

# SAR TEST REPORT

Report No.: DDT-B23010903-1E01

| Applicant            | :   | Corsair Memory, Inc.                             |     |
|----------------------|-----|--------------------------------------------------|-----|
| Applicant Address    | :   | 115 North McCarthy Blvd, Milpitas, CA 95035, USA | (R) |
| Equipment Under Test | :   | Dongle                                           |     |
| Model No.            | :   | RDA0048                                          |     |
| Trade Mark           |     | Corsair                                          |     |
| FCC ID               | : , | 2AAFMRDA0048                                     |     |
| IC                   | ÷   | 10954A-RDA0048                                   |     |
| Manufacturer         | 4   | Corsair Memory, Inc.                             |     |
| Manufacturer Address | :   | 115 North McCarthy Blvd, Milpitas, CA 95035, USA |     |

Issued By: Tianjin Dongdian Testing Ferrie Ltd. Address: Building D-1, No. 19, Weist Road, Microelectronics Industrial Park, Development Area, Tianjin, Chinage Tel: +86-22-58038033, E-mail: Vet@dgddt.com, http://www.ddttest.com



# Table of Contents

| 1.     | Summary of Test Results                            |     |
|--------|----------------------------------------------------|-----|
| 1.1.   | Max SAR results                                    |     |
| 1.2.   | RF exposure limits                                 |     |
| 2.     | General Test Information                           | . 7 |
| 2.1.   | Description of EUT                                 |     |
| 2.2.   | RF Channel Information                             |     |
| 2.3.   | Accessories of EUT                                 |     |
| 2.4.   | Assistant equipment used for test                  |     |
| 2.5.   | Block diagram of EUT configuration for test        | . 8 |
| 2.6.   | Test environment conditions                        | . 8 |
| 2.7.   | Test laboratory                                    | . 8 |
| 3.     | SAR Measurements System Configuration              |     |
| 3.1.   | The SAR Measurement System                         |     |
| 3.2.   | Isotropic E-field Probe EX3DV4                     | 10  |
| 3.3.   | SAM Twin Phantom                                   |     |
| 3.4.   | ELI Phantom                                        |     |
| 3.5.   | Data Acquisition Electronics (DAE)                 | 11  |
| 3.6.   | Device Holder for Transmitters                     |     |
| 4.     | Measurement procedure                              | 13  |
| 4.1.   | Scanning procedure                                 |     |
| 5.     | Description of Test Position                       | 15  |
| 5.1.   | Body-Worn Accessory Configurations                 | 15  |
| 5.2.   | Extremity exposure configurations                  |     |
| 5.3.   | Body Exposure Condition                            | 16  |
| 6.     | RF Exposure Conditions                             | 18  |
| 6.1.   | EUT sides                                          | 18  |
| 6.2.   | Standalone SAR Test Exclusion Considerations       |     |
| 6.3.   | Test sides and test exclusion                      | 20  |
| 7.     | SAR System Verification Procedure                  | 21  |
| 7.1. ® | Tissue Simulate Liquid                             | 21  |
| 7.1.1. | Recipes for Tissue Simulate Liquid                 |     |
| 7.1.2. | Measurement for Tissue Simulate Liquid2            |     |
| 7.2.   | SAR System Validation                              | 22  |
| 7.2.1. | Justification for Extended SAR Dipole Calibrations |     |
| 7.2.2. | Validation Test Setup Photograph                   | 23  |
| 7.2.3. | Summary System Validation Result(s)                | 24  |
|        |                                                    |     |

### Report No.: DDT-B23010903-1E01

| 7.2.4.  | Detailed System Validation Results |          |   | 24 |
|---------|------------------------------------|----------|---|----|
| 8.      | Equipment list                     |          |   | 25 |
| 9.      | Measurement Uncertainty            |          |   | 26 |
| 10.     | Test results and Measurement Data  | <u>B</u> | 8 | 27 |
| 10.1.   | RF conducted Power                 | <u>*</u> |   | 27 |
| 10.2.   | Duty cycle Picture                 |          |   | 27 |
| 10.3.   | Measurement of SAR Data            |          |   | 28 |
| 10.3.1. | SAR Result of SRD                  |          |   |    |
| 11.     | Appendix                           | 8        |   | 29 |

Page 3 of 29

# **Test Report Declare**

| Applicant            | : | Corsair Memory, Inc.                             |
|----------------------|---|--------------------------------------------------|
| Address              |   | 115 North McCarthy Blvd, Milpitas, CA 95035, USA |
| Equipment under Test |   | Dongle                                           |
| Model No.            | : | RDA0048                                          |
| Trade Mark           | : | Corsair                                          |
| Manufacturer         |   | Corsair Memory, Inc.                             |
| Address              | - | 115 North McCarthy Blvd, Milpitas, CA 95035, USA |

#### **Test Standard Used:**

IEEE Std. 1528-2013; IEC/IEEE 62209-1528:2020 FCC Rules and Regulations: 47 CFR § 2.1093; § 1.1310 ISED Rules and Regulations: RSS-102 Issue5, Mar. 2015

#### **Test Procedure Used:**

KDB447498 D01 v06, KDB447498 D02 v02r01, KDB 865664 D01 v01r04, KDB 865664 D02 v01r02

#### We Declare:

The equipment described above is tested by Tianjin Dongdian Testing Service of Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Tianjin Dongdian Testing Service Co. At is assumed at full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC and ISED standards.

| Report No:       | DDT-B23010903-1E01 |               |               |
|------------------|--------------------|---------------|---------------|
| Date of Receipt: | Jan. 09, 2023      | Date of Test: | Jan. 10, 2023 |

Prepared By:

Novak

®

Leon Li / RF Manager

Approved Bv:

Novak Wei / Engineer

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Tianjin Dongdian Testing Service Co., Ltd.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Report No.: DDT-B23010903-1E01

|      |               | Revision Histo | ory P         |            |
|------|---------------|----------------|---------------|------------|
| Rev. | Revisions     |                | Issue Date    | Revised By |
|      | Initial issue | - Ar           | Jan. 12, 2023 |            |
|      | pP'           | nP'            | D             | <i>y</i>   |



### 1. Summary of Test Results

### 1.1. Max SAR results

| Band  | Test Position            | Test mode | Max. Reported SAR<br>(W/kg) | SAR limit<br>(W/kg) | Verdict |
|-------|--------------------------|-----------|-----------------------------|---------------------|---------|
| SRD E | Body(1-g)<br>0mm         | SBD       | 0.2751                      | 1.6                 | Pass    |
|       | Extremities(10-g)<br>0mm | SRD       | 0.1085                      | 4                   | Pass    |

### 1.2. RF exposure limits

| Human Exposure                                  | Uncontrolled Environment<br>General Population | Controlled Environment<br>Occupational |  |
|-------------------------------------------------|------------------------------------------------|----------------------------------------|--|
| Spatial Average SAR**<br>(Whole Body)           | 0.08 W/kg                                      | 0.40 W/kg                              |  |
| Spatial Peak SAR*<br>(Brain*Trunk)              | 1.60 W/kg                                      | 8.00 W/kg                              |  |
| Spatial Peak SAR***<br>(Hands/Feet/Ankle/Wrist) | 4.00 W/kg                                      | 20.00 W/kg                             |  |
| Notos:                                          |                                                |                                        |  |

#### Notes:

1) The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

2) The Spatial Average value of the SAR averaged over the whole body.

3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

4) Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

5) Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

#### Report No.: DDT-B23010903-1E01

## 2. General Test Information

### 2.1. Description of EUT

| EUT Description     | 0 | Dongle 🛛 🖉 🛞                     | 8    |
|---------------------|---|----------------------------------|------|
| Model Number        | 1 | RDA0048                          | × Jr |
| Trade Mark          | ŀ | Corsair                          |      |
| Sample Type         | : | Portable Device                  | DE   |
| Radio Specification | : | Bluetooth: SRD                   |      |
| Frequency Range     | : | SRD: 2404-2478MHz                |      |
| Modulation          | : | SRD: GFSK                        |      |
| Date Rate           | 2 | SRD: 2M                          | × 1  |
| Antenna Type        | : | Chip Antenna                     |      |
| Antenna Gain        | : | Maximum PK gain -0.9dBi          |      |
| Power Supply        | : | DC 5V from external PC or Laptop |      |

Note: EUT is the abbreviation of equipment under test.

### 2.2. RF Channel Information

|         |                    | SRD Channe | el Information     |         |                    |
|---------|--------------------|------------|--------------------|---------|--------------------|
| Channel | Frequency<br>(MHz) | Channel    | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 1       | 2404               | 14         | 2430               | 27      | 2456               |
| 2®      | 2406               | 15 🕓       | 2432               | 28 🛞    | 2458               |
| 3       | 2408               | 16         | 2434               | 29      | 2460               |
| 4       | 2410               | 17         | 2436               | 30      | 2462               |
| 5       | 2412               | 18         | 2438               | 31      | 2464               |
| 6       | 2414               | 19         | 2440               | 32      | 2466               |
| 7       | 2416               | 20         | 2442               | 33      | 2468               |
| 8       | 2418               | 21         | 2444               | 34      | 2470               |
| 9       | 2420               | 22         | 2446               | 35      | 2472               |
| 10      | 2422               | 23         | 2448               | 36      | 2474               |
| 11      | 2424               | 24         | 2450               | 37      | 2476               |
| 12      | 2426               | 25         | 2452               | 38      | 2478               |
| 13      | 2428               | 26         | 2454               |         |                    |

### 2.3. Accessories of EUT

| Description of<br>Accessories | Manufacturer | Model number | Description | Remark |
|-------------------------------|--------------|--------------|-------------|--------|
| N/A                           | N/A          | N/A          | N/A         | N/A    |

### 2.4. Assistant equipment used for test

|   | Assistant<br>equipment | Manufacturer               | Model number  | EMC<br>Compliance | SN         |  |
|---|------------------------|----------------------------|---------------|-------------------|------------|--|
| C | Notebook               | Lenovo Beijing<br>Co. Ltd. | ThinkPad T450 | FCC/CE            | SL10H72009 |  |

Page 7 of 29

Report No.: DDT-B23010903-1E01

### 2.5. Block diagram of EUT configuration for test



Test software: Airoha.Console.exe

### 2.6. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

| © Condition       | Normal Condition | Extreme Condition |  |  |
|-------------------|------------------|-------------------|--|--|
| Pressure range    | 86-106KPa        | N/A               |  |  |
| Relative Humidity | 30-75%           | N/A               |  |  |
| Temperature(°C)   | <b>22℃-25℃</b>   | N/A               |  |  |
| Voltage(V)        | 5V               | N/A               |  |  |

### 2.7. Test laboratory

Tianjin Dongdian Testing Service Co., Ltd.

Address: Building D-1, No. 19, Weisi Road, Microelectronics Industrial Park Development Area, Tianjin, China., 300385

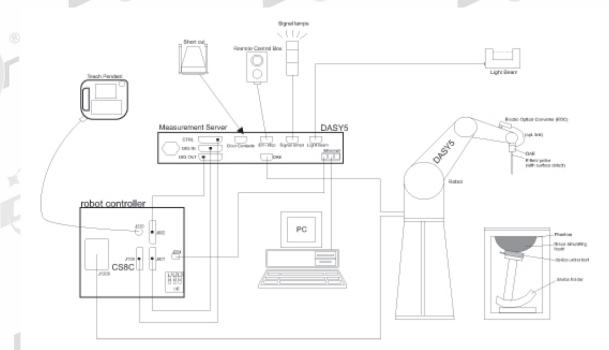
Tel: +86-22-58038033, http://www.ddttest.com, Email: ddt@dgddt.com

NVLAP (National Voluntary Laboratory Accreditation Program) CODE: 500036-0

CNAS (China National Accreditation Service for Conformity Assessment) CODE: L13402

FCC Designation Number: CN5004; FCC Test Firm Registration Number: 368676

ISED (Innovation, Science and Economic Development Canada) Company Number: 27768


Conformity Assessment Body Identifier: CN0125

VCCI Facility Registration Number: C-20089, T-20093, R-20125, G-20122

### 3. SAR Measurements System Configuration

### 3.1. The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR=  $\sigma$  (|Ei|2)/  $\rho$  where  $\sigma$  and  $\rho$  are the conductivity and mass density of the tissue-Simulate.



The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension for accommodation the data acquisition electronics (DAE).
- An isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY52 software.

- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

### 3.2. Isotropic E-field Probe EX3DV4

|               | Symmetrical design with triangular core<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic solvents,<br>e.g., DGBE)                                                |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Calibration   | ISO/IEC 17025 calibration service available.                                                                                                                                                                  |  |  |  |  |
| Frequency     | 10 MHz to > 6 GHz<br>Linearity: ± 0.2 Db (30 MHz to 6 GHz)                                                                                                                                                    |  |  |  |  |
| Directivity   | ± 0.3 Db in TSL (rotation around probe axis)<br>± 0.5 Db in TSL (rotation normal to probe axis)                                                                                                               |  |  |  |  |
| Dynamic Range | 10 μW/g to > 100 Mw/g<br>Linearity: ± 0.2 Db (noise: typically < 1 μW/g)                                                                                                                                      |  |  |  |  |
| Dimensions    | Overall length: 337 mm (Tip: 20 mm)<br>Tip diameter: 2.5 mm (Body: 12 mm)<br>Typical distance from probe tip to dipole centers: 1 mm                                                                          |  |  |  |  |
| Application   | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%. |  |  |  |  |
| Compatibility | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI                                                                                                                                                                |  |  |  |  |

### 3.3. SAM Twin Phantom

| Material                                | Vinylester, glass fiber reinforced<br>(VE-GF)                               |                                             |
|-----------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------|
| Liquid Compatibility                    | Compatible with all SPEAG tissue<br>simulating liquids (incl. DGBE<br>type) |                                             |
| Shell Thickness                         | $2 \pm 0.2$ mm (6 $\pm 0.2$ mm at ear point)                                |                                             |
| Dimensions<br>(incl. Wooden<br>Support) | Length: 1000 mm<br>Width: 500 mm<br>Height: adjustable feet                 |                                             |
| Filling Volume                          | 10esolut. 25 liters                                                         |                                             |
| Wooden Support                          | SPEAG standard phantom table                                                |                                             |
| The shell corresponds to                | the specifications of the Specific Anthropo                                 | morphic Mannequin (SAM) phantom             |
| defined in IEEE 1528 an                 | d IEC 62209-1. It enables the dosimetric ev                                 | aluation of left and right hand phone usage |

as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

### 3.4. ELI Phantom

| Material             | Vinylester, glass fiber reinforced<br>(VE-GF)                               | 8 |
|----------------------|-----------------------------------------------------------------------------|---|
| Liquid Compatibility | Compatible with all SPEAG tissue<br>simulating liquids (incl. DGBE<br>type) |   |
| Shell Thickness      | 2 ± 0.2 mm (bottom plate)                                                   |   |
| Dimensions           | Major axis: 600 mm<br>Minor axis: 400 mm                                    |   |
| Filling Volume       | 11esolut. 30 liters                                                         |   |
| Wooden Support       | SPEAG standard phantom table                                                |   |
|                      |                                                                             |   |

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

### 3.5. Data Acquisition Electronics (DAE)

| Model                   | DAE4                                                                                                                                                                                                                                                                     |        |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Construction            | Signal amplifier, multiplexer, A/D<br>converter and control logic. Serial optical<br>link for communication with DASY4/5<br>embedded system (fully remote<br>controlled). Two step probe touch<br>detector for mechanical surface detection<br>and emergency robot stop. | 4      |
| Measurement<br>Range    | -100 to +300 Mv (16 bit resolution and<br>two range settings: 4Mv,400Mv)                                                                                                                                                                                                 |        |
| Input Offset<br>Voltage | < 5Mv (with auto zero)                                                                                                                                                                                                                                                   | 270    |
| Input Bias<br>Current   | < 50 f A                                                                                                                                                                                                                                                                 | 1      |
| Dimensions              | 60 x 60 x 68 mm                                                                                                                                                                                                                                                          | in the |



Page 11 of 29

#### Report No.: DDT-B23010903-1E01

### 3.6. Device Holder for Transmitters



The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon$ =3 and loss tangent  $\delta$ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

### 4. MEASUREMENT PROCEDURE

#### 4.1. Scanning procedure

#### Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

#### Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm\*15mm or 12mm\*12mm or 10mm\*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

#### Step 3: Zoom scan

Around this point, a volume of 30mm\*30mm\*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5x5x7 points (≤2GHz) and 7x7x7 points (≥2GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure: The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan 13esolutionns specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE 1528-2013.

Page 13 of 29

|                                                                          | -                                                                                                      |                                                                                            |                                                                                                                                                                                                                                                                        |                                                                                                                                        |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                          |                                                                                                        |                                                                                            | $\leq$ 3 GHz                                                                                                                                                                                                                                                           | > 3 GHz                                                                                                                                |  |
|                                                                          | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface |                                                                                            | 5 mm ± 1 mm                                                                                                                                                                                                                                                            | $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$                                                                  |  |
| Maximum probe angle<br>surface normal at the r                           |                                                                                                        |                                                                                            | $30^{\circ} \pm 1^{\circ}$                                                                                                                                                                                                                                             | $20^{\circ} \pm 1^{\circ}$                                                                                                             |  |
|                                                                          |                                                                                                        |                                                                                            | $ \begin{array}{c} \leq 2 \ {\rm GHz} : \leq 15 \ {\rm mm} \\ 2 - 3 \ {\rm GHz} : \leq 12 \ {\rm mm} \end{array} & \begin{array}{c} 3 - 4 \ {\rm GHz} : \leq 12 \ {\rm mm} \\ 4 - 6 \ {\rm GHz} : \leq 10 \ {\rm mm} \end{array} $                                     |                                                                                                                                        |  |
| Maximum area scan spatial resolution: $\Delta x_{Area}, \Delta y_{Area}$ |                                                                                                        |                                                                                            | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                                                                                                        |  |
| Maximum zoom scan                                                        | spatial res                                                                                            | olution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$                                             | $\leq$ 2 GHz: $\leq$ 8 mm<br>2 - 3 GHz: $\leq$ 5 mm <sup>*</sup>                                                                                                                                                                                                       | $3 - 4 \text{ GHz}: \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz}: \le 4 \text{ mm}^*$                                                     |  |
|                                                                          | uniform                                                                                                | grid: Δz <sub>Zoom</sub> (n)                                                               | $\leq$ 5 mm                                                                                                                                                                                                                                                            | $3-4$ GHz: $\leq 4$ mm<br>$4-5$ GHz: $\leq 3$ mm<br>$5-6$ GHz: $\leq 2$ mm                                                             |  |
| Maximum zoom<br>scan spatial<br>resolution, normal to<br>phantom surface | graded                                                                                                 | $\Delta z_{Zoom}(1)$ : between<br>1 <sup>st</sup> two points closest<br>to phantom surface | ≤ 4 mm                                                                                                                                                                                                                                                                 | $3 - 4 \text{ GHz:} \le 3 \text{ mm}$<br>$4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$<br>$5 - 6 \text{ GHz:} \le 2 \text{ mm}$              |  |
|                                                                          | grid                                                                                                   | Δz <sub>Zoom</sub> (n>1):<br>between subsequent<br>points                                  | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$                                                                                                                                                                                                                       |                                                                                                                                        |  |
| Minimum zoom<br>scan volume                                              | x, y, z                                                                                                |                                                                                            | ≥ 30 mm                                                                                                                                                                                                                                                                | $3 - 4 \text{ GHz}$ : $\geq 28 \text{ mm}$<br>$4 - 5 \text{ GHz}$ : $\geq 25 \text{ mm}$<br>$5 - 6 \text{ GHz}$ : $\geq 22 \text{ mm}$ |  |
|                                                                          |                                                                                                        |                                                                                            | •                                                                                                                                                                                                                                                                      | •                                                                                                                                      |  |

Note:  $\delta$  is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is  $\leq 1.4$  W/kg,  $\leq 8$  mm,  $\leq 7$  mm and  $\leq 5$  mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max.  $\pm 5$  %

#### Step 5: Z-Scan (FCC only)

The Z scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be greater than the step size in Z-direction.

### 5. DESCRIPTION OF TEST POSITION

#### 5.1. Body-Worn Accessory Configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e., the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

Page 15 of 29

Report No.: DDT-B23010903-1E01

### 5.2. Extremity exposure configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions: i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements. For smart phones with a display diagonal dimension >15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear. the phablets procedures outlined in KDB Publication 648474 D04 v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and bodyworm accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot to the maximum output power (including tolerance) is 1-g SAR > 1.2 W/kg.

### 5.3. Body Exposure Condition

For USB dongle transmitter, according to KDB 447498 D02 and KDB 447498 D01 requirements. These test orientations are intended for the exposure conditions found in typical laptop / notebook / netbook or tablet computers with either horizontal or vertical USB connector configurations at various locations in the keyboard section of the computer. Current generation portable host computers should be used to establish the required SAR measurement separation distance. The same test separation distance must be used to test all frequency bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of host computers, must be tested using an appropriate host computer. A host computer with either Vertical-Front (C) or Vertical-Back (D) USB connection should be used to test one of the vertical

Page 16 of 29

USB orientations. If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a high quality USB cable, 12 inches or less, may be used for testing these other orientations. It must be documented that the USB cable does not influence the radiating characteristics and output power of the transmitter.



Tianjin Dongdian Testing Service Co., Ltd. Report No.: DDT-B23010903-1E01 6. **RF EXPOSURE CONDITIONS** 6.1. EUT sides R 0 Left Side **Right Side** Front Side Back Side Bottom Side Top Side Note: 1. The logo side set as the front side to test. Page 18 of 29

# 6.2. Standalone SAR Test Exclusion Considerations

According to RSS-102, the SAR test exclusion threshold:

| Frequency | Exemption Limits (mW)                 |                                       |                                       |                                       |                                       |  |  |  |  |
|-----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|--|--|--|
| (MHz)     | At separation<br>distance of<br>≤5 mm | At separation<br>distance of<br>10 mm | At separation<br>distance of<br>15 mm | At separation<br>distance of<br>20 mm | At separation<br>distance of<br>25 mm |  |  |  |  |
| ≤300      | 71 mW                                 | 101 mW                                | 132 mW                                | 162 mW                                | 193 mW                                |  |  |  |  |
| 450       | 52 mW                                 | 70 mW                                 | 88 mW                                 | 106 mW                                | 123 mW                                |  |  |  |  |
| 835       | 17 mW                                 | 30 mW                                 | 42 mW                                 | 55 mW                                 | 67 mW                                 |  |  |  |  |
| 1900      | 7  mW                                 | 10 mW                                 | 18 mW                                 | 34 mW                                 | 60 mW                                 |  |  |  |  |
| 2450      | 4 mW                                  | 7 mW                                  | 15 mW                                 | 30 mW                                 | 52 mW                                 |  |  |  |  |
| 3500      | 2 mW                                  | 6 mW                                  | 16 mW                                 | 32 mW                                 | 55 mW                                 |  |  |  |  |
| 5800      | 1 mW                                  | 6 mW                                  | 15 mW                                 | 27 mW                                 | 41 mW                                 |  |  |  |  |

|   | Frequency | Exemption Limits (mW)                 |                                       |                                       |                                       |                                        |  |  |  |  |
|---|-----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--|--|--|--|
|   | (MHz)     | At separation<br>distance of<br>30 mm | At separation<br>distance of<br>35 mm | At separation<br>distance of<br>40 mm | At separation<br>distance of<br>45 mm | At separation<br>distance of<br>≥50 mm |  |  |  |  |
| 6 | ≤300      | 223 mW                                | 254 mW                                | 284 mW                                | 315 mW                                | 345 mW                                 |  |  |  |  |
| 2 | 450       | 141 mW                                | 159 mW                                | 177 mW                                | 195 mW                                | 213 mW                                 |  |  |  |  |
| 1 | 835       | 80 mW                                 | 92 mW                                 | 105 mW                                | 117 mW                                | 130 mW                                 |  |  |  |  |
|   | 1900      | 99 mW                                 | 153 mW                                | 225 mW                                | 316 mW                                | 431 mW                                 |  |  |  |  |
|   | 2450      | 83 mW                                 | 123 mW                                | 173 mW                                | 235 mW                                | 309 mW                                 |  |  |  |  |
|   | 3500      | 86 mW                                 | 124 mW                                | 170 mW                                | 225 mW                                | 290 mW                                 |  |  |  |  |
|   | 5800      | 56 mW                                 | 71 mW                                 | 85 mW                                 | 97 mW                                 | 106 mW                                 |  |  |  |  |

According to the KDB447498, the SAR test exclusion threshold:

| ~      | MHz  | 5   | 10  | 15  | 20  | 25  | mm                    |  |
|--------|------|-----|-----|-----|-----|-----|-----------------------|--|
|        | 150  | 39  | 77  | 116 | 155 | 194 |                       |  |
|        | 300  | 27  | 55  | 82  | 110 | 137 |                       |  |
| $\sim$ | 450  | 22  | 45  | 67  | 89  | 112 |                       |  |
|        | 835  | 16  | 33  | 49  | 66  | 82  |                       |  |
|        | 900  | 16  | 32  | 47  | 63  | 79  |                       |  |
|        | 1500 | 12  | 24  | 37  | 49  | 61  | SAR Test<br>Exclusion |  |
|        | 1900 | 11  | 22  | 33  | 44  | 54  | Threshold (mW)        |  |
|        | 2450 | 10  | 19  | 29  | 38  | 48  |                       |  |
|        | 3600 | 8   | 16  | 24  | 32  | 40  |                       |  |
|        | 5200 | 7   | 13  | 20  | 26  | 33  |                       |  |
|        | 5400 | 6   | 13  | 19  | 26  | 32  |                       |  |
|        | 5800 | 6   | 12  | 19  | 25  | 31  |                       |  |
|        |      |     |     |     |     |     |                       |  |
|        | MHz  | 30  | 35  | 40  | 45  | 50  | mm                    |  |
|        | 150  | 232 | 271 | 310 | 349 | 387 |                       |  |
|        | 300  | 164 | 192 | 219 | 246 | 274 |                       |  |
|        | 450  | 134 | 157 | 179 | 201 | 224 |                       |  |
|        | 835  | 98  | 115 | 131 | 148 | 164 |                       |  |
| 0      | 900  | 95  | 111 | 126 | 142 | 158 |                       |  |
| B      | 1500 | 73  | 86  | 98  | 110 | 122 | SAR Test<br>Exclusion |  |
| 1      | 1900 | 65  | 76  | 87  | 98  | 109 | Threshold (mW)        |  |
|        | 2450 | 57  | 67  | 77  | 86  | 96  |                       |  |
|        | 3600 | 47  | 55  | 63  | 71  | 79  |                       |  |
|        | 5200 | 39  | 46  | 53  | 59  | 66  |                       |  |
|        | 5400 | 39  | 45  | 52  | 58  | 65  |                       |  |
|        | 5800 | 37  | 44  | 50  | 56  | 62  |                       |  |
|        |      |     |     |     |     |     |                       |  |

Page 19 of 29

Page 20 of 29

### 6.3. Test sides and test exclusion

For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance,

mm)]  $\cdot [\sqrt{f(GHz)}] \le 3.0$  for 1-g SAR and  $\le 7.5$  for 10-g SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

For 100 MHz to 6 GHz and test separation distances > 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

1) {[Power allowed at numeric threshold for 50 mm in above step)] + [(test separation distance -50 mm)·(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz

2) {[Power allowed at numeric threshold for 50 mm in above step)] + [(test separation distance -50 mm)  $\cdot$  10]} mW, for > 1500 MHz and  $\leq$  6 GHz

|                  |                   | 9             | SAR test sides |                 |      |              |
|------------------|-------------------|---------------|----------------|-----------------|------|--------------|
| 0                |                   |               | Head           |                 |      |              |
| Band             | Back              | Front         | Тор            | Bottom          | Left | Right        |
| SRD              |                   | V             | V              |                 | ×    | $\checkmark$ |
| Note: The SAR te | st distance is 0m | m between FUT | outer surface  | with the phanto | m    |              |

## 7. SAR SYSTEM VERIFICATION PROCEDURE

### 7.1. Tissue Simulate Liquid

### 7.1.1. Recipes for Tissue Simulate Liquid

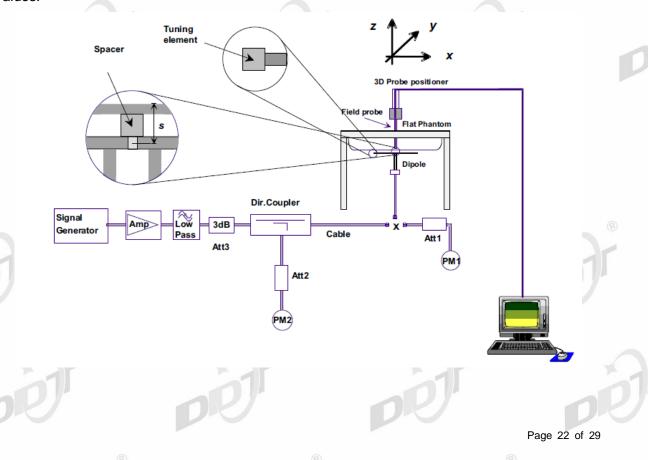
The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands :

| Ingredients   | Frequency (MHz) |       |       |       |           |       |           |       |  |
|---------------|-----------------|-------|-------|-------|-----------|-------|-----------|-------|--|
| (% by weight) | 450             |       | 835   |       | 1800-2000 |       | 2300-2700 |       |  |
| Tissue Type   | Head            | Body  | Head  | Body  | Head      | Body  | Head      | Body  |  |
| Water         | 38.56           | 51.16 | 40.30 | 50.75 | 55.24     | 70.17 | 55.00     | 68.53 |  |
| Salt (NaCl)   | 3.95            | 1.49  | 1.38  | 0.94  | 0.31      | 0.39  | 0.2       | 0.1   |  |
| Sucrose       | 56.32           | 46.78 | 57.90 | 48.21 | 0         | 0     | 0         | 0     |  |
| HEC           | 0.98            | 0.52  | 0.24  | 0     | 0         | 0     | 0         | 0     |  |
| Bactericide   | 0.19            | 0.05  | 0.18  | 0.10  | 0         | 0     | 0         | 0     |  |
| Tween         | 0               | 0     | 0     | 0     | 44.45     | 29.44 | 44.80     | 31.37 |  |

Salt: 99<sup>+</sup>% Pure Sodium Chloride Water: De-ionized, 16 MΩ<sup>+</sup> resistivity Sucrose: 98<sup>+</sup>% Pure Sucrose HEC: Hydroxyethyl Cellulose

Tween: Polyoxyethylene (20) sorbitan monolaurate

### 7.1.2. Measurement for Tissue Simulate Liquid


The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity ( $\sigma$ ) and Permittivity ( $\rho$ ) are listed in table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

| Tissue<br>Type | Freq. | Target Tiss                |                        | sured<br>sue | Liquid<br>Temp. | Measured |            |
|----------------|-------|----------------------------|------------------------|--------------|-----------------|----------|------------|
|                | (MHz) | ٤r                         | σ(S/m)                 | ٤r           | σ(S/m)          | (°C)     | Date       |
|                | 2402  | 39.296<br>(37.331~41.261)  | 1.758<br>(1.670~1.846) | 38.23        | 1.740           | 20.5     | 2023/01/10 |
|                | 2440  | 39.220<br>(37.259 ~41.181) | 1.791<br>(1.701~1.881) | 38.146       | 1.767           | 20.5     | 2023/01/10 |
| 2450<br>head   | 2441  | 39.218<br>(37.257~41.179)  | 1.792<br>(1.702~1.882) | 38.034       | ® 1.768         | 20.5     | 2023/01/10 |
|                | 2450  | 39.20<br>(37.240~41.160)   | 1.80<br>(1.710~1.890)  | 37.92        | 1.771           | 20.5     | 2023/01/10 |
|                | 2480  | 39.160<br>(37.202~41.118)  | 1.832<br>(1.740~1.924) | 37.782       | 1.806           | 20.5     | 2023/01/10 |

Report No.: DDT-B23010903-1E01

### 7.2. SAR System Validation

The microwave circuit arrangement for system verification is sketched in bellow figure. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table 5 (A power level of 250mw was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.



### 7.2.1. Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within  $5\Omega$  from the previous measurement.

2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

### 7.2.2. Validation Test Setup Photograph



Page 23 of 29

|   | Validation Kit      |            | Measured<br>SAR<br>250mW | Measured<br>SAR<br>normalized<br>to 1w) | Target SAR<br>(normalized<br>to 1w)<br>(±10%) | Liquid<br>Temp.<br>(℃) | ®<br>Measured Date |  |
|---|---------------------|------------|--------------------------|-----------------------------------------|-----------------------------------------------|------------------------|--------------------|--|
|   |                     | <i>) f</i> | (W/kg)                   | (W/kg)                                  | (W/kg)                                        |                        |                    |  |
|   | D2450V2<br>@2450MHz | 1-g        | 12.8                     | 51.2                                    | 53.1<br>(47.79~58.41)                         |                        |                    |  |
| B |                     | 10-g       | 6.001                    | 24.004                                  | 24.5<br>(22.05~26.95)                         | 20.5                   | 2023/01/10         |  |

# 7.2.3. Summary System Validation Result(s)

## 7.2.4. Detailed System Validation Results

See the Appendix A.







D

Page 24 of 29

# 8. EQUIPMENT LIST

| Test Platform                               | SPEAG DASY5 Professional |                                               |                |                     |                            |  |  |  |  |
|---------------------------------------------|--------------------------|-----------------------------------------------|----------------|---------------------|----------------------------|--|--|--|--|
| Location                                    | SAR room                 |                                               |                |                     |                            |  |  |  |  |
| Description                                 | SAF                      | SAR Test System (Frequency range 300MHz-6GHz) |                |                     |                            |  |  |  |  |
| Equipment                                   | Manufacturer             | Model                                         | Serial Number  | Calibration<br>Date | Due date of<br>calibration |  |  |  |  |
| Robot                                       | Staubli                  | TX90 XL                                       | F12/5N3XC/A/01 | NCR                 | NCR                        |  |  |  |  |
| SAM twin<br>Phantom                         | SPEAG                    | SAM                                           | 1752           | NCR                 | NCR                        |  |  |  |  |
| DAE                                         | SPEAG                    | DAE4                                          | 1366           | 2022-01-21          | 2023-01-20                 |  |  |  |  |
| SAR test Probe                              | SPEAG                    | EX3DV4                                        | 3906           | 2022-02-27          | 2023-02-26                 |  |  |  |  |
| Validation Kits                             | SPEAG                    | D2450V2                                       | 904            | 2022-01-26          | 2025-01-25                 |  |  |  |  |
| Agilent Network<br>Analyzer                 | Agilent                  | E5071C                                        | MY46316792     | 2022-02-16          | 2023-02-15                 |  |  |  |  |
| Dielectric Probe<br>Kit                     | Agilent                  | 85070E                                        | 85070-20037    | NCR                 | NCR                        |  |  |  |  |
| 0.1G-2Ghz<br>DUAL<br>DIRECTIONAL<br>COUPLER | Agilent                  | ®<br>778D                                     | MY52180233     | NCR                 | NCR                        |  |  |  |  |
| Signal Generator                            | Agilent                  | N5182A                                        | MY50143288     | 2022-03-07          | 2023-03-06                 |  |  |  |  |
| Preamplifier                                | Mini-Circuits            | ZHL-42W                                       | QA1240001      | NCR                 | NCR                        |  |  |  |  |
| Preamplifier                                | Mini-Circuits            | ZVE-8G+                                       | 926701231      | NCR                 | NCR                        |  |  |  |  |
| EPM Series<br>Power Meter                   | Agilent                  | N1914A                                        | MY53040013     | 2022-02-16          | 2023-02-15                 |  |  |  |  |
| Power Sensor                                | Agilent                  | 8481H                                         | MY52490005     | 2022-02-16          | 2023-02-15                 |  |  |  |  |
| Attenuator                                  | Agilent                  | 8491A<br>3dB                                  | MY52460179     | NCR                 | NCR                        |  |  |  |  |
| Attenuator                                  | Agilent                  | 8491A<br>10dB                                 | MY52460275     | NCR                 | ® NCR                      |  |  |  |  |
| Humidity and<br>Temperature<br>Indicator    | Anymetre                 | JR900                                         | #4             | 2022-02-09          | 2023-02-08                 |  |  |  |  |

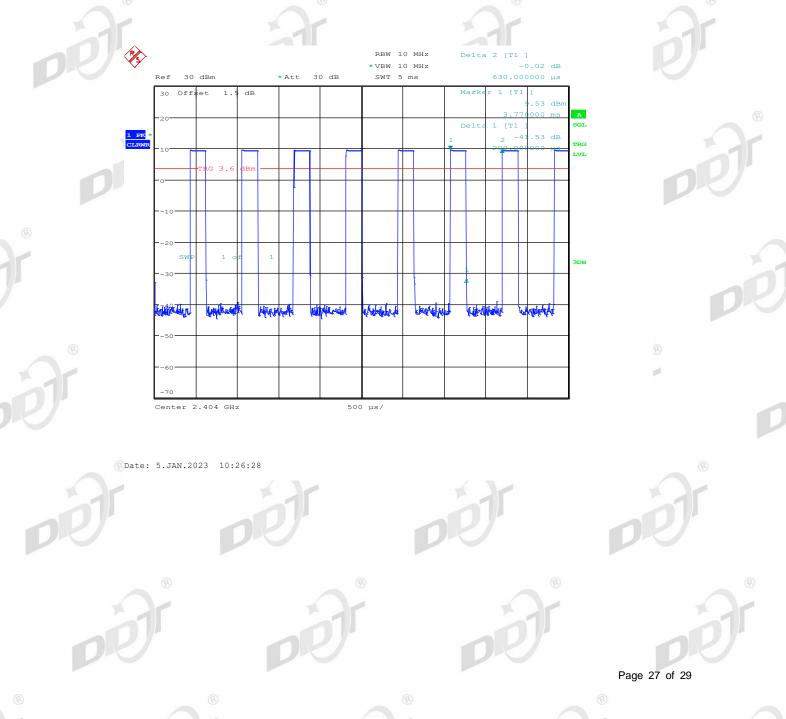
# 9. MEASUREMENT UNCERTAINTY

|                                                                                |                             |                           |                               | r      |         |
|--------------------------------------------------------------------------------|-----------------------------|---------------------------|-------------------------------|--------|---------|
| Uncertainty Component                                                          | probability<br>distribution | Contains<br>the<br>factor | Standard<br>uncertainty<br>Ui | C1(1g) | C1(10g) |
| Sensitivity of probe                                                           | Ν                           | 1                         | ±6.55%                        | 1      | 1       |
| Isotropy of the probe                                                          | R                           | √3                        | ±1.08%                        | 1      | 1       |
| Linearity of the probe                                                         | R                           | √3                        | ±0.35%                        | 1      | 1       |
| Coupling effect between probe and dielectric<br>boundary                       | R                           | √3                        | ±0.46%                        | 1      | 1       |
| The detection limit of the system                                              | R                           | (√3                       | ±0.14%                        | 1      | 1       |
| Errors in electronic reading equipment                                         | N                           | 1                         | ±0.35%                        | 1      | 1       |
| Measure the response time of the equipment                                     | R                           | √3                        | 0                             | 1      | 1       |
| Measure the integral time of the equipment                                     | R                           | √3                        | ±1.50%                        | 1      | 1       |
| Data post-processing algorithm                                                 | R                           | √3                        | ±0.58%                        | 1      | 1       |
| Electromagnetic environment disturbance                                        | R                           | √3                        | ±1.73%                        | 1      | 1       |
| the positioning accuracy of the probe                                          | R                           | √3                        | ±0.87%                        | 1      | 1       |
| The positioning accuracy of the probe tip relative to the model surface        | R                           | √3                        | s ±1.67%                      | 1      | 1       |
| Manufacturing tolerances for models                                            | R                           | √3                        | ±2.31%                        | 1      | 1       |
| Deviation of measured liquid conductivity from<br>target value                 | R                           | √3                        | ±2.89%                        | 0.64   | 0.43    |
| Liquid conductivity test system accuracy                                       | N                           | 1                         | ±2.5%                         | 0.64   | 0.43    |
| The deviation between the measured permittivity of liquid and the target value | R                           | √3                        | ±2.89%                        | 0.6    | 0.49    |
| Test precision of liquid permittivity test system                              | N                           | 1                         | ±2.5%                         | 0.6    | 0.49    |
| The disturbance of the positioning fixture                                     | N                           | 1                         | ±5.2%                         | 1      | 1       |
| Accuracy of sample positioning                                                 | N                           | 1                         | ±4.6%                         | 1      | 1       |
| The output power of the tested sample drifts                                   | R                           | √3                        | ±2.89%                        | 1      | 1       |
| Combined standard uncertainty                                                  |                             | Uc(1g)=11                 | .3%, Uc(10g)=                 | :11.0% |         |
| Expanded uncertainty(95% confidence interval)<br>k=2                           |                             | U(1g)=22                  | 2.6%, U(10g)=                 | 22%    |         |



# **10. TEST RESULTS AND MEASUREMENT DATA**

### 10.1. RF conducted Power


|      | 8                       | SI                 | RD ®                      |        | ®                              |  |  |  |  |
|------|-------------------------|--------------------|---------------------------|--------|--------------------------------|--|--|--|--|
| _    | Average conducted power |                    |                           |        |                                |  |  |  |  |
| Mode | Channel                 | Frequency<br>(MHz) | Power<br>(dBm) Duty-Cycle |        | Max. Tune-up<br>Power<br>(dBm) |  |  |  |  |
|      | 1                       | 2404               | 9.10                      | 0.3175 | 10                             |  |  |  |  |
| SRD  | 19                      | 2440               | 8.9                       | 0.3175 | 10                             |  |  |  |  |
| 5    | 38                      | 2478               | 8.84                      | 0.3175 | 10                             |  |  |  |  |

#### Note:

1. The output power of the device was set to transmit at maximum power for all test.

2. The SRD maximum output power channel is CH1, select CH1 to test SAR.

### 10.2. Duty cycle Picture



### 10.3. Measurement of SAR Data

### 10.3.1.

### SAR Result of SRD

| Test<br>position | Test<br>mode           | Test<br>Ch./Freq<br>(MHz) | Duty<br>Cycle | SAR<br>1-g<br>(W/kg) | Power<br>drift<br>(dB) | Conducted<br>power<br>(dBm) | Max.<br>Tune-up<br>Power<br>(dBm) | Scaled<br>factor | Scaled<br>SAR<br>1-g<br>(W/kg) | Liquid<br>Temp.<br>(℃) | SAR<br>limit<br>1-g<br>(W/kg) |
|------------------|------------------------|---------------------------|---------------|----------------------|------------------------|-----------------------------|-----------------------------------|------------------|--------------------------------|------------------------|-------------------------------|
|                  | SAR Test data—Body 0mm |                           |               |                      |                        |                             |                                   |                  |                                |                        |                               |
| Front            | SRD                    | 1/2404                    | 0.3175        | 0.062                | 0.1                    | 9.1                         | 10                                | 3.8749           | 0.2402                         | 20.5                   | 1.6                           |
| Back             | SRD                    | 1/2404                    | 0.3175        | 0.034                | 0.17                   | 9.1                         | 10                                | 3.8749           | 0.1317                         | 20.5                   | 1.6                           |
| Bottom           | SRD                    | 1/2404                    | 0.3175        | 0.067                | 0.17                   | 9.1                         | 10                                | 3.8749           | 0.2596                         | 20.5                   | 1.6                           |
| Тор              | SRD                    | 1/2404                    | 0.3175        | 0.071                | 0.01                   | 9.1                         | 10                                | 3.8749           | 0.2751                         | 20.5                   | 1.6                           |
| Right            | SRD                    | 1/2404                    | 0.3175        | 0.045                | -0.11                  | 9.1                         | 10                                | 3.8749           | 0.1744                         | 20.5                   | 1.6                           |
| Тор              | SRD                    | 19/2440                   | 0.3175        | 0.064                | 0.05                   | 8.9                         | 10                                | 4.0575           | 0.2597                         | 20.5                   | 1.6                           |
| Тор              | SRD                    | 38/2478                   | 0.3175        | 0.066                | 0.14                   | 8.84                        | 10                                | 4.1139           | 0.2715                         | 20.5                   | 1.6                           |

| Test<br>position | Test<br>mode | Test<br>Ch./Freq<br>(MHz) | Duty<br>Cycle | SAR<br>10-g<br>(W/kg) | Power<br>drift<br>(dB) | Conducted<br>power<br>(dBm) | Max.<br>Tune-<br>up<br>Power<br>(dBm) | Scaled<br>factor | Scaled<br>SAR<br>10-g<br>(W/kg) | Liquid<br>Temp.<br>(°C) | SAR<br>limit<br>10-g<br>(W/kg) |
|------------------|--------------|---------------------------|---------------|-----------------------|------------------------|-----------------------------|---------------------------------------|------------------|---------------------------------|-------------------------|--------------------------------|
|                  | I            |                           | 1             | SAR                   | Fest data-             | Extremities (               | )mm                                   |                  |                                 |                         |                                |
| Front            | SRD          | 1/2404                    | 0.3175        | 0.015                 | 0.1                    | 9.1                         | 10                                    | 3.8749           | 0.0581                          | 20.5                    | 4                              |
| Back             | SRD          | 1/2404                    | 0.3175        | 0.013                 | 0.17                   | 9.1                         | 10                                    | 3.8749           | 0.0504                          | 20.5                    | 4                              |
| Bottom           | SRD          | 1/2404                    | 0.3175        | 0.026                 | 0.17                   | 9.1                         | 10                                    | 3.8749           | 0.1007                          | 20.5                    | 4                              |
| Тор              | SRD          | 1/2404                    | 0.3175        | 0.028                 | 0.01                   | 9.1                         | 10                                    | 3.8749           | 0.1085                          | 20.5                    | 4                              |
| Right            | SRD          | 1/2404                    | 0.3175        | 0.012                 | -0.11                  | 9.1                         | 10                                    | 3.8749           | 0.0465                          | 20.5                    | 4                              |
| Тор              | SRD          | 19/2440                   | 0.3175        | 0.025                 | 0.05                   | 8.9                         | 10                                    | 4.0575           | 0.1014                          | 20.5                    | 4                              |
| Тор              | SRD          | 38/2478                   | 0.3175        | 0.023                 | 0.14                   | 8.84                        | 10                                    | 4.1139           | 0.0946                          | 20.5                    | 4                              |

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B
- 2) Scaled factor= (Max. Tune-up Power in mW) / (Conducted Power in mW) / (Duty Cycle)
- 3) Scaled SAR=Test SAR \* Scaled factor

Report No.: DDT-B23010903-1E01

# **11. APPENDIX**

Appendix A: System Validation Plots Appendix B: Highest Test Plots Appendix C: Calibration Certification Appendix D: Test setup photograph

END REPORT