

# **FCC Test Report**

**Report No.:** 2405Z50601EA

**Applicant:** SHENZHEN HOMELEAD ELECTRONICS CO., LTD.

Address: 11th Floor, Bldg 2, Phase 5, Fucheng Digital Innovation Shijing

Road, Fucheng Street, Longhua, Shenzhen, China

Product Name: Key Finder

Product Model: KF06A

Multiple Models: KF02E, KF02F, KF02G, KF02H, KF02I, KF02J, KF04G, KF04M,

KF04N, KF04O, KF04P, KF04Q, KF04R, KF04S, KF04T, KF04U, KF06B, KF06C, KF06D, KF06E, KF06F, KF06G, KF06G-1, KF06H, KF06I, KF06J, KF06L, KF06M, KF06N, KF06O, KF06P, KF06Q, KF06R, KF06S, KF06T, KF06U, KF06V, KF08G, KF08H, KF08I,

KF08J, KF08L

Trade Mark: N/A

FCC ID: 2AAXF-HB9808

Standards: FCC CFR Title 47 Part 15C (§15.231)

**Test Date:** 2024-11-19 to 2024-12-10

Test Result: Complied

**Report Date: 2024-12-17** 

Reviewed by:

Approved by:

Abel Chen

Abel chen

**Project Engineer** 

Jacob Kong

Jacob Gong

Manager

#### Prepared by:

World Alliance Testing & Certification (Shenzhen) Co., Ltd
No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen,
Guangdong, People's Republic of China



This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-015/V1.1 Page 1 of 28



### **Announcement**

- 1. This test report shall not be reproduced except in full, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

## **Revision History**

| Version No. | Issued Date | Description |
|-------------|-------------|-------------|
| 00          | 2024-12-17  | Original    |

Report Template: TR-4-E-015/V1.1 Page 2 of 28



## **Contents**

| 1 | Gene   | ral Information                                | . 4 |
|---|--------|------------------------------------------------|-----|
|   | 1.1    | Client Information                             | . 4 |
|   | 1.2    | Product Description of EUT                     | . 4 |
|   | 1.3    | Antenna information                            | . 4 |
|   | 1.4    | Related Submittal(s)/Grant(s)                  | . 4 |
|   | 1.5    | Measurement Uncertainty                        | . 5 |
|   | 1.6    | Laboratory Location                            | . 5 |
|   | 1.7    | Test Methodology                               | . 5 |
| 2 | Desc   | ription of Measurement                         | . 6 |
|   | 2.1    | Test Configuration                             | . 6 |
|   | 2.2    | Test Auxiliary Equipment                       | . 6 |
|   | 2.3    | Interconnecting Cables                         | . 6 |
|   | 2.4    | Block Diagram of Connection between EUT and AE | . 6 |
|   | 2.5    | Test Setup                                     | . 7 |
|   | 2.6    | Test Procedure                                 | . 8 |
|   | 2.7    | Measurement Method                             | . 9 |
|   | 2.8    | Measurement Equipment                          | 10  |
| 3 | Test   | Results                                        | 11  |
|   | 3.1    | Test Summary                                   | 11  |
|   | 3.2    | Limit                                          | 12  |
|   | 3.3    | AC Line Conducted Emissions Test Data          | 13  |
|   | 3.4    | Radiated emission Test Data                    | 14  |
|   | 3.5    | Duty Cycle                                     | 21  |
|   | 3.6    | Deactivation Testing                           | 25  |
|   | 3.7    | Bandwidth Test Data                            | 26  |
| 4 | Test : | Setup Photo                                    | 27  |
| _ | EUT    | Dhata                                          | 20  |



### 1 General Information

#### 1.1 Client Information

| Applicant:    | SHENZHEN HOMELEAD ELECTRONICS CO., LTD.                                                                        |
|---------------|----------------------------------------------------------------------------------------------------------------|
| Address:      | 11th Floor, Bldg 2, Phase 5, Fucheng Digital Innovation Shijing Road, Fucheng Street, Longhua, Shenzhen, China |
| Manufacturer: | SHENZHEN HOMELEAD ELECTRONICS CO., LTD.                                                                        |
| Address:      | 11th Floor, Bldg 2, Phase 5, Fucheng Digital Innovation Shijing Road, Fucheng Street, Longhua, Shenzhen, China |

### 1.2 Product Description of EUT

The EUT is Key Finder that contains 433.92MHz transmitter, this report covers the full testing of the 433.92MHz transmitter.

| Sample Serial Number         | 2UKE-1 (assigned by WATC)              |
|------------------------------|----------------------------------------|
| Sample Received Date         | 2024-11-15                             |
| Sample Status                | Good Condition                         |
| Frequency Range              | 433.92MHz                              |
| Maximum E-field<br>Strength: | 79.08dBuV/m@3m                         |
| Modulation Technology        | ASK                                    |
| Antenna Gain#                | Unknown                                |
| Spatial Streams <sup>#</sup> | SI(1TX)                                |
| Power Supply                 | DC 3V                                  |
| Adapter Information          | N/A                                    |
| Modification                 | Sample No Modification by the test lab |

### 1.3 Antenna information

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### **Device Antenna information:**

The antenna is an internal antenna which cannot replace by end-user. Please see product internal photos for details.

## 1.4 Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s)

Report Template: TR-4-E-015/V1.1 Page 4 of 28



1.5 Measurement Uncertainty

| Parameter            |                 | Expanded Uncertainty (Confidence of 95%(U = 2Uc(y))) |
|----------------------|-----------------|------------------------------------------------------|
| AC Power Lines Condu | icted Emissions | ±3.14dB                                              |
|                      | Below 30MHz     | ±2.78dB                                              |
| Emissions, Radiated  | Below 1GHz      | ±4.84dB                                              |
|                      | Above 1GHz      | ±5.44dB                                              |
| Bandwidth            |                 | 0.34%                                                |

**Note 1:** The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

**Note 2:** The Decision Rule is based on simple acceptance with ISO Guide 98-4:2012 Clause 8.2 (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

## 1.6 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: qa@watc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

## 1.7 Test Methodology

FCC CFR 47 Part 2

FCC CFR 47 Part 15

ANSI C63.10-2020



## 2 Description of Measurement

### 2.1 Test Configuration

| Operating channels: |                                                                                                                                                                                                    |                            |                    |             |                    |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|-------------|--------------------|
| Channel No.         | Frequency<br>(MHz)                                                                                                                                                                                 | Channel No.                | Frequency<br>(MHz) | Channel No. | Frequency<br>(MHz) |
| 1                   | 433.92                                                                                                                                                                                             | /                          | /                  | /           | /                  |
|                     | According to ANSI C63.10-2020 chapter 5.6.1 Table 11 requirement, select middle channel in the frequency range in which device operates for testing. The detailed frequency points are as follows: |                            |                    |             |                    |
| Lowest channel      |                                                                                                                                                                                                    | Middle channel Highest cha |                    | channel     |                    |
| Channel No.         | Frequency<br>(MHz)                                                                                                                                                                                 | Channel No.                | Frequency<br>(MHz) | Channel No. | Frequency<br>(MHz) |

#### **Worst-Case Configuration:**

For radiated emissions, EUT was investigated in three orthogonal orientation, the worst-case orientation was recorded in report.

433.92

For radiated emissions below 30MHz, three antenna orientations (parallel, perpendicular, gound-parallel) were tested, only record the worse case test data in report.

According to applicant, all the keys with same power setting, the EUT was configured to an engineering mode that with continue transmitting when power on for the testing.

All keys were evaluated the duty cycle, only the worst case(K2) duty cycle was recorded in report.

2.2 Test Auxiliary Equipment

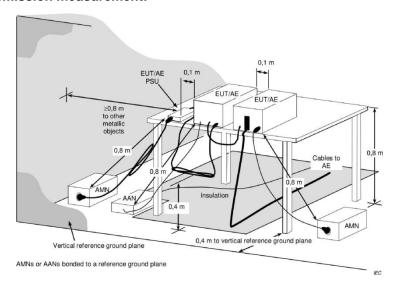
| Manufacturer | Description | Model | Serial Number |
|--------------|-------------|-------|---------------|
| /            | /           | /     | /             |

### 2.3 Interconnecting Cables

| Manufacturer | Description | Length(m) | From | То |
|--------------|-------------|-----------|------|----|
| /            | /           | /         | /    | /  |

## 2.4 Block Diagram of Connection between EUT and AE

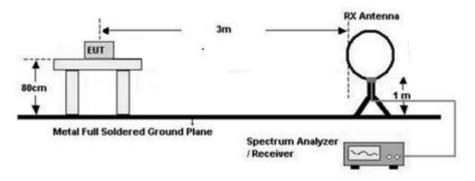
EUT


Note: for reference only, the actual connection setup used for testing please refer to the test photos.

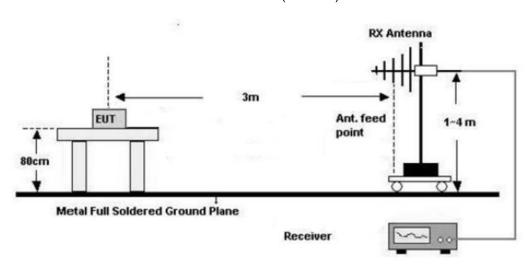
Report Template: TR-4-E-015/V1.1 Page 6 of 28



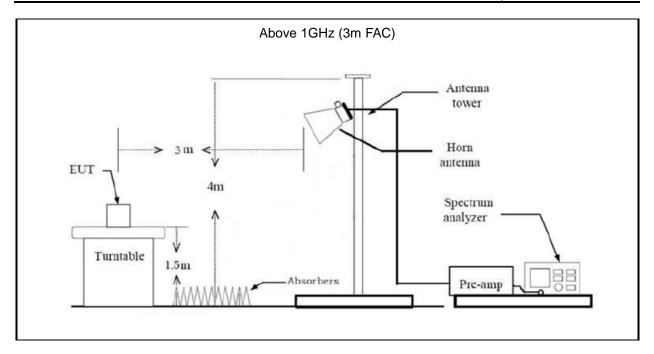
# 2.5 Test Setup


### 1) Conducted emission measurement:




**Note:** The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

#### 2) Radiated emission measurement:


#### Below 30MHz (3m SAC)



#### 30MHz-1GHz (3m SAC)







#### 2.6 Test Procedure

#### Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- Both sides of A.C. line are checked for maximum conducted interference. In order to find the
  maximum emission, the relative positions of equipment and all of the interface cables must be
  changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

#### **Radiated Emission Procedure:**

#### a) For below 30MHz

- 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40\*Log (test distance / specification distance).
- 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)

#### b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.



#### c) For above 1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5 m (above 18GHz).
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. The RBW/VBW of spectrum analyzer is set to 1MHz/3MHz for scan Peak emissions
- 4. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 5. Base on FCC 15.35 (c): for pulsed operation, the average emission was calculated by apply the duty cycle factor to the Peak emissions.

#### **Bandwidth Test:**

- 1. Use the same setup for radiated above 1GHz, found the maximum fundamental level.
- 2. Change the spectrum analyzer setting for bandwidth testing
- 3. Test the bandwidth and record the result

#### 2.7 Measurement Method

| Description of Test                                 | Measurement Method                       |
|-----------------------------------------------------|------------------------------------------|
| AC Line Conducted Emissions                         | ANSI C63.10-2020 Section 6.2             |
| 20dB Emission Bandwidth                             | ANSI C63.10-2020 Section 6.9.2           |
| Deactivation Testing                                | ANSI C63.10-2020 Section 7.4             |
| Field strength of fundamental and Radiated emission | ANSI C63.10-2020 Section 6.3&6.4&6.5&6.6 |

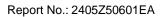


# 2.8 Measurement Equipment

| Manufacturer         | Description                        | Model     | Management<br>No. | Calibration<br>Date | Calibration Due Date |  |  |
|----------------------|------------------------------------|-----------|-------------------|---------------------|----------------------|--|--|
|                      | Radiated Emission Test             |           |                   |                     |                      |  |  |
| R&S                  | EMI test receiver                  | ESR3      | 102758            | 2024/6/4            | 2025/6/3             |  |  |
| ROHDE&<br>SCHWARZ    | SPECTRUM<br>ANALYZER               | FSV40-N   | 101608            | 2024/6/4            | 2025/6/3             |  |  |
| SONOMA<br>INSTRUMENT | Low frequency amplifier            | 310       | 186014            | 2024/6/4            | 2025/6/3             |  |  |
| A.H. Systems         | PREAMPLIFIER                       | PAM-0118P | 531               | 2024/6/4            | 2025/6/3             |  |  |
| BACL                 | Loop Antenna                       | 1313-1A   | 4010611           | 2024/2/7            | 2027/2/6             |  |  |
| SCHWARZBECK          | Log - periodic<br>wideband antenna | VULB 9163 | 9163-872          | 2023/7/7            | 2026/7/6             |  |  |
| Astro Antenna Ltd    | Horn antenna                       | AHA-118S  | 3015              | 2023/7/6            | 2026/7/5             |  |  |
| N/A                  | Coaxial Cable                      | NO.9      | N/A               | 2024/6/4            | 2025/6/3             |  |  |
| N/A                  | Coaxial Cable                      | NO.15     | N/A               | 2024/6/4            | 2025/6/3             |  |  |
| N/A                  | Coaxial Cable                      | NO.16     | N/A               | 2024/6/4            | 2025/6/3             |  |  |
| N/A                  | Coaxial Cable                      | NO.17     | N/A               | 2024/6/4            | 2025/6/3             |  |  |
| Audix                | Test Software                      | E3        | 191218 V9         | /                   | /                    |  |  |

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.




## 3 Test Results

## 3.1 Test Summary

| FCC/ISEDC Rules                  | Description of Test                                 | Result         |
|----------------------------------|-----------------------------------------------------|----------------|
| FCC §15.203                      | Antenna Requirement                                 | Compliance     |
| FCC §15.207(a)                   | AC Line Conducted Emissions                         | Not Applicable |
| FCC §15.231(c)                   | 20dB Emission Bandwidth                             | Compliance     |
| FCC §15.231(a)                   | Deactivation Testing                                | Compliance     |
| FCC §15.205, §15.209, §15.231(b) | Field strength of fundamental and Radiated emission | Compliance     |

Not Applicable: the device only powered by battery

Report Template: TR-4-E-015/V1.1 Page 11 of 28



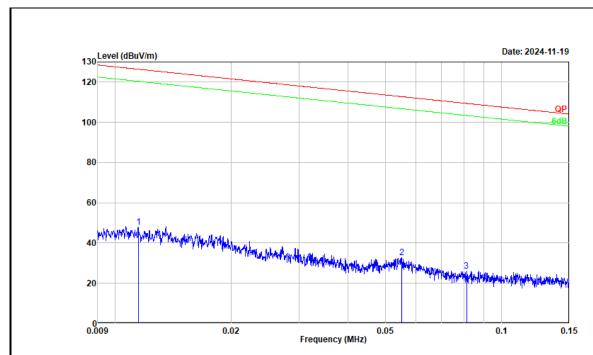


# 3.2 Limit

| Test items                                          | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                                      |  |  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------|--|--|
| AC Line Conducted Emissions                         | See details §15.207 (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                                      |  |  |
| 20dB Emission Bandwidth                             | The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                                      |  |  |
| Deactivation Testing                                | A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                                      |  |  |
|                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                | eld strength of emissions from<br>in shall not exceed the following: |  |  |
|                                                     | Fundamental<br>frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Field strength of fundamental (microvolts/meter) | Field strength of spurious emissions (microvolts/meter)              |  |  |
|                                                     | 40.66-40.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,250                                            | 225                                                                  |  |  |
|                                                     | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,250                                            | 125                                                                  |  |  |
|                                                     | 130-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>1</sup> 1,250 to 3,750                      | <sup>1</sup> 125 to 375                                              |  |  |
|                                                     | 174-260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,750                                            | 375                                                                  |  |  |
|                                                     | 260-470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>1</sup> 3,750 to 12,500                     | <sup>1</sup> 375 to 1,250                                            |  |  |
|                                                     | Above 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,500                                           | 1,250                                                                |  |  |
|                                                     | <sup>1</sup> Linear interpolations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                                                                      |  |  |
| E                                                   | The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                                      |  |  |
| Field strength of fundamental and Radiated emission | Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in § 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of § 15.205 shall be demonstrated using the measurement instrumentation specified in that section.  The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR |                                                  |                                                                      |  |  |
|                                                     | quasi-peak) limits shown in this table or to the general limits shown in § 15.209 whichever limit permits a higher field strength.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                                      |  |  |



## 3.3 AC Line Conducted Emissions Test Data


Not Applicable, the device only powered by battery



### 3.4 Radiated emission Test Data

#### 9 kHz-30MHz:

| Test Date:             | 2024-11-19                    | Test By:               | Bard Huang      |
|------------------------|-------------------------------|------------------------|-----------------|
| Environment condition: | Temperature: 24.7°C; Relative | Humidity:60%; ATM Pres | ssure: 100.6kPa |

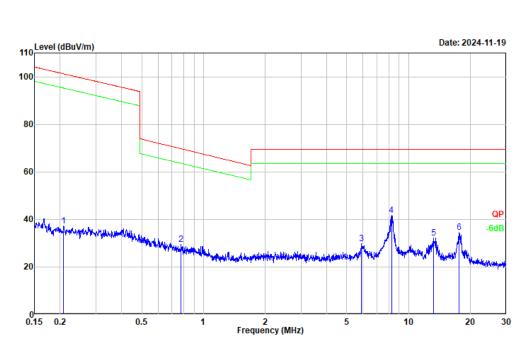


Project No. : 2405Z50601E

Test Mode : Transmitting

Test Voltage : Power by battery

Environment : 24.7℃/60%R.H./100.6kPa


Tested by : Bard Huang Polarization : PARALLEL Remark : /

| No.    | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector     |
|--------|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|--------------|
| 1      | 0.011<br>0.055     | 11.80<br>12.97    | 36.27<br>19.70   | 48.07              | 126.41            | -78.34             | Peak<br>Peak |
| 2<br>3 | 0.081              | 10.04             | 16.17            | 32.67<br>26.21     | 112.77<br>109.41  | -80.10<br>-83.20   | Peak<br>Peak |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor Over Limit = Result - Limit

SA Setting: RBW: 200Hz, VBW: 1kHz, Detector: PK





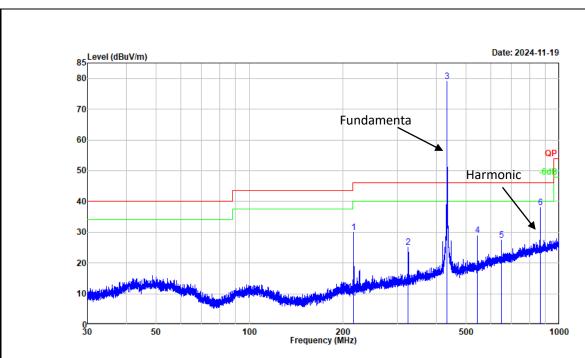
Project No. : 2405Z50601E
Test Mode : Transmitting
Test Voltage : Power by battery
Environment : 24.7°C/60%R.H./100.6kPa

Tested by : Bard Huang Polarization : PARALLEL

Remark : /

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
|     |                    |                   |                  |                    |                   |                    |          |
| 1   | 0.208              | 25.37             | 11.90            | 37.27              | 101.23            | -63.96             | Peak     |
| 2   | 0.778              | 27.05             | 2.60             | 29.65              | 69.70             | -40.05             | Peak     |
| 3   | 5.893              | 33.91             | -4.14            | 29.77              | 69.54             | -39.77             | Peak     |
| 4   | 8.252              | 45.70             | -3.89            | 41.81              | 69.54             | -27.73             | Peak     |
| 5   | 13.191             | 35.80             | -3.54            | 32.26              | 69.54             | -37.28             | Peak     |
| 6   | 17.656             | 37.99             | -3.27            | 34.72              | 69.54             | -34.82             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor


Over Limit = Result - Limit

SA Setting: RBW: 9kHz, VBW: 30kHz, Detector: PK



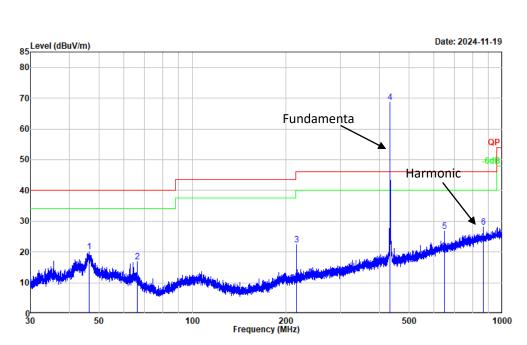
#### 30MHz-1GHz:

| Test Date:             | 2024-11-19                    | Test By:               | Bard Huang      |
|------------------------|-------------------------------|------------------------|-----------------|
| Environment condition: | Temperature: 24.7°C; Relative | Humidity:60%; ATM Pres | ssure: 100.6kPa |



Project No. : 2405Z50601E Test Mode : Transmitting Test Voltage : Power by battery Environment : 24.7℃/60%R.H./100.6kPa

Tested by : Bard Huang Polarization : horizontal Remark : /


| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |  |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|--|
|     |                    |                   |                  |                    |                   |                    |          |  |
| 1   | 216.973            | 43.60             | -13.76           | 29.84              | 46.00             | -16.16             | Peak     |  |
| 2   | 325.453            | 35.80             | -10.70           | 25.10              | 46.00             | -20.90             | Peak     |  |
| 3   | 433.920            | 87.47             | -8.39            | 79.08              | 100.83            | -21.75             | Peak     |  |
| 4   | 542.560            | 35.63             | -6.72            | 28.91              | 46.00             | -17.09             | Peak     |  |
| 5   | 651.085            | 31.85             | -4.51            | 27.34              | 46.00             | -18.66             | Peak     |  |
| 6   | 867.840            | 39.68             | -1.65            | 38.03              | 80.83             | -42.80             | Peak     |  |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit

SA Setting: RBW: 100kHz, VBW: 300kHz, Detector: PK

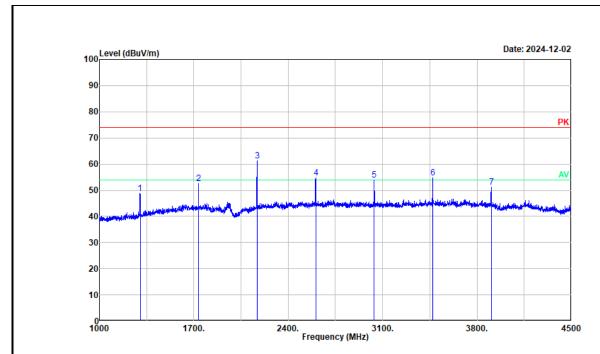




Project No. : 2405Z50601E
Test Mode : Transmitting
Test Voltage : Power by battery
Environment : 24.7℃/60%R.H./100.6kPa

Tested by : Bard Huang Polarization : vertical Remark : /

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |  |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|--|
|     |                    |                   |                  |                    |                   |                    |          |  |
| 1   | 46.340             | 32.11             | -12.17           | 19.94              | 40.00             | -20.06             | Peak     |  |
| 2   | 66.266             | 31.65             | -14.76           | 16.89              | 40.00             | -23.11             | Peak     |  |
| 3   | 216.973            | 36.08             | -13.76           | 22.32              | 46.00             | -23.68             | Peak     |  |
| 4   | 433.920            | 76.94             | -8.39            | 68.55              | 100.83            | -32.28             | Peak     |  |
| 5   | 651.085            | 31.32             | -4.51            | 26.81              | 46.00             | -19.19             | Peak     |  |
| 6   | 867.840            | 29.64             | -1.65            | 27.99              | 80.83             | -52.84             | Peak     |  |


Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor Over Limit = Result - Limit

SA Setting: RBW: 100kHz, VBW: 300kHz, Detector: PK



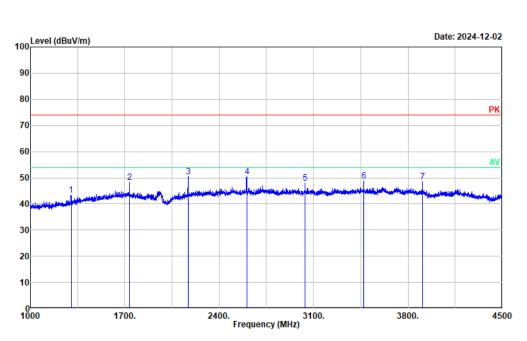
#### Above 1GHz:

| Test Date:             | 2024-12-02                    | Test By:               | Bard Huang      |
|------------------------|-------------------------------|------------------------|-----------------|
| Environment condition: | Temperature: 25.2°C; Relative | Humidity:37%; ATM Pres | ssure: 101.7kPa |



Project No. : 2405Z50601E-RF Test Mode : Transmitting Test Voltage : Power by battery

Environment : 25.2℃/37%R.H./101.7kPa


Tested by : Bard Huang Polarization : horizontal Remark : /

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
|     |                    |                   |                  |                    |                   |                    |          |
| 1   | 1301.760           | 55.49             | -6.82            | 48.67              | 74.00             | -25.33             | Peak     |
| 2   | 1735.680           | 56.45             | -3.90            | 52.55              | 80.83             | -28.28             | Peak     |
| 3   | 2169.600           | 65.17             | -3.94            | 61.23              | 80.83             | -19.60             | Peak     |
| 4   | 2603.520           | 57.62             | -2.78            | 54.84              | 80.83             | -25.99             | Peak     |
| 5   | 3037.440           | 56.97             | -3.16            | 53.81              | 80.83             | -27.02             | Peak     |
| 6   | 3471.360           | 57.62             | -2.89            | 54.73              | 80.83             | -26.10             | Peak     |
| 7   | 3905.280           | 54.80             | -3.56            | 51.24              | 74.00             | -22.76             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor Over Limit = Result - Limit

SA Setting: RBW: 1MHz, VBW: 3MHz, Detector: PK





Project No. : 2405Z50601E-RF Test Mode : Transmitting Test Voltage : Power by battery Environment : 25.2℃/37%R.H./101.7kPa

Tested by : Bard Huang Polarization : vertical Remark : /

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
|     |                    |                   |                  |                    |                   |                    |          |
| 1   | 1301.760           | 50.07             | -6.82            | 43.25              | 74.00             | -30.75             | Peak     |
| 2   | 1735.680           | 52.25             | -3.90            | 48.35              | 80.83             | -32.48             | Peak     |
| 3   | 2169.600           | 54.34             | -3.94            | 50.40              | 80.83             | -30.43             | Peak     |
| 4   | 2603.520           | 53.12             | -2.78            | 50.34              | 80.83             | -30.49             | Peak     |
| 5   | 3037.440           | 51.18             | -3.16            | 48.02              | 80.83             | -32.81             | Peak     |
| 6   | 3471.360           | 51.66             | -2.89            | 48.77              | 80.83             | -32.06             | Peak     |
| 7   | 3905.280           | 52.11             | -3.56            | 48.55              | 74.00             | -25.45             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor Over Limit = Result - Limit

SA Setting: RBW: 1MHz, VBW: 3MHz, Detector: PK



### Field strength of average:

| Frequency<br>(MHz) | Peak level<br>@3m<br>(dBµV/m) | Polar      | Duty cycle<br>Factor<br>(dB/m) | Average<br>Amplitude<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Remark      |
|--------------------|-------------------------------|------------|--------------------------------|----------------------------------|-------------------|----------------|-------------|
| 433.920            | 79.08                         | horizontal | -17.68                         | 61.40                            | 80.83             | -19.43         | Fundamental |
| 433.920            | 68.55                         | vertical   | -17.68                         | 50.87                            | 80.83             | -29.96         | Fundamental |
| 867.840            | 38.03                         | horizontal | -17.68                         | 20.35                            | 60.83             | -40.48         | Harmonic    |
| 867.840            | 27.99                         | vertical   | -17.68                         | 10.31                            | 60.83             | -50.52         | Harmonic    |
| 1301.760           | 48.67                         | horizontal | -17.68                         | 30.99                            | 54.00             | -23.01         | Harmonic    |
| 1735.680           | 52.55                         | horizontal | -17.68                         | 34.87                            | 60.83             | -25.96         | Harmonic    |
| 2169.600           | 61.23                         | horizontal | -17.68                         | 43.55                            | 60.83             | -17.28         | Harmonic    |
| 2603.520           | 54.84                         | horizontal | -17.68                         | 37.16                            | 60.83             | -23.67         | Harmonic    |
| 3037.440           | 53.81                         | horizontal | -17.68                         | 36.13                            | 60.83             | -24.70         | Harmonic    |
| 3471.360           | 54.73                         | horizontal | -17.68                         | 37.05                            | 60.83             | -23.78         | Harmonic    |
| 3905.280           | 51.24                         | horizontal | -17.68                         | 33.56                            | 54.00             | -20.44         | Harmonic    |
| 1301.760           | 43.25                         | vertical   | -17.68                         | 25.57                            | 54.00             | -28.43         | Harmonic    |
| 1735.680           | 48.35                         | vertical   | -17.68                         | 30.67                            | 60.83             | -30.16         | Harmonic    |
| 2169.600           | 50.4                          | vertical   | -17.68                         | 32.72                            | 60.83             | -28.11         | Harmonic    |
| 2603.520           | 50.34                         | vertical   | -17.68                         | 32.66                            | 60.83             | -28.17         | Harmonic    |
| 3037.440           | 48.02                         | vertical   | -17.68                         | 30.34                            | 60.83             | -30.49         | Harmonic    |
| 3471.360           | 48.77                         | vertical   | -17.68                         | 31.09                            | 60.83             | -29.74         | Harmonic    |
| 3905.280           | 48.55                         | vertical   | -17.68                         | 30.87                            | 54.00             | -23.13         | Harmonic    |

Remark:

Average Amplitude= Peak level + Duty Cycle Factor

Margin = Average Amplitude - Limit

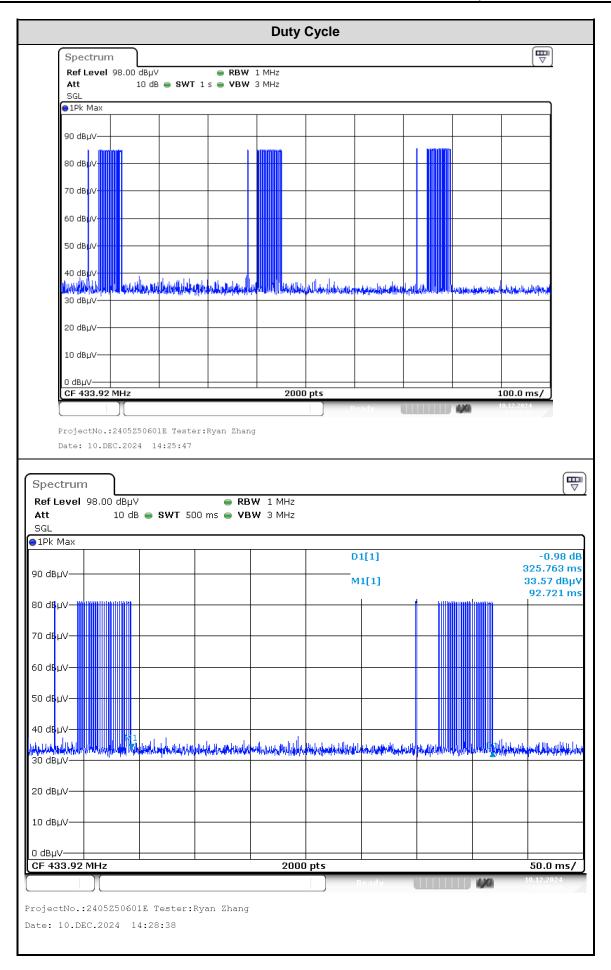
Report No.: 2405Z50601EA

# 3.5 Duty Cycle

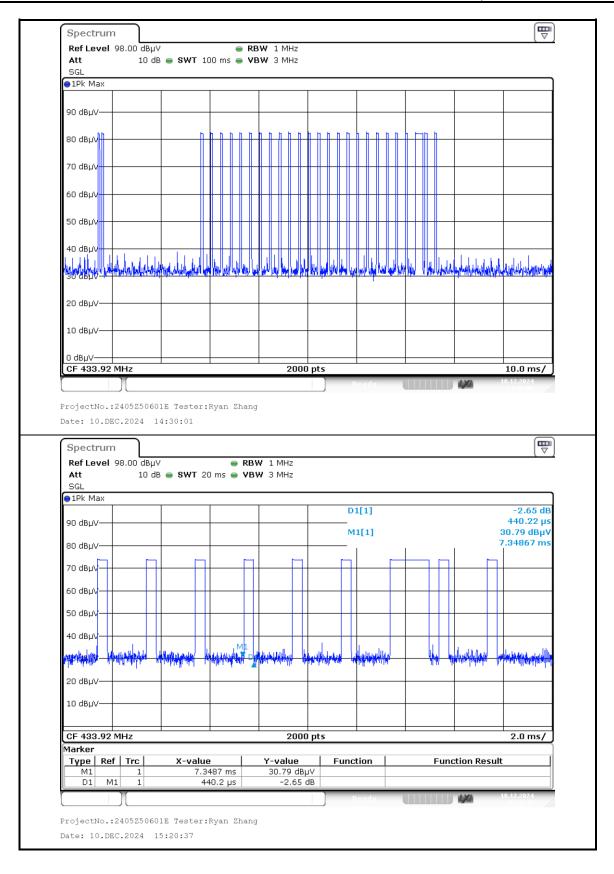
| Test Date:             | 2024-12-10                    | Test By:             | Ryan Zhang       |
|------------------------|-------------------------------|----------------------|------------------|
| Environment condition: | Temperature: 24.5°C; Relative | Humidity:55%; ATM Pr | essure: 100.5kPa |

| Subpulse | Ton Duration<br>[ms] | Number of pulse | Total On time<br>[ms] | Period of the pulse train [ms] | Duty Cycle<br>[%] |
|----------|----------------------|-----------------|-----------------------|--------------------------------|-------------------|
| 1        | 0.440                | 26              | 42.004                | 400                            | 12.06             |
| 2        | 1.621                | 1               | 13.061                | 100                            | 13.06             |
| Duty     | cycle Factor[dB]:    | -17.68          |                       |                                |                   |

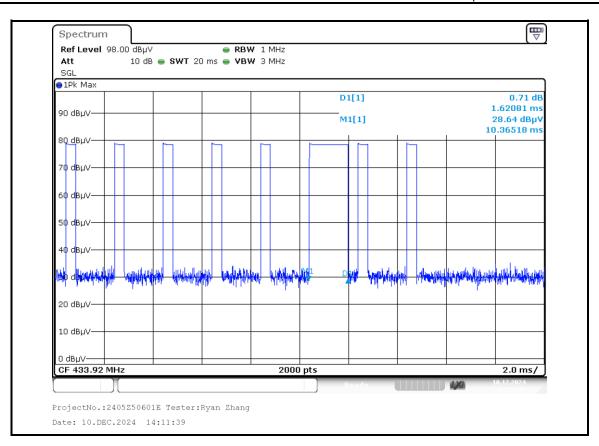
#### Remark:


Total On time= Ton1\*N1+Ton2\*N2

Duty Cycle=( Total On time)/Tp


Duty Cycle Factor=20\*log(Duty Cycle)

Report Template: TR-4-E-015/V1.1 Page 21 of 28



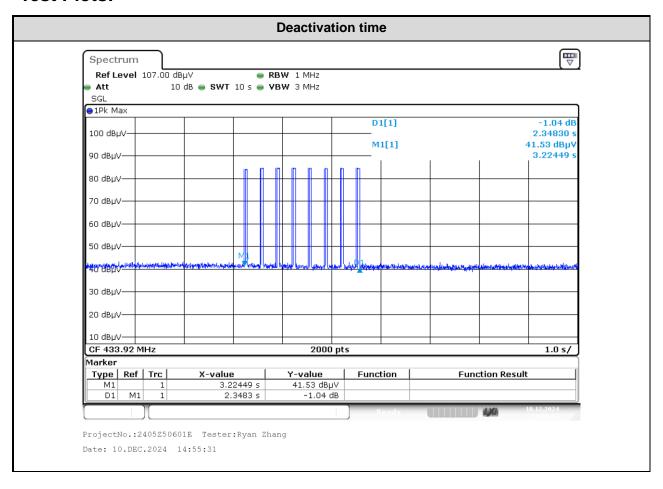










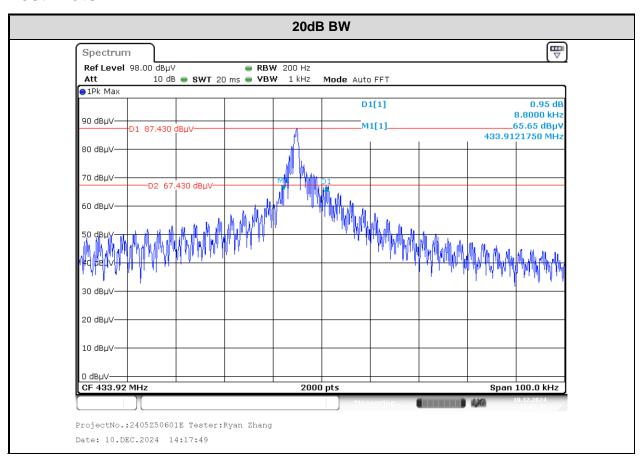

3.6 Deactivation Testing

| Test Date:             | 2024-12-10                                                         | Test By: | Ryan Zhang |
|------------------------|--------------------------------------------------------------------|----------|------------|
| Environment condition: | Temperature: 24.5°C; Relative Humidity:55%; ATM Pressure: 100.5kPa |          |            |

| Channel Frequency [MHz] | Deactivation time[s] | Limit[s] | Verdict |
|-------------------------|----------------------|----------|---------|
| 433.92                  | 2.35                 | ≤5       | Pass    |

### **Test Plots:**






## 3.7 Bandwidth Test Data

| Test Date:             | 2024-12-10                                                         | Test By: | Ryan Zhang |
|------------------------|--------------------------------------------------------------------|----------|------------|
| Environment condition: | Temperature: 24.5°C; Relative Humidity:55%; ATM Pressure: 100.5kPa |          |            |

| Channel Frequency [MHz] | 20dB BW [kHz] | Limit[kHz] | Verdict |
|-------------------------|---------------|------------|---------|
| 433.92                  | 8.800         | 1084.8     | Pass    |

### **Test Plots:**





# 4 Test Setup Photo

Please refer to the attachment 2405Z50601E Test Setup photo.



## 5 E.U.T Photo

Please refer to the attachment 2405Z50601E External photo and 2405Z50601E Internal photo.

---End of Report---