
Test Report

Report No.:	MTi240605005-05E2
Date of issue:	2024-07-30
Applicant:	Edifier International Limited
Product name:	Wireless Over-Ear Headphones with Active Noise Cancellation
Model(s):	EDF200168
FCC ID:	Z9G-EDF251

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	ral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sumr	nary of Test Result	8
3	Test I	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List o	of test equipment	10
5	Evalu	ation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radio	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	
Pho	otogra	phs of the test setup	32
Pho	otogra	phs of the EUT	33
Ар	oendix	د A: DTS Bandwidth	34
Ар	oendix	B: Maximum conducted output power	37
Ар	oendix	c C: Maximum power spectral density	40
Ар	pendix	c D: Band edge measurements	43
Ар	pendix	c E: Conducted Spurious Emission	45
		c F: Duty Cycle	

Test Result Certification						
Applicant:	Edifier International Limited					
Address:	P.O. Box 6264 General Post Office Hong Kong					
Manufacturer:	Beijing Edifier Technology Co., Ltd.					
Address:	815, Floor 8, Shuangqiao Building, No.68, North Fourth Ring West Road, Haidian District, Beijing 100080, P.R.China					
Product description						
Product name:	Wireless Over-Ear Headphones with Active Noise Cancellation					
Trademark:	EDIFIER					
Model name:	EDF200168					
Series Model(s):	N/A					
Standards:	47 CFR Part 15.247					
Test Method:	ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02					
Date of Test	Date of Test					
Date of test:	2024-07-01 to 2024-07-17					
Test result:	Pass					

Test Engineer	•	Letter. Jon.		
		(Letter Lan)		
Reviewed By	:	Dowid. Cee		
		(David Lee)		
Approved By	•••	leon chen		
		(Leon Chen)		

1 General Description

1.1 Description of the EUT

Product name:	Wireless Over-Ear Headphones with Active Noise Cancellation
Model name:	EDF200168
Series Model(s):	N/A
Model difference:	N/A
Electrical rating:	Input: 5VDC 1A Battery: 3.7VDC 500mAh
Accessories:	Cable: USB cable
Hardware version:	V1.0
Software version:	V1.0
Test sample(s) number:	MTi240605005-05S1001
RF specification	
Bluetooth version:	V5.4
Operating frequency range:	2402MHz to 2480MHz
Channel number:	40
Modulation type:	GFSK
Antenna(s) type:	PCB
Antenna(s) gain:	2dBi

1.2 Description of test modes

No.	Emission test modes	
Mode1	TX mode (GFSK-1M)	
Mode2	TX mode (GFSK-2M)	

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478

Page 6 of 53

				~~		00	
9	2420	19	2440	29	2460	39	2480
-	_	_	_	_			

Test Channel List

Operation Band: 2400-2483.5 MHz

ſ	Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)	
	(MHz)	(MHz)	(MHz)	(MHz)	
	2 2402		2440	2480	

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC Assist 1.0.4

For power setting, refer to below table.

Mode	Node 2402MHz 2440MHz		2480MHz
1M	0	0	0
2M	0	0	0

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list							
Description Model Serial No. Manufacturer							
/ / / /							
Support cable list							
Description	Length (m)	From	То				
/	/	/	/				

1.5 Measurement uncertainty

Measurement	Uncertainty
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	±5%

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
3	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
4	Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
5	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
6	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	t laboratory: Shenzhen Microtest Co., Ltd.		
Test site location: 101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xir Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China			
Telephone:	(86-755)88850135		
Fax:	(86-755)88850136		
CNAS Registration No.:	S Registration No.: CNAS L5868		
FCC Registration No.:	448573		
IC Registration No.:	21760		
CABID:	CN0093		

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due	
	Emissions in non-restricted frequency bands Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density						
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19	
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20	
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20	
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20	
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20	
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20	
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20	
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19	
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20	
		Band edge Emissions in frequ	emissions (Radi uency bands (ab	,			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19	
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16	
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19	
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20	
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20	
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16	
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20	
	Emissions in frequency bands (below 1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19	
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10	
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22	
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19	

5 Evaluation Results (Evaluation)

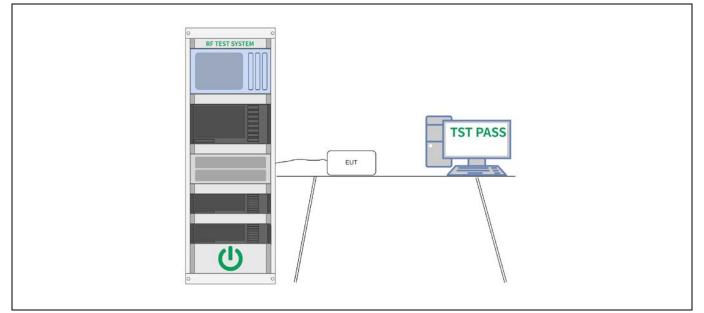
5.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)


6.1 Occupied Bandwidth

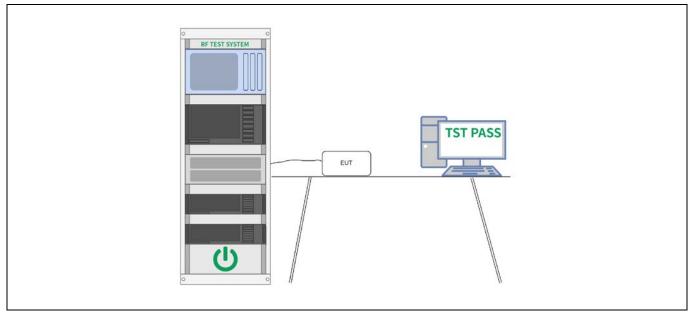
Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:Refer to 47 CFR 15.247(a)(2), Systems using digital modulatio may operate in the 902-928 MHz, and 2400-2483.5 MHz bands minimum 6 dB bandwidth shall be at least 500 kHz.	
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW >= [3 x RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.1.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode: Mod		Mode	e1, Mode2			

6.1.2 Test Setup Diagram:

6.1.3 Test Data:


6.2 Maximum Conducted Output Power

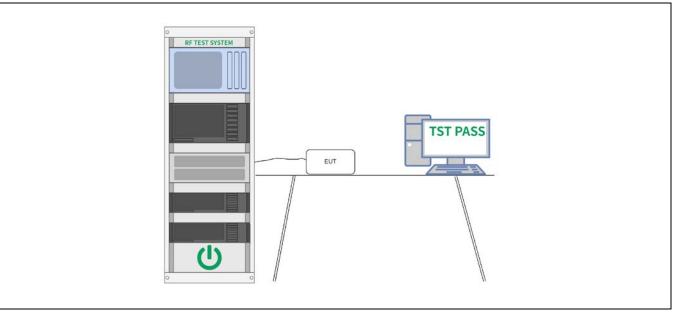
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power

6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode: Mode		e1, Mode2				

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Power Spectral Density

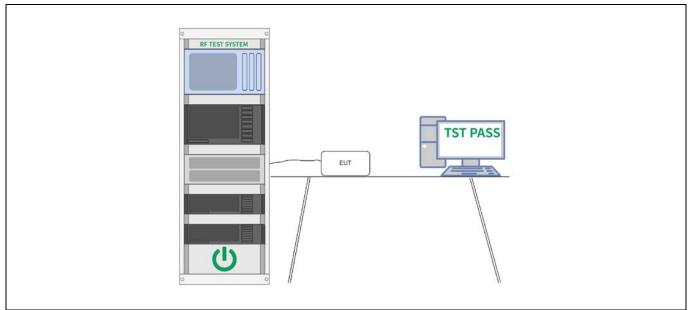
Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6.3.1 E.U.T. Operation:

Operating Envi	Operating Environment:					
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode: Mode		e1, Mode2				

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

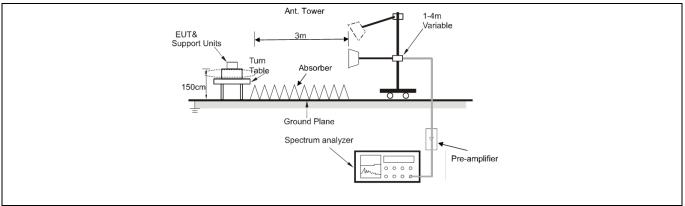
6.4.1 E.U.T. Operation:

Operating Environment:									
Temperature:	25 °C		Humidity:	56 %	Atmospheric Pressure:	99 kPa			
Pre test mode:		Mode	e1, Mode2						
Final test mode:		Mode	e1, Mode2						

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

6.5 Band edge emissions (Radiated)


Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	intentional radiators op frequency bands 54-72 However, operation wir sections of this part, e. In the emission table a The emission limits sh employing a CISPR qu kHz, 110–490 kHz and	in paragraph (g), fundamenta perating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba lasi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these					
Test Method:	ANSI C63.10-2013 see KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 see	ction 6.10.5.2						

6.5.1 E.U.T. Operation:

Operating Envi	ironment:					
Temperature:	33.4 °C		Humidity:	64.1 %	Atmospheric Pressure:	98 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode: All of the listed pre-test mode (Mode1) is recorded in the						of the worst mode
Note:						

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Mode1 /	Polari	zatio	on: Horizonta	al / CH: L					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2310.000	53.07	-12.92	40.15	74.00	-33.85	peak
	2		2310.000	42.41	-12.92	29.49	54.00	-24.51	AVG
	3		2390.000	59.76	-12.49	47.27	74.00	-26.73	peak
	4	*	2390.000	45.81	-12.49	33.32	54.00	-20.68	AVG

Page 18 of 53

Mode1 / Polarization: Vertical / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	53.15	-12.92	40.23	74.00	-33.77	peak
2		2310.000	42.69	-12.92	29.77	54.00	-24.23	AVG
3		2390.000	58.97	-12.49	46.48	74.00	-27.52	peak
4	*	2390.000	44.86	-12.49	32.37	54.00	-21.63	AVG

N	lo.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2483.500	60.56	-12.50	48.06	74.00	-25.94	peak
	2	*	2483.500	52.15	-12.50	39.65	54.00	-14.35	AVG
	3		2500.000	57.42	-12.41	45.01	74.00	-28.99	peak
	4		2500.000	48.01	-12.41	35.60	54.00	-18.40	AVG

Page 20 of 53

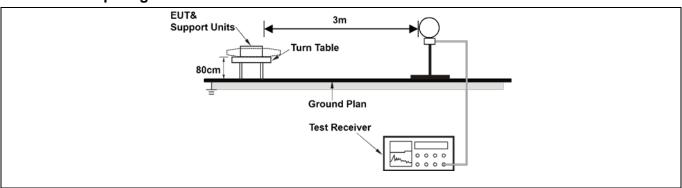
Mode1 / Polarization: Vertical / CH: H

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	60.63	-12.50	48.13	74.00	-25.87	peak
2	*	2483.500	50.48	-12.50	37.98	54.00	-16.02	AVG
3		2500.000	56.66	-12.41	44.25	74.00	-29.75	peak
4		2500.000	47.15	-12.41	34.74	54.00	-19.26	AVG

6.6 Radiated emissions (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 							
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.24	tion 6.6.4 47 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 sec	tion 6.6.4						

6.6.1 E.U.T. Operation:

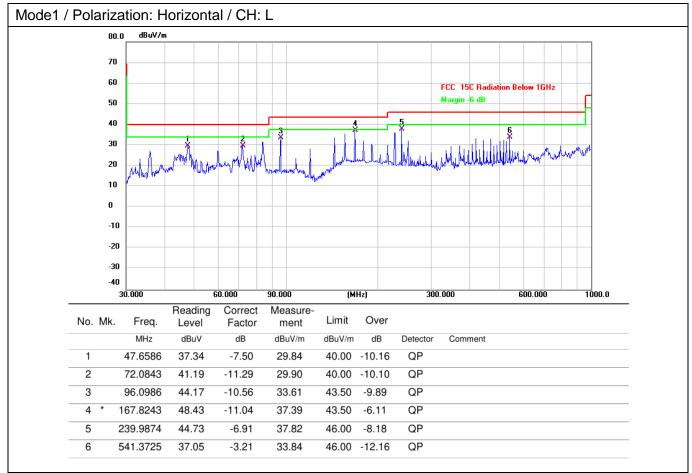

Operating Envi	Operating Environment:									
Temperature:	33.4 °C		Humidity:	64.1 %	Atmospheric Pressure:	98 kPa				
Pre test mode:		Mode	e1, Mode2							
Final test mode	Final test mode:			All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report						
Nata										

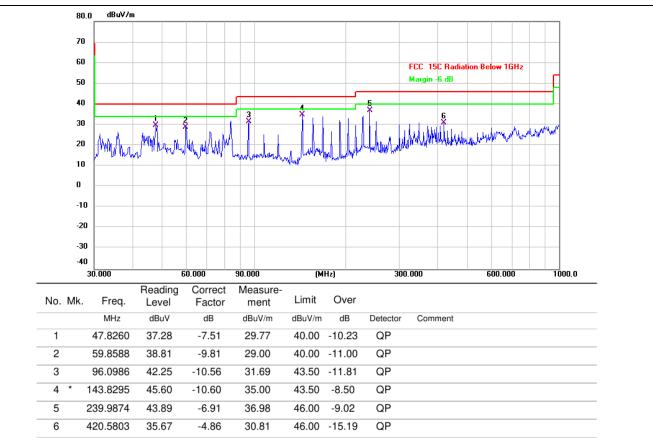
Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

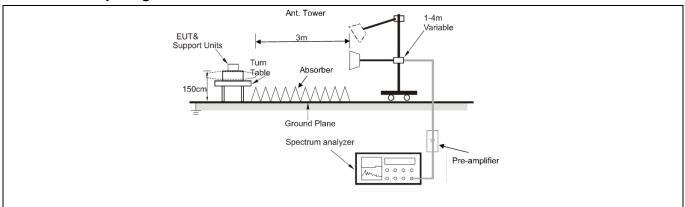
6.6.2 Test Setup Diagram:





6.6.3 Test Data:

Mode1 / Polarization: Vertical / CH: L


6.7 Radiated emissions (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 							
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4						

6.7.1 E.U.T. Operation:

Operating Env	ironment					
Temperature:	33.4 °C		Humidity:	64.1 %	Atmospheric Pressure:	98 kPa
Pre test mode: Mode1, Mode2						
Final test mode:All of the listed pre-test mode were tested, only the data of the worst mode (Mode1) is recorded in the report						of the worst mode
Note: Test freq	uency ar	e from	1GHz to 25	GHz, the ampl	itude of spurious emissio	ns which are
attenuated mo	re than 2	0 dB b	elow the lim	its are not repo	orted.	
All modes of operation of the EUT were investigated, and only the worst-case results are reported.						ults are reported.

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Mode1 /	Polariza	tion: Horizonta						
	No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	4804.000	51.19	-7.70	43.49	74.00	-30.51	peak
	2	4804.000	45.29	-7.70	37.59	54.00	-16.41	AVG
	3	7206.000	51.76	0.84	52.60	74.00	-21.40	peak
	4	7206.000	46.74	0.84	47.58	54.00	-6.42	AVG
	5	9608.000	53.82	1.81	55.63	74.00	-18.37	peak
	6 *	9608.000	48.87	1.81	50.68	54.00	-3.32	AVG

Mode1 / Polarization: Vertical / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	51.95	-7.70	44.25	74.00	-29.75	peak
2		4804.000	47.32	-7.70	39.62	54.00	-14.38	AVG
3		7206.000	50.15	0.84	50.99	74.00	-23.01	peak
4		7206.000	44.73	0.84	45.57	54.00	-8.43	AVG
5		9608.000	49.64	1.81	51.45	74.00	-22.55	peak
6	*	9608.000	44.55	1.81	46.36	54.00	-7.64	AVG

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4880.000	51.40	-7.84	43.56	74.00	-30.44	peak
2		4880.000	46.43	-7.84	38.59	54.00	-15.41	AVG
3		7320.000	51.51	0.60	52.11	74.00	-21.89	peak
4		7320.000	47.09	0.60	47.69	54.00	-6.31	AVG
5		9760.000	53.09	2.60	55.69	74.00	-18.31	peak
6	*	9760.000	47.87	2.60	50.47	54.00	-3.53	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4880.000	52.26	-7.84	44.42	74.00	-29.58	peak
2		4880.000	47.52	-7.84	39.68	54.00	-14.32	AVG
3		7320.000	51.77	0.60	52.37	74.00	-21.63	peak
4	*	7320.000	46.92	0.60	47.52	54.00	-6.48	AVG
5		9760.000	48.59	2.60	51.19	74.00	-22.81	peak
6		9760.000	44.02	2.60	46.62	54.00	-7.38	AVG

Page 30 of 53

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	53.18	-7.73	45.45	74.00	-28.55	peak
2		4960.000	47.41	-7.73	39.68	54.00	-14.32	AVG
3		7440.000	54.09	0.78	54.87	74.00	-19.13	peak
4		7440.000	47.91	0.78	48.69	54.00	-5.31	AVG
5		9920.000	56.23	2.47	58.70	74.00	-15.30	peak
6	*	9920.000	50.25	2.47	52.72	54.00	-1.28	AVG

Page 31 of 53

Mode1 / Polarization: Vertical / CH: H Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m dBuV/m dB Detector 4960.000 53.86 -7.73 46.13 74.00 -27.87 1 peak 2 4960.000 48.08 -7.73 40.35 54.00 -13.65 AVG -22.31 3 7440.000 50.91 0.78 51.69 74.00 peak 4 7440.000 44.91 0.78 45.69 54.00 -8.31 AVG 5 9920.000 54.21 2.47 56.68 74.00 -17.32 peak * 9920.000 47.94 2.47 50.41 54.00 -3.59 AVG 6

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

Page 33 of 53

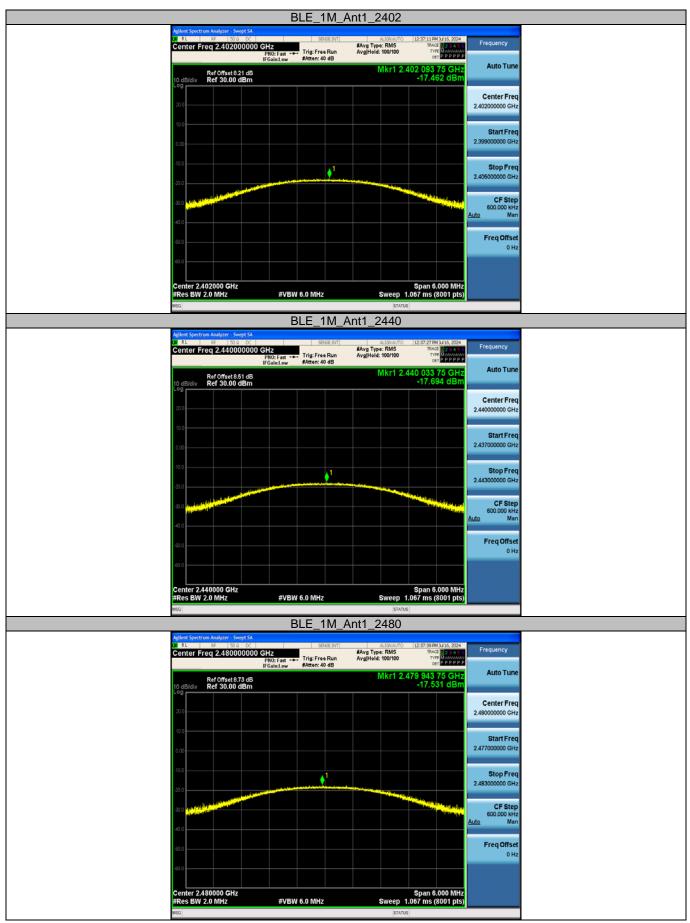
Appendix

Appendix A: DTS Bandwidth

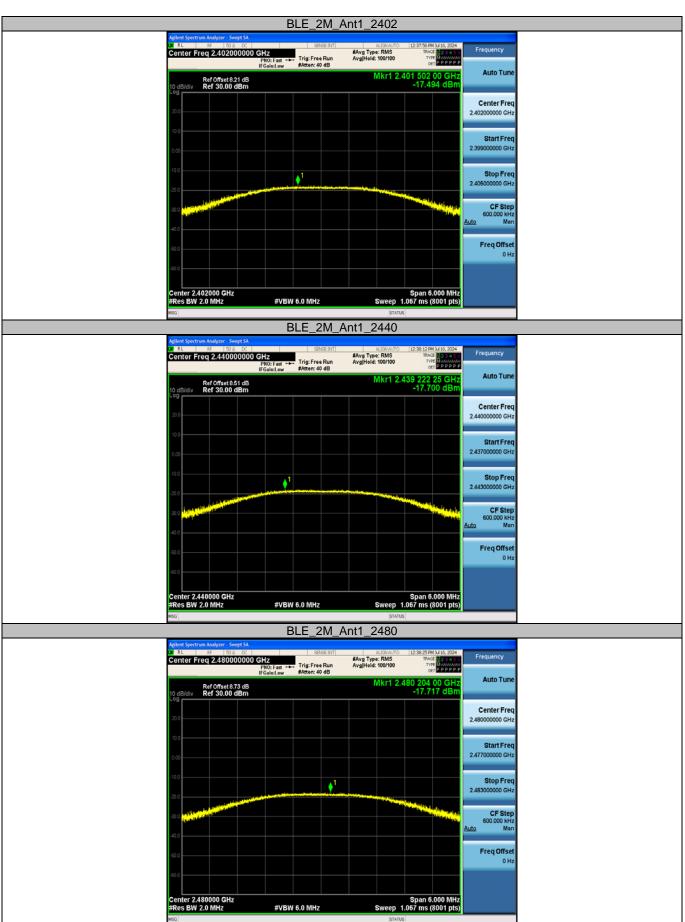
Test Result

Test Mode	Antenna	Frequency [MHz]	DTS BW [MHz]	Limit [MHz]	Verdict
		2402	0.648	0.5	PASS
BLE_1M	Ant1	2440	0.656	0.5	PASS
		2480	0.656	0.5	PASS
	Ant1	2402	1.104	0.5	PASS
BLE_2M		2440	1.096	0.5	PASS
		2480	1.112	0.5	PASS

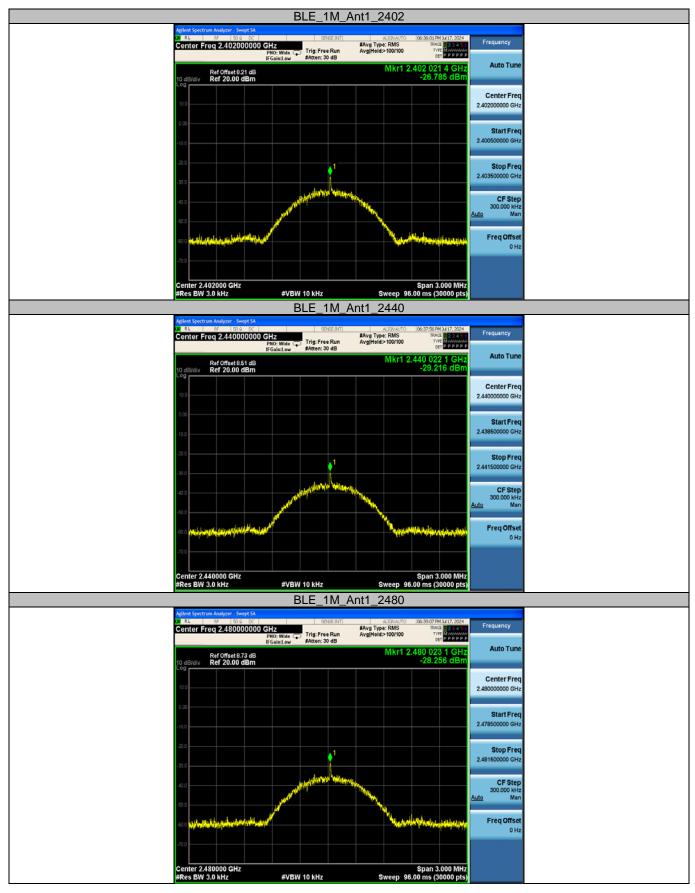
Test Graphs



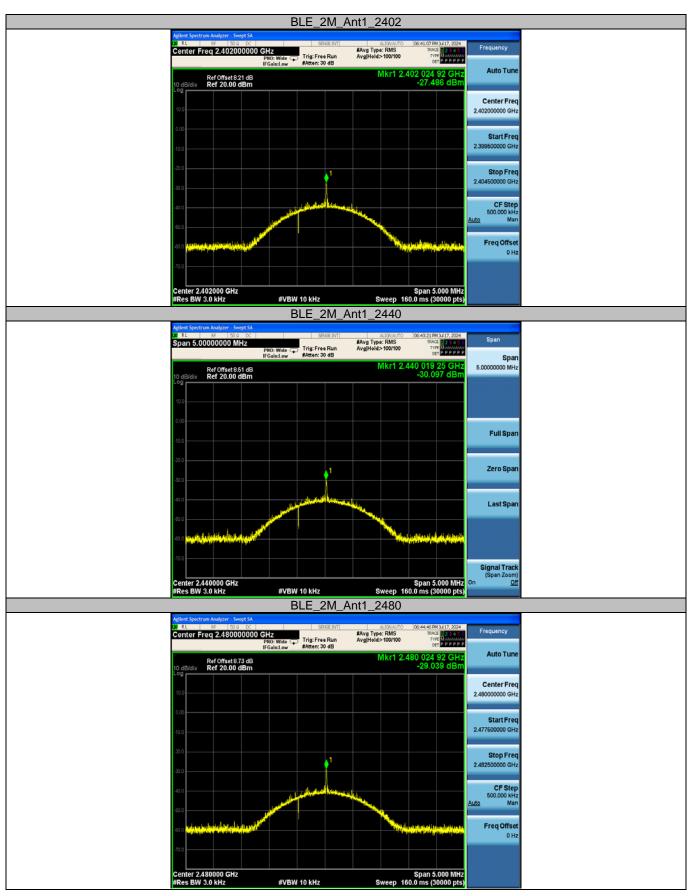
Appendix B: Maximum conducted output power


Test Result

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Conducted Limit [dBm]	Verdict
		2402	-17.46	≤30	PASS
BLE_1M	Ant1	2440	-17.69	≤30	PASS
		2480	-17.53	≤30	PASS
		2402	-17.49	≤30	PASS
BLE_2M	Ant1	2440	-17.70	≤30	PASS
		2480	-17.72	≤30	PASS

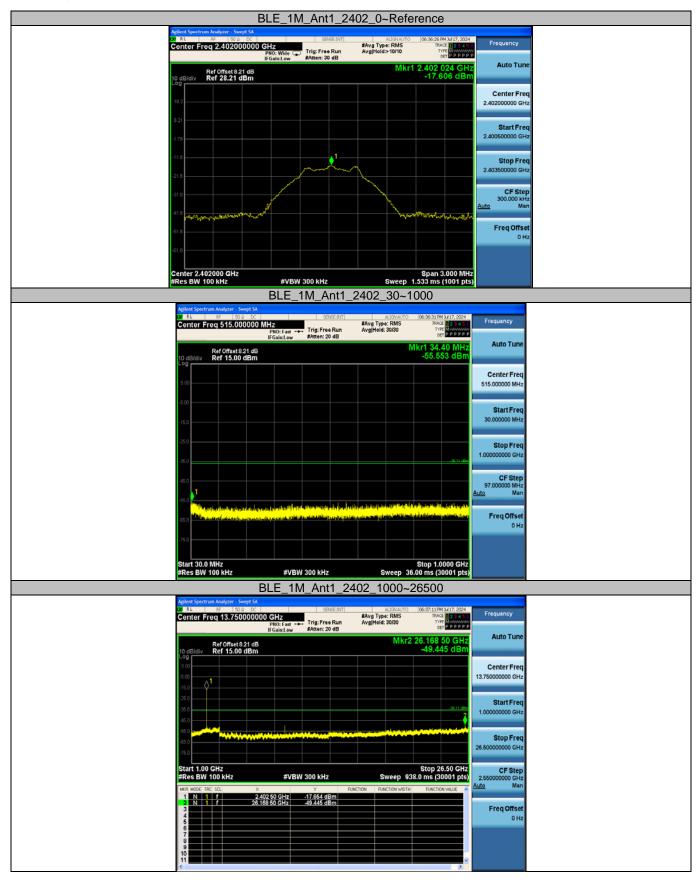


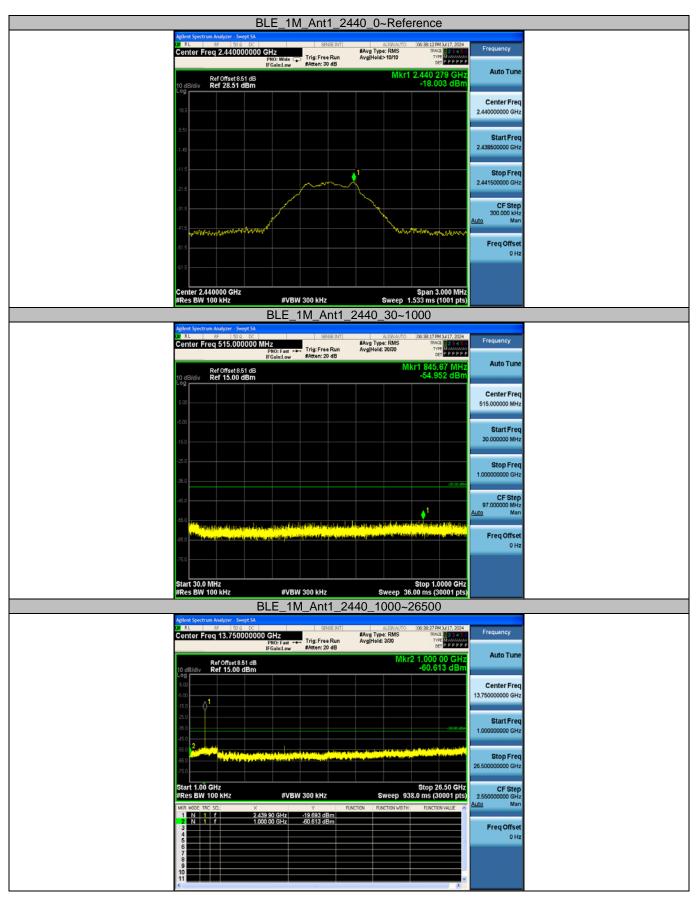
Appendix C: Maximum power spectral density

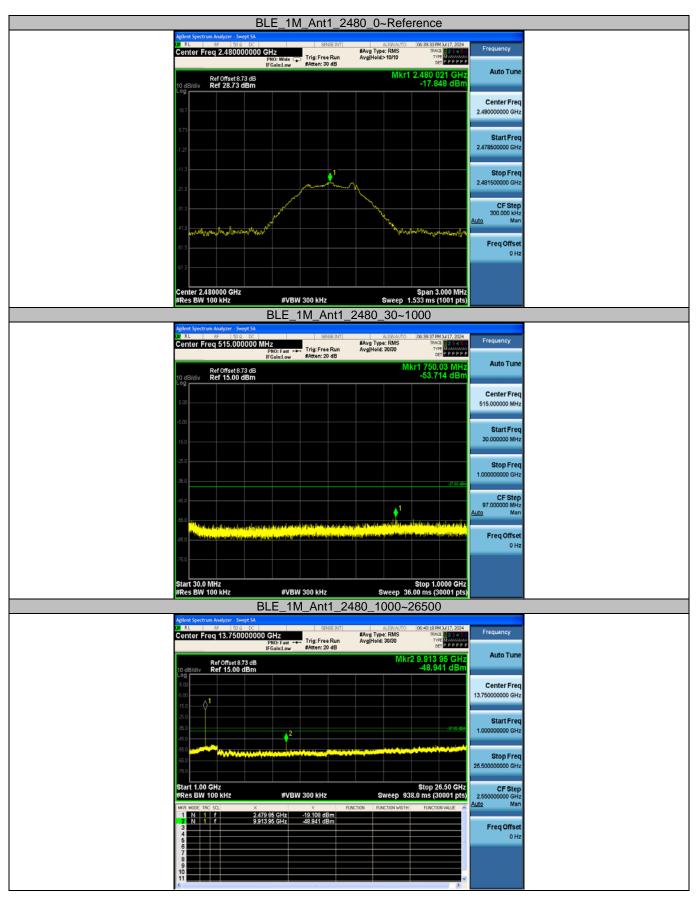

Test Result

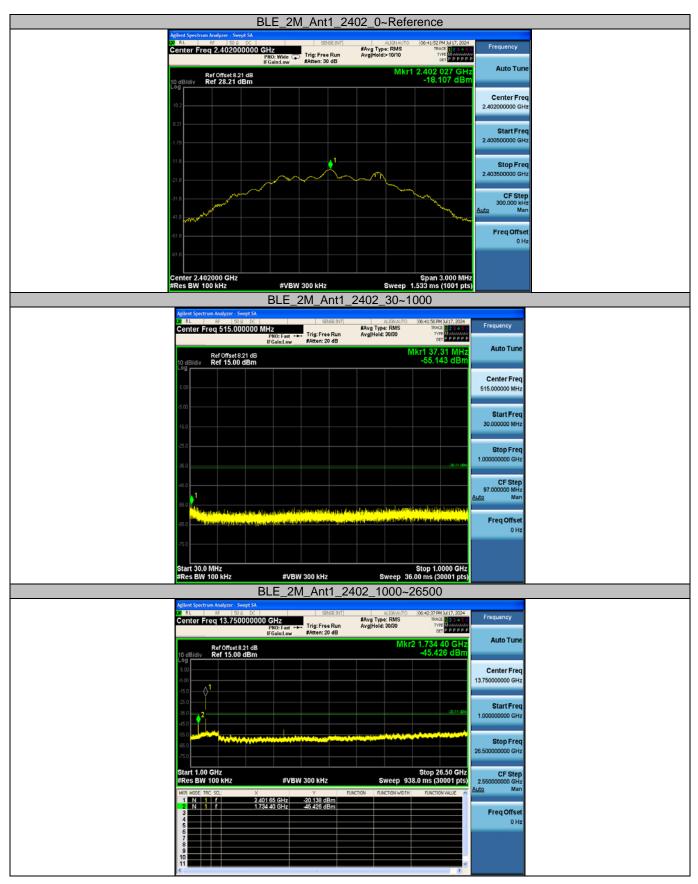
Test Mode	Antenna	Frequency [MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
		2402	-26.79	≤8.00	PASS
BLE_1M	Ant1	2440	-29.22	≤8.00	PASS
		2480	-28.26	≤8.00	PASS
		2402	-27.49	≤8.00	PASS
BLE_2M	Ant1	2440	-30.10	≤8.00	PASS
		2480	-29.04	≤8.00	PASS

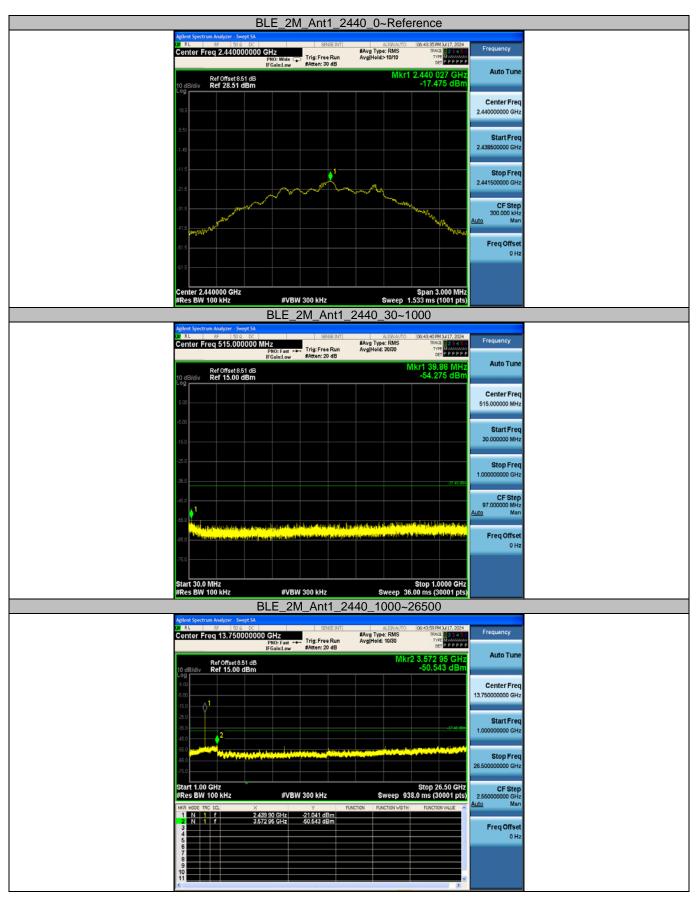
Appendix D: Band edge measurements

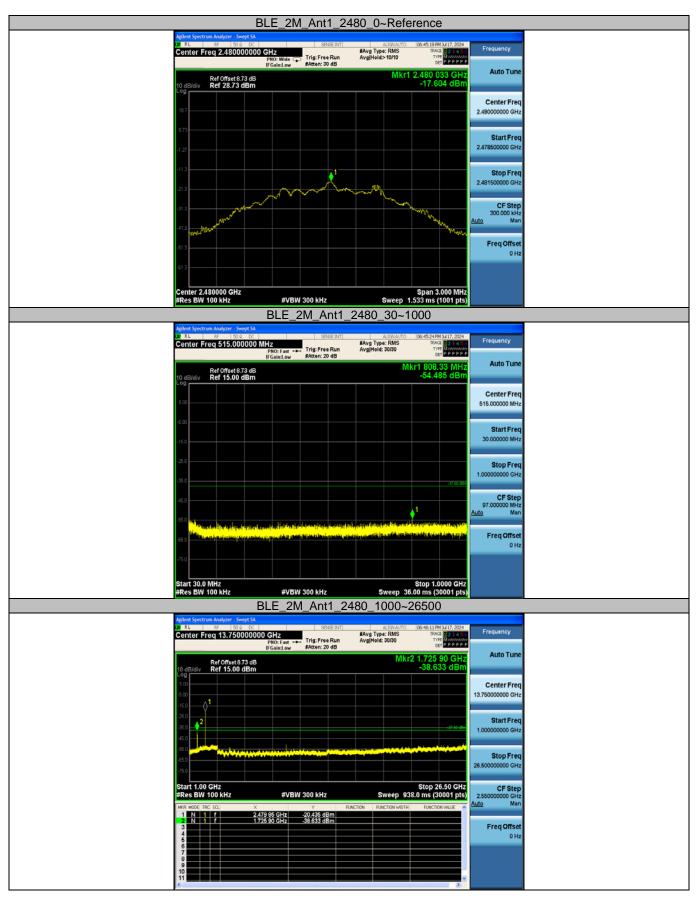



	BLE_2M_Ant1_High_248	0	
Agitent Spectrum Analyzer Swood SA Marka References and Solar Solar Solar Solar Solar Solar Center Freq 2.51000000	SENSE:INT ALIGNAUTO	100-14-52 PM JJ 17, 2004 TRAL B2 4 C T TPR Production Cet Page 2 P F	
Ref Offset 8.73 dE 10 dB/div Ref 20.00 dBm		2.535 12 GHz -40.894 dBm	
		Center Freq 2.510000000 GHz	
	and the first and the formation for the second s	4 Start Freq 2.470000000 GHz	
600		Stop Freq 2.550000000 GHz	
Start 2.47000 GHz #Res BW 100 kHz	#VBW 300 kHz Sweep 3.	top 2.55000 GHz 000 ms (1001 pts) PUNCTON VALUE Auto Man	
1 N 1 f	2400 49 GHz 20,199 dBm 1.493 50 GHz 43,753 dBm 5.500 00 GHz 44,550 dBm 5.535 12 GHz 44,550 dBm	Freq Offset 0 Hz	


Appendix E: Conducted Spurious Emission







Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency	ON Time	Period	Duty Cycle	Duty Cycle
Test Mode	Antenna	[MHz]	[ms]	[ms]	[%]	Factor[dB]
		2402	2.19	2.50	87.60	0.57
BLE_1M	Ant1	2440	2.19	2.50	87.60	0.57
		2480	2.19	2.50	87.60	0.57
		2402	1.13	2.50	45.20	3.45
BLE_2M	Ant1	2440	1.13	2.50	45.20	3.45
		2480	1.13	2.50	45.20	3.45

BLE_1M_Ant1_	_2402	
Agilent Spectrum Analyzer - Swept SA	ALIGN AUTO 10:22:40 AM 3/07, 2024	Frequency
Center Freq 2.40200000 GHz Trip Delay-2000 ms #Avg PR0: Fast + Frequence #Atten: 20 dB		Auto Tune
Ref Offset 9.21 dB	ΔMkr3 2.500 ms -0.05 dB	Auto Tulle
	3∆1	Center Freq 2.402000000 GHz
-15.0 25.0		Start Freq
36.0 45.0	2Δ1	2.402000000 GHz
46.0 45.0		Stop Freq 2.402000000 GHz
750 Center 2.40200000 GHz	Span 0 Hz	CF Step
Res BW 8 MHz #VBW 8.0 MHz Mrs MODE FRG. SCL X Y Function M 141 41.990 mpc 127.478 mpc	Sweep 5.000 ms (1001 pts) FUNCTION WIDTH FUNCTION VALUE	8.000000 MHz <u>Auto</u> Man
1 N 1 t 1.990 ms -1.37 dBm 2 Δ1 1 t (Δ) 2.190 ms (Δ) -37.40 dB 3 Δ1 1 t (Δ) 2.500 ms (Δ) -0.05 dB 4 4 4 4 4 4 4 4		Freq Offset 0 Hz
6 6 7		
9 10 11		
BLE_1M_Ant1	STATUS	
Agilent Spectrum Analyzer - Swegt SA	_244U ALIGNAUTO 10:25:41 AM 3J/07, 2024	
Center Freq 2.440000000 GHz PN0: Fast +	Type: RMS TRACE 23450 Type Det PPPPP	Frequency
Ref Offset 8.51 dB	∆Mkr3 2.500 ms 0.01 dB	Auto Tune
	3∆1 TROLV4	Center Freq 2.44000000 GHz
150 (50)		Start Freq
-6.0	2Δ1	2.440000000 GHz
45.0 45.0		Stop Freq 2.44000000 GHz
750 Center 2.44000000 GHz	Span 0 Hz	CF Step
Res BW 8 MHz #VBW 8.0 MHz MRR MODE TRG. SOL X Y Function AND 40 A 4 000 mms 4 000 mms 4 000 mms	Sweep 5.000 ms (1001 pts) FUNCTION WIDTH FUNCTION VALUE	8.000000 MHz Auto Man
1 N 1 t 1.990 ms -1.58 dBm 2 Δ1 1 t (Δ) 2.190 ms (Δ) -38.08 dB 3 Δ1 1 t (Δ) 2.500 ms (Δ) -0.01 dB 4 1 t t Δ 2.500 ms (Δ) 0.01 dB		Freq Offset 0 Hz
6 7 7		
	STATUS	
Adjent Spectrum Analyzer - Swept SA.	ALIGN AUTO 10:28:10 AM 3/07, 2024	
Center Freq 2.480000000 GHz PRO: Fast + Freductory Freductor	Type: RMS TRACE DEST	Frequency
Ref Offset 8.73 dB 10 dB/dlv Ref 15.00 dBm	ΔMkr3 2.500 ms 0.02 dB	Auto Tune
	3Δ1 TROLVA	Center Freq 2.48000000 GHz
-150 250	Δ2Δ1	Start Freq
45.0		2.480000000 GHz
45.0		Stop Freq 2.48000000 GHz
250 Center 2.48000000 GHz	Span 0 Hz	CF Step
Res BW 8 MHz #VBW 8.0 MHz MRR MODE TRC SCL X Y Punction 1 N 1 1.990 ms -1.62 dBm	Sweep 5.000 ms (1001 pts) FUNCTION WIDTH FUNCTION VALUE	8.000000 MHz <u>Auto</u> Man
1 N 1 t 1.960 ms -1.62 dBm 2 Δ1 1 t (Δ) 2.190 ms (Δ) -37.05 dB 3 Δ1 1 t (Δ) 2.500 ms (Δ) 0.02 dB 4 5 5 5 5 5 5 5		Freq Offset 0 Hz
9 11	~	
NS0	STATUS	

----End of Report----