-9.60 Test ch	annel: Middle ch	annel	16.92	Horizontal			
		-9.60 Test ch		annel	Margin (dB)				
4804.00 Frequency	46.68 Read Level	-9.60 Test ch	annel: Middle ch ector: Peak Valu Level	annel ue Limit Line	Margin				
4804.00 Frequency (MHz)	Read Level (dBuV)	-9.60 Test ch Det Factor(dB)	annel: Middle ch ector: Peak Valu Level (dBuV/m)	annel ue Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00 Frequency (MHz) 4884.00	Read Level (dBuV) 56.40	-9.60 Test ch Det Factor(dB) -9.04 -9.04	annel: Middle ch ector: Peak Valu Level (dBuV/m) 47.36	annel Limit Line (dBuV/m) 74.00 74.00	Margin (dB) 26.64	Polarization Vertical			
4804.00 Frequency (MHz) 4884.00	Read Level (dBuV) 56.40	-9.60 Test ch Det Factor(dB) -9.04 -9.04	annel: Middle ch rector: Peak Valu Level (dBuV/m) 47.36 46.42	annel Limit Line (dBuV/m) 74.00 74.00	Margin (dB) 26.64	Polarization Vertical Horizontal			
Frequency (MHz) 4884.00 4884.00	Read Level (dBuV) 56.40 55.46	Factor(dB) -9.04 -9.04 Dete	annel: Middle ch rector: Peak Valu Level (dBuV/m) 47.36 46.42 ctor: Average Va	Limit Line (dBuV/m) 74.00 74.00 slue Limit Line	Margin (dB) 26.64 27.58	Polarization Vertical			

			Test ch	annel: Highest cl	hannel		
			De	tector: Peak Valu	ıe		
	Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
I	4960.00	56.26	-8.45	47.81	74.00	26.19	Vertical
I	4960.00	55.36	-8.45	46.91	74.00	27.09	Horizontal
l			Dete	ctor: Average Va	alue		
	Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
I	4960.00	48.00	-8.45	39.55	54.00	14.45	Vertical
	4960.00	46.27	-8.45	37.82	54.00	16.18	Horizontal

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=2

	Test channel: Lowest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	55.62	-9.60	46.02	74.00	27.98	Vertical			
4804.00	54.66	-9.60	45.06	74.00	28.94	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4804.00	48.16	-9.60	38.56	54.00	15.44	Vertical			
4804.00	47.11	-9.60	37.51	54.00	16.49	Horizontal			
		•							

		Test ch	nannel: Middle ch	nannel		
		De	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	55.56	-9.04	46.52	74.00	27.48	Vertical
4884.00	54.99	-9.04	45.95	74.00	28.05	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4884.00	47.67	-9.04	38.63	54.00	15.37	Vertical
4884.00	47.23	-9.04	38.19	54.00	15.81	Horizontal

Test channel: Highest channel							
	Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	55.15	-8.45	46.70	74.00	27.30	Vertical	
4960.00	54.73	-8.45	46.28	74.00	27.72	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4960.00	47.25	-8.45	38.80	54.00	15.20	Vertical	
4960.00	47.69	-8.45	39.24	54.00	14.76	Horizontal	

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Coded PHY, S=8

Test channel: Lowest channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	56.55	-9.60	46.95	74.00	27.05	Vertical
4804.00	54.18	-9.60	44.58	74.00	29.42	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4804.00	47.64	-9.60	38.04	54.00	15.96	Vertical
4804.00	47.80	-9.60	38.20	54.00	15.80	Horizontal

		Test ch	annel: Middle ch	nannel			
	Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4884.00	56.79	-9.04	47.75	74.00	26.25	Vertical	
4884.00	53.79	-9.04	44.75	74.00	29.25	Horizontal	
	Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
4884.00	48.13	-9.04	39.09	54.00	14.91	Vertical	
4884.00	47.62	-9.04	38.58	54.00	15.42	Horizontal	

Test channel: Highest channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	56.65	-8.45	48.20	74.00	25.80	Vertical
4960.00	54.15	-8.45	45.70	74.00	28.30	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4960.00	48.00	-8.45	39.55	54.00	14.45	Vertical
4960.00	47.36	-8.45	38.91	54.00	15.09	Horizontal
						,

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

8 EUT Constructional Details

Reference to the test report No.: JYTSZB-R12-2101579

----End of report-----