DASY5 Validation Report for Head TSL Date: 21.06.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1024 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4000 MHz, Frequency: 4100 MHz Medium parameters used: f=3900 MHz; $\sigma=3.25$ S/m; $\epsilon_r=37.4$; $\rho=1000$ kg/m³ Medium parameters used: f=4000 MHz; $\sigma=3.33$ S/m; $\epsilon_r=37.3$; $\rho=1000$ kg/m³ Medium parameters used: f=4100 MHz; $\sigma=3.42$ S/m; $\epsilon_r=37.1$; $\rho=1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.39, 7.39, 7.39) @ 4000 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 07.03.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.68 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.7 W/kg SAR(1 g) = 6.97 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.3% Maximum value of SAR (measured) = 14.0 W/kg Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4000MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.34 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 19.6 W/kg SAR(1 g) = 6.84 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.7% Maximum value of SAR (measured) = 13.9 W/kg Certificate No: D3900V2-1024_Jun23 Page 6 of 8 Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.41 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 6.83 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.2% Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 14.0 W/kg = 11.47 dBW/kg Certificate No: D3900V2-1024_Jun23 Page 7 of 8 ### Impedance Measurement Plot for Head TSL Certificate No: D3900V2-1024_Jun23 ## **5 GHz Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Certificate No. D5GHzV2-1060_Jun23 | CALIBRATION | CERTIFICATE | | |--------------------------------|--|--| | Object | D5GHzV2 - SN:1060 | | | Calibration procedure(s) | QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz | | | Calibration date: | June 19, 2023 | | | | cuments the traceability to national standards, which realize the physical units of measurements (SI). uncertainties with confidence probability are given on the following pages and are part of the certificate. | | | All calibrations have been cor | nducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. | | | Calibration Equipment used (M&TE | critical for calibration) | | | |----------------------------------|---------------------------|-----------------------------------|------------------------| | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | ALA | | | | | 0.77 | | Approved by: | Sven Kühn | Technical Manager | 1. lella | | | | | Issued: June 20, 2023 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1060_Jun23 Page 1 of 12 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5250 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5800 MHz ± 1 MHz | | #### Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 4.53 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.92 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 4.67 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.4 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.4 ± 6 % | 4.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jun23 Page 5 of 12 ### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 5.08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5800 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 5.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 48.6 Ω - 5.3 j Ω | | | |--------------------------------------|--------------------------------|--|--| | Return Loss | - 25.1 dB | | | #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 47.7 Ω - 4.1 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 26.2 dB | | | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 46.9 Ω - 2.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.0 dB | | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 50.6 Ω - 4.0 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 28.0 dB | | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $53.6 \Omega + 1.2 j\Omega$ | | | |--------------------------------------|-----------------------------|--|--| | Return Loss | - 28.6 dB | | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.4 Ω - 0.3 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 37.3 dB | | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 51.2 Ω - 2.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 32.0 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | | |---|-------|--|--| | 1131-1132 to 10 13 14 14 14 14 14 14 14 14 14 14 14 14 14 | | | | Certificate No: D5GHzV2-1060_Jun23 Page 7 of 12 #### **DASY5 Validation Report for Head TSL** Date: 19.06.2023 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=4.53$ S/m; $\epsilon_r=35.5;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5250 MHz; $\sigma=4.60$ S/m; $\epsilon_r=35.5;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=4.67$ S/m; $\epsilon_r=35.5;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.67$ S/m; $\epsilon_r=35.5;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.89$ S/m; $\epsilon_r=35.4;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.97$ S/m; $\epsilon_r=35.3;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=5.08$ S/m; $\epsilon_r=35.1;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.08$ S/m; $\epsilon_r=35.0;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.11$ S/m; $\epsilon_r=35.0;$ $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 07.03.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.08 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 70.9% Maximum value of SAR (measured) = 18.0 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.90 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 71.8% Maximum value of SAR (measured) = 18.0 W/kg Certificate No: D5GHzV2-1060_Jun23 Page 8 of 12 ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.02 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 70.8% Maximum value of SAR (measured) = 18.8 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.86 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.56 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 20.1 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.37 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.5% Maximum value of SAR (measured) = 19.6 W/kg ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.46 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 19.3 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.09 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 19.6 W/kg Certificate No: D5GHzV2-1060_Jun23 Page 9 of 12 0 dB = 20.1 W/kg = 13.03 dBW/kg Certificate No: D5GHzV2-1060_Jun23 Page 10 of 12 # Impedance Measurement Plot for Head TSL (5200, 5300, 5500, 5800 MHz) Certificate No: D5GHzV2-1060_Jun23 Page 11 of 12 ## Impedance Measurement Plot for Head TSL (5250, 5600, 5750 MHz) Certificate No: D5GHzV2-1060_Jun23 Page 12 of 12 ## **ANNEX I G-Sensor Triggering Data Summary** In order to judge whether the mobile phone is on the person's body, the method of using G-sensor is proposed as follows. First, G-sensor can judge if the phone is "moving" or not by axes x, y, z variation. If we set the judgment conditions to be sensitive enough, then all of user cases which phone proximity to human body are in "moving". Main user cases of Mobile phone and the maximum of three axes(x, y, z) change from G-sensor is as below table: | User Case | Making call and beside | Browsing | In people's pockets(Sit | Leaving the body and | Leaving the body and | |-----------------|------------------------|----------|-------------------------|----------------------|----------------------| | | head and | | still) | putting on a | putting in a | | | hand | | | stationary | moving | | | | | | table | place | | The maximum | >+/-0.5 | >+/-0.5 | >+/-0.5 | +/-0.05~0.1 | >+/-0.5 | | of three axes | | | | | | | change from G- | | | | | | | sensor | | | | | | | Power | On | On | On | Off | On | | reduction is on | | | | | | | or off | | | | | | We choose the maximum of three axes change <+/-0.2 as judgment conditions. Detect interval is 200ms. When the maximum of three axes change <+/-0.2, the user case MUST be mobile phone stay away from the body, but if it is>+/-0.2, it MAY be on the person's body, power reduction is on. #### Detail Power reduction mechanism ^{*}When it is in "static" state, the detection frequency is 200ms. When it is In "Dynamic" state, the detection frequency is 30s. ## **ANNEX J** Accreditation Certificate # **Accredited Laboratory** A2LA has accredited ## TELECOMMUNICATION TECHNOLOGY LABS, CAICT Beijing, People's Republic of China for technical competence in the field of ### **Electrical Testing** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017). Presented this 26th day of June 2023. Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049.01 Valid to July 31, 2024 For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.