Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Contact: joeb@ahde.com, +1 (734) 252-9505 GTVBT-WR2428RFr2 Issued: March 13, 2025

EMC Test Report

regarding

USA: CFR Title 47, Part 15.247/15.109 (Emissions) Canada: IC RSS-247v3/GENe (Emissions)

for

G-FM-VBT-BAT

Category: Wireless Vibration Sensor

Judgments: Aligns with FCC 15.247, ISED RSS-247v3 Testing Completed: March 12, 2025

Prepared for:

Grace Technologies, Inc.

1515 East Kimberly Rd., Davenport IA 52807 Phone: (563) 386 9596, Fax: (563) 386 9639 Contact: Bryce Brewer, BryceB@gracetechnologies.com

Data Rec./Rev. by:

ohn Nan Nantz

funds

Dr/Joseph Brunett, EMC-002790-NE

Date of Issue: March 13, 2025

Rpt. Auth. by:

Rpt. Prep./Rev. by:

Revision History

Rev. No.	Date	Details	Revised By
r0	March 13, 2025	Initial Release.	J. Nantz
r1	March 27, 2025	Added missing equipment.	J. Nantz
r1	April 29, 2025	Added missing equipment.	J. Nantz

Contents

R	evisio	on History	2
Ta	able o	of Contents	2
1	Test 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	t Report Scope and Limitations Laboratory Authorization Report Retention Subcontracted Testing Test Data Limitation of Results Copyright Endorsements Test Location Traceability and Equipment Used	$ \begin{array}{c} 4 \\ 4 \\ $
2	Test 2.1	t Specifications and Procedures Test Specification and General Procedures	6 6
3	Con 3.1	figuration and Identification of the Equipment Under TestDescription and Declarations3.1.1EUT Configuration3.1.2Modes of Operation3.1.3Variants3.1.4Test Samples3.1.5Functional Exerciser3.1.6Modifications Made3.1.7Production Intent3.1.8Declared Exemptions and Additional Product Notes	7 8 8 8 8 8 9 9 9 9 9
4	4.14.2	General Test Procedures4.1.1Radiated Test Setup and Procedures4.1.2Power Supply VariationIntentional Emissions4.2.1Duty and Transmission Cycle, Pulsed Operation4.2.2Fundamental Emission Bandwidth4.2.3Effective Isotropic Radiated Power4.2.4Power Spectral Density	12 13 13 14 16 17
	4.3	Unintentional Emissions	19

5 Measurement Uncertainty and Accreditation Documents

List of Tables

1.8.0 Test Site List
1.9.0 Equipment List
3.1.0 EUT Declarations
4.2.1 Pulsed Emission Characteristics (Duty Cycle)
4.2.2 Intentional Emission Bandwidth
4.2.3 Tx. Power Results
4.2.4 Power Spectral Density Results
4.3.1 Transmit Chain Spurious Emissions
5.0.0 Measurement Uncertainty

List of Figures

3.1.0 Photos of EUT
3.1.1 EUT Test Configuration Diagram
4.1.1 Radiated Emissions Diagram of the EUT
4.1.1 Radiated Emissions Test Setup Photograph(s)
4.2.1 Example Pulsed Emission Characteristics (Duty Cycle)
4.2.2 Example Intentional Emission Bandwidth Plots
4.2.3 Conducted Power Measurement Plots
4.2.4 Power Spectral Density Plots
4.3.2 Worst Case Transmitter OOB Emissions Measured
5.0.0 Accreditation Documents

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until March 2025.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratory's scope of accreditation. Any data in this report that is not covered under the laboratory's scope is clearly identified.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1.8.0 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1.8.0 Test Site List.				
Description	Location	Quality Num.		
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC		

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 1.9.0. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards. All equipment is evaluated on a cycle no greater than 12 months following laboratory validation procedures and is calibrated following manufacturer recommended intervals.

Table 1.9.0 Equipment List.

Description	Manufacturer/Model	\mathbf{SN}	Quality Num.	Cal/Ver By / Date Due	
EMI Receiver	R & S / ESW26	101313	RSESW2601	RS / Dec-2025	
Spectrum Analyzer	R & S / FSV30	101660	RSFSV3001	RS / Apr-2025	
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2025	
Log Periodic Antenna	EMCO / 3146	9305-3614	LOGEMCO01	Keysight / Aug-2025	
BNC-BNC Coax	WRTL / RG58/U	001	CAB001-BLACK	AHD / Sept-2025	
3.5-3.5MM Coax	Coax / Coax	001	CAB018-WHT	AHD / Sept-2025	
Quad Ridge Horn	Singer / A6100	C35200	HQR1TO18S01	Keysight / Aug-2025	
K-Band Horn	JEF / NRL Std.	001	HRNK01	AHD / On Use	
6dB Attenuator	Pasternack / PE7087-6	1	ATTEN01	AHD / On-Use	

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of Grace Technologies, Inc. is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Grace Technologies, Inc. G-FM-VBT-BAT for compliance to:

Country/Region/Manu.	Rules or Directive	Referenced Section(s)		
United States	Code of Federal Regulations	CFR Title 47, Part $15.247/15.109$		
Canada	ISED Canada	IC RSS-247v3/GENe		

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
ANSI C63.10:2020	"American National Standard of Procedures for Compliance Testing of Unli- censed Wireless Devices"
KDB 558074 D01 v05r02	"GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPEC- TRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES "
KDB 662911 D01v02r01	"Emissions Testing of Transmitters with Multiple Outputs in the Same Band"
KDB 662911 D02 v01	"MIMO with Cross-Polarized Antenna"
WR-ITP0102RA	"AHD Internal Document - Radiated Emissions Test Method"
WR-ITP0101LC	"AHD Internal Document - Conducted Emissions Test Method"
ICES-003; Issue 7 (2020)	"Information Technology Equipment (ITE) - Limits and methods of measurement"

Date: March 13, 2025

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is an Equipment Vibration Monitoring Sensor module containing a Zigbee transceiver. The EUT is approximately $7.5 \ge 4.5 \ge 4.5 \le 4.5 \le 1.0$ monitor, and is depicted in Figure 3.1.0. It is powered by $3.6 \le 1.0 \le 1.0$ better. The EUT is used in manufacturing and hazardous environments to monitor the state of health of equipment. Table 3.1.0 outlines provider declared EUT specifications.

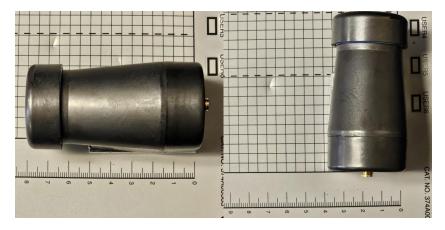


Figure 3.1.0 Photos of EUT.

Table	3.1.0	EUT	Declarations.
-------	-------	-----	---------------

General Declarations	
Equipment Type:	Wireless Vibration Sensor
Country of Origin:	Not Declared
Nominal Supply:	3.6 VDC
Oper. Temp Range:	$-10^{\circ}\mathrm{C} \text{ to } +80^{\circ}\mathrm{C}$
Frequency Range:	2400 - 2483.5 MHz
Antenna Dimension:	Max: 10.5 cm x 1.5 cm x 1 cm
Antenna Type:	RP-SMA Stub, RP-SMA Monopole, RP-SMA Patch or Ceramic chip
Antenna Gain:	Ceramic Chip: 3.5 dBi max., RP-SMA Stub: 2 dBi max., RP-SMA Monopole: 5.0 dBi max., RP-SMA Patch: 3.0 dBi max.
Number of Channels:	16
Channel Spacing:	5 MHz
Alignment Range:	Not Declared
Type of Modulation:	OQPSK
United States	
FCC ID Number:	2BE57VBTBAT
Classification:	DTS
Canada	
IC Number:	32885-VBTBAT
Classification:	Other

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 3.1.1 .

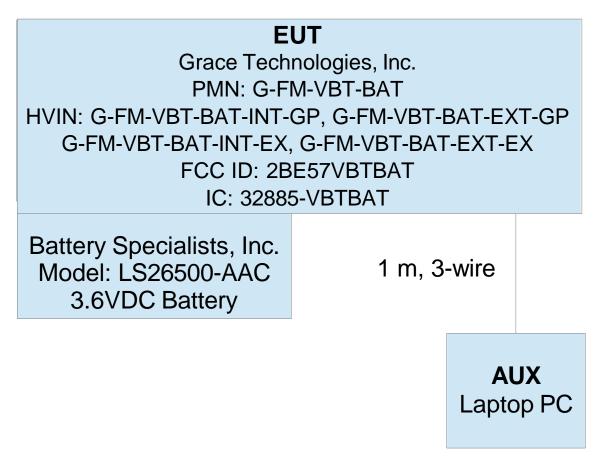


Figure 3.1.1 EUT Test Configuration Diagram.

3.1.2 Modes of Operation

The EUT employs a 2.4 GHz, IEEE 802.15.4 Zigbee DTS transceiver. The Zigbee radio can employ 1 of 4 antennas: Internal ceramic chip, external RP-SMA stub, RP-SMA monopole or an RP-SMA patch antenna. It is noted that the EUT is only able to employ 1 antenna at any time.

3.1.3 Variants

There are 2 types of variants: One for General Purpose applications and the other for Hazardous Location Exposure where the only difference is the housing material and the label on the product. Within each type of variant there are two antenna types: Internal and External. Therefore there are four variants and they are as follows: HVIN: G-FM-VBT-BAT-EXT-GP, HVIN: G-FM-VBT-BAT-INT-GP, HVIN: G-FM-VBT-BAT-EXT-EX and HVIN: G-FM-VBT-BAT-INT-EX.

3.1.4 Test Samples

Three samples of the EUT were provided in total: one normal, unpotted PCBA (SN: PCBA) for photos, one normal sample with RP-SMA conector for external antennas (SN: B), and one normal sample with PCB mount ceramic chip antenna (SN: C). Samples B and C were capable of receiving radio instructions via USB interface to a laptop

computer. The manufacturer provided software tools and firmware needed to place the EUT radio into test and normal operating modes. All samples were flash with firmware version: GraceSense OS-X.

3.1.5 Functional Exerciser

Normal functionality was confirmed by measurement of transmitted signals.

3.1.6 Modifications Made

In order to meet the upper band edge requirements channel 26 TX power was set to a value of 90. Channels 11-25 were set at the maximum TX power setting of 200.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

Not applicable.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 4.1.1 . All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

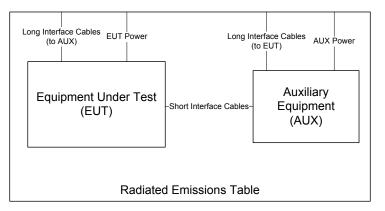


Figure 4.1.1 Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulation. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, 10cm diameter single-axis broadband probes meeting the requirements of ISED RSS-102.NS.MEAS are employed. Measurements are repeated and summed over three axes, and the entire frequency range is measured with and without the EUT transmitting.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.1.1.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4.1.1 Radiated Emissions Test Setup Photograph(s).

4.1.2 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case the EUT is designed for operation from a battery power source, the extreme test voltages are evaluated over the range specified in the test standard; no less than $\pm 10\%$ of the nominal battery voltage declared by the manufacturer. For all battery operated equipment, worst case intentional and spurious emissions are re-checked employing a new (fully charged) battery.

4.2 Intentional Emissions

4.2.1 Duty and Transmission Cycle, Pulsed Operation

The details and results of testing the EUT for pulsed operation are summarized in Table 4.2.1. Plots showing the measurements made to obtain these values are provided in Figure 4.2.1.

Table 4.2.1 Pulsed Emission Characteristics (Duty Cycle).

Test Date:	7-Mar-25
Test Engineer:	John Nantz
EUT	Grace G-FM-VBTX-BAT
Meas. Distance:	Conducted

	Test Mode Pulsed Operation / Average Measurement Duty Cycle							
	Mode	Data Rate	Voltage	Oper. Freq	Pulse Length	Pulse Period	Duty Cycle	Power Duty Correction
R0	Widde	Mbps	V	MHz	ms	ms	%	dB
R1	Zigbee	0.25	3.6	2445	100.000	100.000	100	0.0
R2								
#	C1	C2	C3	C4	C5	C6	C7	C8

* Duty Cycle is measured in line with DTS guidance 558074 D01 v5 r02 section 6(b) for averaging only over full-power transmission pulses.

Att 39 dB 🖷	Offset 6.00 dB • RBW 10 SWT 100 ms • VBW 10	MHz		Frequency 2.44	150000 GH
Input 1 AC Zero Span	PS On Notch	Off			01Pk Clrw
				M2[1	
1					100.0000 n
0 dBm				M1[1] 20.49 dB
					C
) dBm-					
dBm					
10 dBm					
20 dBm					
30 dBm					
ao ubm					
40 dBm					
50 dBm					
60 dBm					
F 2.445 GHz		5001 pts			10.0 ms
F 2,445 GHZ Marker Table		5001 pts			10.0 ms
Type Ref Trc	X-Value	Y-Value	Function	Function Re	esult
M1 1	0.0 s	20.49 dBm	. and don	Tuncuorrite	
M2 1	100.0 ms	20.49 dBm		2025-03-07 Ref Level	

Figure 4.2.1 Example Pulsed Emission Characteristics (Duty Cycle).

4.2.2 Fundamental Emission Bandwidth

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available packet length and minimum packet spacing. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 6 dB bandwidth is measured for the lowest, middle, and highest channels available. The 99% emission bandwidth per IC test procedures is also reported. The results of this testing are summarized in Table 4.2.2 . Plots showing measurements employed obtain the emission bandwidths reported are provided in Figure 4.2.2 .

Table 4.2.2 Intentional Emission Bandwidth.

Test Date:	7-Mar-25
Test Engineer:	John Nantz
EUT	Grace G-FM-VBTX-BAT
Meas. Distance:	Conducted

		Occupied Bandwidth											
	Transmit Mode	Data Rate	Path	Voltage	Oper. Freq	6 dB BW	6 dB BW Limit	99% OBW	Pass/Fail				
R0	Tansmit Wode	(Mbps)	A / B	(V)	(MHz)	(MHz)	(MHz)	(MHz)	F 855/1°811				
R1					2405.0	1.71	0.50	2.25	Pass				
R2	Zigbee	0.25	N/A	3.6	2445.0	1.70	0.50	2.25	Pass				
R3	Zigbee	0.25	1N/A		2475.0	1.70	0.50	2.26	Pass				
R4					2480.0	1.71	0.50	2.26	Pass				
#	C1	C2	C3	C4	C5	C6	C7	C8	C9				

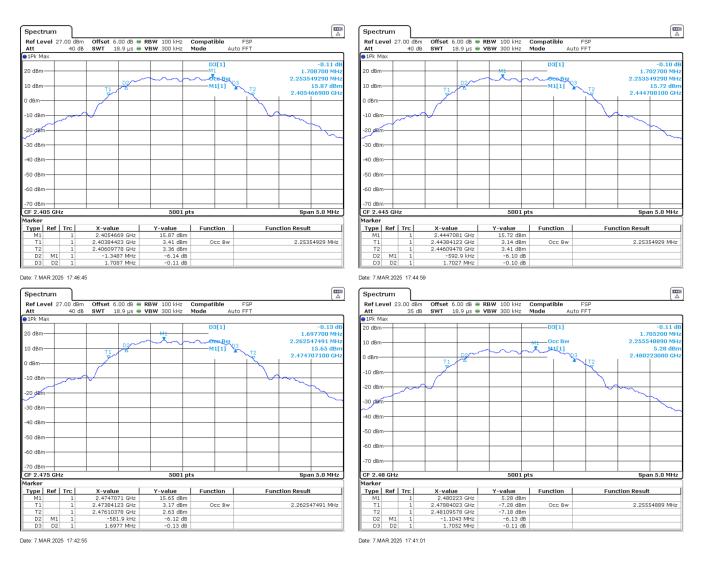


Figure 4.2.2 Example Intentional Emission Bandwidth Plots.

4.2.3 Effective Isotropic Radiated Power

The EUT's radiated power is computed from antenna port conducted power measurements and the gain of the EUT antenna(s). Where the EUT is not sold with an antenna connector, a modified product has been provided including such. The results of this testing are summarized in Table 4.2.3.

Table 4.2.3 Tx. Power Results.

Test Date:	7-Mar-25
Test Engineer:	John Nantz
EUT:	Grace G-FM-VBTX-BAT
Meas. Distance:	Conducted

	Fundamental Power												
			Freq.	Path	Pout (Pk)	Pout (Avg)	Duty	Pout(Avg) + Duty	Ant Gain	EIRP (Avg)	EIRP (Avg) Limit	Pass	Comments
R0	Mode	Channel	MHz	A / B	dBm	dBm	dB	dBm	dBi	dBm	dBm	dB	
R1		11	2405.0		20.3		0.0	20.3	5.0	25.3	36.0	10.7	
R2	Zigbee	19	2445.0	N/A	20.1		0.0	20.1	5.0	25.1	36.0	10.9	
R3	Ziguee	25	2475.0	19/74	20.0		0.0	20.0	5.0	25.0	36.0	11.0	
R4		26	2480.0		9.4		0.0	9.4	5.0	14.4	36.0	21.6	
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13

ROW COLUMN R0 C6

R0 R0

R0

C9 Maximum Antenna Gain across Band. For MIMO, Gain = Gain_dBi + 10*log10(N), N = 2 antennas.

C9 Declared antenna gain is 5dBi.

Ref Lev Att	/el 26.	00 dBm 30 dB		6.00 dB			Compati Mode	ible FS Swee			
1Pk Max	:	00 44	0111	2.005		10 1111	libuo	0.100	P		
20 dBm—	7	141				/	×-142-	H[1]		$\langle \rangle$	9.36 dBm 806600 GHz A 20.29 dB m
10 dBm	-D1 1	0.000	dBm				- \.		1	214	44400 GHz
0 dBm—	1	\rightarrow					-				\square
-10 dBm-	4										
	'								1 1		
-20 dBm	-		1	-				\			+
			λ			1		χ			
-30 dBm-	-		Second dealers	ahnuma	. June	n a		and the second	1 Martin		
-40 dBm-				thursday	phile and the second						~~~
io abiii											
-50 dBm-	_										
-60 dBm-	+										
-70 dBm-											
CF 2.44	l GHz					1001 pt	s			Span	100.0 MHz
1arker	Ref Ti	- 1	X-valu	- 1		value	Funct	I	F	tion Resul	•
Type I M1	ker H	1		e 44 GHz		0.29 dBm	Funct	ion	Fun	ction Resul	ι
M2		1		43 GHz		0.13 dBm					
M3		1		37 GHz		9.97 dBm					
M4		1	2,480	66 GHz		9.36 dBm					

Date: 7.MAR.2025 17:34:56

Figure 4.2.3 Conducted Power Measurement Plots.

Measured conducted from radio conducted sample. Avg Power measured per DTS Guidance 558074 D01 v5 r02 Section 8.3.2.2 / ANSI C63.10 11.9.2.2.2
 Measured conducted from radio conducted sample. Pk Power measured per DTS Guidance 558074 D01 v5 r02 Section 8.3.1.3 / ANSI C63.10 11.9.1.3

4.2.4 Power Spectral Density

For this test, the EUT was attached directly to the test receiver. Following FCC DTS measurement procedures, the emission spectrum is first scanned for maximum spectral peaks, the span and receiver bandwidth are then reduced until the power spectral density is measured in the prescribed receiver bandwidth. The results of this testing are summarized in Table 4.2.4 . Plots showing how these measurements were made are depicted in Figure 4.2.4 .

Table 4.2.4 Power Spectral Density Results.

	Frequency Range 2400-2483.5		Detector Pk	IF Bandwidth 3 kHz		Video Bandwidth 10 kHz			Test Date: Test Engineer: EUT: Meas. Distance:	7-Mar-25 John Nantz Grace G-FM-VBTX-BAT Conducted
					F	ower Spectral Density	y			
		Path		Frequency	Ant.	PK PSDcond (meas)	Duty	PSDcond (calc)	PSD Limit	Pass By
R0	Mode	A / B	Channel	(MHz)	Used	(dBm/3kHz)	dB	(dBm/3kHz)	(dBm/3kHz)	(dB)
R1			11	2405	Cond.	4.5	0.0	4.5	8.00	3.5
R2	Zigbee	N/A	19	2445	Cond.	4.3	0.0	4.3	8.00	3.8
R3	Ziguee	18/24	25	2475	Cond.	4.1	0.0	4.1	8.00	3.9
R4			26	2480	Cond.	-6.4	0.0	-6.4	8.00	14.4
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10

ROW COLUMN

PSD measured conducted following DTS guidance 558074 D01 v5 r02 8.4 / ANSI C63.10 11.10 PKPSD procedure.
 Not applicable for PKPSD measurements

R0 R0

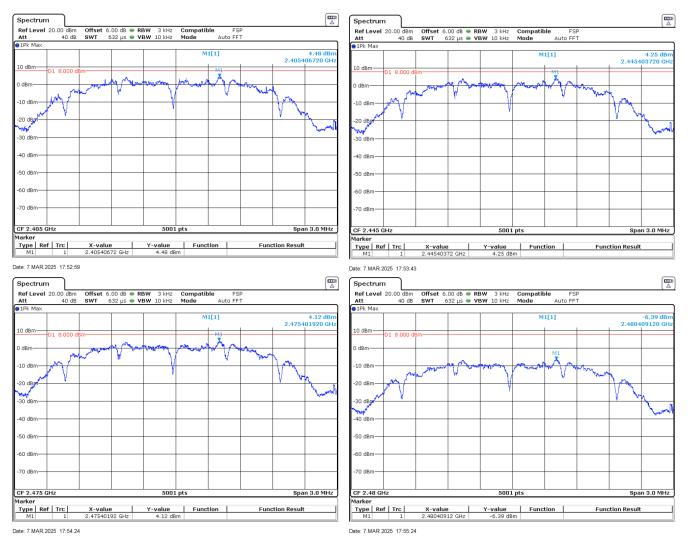


Figure 4.2.4 Power Spectral Density Plots.

4.3 Unintentional Emissions

4.3.1 Restricted Band Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 4.3.1 . Measurements are performed to 10 times the highest fundamental operating frequency.

	30 >= f >	cy Range 1000 MHz 00 MHz		Det Pk/QPk Pk/Avg		IF Band 100 I 1 M	kHz Hz	Video Bandwidth 300 kHz 3 MHz					Test Date: Test Engineer: EUT: Meas. Distance:		7-Mar-25 John Nantz Grace G-FM-VBTX-BAT Conducted
							ter Spur	ious in Restricted B							FCC/IC
			Frequ	iency	Outpu	t Power	Ant	GR Factor	Avg Duty		Electri	c Field @ 3n	1	Pass	
	Mode	Path	Start	Stop	Pk	Avg	Gain		Factor	Calc. Pk	Limit Pk	Calc. Avg	Limit Qpk/Avg		
R0		A / B	MHz	MHz	dBm	dBm	dBi	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	Comments
R1	Fundamental Restr	icted Band I	Edge (Low S	Side)											
R2	ZIGBEE	N/A	2390.0	2390.0	-40.4	-49.1	5.0	0.0	0.0	54.8	74.0	46.1	54.0	7.9	max all - L,M,H channels
R3	Fundamental Restr	icted Band I	Edge (High S	Side)											
R4	ZIGBEE	N/A	2483.5	2483.5	-35.2	-41.8	5.0	0.0	0.0	65.0	74.0	53.4	54.0	0.6	max all - L,M,H channels
R5															
R6	ZIGBEE	N/A	30	88	-56.5		5.0	4.7	0.0	38.8			40	1.3	max all - L,M,H channels
R7	ZIGBEE	N/A	88	216	-56.1		5.0	4.7	0.0	39.1			43	3.9	max all - L,M,H channels
R8	ZIGBEE	N/A	216	1000	-54.4		5.0	4.7	0.0	40.8			46	5.2	max all - L,M,H channels
R9	ZIGBEE	N/A	1000.0	4000.0	-39.7	-48.9	5.0	0.0	0.0	55.5	74.0	46.3	54.0	7.7	max all - L,M,H channels
R10	ZIGBEE	N/A	4810.0	4810.0	-46.3	-58.9	5.0	0.0	0.0	48.9	74.0	36.3	54.0	17.7	
R11	ZIGBEE	N/A	4890.0	4890.0	-47.1	-58.2	5.0	0.0	0.0	48.1	74.0	37.0	54.0	17.0	
R12	ZIGBEE	N/A	4960.0	4960.0	-47.4	-59.3	5.0	0.0	0.0	47.8	74.0	35.9	54.0	18.1	
R13	ZIGBEE	N/A	4000.0	6000.0	-46.3	-58.2	5.0	0.0	0.0	48.9	74.0	37.0	54.0	17.0	max all - L,M,H channels
R14	ZIGBEE	N/A	6000.0	8400.0	-46.0	-55.7	5.0	0.0	0.0	49.2	74.0	39.5	54.0	14.5	max all - L,M,H channels
R15	ZIGBEE	N/A	8400.0	12500.0	-44.8	-58.7	5.0	0.0	0.0	50.4	74.0	36.5	54.0	17.5	max all - L,M,H channels
R16	ZIGBEE	N/A	12500.0	26000.0	-40.7	-54.4	5.0	0.0	0.0	54.5	74.0	40.9	54.0	13.2	max all - L,M,H channels
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15
	ROW	COLUMN													

Table 4.3.1 Transmit Chain Spurious Emissions.

ROW COLUMN R0 C5/C6

C5/C6 Conducted measurements were made in line with DTS guidance 558074 D01 v5 r02 sections 8.5, 8.6, 8.7 / ANSI C63.10 11.10, 11.11, 11.12

R0 C8 Ground Reflection Factor as described in ANSI C63.10-2013 section 11.12.2.2 (c)

R0 C10/C12 Computed according to ANSI C63.10-2013 section 11.12.2.2 (e)

4.3.2 OOB Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions relative to the fundamental in a 100 kHz receiver bandwidth (at the nominal voltage and temperature) in the worst cases are provided in Figure 4.3.2 below.

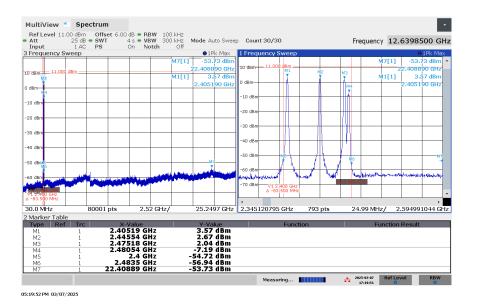


Figure 4.3.2 Worst Case Transmitter OOB Emissions Measured.

4.3.3 Radiated Digital and Cabinet Spurious

The results for the measurement of digital and cabinet spurious emissions are not reported herein as all emissions were greater than 20 dB below the regulatory limit. Emissions from digital components are measured to 1 GHz, or to five times the maximum crystal or oscillator operating frequency, whichever is greater. Cabinet emissions are measured up to the highest frequency tested during conducted measurements.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 5.0.0 Measurement Uncertainty.

Measured Parameter	${\bf Measurement} ~ {\bf Uncertainty}^{\dagger}$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(f < 30 \text{ MHz})$	$\pm 3.1\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \text{ MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \text{ MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \text{ MHz})$	$\pm 3.7\mathrm{dB}$

[†]Ref: CISPR 16-4-2:2011+A1:2014

United States Department of Commerce National Institute of Standards and Technology	BRANDELED ENGINE
NVLAP LAB CODE: 200129-0	C POVIS
AHD (Amber Helm Development, L.C.) Sister Lakes, MI	and the second second
is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:	Joseph Brunett EMC-002790-NE
Electromagnetic Compatibility & Telecommunications	
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique on ISO/IEC 17025).	
2024-06-13 through 2025-06-30 Effective Dates For the National Voluntary Laboratory Accreditation Program	RATIFIED ENGINEER

Figure 5.0.0 Accreditation Documents