FCC PART 90 TYPE APPROVAL EMI MEASUREMENT AND TEST REPORT

For

Qixiang Electron Science& Technology Co., Ltd

Qixiang Building, Tangxi Industrial Zone, Luojiang District, Quanzhou, Fujian, China

FCC ID: T4K3308

March 28, 2006

This Report Concerns:

☐ Original Report

Equipment Type:

TWO-WAY-RADIO

Test Engineer:

Charmi Peng Charm? Pery

Report No.: RSZ06030901

Test Date: March 21, 2006

Reviewed By: Chris Zeng

Prepared By: Bay Area Compliance Lab Corp. (ShenZhen)

6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong

518038, P.R.China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Lab Corp. (ShenZhen). This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	5
CONFIGURATION OF TEST SETUP	6
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
§2.1046, and §90.205 - CONDUCTED OUTPUT POWER	8
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST DATA	
§2.1047, and §90.207 - MODULATION CHARACTERISTIC	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	15
§2.1049, and § 90.209 – OCCUPIED BANDWIDTH	19
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST DATA	
§2.1051 and §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	
§2.1053 and §90.210 - RADIATED SPURIOUS EMISSION	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST RESULTS SUMMARY	
Test Data	
§2.1055 (d) and §90.213- FREQUENCY STABILITY	28
APPLICABLE STANDARD	28
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST DATA	
§90.214 - TRANSIENT FREQUENCY BEHAVIORAPPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
Test Data	22

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Qixiang Electron Science& Technology Co., Ltd*'s product, model number: 3308, Version: 1.0 or the "EUT" as referred to in this report is a TWO-WAY-RADIO. The EUT is measured approximately 14.2 cmL x 5.3 cmW x 3.8 cmH, rated input voltage: DC 7.5 V Battery, with detachable Antenna 8.0cm.

The series products, model 3308/720/3508/9759/327, we select 3308 to test.

* The test data gathered are from production sample, serial number: 0603026, provided by the manufacturer, we received the EUT on 2006-3-9.

Objective

This Type approval report is prepared on behalf of *Qixiang Electron Science& Technology Co., Ltd* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2,Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA EIA 137-A, TIA EIA 98-C, TIA603-C and ANSI 63.4-2003, American National Standard for Method of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Lab Corp. (ShenZhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Lab Corp. (ShenZhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong 518038, P.R.China.

Test site at Bay Area Compliance Lab Corp. (ShenZhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179 and Industrial Canada registration test site No.: 5500A. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

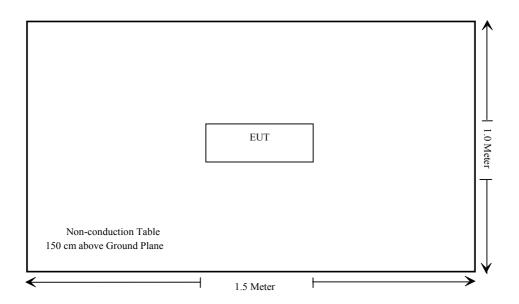
Additionally, Bay Area Compliance Lab Corp. (ShenZhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

Equipment Modifications


Bay Area Compliance Lab Corp. (ShenZhen) has not done any modification on the EUT.

Configuration of Test Setup

EUT

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
\$2.1046, \$90.205	Conducted Output Power	Compliant
§2.1047 §90.207	Modulation Characteristic	Compliant
§2.1049, §90.209	Occupied Bandwidth	Compliant
\$2.1051, \$90.210	Spurious Emissions AT Antenna Terminals	Compliant
\$2.1053 \$90.210	Spurious Radiated Emissions	Compliant
\$ 2.1055 \$ 90.213	Frequency stability	Compliant
§ 90.214	Transient Frequency Behavior	Compliant

§2.1046, and §90.205 - CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §2.1046, and §90.205, maximum ERP is dependent upon the station's antenna HAAT and required service area.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde&Schwarz	EMI Test Receiver	ESCI	100035	2005-8-17	2006-8-17

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/W Video B/W 100kHz 300kHz

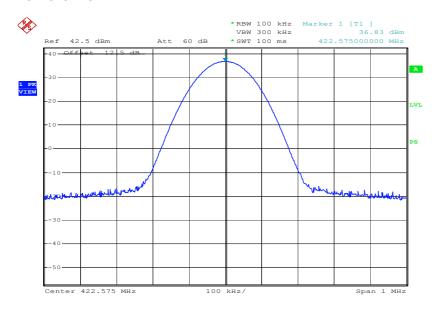
Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-3-21.

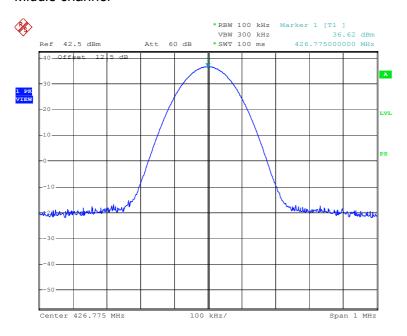
Test Result: Pass


Test Mode: Transmitting

Frequency Spacing (kHz)	Frequency (MHz)	Output Power in dBm	Output Power in W
	422.575	36.83	4.82
Narrow 12.5	426.775	36.62	4.59
	428.875	36.59	4.56
	422.575	36.81	4.80
Wide 25.0	426.775	36.61	4.58
	428.875	36.57	4.54

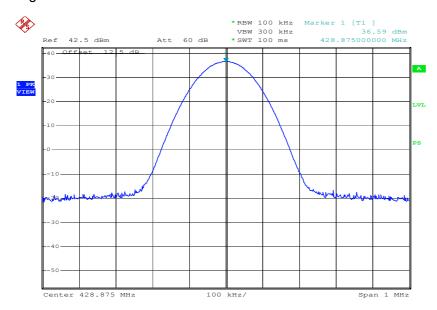
Note: The power output may depend on the intended use of the EUT. For all tests, the EUT was set to maximum conditions.

For Narrow 12.5kHz


Low channel

Qixiang Two-way-radio $\mathrm{M/N:3308}$ Conducted output power Narrow Low channel

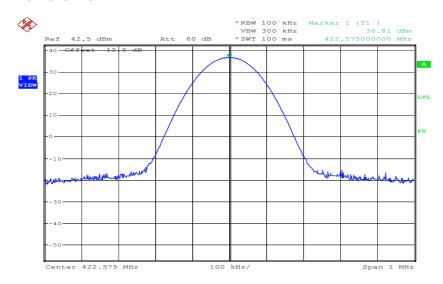
Date: 21.MAR.2006 08:55:26


Middle channel

Qixiang Two-way-radio $\ensuremath{\mathrm{M/N}}\xspace:3308$ Conducted output power Narrow Mid channel

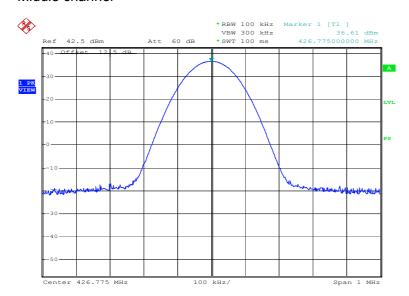
Date: 21.MAR.2006 08:56:23

High channel

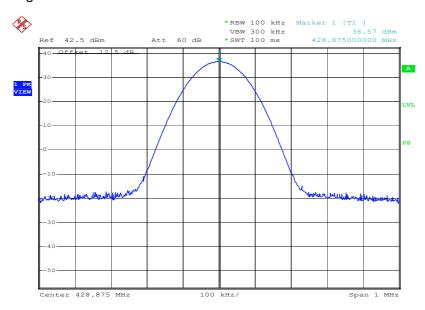


Qixiang Two-way-radio $\mathrm{M/N:3308}$ Conducted output power Narrow High channel

Date: 21.MAR.2006 08:57:24


For Wideband 25kHz

Low channel


Qixiang Two-way-radio $\mathrm{M/N:3308}$ Conducted output power Wide L ow channel Date: 21.MAR.2006 08:58:16

Middle channel

Qixiang Two-way-radio M/N:3308 Conducted output power Wide M Date: 21.MAR.2006 09:00:39

High channel

Qixiang Two-way-radio M/N:3308 Conducted output power Wide H igh channel

Date: 21.MAR.2006 08:59:53

§2.1047, and §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

§2.1047 & §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde&Schwarz	Spectrum Analyzer	FSEM30	849720/019	2005-12-21	2006-12-21
HP	Modulation Analyzer	8901B	3438A05208	2006-3-1	2007-3-1
NANYAN	Audio Generator	NY2201	019829	2006-3-1	2007-3-1

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

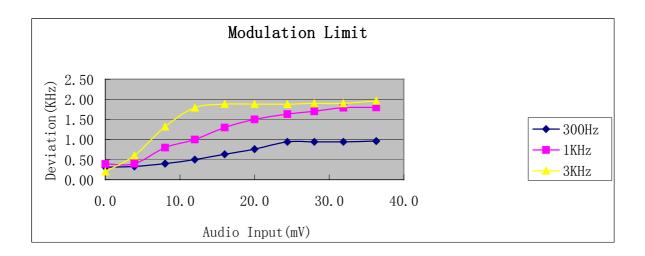
Test Procedure

Test Method: TIA/EIA-603 2.2.3

Test Data

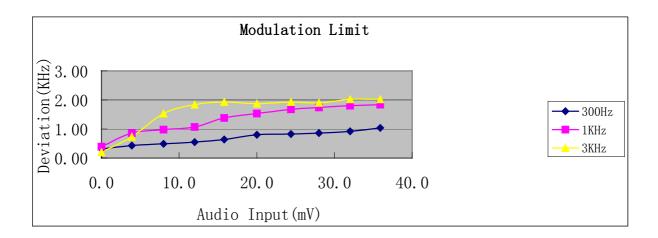
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1002mbar

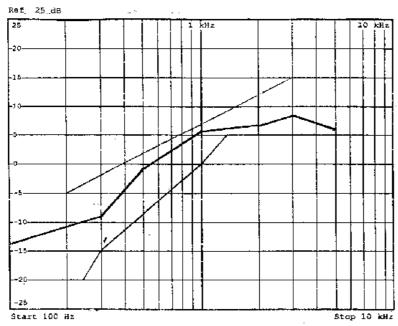

The testing was performed by Charmi Peng on 2006-3-21.

Test Result: Pass

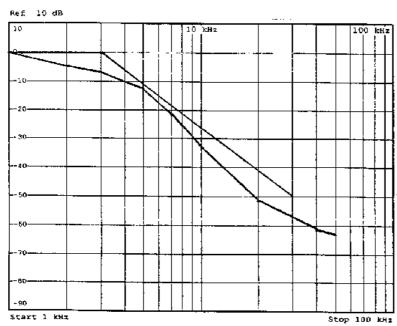
Test Mode: Transmitting


For 12.5 kHz Channel Bandwidth:

Audio Input (mV)	300Hz Deviation (kHz)	1kHz Deviation (kHz)	3kHz Deviation (kHz)
0.0	0. 304	0. 305	0.322
4.0	0.312	0.376	0. 567
8.0	0. 415	0.704	1. 355
12.0	0. 515	1.014	1.866
16. 0	0.627	1. 288	1. 943
20.0	0. 751	1. 574	1. 955
24. 0	0.845	1.762	1. 957
28.0	0. 917	1.835	1. 962
32.0	0. 958	1.870	1. 958
36. 0	0.988	1. 904	1.966


For 25 kHz Channel Bandwidth:

Audio Input (mV)	300Hz Deviation (kHz)	1kHz Deviation (kHz)	3kHz Deviation (kHz)
0	0.302	0.306	0.302
4	0.311	0.361	0. 506
8	0.415	0.708	1. 371
12	0. 515	0.995	1.816
16	0.632	1. 331	1.860
20	0. 745	1. 590	1.866
24	0.835	1.667	1. 933
28	0. 944	1.691	1. 941
32	0.980	1.698	1. 910
36	1. 035	1. 768	1. 912



Audio Low Pass Filter Characteristic

§2.1049, and § 90.209 – OCCUPIED BANDWIDTH

Applicable Standard

§2.1049, §90.209 and §90.210

Emission Mask D—Narrowband equipment. For transmitters designed to operate with a Narrowband, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626kHz but no more than 12.5kHz, at least 7.27 (f_d –2.88kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5kHz at least:

50+10logP=50+10log(4.59)=56.62dB

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- 1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.
- 2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.
- 3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

43+10logP=43+10log(4.59)=49.61dB

The resolution bandwidth was 300Hz or greater for measuring up to 250kHz from the edge of the authorized frequency segment, and 30kHz or greater for measuring more than 250kHz from the authorized frequency segment.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde&Schwarz	EMI Test Receiver	ESCI	100035	2005-8-17	2006-8-17
HP	Modulation Analyzer	8901B	3438A05208	2006-3-1	2007-3-1
NANYAN	Audio Generator	NY2201	019829	2005-12-23	2006-12-23

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band ± 50 KHz from the carrier frequency.

Test Data

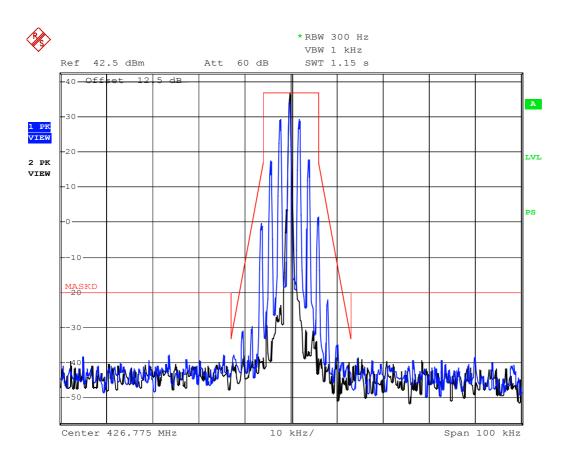
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1002mbar

The testing was performed by Charmi Peng on 2006-3-21.

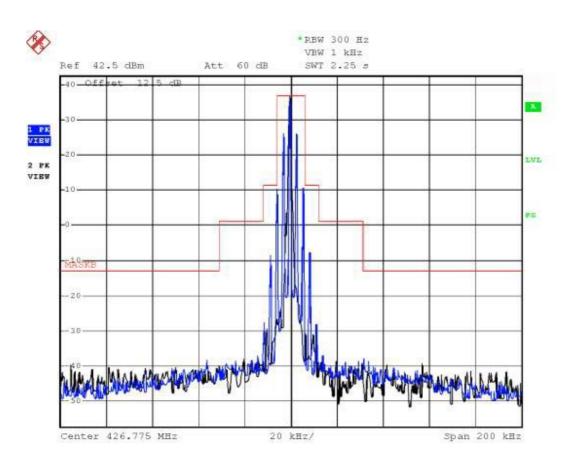
Test Result: Pass

Test Mode: Transmitting


Please refer to the hereinafter plots.

Emission Designator:

For 12.5KHz Channel Spacing: 2M+2D = 2x3+2x2.5 = 11K0F3E


For 25 KHz Channel Spacing: 2M+2D = 2x3+2x5 = 16K0F3E

Emission Mask D For 12.5 kHz Channel Bandwidth:

Qixiang Two-way-radio M/N:3308 Mask emission Narrow Date: 21.MAR.2006 09:49:28

Emission Mask B For 25 kHz Channel Bandwidth:

Qixiang Two-way-radio M/N:3308 Mask emission Wide

Date: 21.MAR.2006 09:59:16

§2.1051 and §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

§90.210 (12.5kHz bandwidth only)

On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5kHz at least:

50+10logP=50+10log(4.59)=56.62dB

§2.1051 and §90.210 (25kHz bandwidth and 20 kHz bandwith)

On any frequency removed from the center of the assigned channel by more than 250 percent at least:

43+10logP=43+10log(4.59)=49.61dB

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde&Schwarz	EMI Test Receiver	ESCI	100035	2005-8-17	2006-8-17

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

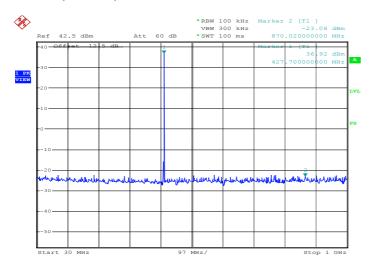
Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10^{th} harmonic.

Test Data

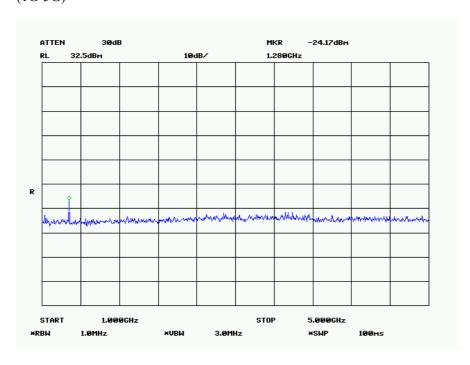
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1003mbar

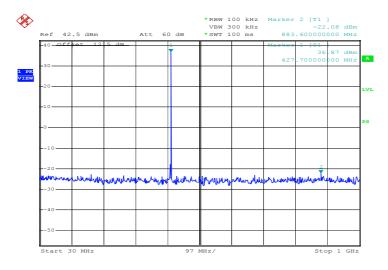

The testing was performed by Charmi Peng on 2006-3-21.

Test Result: Pass

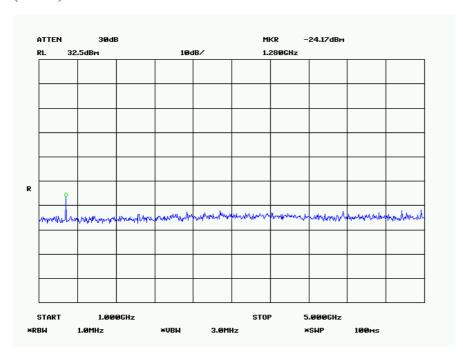
Test Mode: Transmitting


For 12.5 KHz Channel Bandwidth:

Middle Channel (30M-1G)


Qixiang Two-way-radio M/N:3308 Spurious emission at antenna terminal Narrow Mid channel Date: 21.MAR.2006 09:07:47

(1G-5G)



For 25 KHz Channel Bandwidth:

Middle Channel (30M-1G)

(1G-5G)

§2.1053 and §90.210 - RADIATED SPURIOUS EMISSION

Applicable Standard

§2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Signal Generator	HP8657A	2849U00982	2006-2-28	2007-2-28
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2005-11-10	2006-11-10
Electro-mechanics	Antenna	3146	9603-4421	2005-12-30	2006-12-30
COM POWER	Dipole Antenna	AD-100	041000	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

Spurious attenuation limit in $dB = 50 + 10 \text{ Log}_{10}$ (power out in Watts) for EUT with a 12.5KHz channel bandwidth.

Test Results Summary

For 12.5 Narrowband: -8.85 dB at 856.759 MHz

For 25.0 Wideband: -13.35 dB at 856.759 MHz

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-3-21.

Test Mode: Transmitting

Indicat	ed	Table	Te Ante		Subs	Substituted		Antenna	Cable	Absolute		
	Meter											
Frequency	Reading	Angle	Height	Polar	Frequency	Level	Polar	Gain	Loss	Level	Limit	Margin
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm	H/V	Correction	dB	dBm	dBm	dB
	Narrowband											
856.759	53.51	80	1.0	V	856.759	-21.6	V	0	7.25	-28.85	-20	-8.85
1707.400	73.48	180	1.6	Н	1707.400	-36.4	Н	6.1	0.39	-30.69	-20	-10.69
1707.400	70.94	180	1.6	V	1707.400	-38.6	V	6.1	0.39	-32.89	-20	-12.89
856.759	39.43	180	1.6	Н	856.759	-33.2	Н	0	7.25	-40.45	-20	-20.45
2132.260	61.29	45	1.7	Н	2132.260	-47.2	Н	6.3	0.37	-41.27	-20	-21.27
2132.260	56.62	45	1.5	٧	2132.260	-52.0	V	6.3	0.37	-46.07	-20	-26.07
4697.390	51.05	180	1.6	٧	4697.390	-59.8	V	8.3	0.68	-52.18	-20	-32.18
4697.390	51.40	180	1.6	Н	4697.390	-60.0	Н	8.3	0.68	-52.38	-20	-32.38
1282.570	51.47	45	1.7	٧	1282.570	-59.4	V	6.2	0.49	-53.69	-20	-33.69
1282.570	54.33	180	1.6	Н	1282.570	-60.6	Н	6.2	0.49	-54.89	-20	-34.89
2565.130	49.94	80	1.0	Н	2565.130	-62.0	Н	7.0	0.38	-55.38	-20	-35.38
2565.130	50.94	180	1.6	V	2565.130	-65.6	V	7.0	0.38	-58.98	-20	-38.98
					V	/ideband						
856.759	55.02	270	1.5	V	856.759	-19.1	V	0	7.25	-26.35	-13	-13.35
1707.400	69.88	90	1.5	Н	1707.400	-32.7	Н	6.1	0.39	-26.99	-13	-13.99
1707.400	68.16	90	1.0	٧	1707.400	-40.1	V	6.1	0.39	-34.39	-13	-21.39
856.759	39.78	0	1.0	Н	856.759	-32.8	Н	0	7.25	-40.05	-13	-27.05
2565.130	61.42	60	1.0	Н	2565.130	-53.2	Н	7.0	0.38	-46.58	-13	-33.58
2132.260	53.08	270	1.2	Н	2132.260	-55.6	Н	6.3	0.37	-49.67	-13	-36.67
2565.130	56.51	0	1.5	٧	2565.130	-59.2	V	7.0	0.38	-52.58	-13	-39.58
1282.570	51.05	180	1.6	V	1282.570	-60.1	V	6.2	0.49	-54.39	-13	-41.39
4697.390	48.80	45	1.2	V	4697.390	-62.4	V	8.3	0.68	-54.78	-13	-41.78
4697.390	48.60	90	1.0	Н	4697.390	-62.4	Н	8.3	0.68	-54.78	-13	-41.78
1282.570	53.17	30	1.2	Н	1282.570	-61.7	Н	6.2	0.49	-55.99	-13	-42.99
2132.260	51.88	180	1.2	٧	2132.260	-64.6	V	6.3	0.37	-58.67	-13	-45.67

§2.1055 (d) and §90.213- FREQUENCY STABILITY

Applicable Standard

§2.1055 (d)

\$90.213

For output power > 2 watts, the limit is 5.0ppm.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
NANYAN	Audio Generator	NY2201	019829	2005-12-23	2006-12-23
Hewlett-Packard	Frequency Counter	5342A	2317A08289	2006-3-1	2007-3-1

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a f Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Spectrum Analyzer.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-3-21.

Test Result: Pass

Test Mode: Transmitting

For Wideband

Wideband Ref	erence Frequenc	cy: 426.775 MHz, L	imit: 5.0 PPM
Environment	Power		
Temperature	Supplied	MCF (MHz)	PPM Error
(°C)	(V _{dc})	, ,	
, ,	6.0	426.774482	1.214
50	7.5	426.774485	1.207
	9.0	426.774483	1.211
	6.0	426.774592	0.956
40	7.5	426.774598	0.942
	9.0	426.774589	0.963
	6.0	426.774758	0.567
30	7.5	426.774763	0.555
	9.0	426.774760	0.562
20	6.0	426.774899	0.237
	7.5	426.774905	0.223
	9.0	426.774894	0.248
	6.0	426.775012	0.028
10	7.5	426.775008	0.019
	9.0	426.775010	0.023
	6.0	426.775019	0.045
0	7.5	426.775015	0.035
	9.0	426.775023	0.054
	6.0	426.774972	0.066
-10	7.5	426.774980	0.047
	9.0	426.774977	0.054
	6.0	426.774829	0.401
-20	7.5	426.774836	0.384
	9.0	426.774826	0.408
	6.0	426.774782	0.511
-30	7.5	426.774790	0.492
	9.0	426.774786	0.501

For Narrowband

Narrow Refer	ence Frequency	/: 426.775 MHz, Lir	nit: 2.5 PPM
Environment	Power	,	
Temperature	Supplied	MCF (MHz)	PPM Error
(°C)		(1411.12)	T T WI EITOI
(C)	(V _{dc})	400 774404	4.050
50	6.0	426.774464	1.256
50	7.5	426.774466	1.251
	9.0	426.774462	1.261
	6.0	426.774582	0.979
40	7.5	426.774584	0.975
	9.0	426.774580	0.984
	6.0	426.774725	0.644
30	7.5	426.774728	0.637
	9.0	426.774720	0.656
	6.0	426.774890	0.258
20	7.5	426.774899	0.237
	9.0	426.774893	0.251
	6.0	426.774988	0.028
10	7.5	426.774994	0.014
	9.0	426.774972	0.066
	6.0	426.775021	0.049
0	7.5	426.775029	0.068
	9.0	426.775024	0.056
	6.0	426.774970	0.070
-10	7.5	426.774978	0.052
-	9.0	426.774975	0.059
	6.0	426.774823	0.415
-20	7.5	426.774828	0.403
	9.0	426.774820	0.422
	6.0	426.774756	0.572
-30	7.5	426.774760	0.562
00	9.0	426.774755	0.574
	9.0	420.774700	0.574

§90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

§90.214

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
TEKTRONIX	Digital Phosphor Oscilloscope	TDS 7104	B020518	2006-3-1	2007-3-1
HP	Modulation Analyzer	8901B	3438A05208	2006-3-1	2007-3-1
HP	Signal Generator	HP8657A	2849U00982	2006-2-28	2007-2-28

^{*} Statement of Traceability: Bay Area Compliance Lab Corp. (ShenZhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

TIA/EIA-603 2.2.19

Test Data

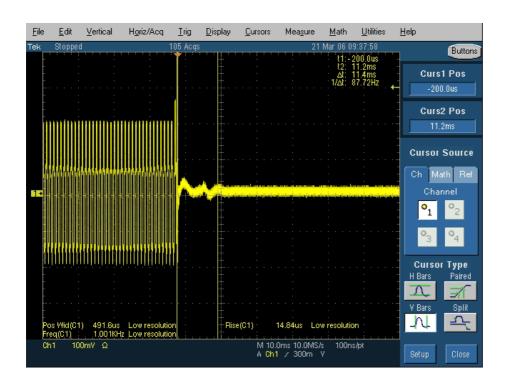
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

The testing was performed by Charmi Peng on 2006-3-21.

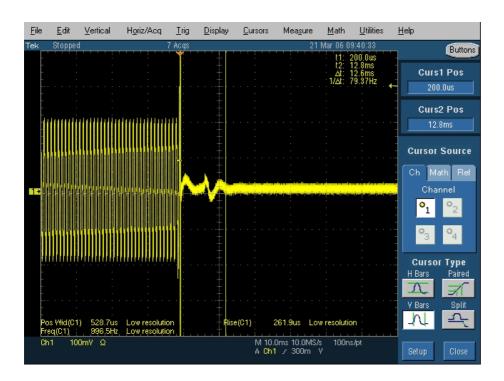
Test Result: Pass

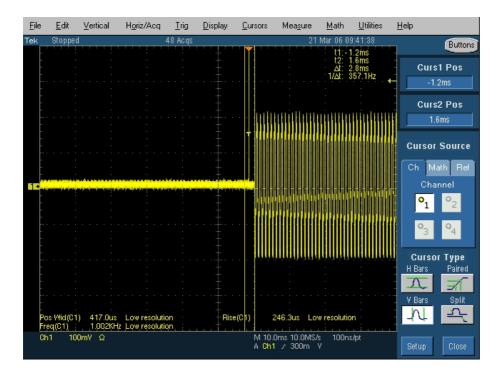
Test Mode: Transmitting


For Narrowband

Operation Frequency	Channel	Limit		
(MHz)	Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
		10	<+/-12.5 kHz	
422.575	12.5	25	<+/-6.25 kHz	Pass
		10	<+/-12.5 kHz	

For Wideband


O .: T	Channel	Limit		
Operation Frequency (MHz)	Separation (kHz)	Transient Period (ms)	Transient Period (ms)	Result
		10	<+/-12.5 kHz	
422.575	25.0	25	<+/-6.25 kHz	Pass
		10	<+/-12.5 kHz	


For Narrowband

For Wideband

