

TEST REPORT

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr	Report No.: KR25-SRF0089-A Page (1) of (31)	eurofins KCTL							
1. Client									
∘ Name : HL Klemove Corp.									
 Address : 10-74, 224, Harmony-ro, Yeonsu-gu, Incheon, Republic of Korea 									
• Date of Receipt : 2025-03-07									
2. Use of Report : Certification	2. Use of Report : Certification								
3. Name of Product / Model : Veh	nicle Ra <mark>dar / SRR4</mark> IS								
4. Manufacturer / Country of Origin : HL I	Klemove Corp. / Korea	a							
5. FCC ID : 2A3OZ-SRR4IS									
6. IC : 27992-SRR4IS									
7. Date of Test : 2025-03-26 to 20	25-03-31								
 8. Location of Test : Permanent Testing Lab On Site Testing (Address:65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea) 9. Test method used : FCC Part 2, FCC Part 95 Subpart M RSS-251 Issue 2 July 2018 RSS-Gen Issue 5 February 2021 10. Test Result : Refer to the test result in the test report 									
Tested by	Technical Ma	anager							
Affirmation Name : Seongil Choi (Sig	gnature) Name : Harir	m Lee (Signature)							
		2025-04-18							
Eurofins KCTL Co.,Ltd.									
As a test result of the sample which was s ntee the whole product quality. This test rep agreement by Eurofins KCTL Co.,Ltd.									

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (2) of (31)

KCTL

REPORT REVISION HISTORY

Date	Revision	Page No	
2025-04-14	Originally issued	-	
2025-04-18	Updated	4	

This report shall not be reproduced except in full, without the written approval of Eurofins KCTL Co.,Ltd. This document may be altered or revised by Eurofins KCTL Co.,Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by Eurofins KCTL Co.,Ltd. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

Note. The report No. KR25-SRF0089 is superseded by the report No. KR25-SRF0089-A.

General remarks for test reports

Statement concerning the uncertainty of the measurement systems used for the tests (may be required by the product standard or client)

Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:

Procedure number, issue date and title:

Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.

Statement not required by the standard or client used for type testing

Report No.: KR25-SRF0089-A Page (3) of (31)

KCTL

CONTENTS

1.	General information	4
	Device information	
	1. Frequency/channel operations	
2.2	2. Far field distance	5
3.	Summary of tests	6
4.	Measurement uncertainty	6
5.	Test results	7
5.1	1. Occupied bandwidth	
5.2	2. The Maximum Power(EIRP) & Maximum Peak Pe	o <mark>w</mark> er(EIRP)9
5.3	3. Undesirable emissions	
6.	Measurement equ <mark>ipment</mark>	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (4) of (31)

KCTL

1. General information

Client	:	HL Klemove Corp.
Address	:	10-74, 224, Harmony-ro, Yeonsu-gu, Incheon, Republic of Korea
Manufacturer	:	HL Klemove Corp.
Address	:	10-74, 224, Harmony-ro, Yeonsu-gu, Incheon, Republic of Korea
Laboratory	:	Eurofins KCTL Co.,Ltd.
Address	:	65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Accreditations	:	FCC Site Designation No: KR0040, FCC Site Registration No: 687132
		VCCI Registration No. : R-20080, G-20078, C-20059, T-20056
		CAB Identifier: KR0040, ISED Number: 8035A
		KOLAS No.: KT231

2. Device information

Equipment under test	:	Vehicle Radar
Model	:	SRR4IS
Modulation technique	:	FMCW
Frequency range	:	76 500 MHz
Power source	:	DC 12 V
Antenna specification	:	Waveguide Antenna
Antenna gain	:	9.2 dBi
Software version	:	1.00
Hardware version	:	1.00
Operation temperature	:	-40 ℃ ~ 85 ℃
Test device serial No.	:	A8304A0000 241220 0009

2.1. Frequency/channel operations

This device contains the following capabilities: FMCW

Ch.	Frequency (32)
01	76.5
Table 2.1.	1. FMCW

KCTL-TIR001-003/7 (220705)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (5) of (31)

KCTL

2.2. Far field distance

Far field distance(R_m)

Freq range	Speed of Freq	wavelength(λ)		na Dimension n]	Far Field Distance	Measurement Distance [m]	
[MHz]	light	[MHz]	[m]	Measurement Antenna EUT			
40000 - 60000	300	60000	0.0050	<u>0.0582</u>	-	1.35	1.5
60000 - 90000	300	90000	0.0033	<u>0.0378</u>	-	0.86	1
90000 - 140000	300	140000	0.0021	<u>0.0248</u>	-	0.57	1
140000 - 220000	300	220000	0.0014	<u>0.0158</u>	-	0.37	1
220000 - 250000	300	250000	0.0012	<u>0.0105</u>	-	0.18	1
76000 - 81000	300	81000	0.0037	0. <mark>0378</mark>	<u>0.0485</u>	1.27	1.5

Note: EUT antenna dimension was provided by customer.

Note: Far-Field (Rayleigh) distance formula used is shown below (According to ANSI C63.26-2015 Section 4.4.3 Note f) $R_m = 2D^2 / \lambda$, where the Rm is the Rayleigh (far-field) distance, D is the largest dimension of the antenna aperture and λ is the free-space wavelength in meters at the frequency of measurement (calculated by speed of light divided by frequency).

Note: For fundamental or out-of-band emissions the far-field boundary distance of the EUT antenna or measurement antenna, whichever is largest, shall be used. For spurious and harmonic emissions the far-field boundary distance shall be based on the measurement antenna(According to ANSI C63.10-2020 Section 9.1.4)

Note: Measurements in report were made at distances greater than calculated far-field distances shown in table.

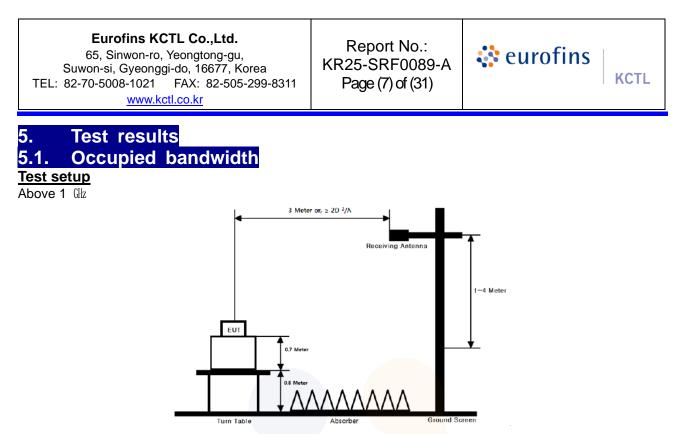
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (6) of (31)

KCTL

3	. Summ	ary of tests			
	FCC Part section(s)	IC Rule reference	Parameter	Test condition	Test results
	2.1049	RSS-251(7), RSS-GEN(6.7)	Occupied Bandwidth		Pass
	95.3367(a)	RSS-251(8)	Maximum power(EIRP)	Radiated	Pass
	95.3367(b)	RSS-251(9)	Maximum peak power(EIRP)		Pass
	2.1053 95.3379(a)	RSS-251(10) RSS-GEN(6.13)	Undesirable Emissions		Pass

Notes:

- 1. These test items were performed. Please refer to original report.
 - Report No. KR24-SRF0131-A issued on Oct. 16, 2024 by Eurofins KCTL Co.,Ltd.
 All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2. According to exploratory test no any obvious emission were detected from 9 klz to 30 Mlz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 3. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that **X** orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in **X** orientation.
- 4. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.10-2020
 - ANSI C63.26-2015
 - KDB 653005 D01v01r02
- 5. Test Mode


Test Mode	Ramp Type Operation		
TM1	$I \rightarrow \Pi$		
TM2	III→IV		
TM3	$I \to \Pi \to \Pi \to IV$		

4. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (\pm)			
Bandwidth	0.1 %			
Radiated spurious emissions	30 MHz ~ 1 000 MHz	2.5 dB		
	1 000 MHz ~ 18 000 MHz	4.7 dB		
	Above 18 000 GHz	4.8 dB		

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plance and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.

<u>Limit</u>

FCC

Within the designated 76 ~ 81 GHz frequency band

According to §2.1049, The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

IC

According to RSS-GEN(6.7), The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained.

The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

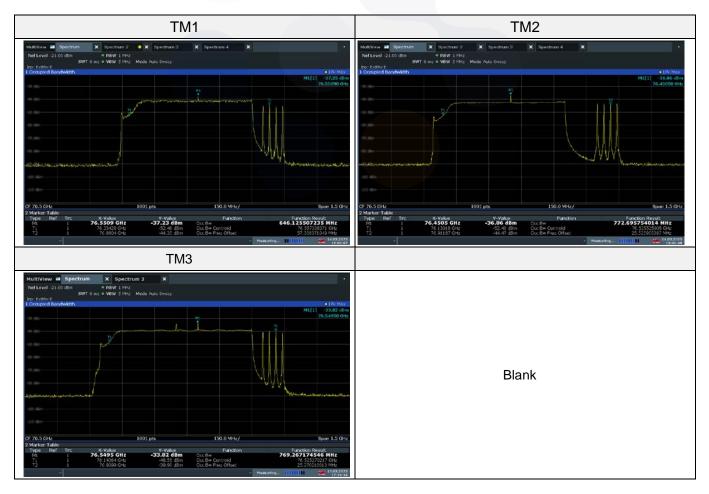
Test procedure

ANSI C63.10-2020 - Section 9.4

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

KCTL

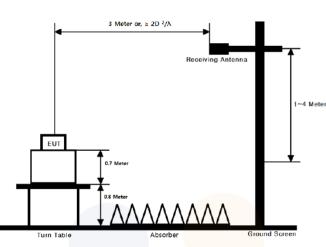

Test settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Span equal to approximately 1.5 times the OBW, centered on the carrier frequency
- 3. RBW = 1 ~ 5% of the expected OBW & VBW \geq 3 X RBW
- 4. Detector = Peak
- 5. Trance mode = Max hold
- 6. Sweep = Auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 ~5 % of the 99 % occupied band width observed in step 6.

Note: The RBW and VBW were setting up to the limitations of the test equipment.

Test results

Mode	Test Condition	Frequency Range(脈)	Occupied Bandwidth(胍)
TM1	NTNV	76 500	646.13
TM2	NTNV	76 500	772.70
TM3	NTNV	76 500	769.27


Report No.: KR25-SRF0089-A Page (9) of (31)

KCTL

5.2. The Maximum Power(EIRP) & Maximum Peak Power(EIRP) Test setup

Above 1 @

These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plance and 3 meters from the receive antenna. For measurements above 1 \mathbb{G} absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 \mathbb{G} , the absorbers are removed.

<u>Limit</u>

FCC

According to § 95.3367, The fundamental radiated emission limits within the 76-81 \mathbb{G} band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

- (a) The maximum power(EIRP) within the 76-81 G band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 M Resolution Bandwidth(RBW).
- (b) The maximum peak power(EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

IC

According to RSS-251(8) Average equivalent isotropically radiated power (e.i.r.p.), The radar device's total average e.i.r.p. shall not exceed 50 dBm over the occupied bandwidth.

According to RSS-251(9) Peak e.i.r.p. spectral density, The radar device's peak e.i.r.p. spectral density shall not exceed 55 dBm/MHz.

Test procedure

ANSI C63.10-2020 - Section 9 ANSI C63.26-2015 - Section 5 KDB 653005 D01v01r02 – Section 4

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea

TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

KCTL

Test setting

-Maximum power(EIRP) – Averaging detector

Note: The maximum power(averaging detector) measurements are performed using the "channel power" measurement capability and integrated over the 99 % OBW to obtain the result.

- 1. Measurement capability of instrument = channel power
- 2. Set RBW = 1 Mtz
- 3. Set VBW \geq 3 X RBW
- 4. span to 2 x to 3 x the OBW
- 5. Channel bandwidth setting of instrument \geq OBW
- 6. Detector = power averaging (rms)
- 7. Set number of points in sweep $\geq 2 x$ span / RBW
- 8. Sweep time = auto-couple
- 9. Trace = averaging

-Maximum peak power(EIRP) - Peak detector

- 1. Set RBW = 1 Mtz
- 2. Set VBW \geq 3 X RBW
- 3. span to 2 x to 3 x the OBW
- 4. Detector = Peak
- 5. Set number of points in sweep \geq 2 x span / RBW
- 6. Sweep time = auto-couple
- 7. Trace = max-hold

Note1.

Sample Calculation

```
E(dBµV/m)= Measured level(dBµV) +107 +AFCL(dB/m)
```

Where, E=field strength / AFCL= Antenna Factor(dB/m) + Cable Loss(dB/m)

The mixer loss was applied to the measured level by SA correction factor.

EIRP(dBm)= E(dBµV/m) +20log(D)-104.8; where, D is measurement distance(in the far field region) in m.

Note2.

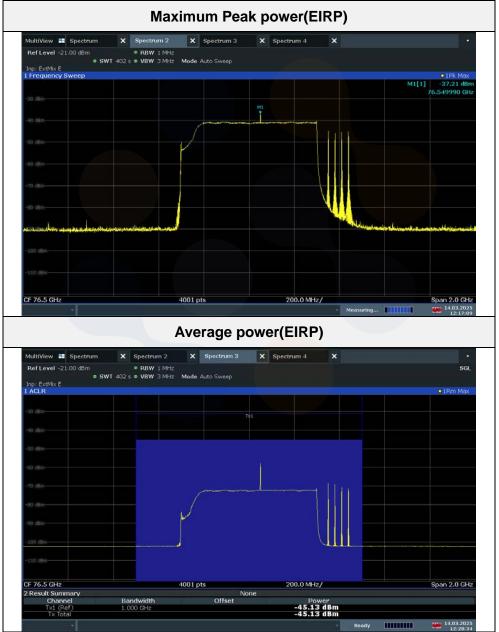
P.C.F Calculation (P.C.F=Peak amplitude correction factor of the FMCW signal)

P.C.F = 20*log10(1/a) ≈ 6.458 dB
- a =
$$\frac{1}{\sqrt[4]{1+(\frac{2\ln(2)}{\pi})^2(\frac{F_S}{T_SB^2})^2}}$$

(P.C.F have been declared by the manufacturer.)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (11) of (31)

KCTL


Test results

<u>TM1</u>

Measurement distance(D)	Frequency (대2)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dBm)	AFCL (dB/m)	P.C.F (dB)	Е (dBµV/m)	EIRP (dBm)	Limit (dBm)
1.5 m	76.55	V	Х	Peak	-37.21	54.88	6.46	131.13	29.85	55.00
1.5 m	76.50	V	Х	Average	-45.13	54.52	-	116.39	15.11	50.00

Note.

1. The EIRP was measured in each axis EUT positions and the worst case data was reported.

www.kctl.co.kr

Report No.: KR25-SRF0089-A Page (12) of (31)

EIRP

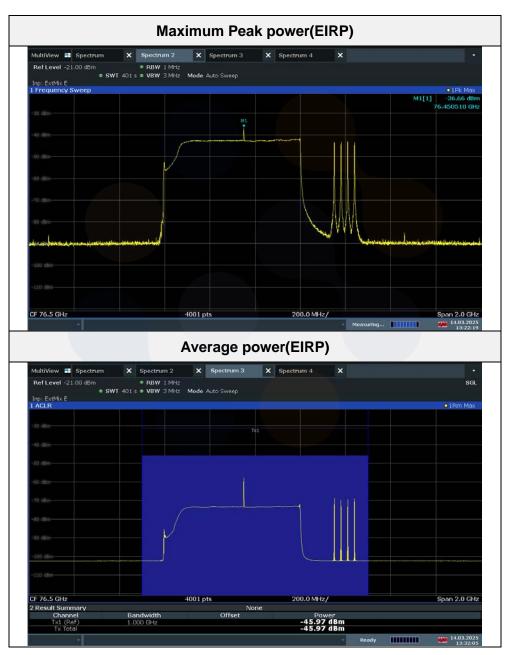
(dBm)

30.38

14.27

KCTL

Limit


(dBm) 55.00

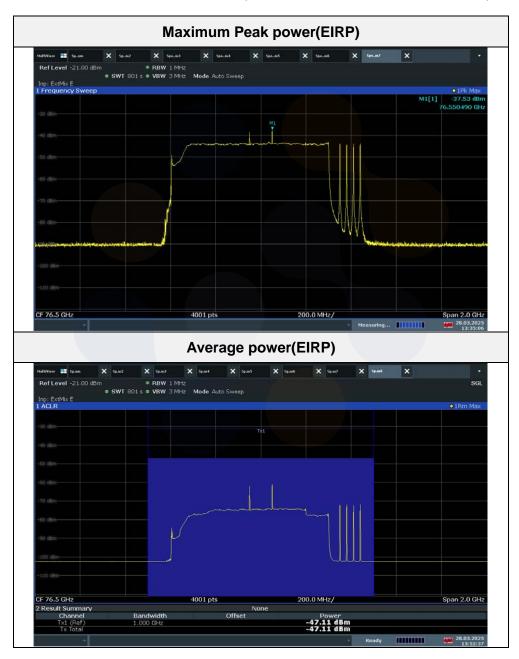
50.00

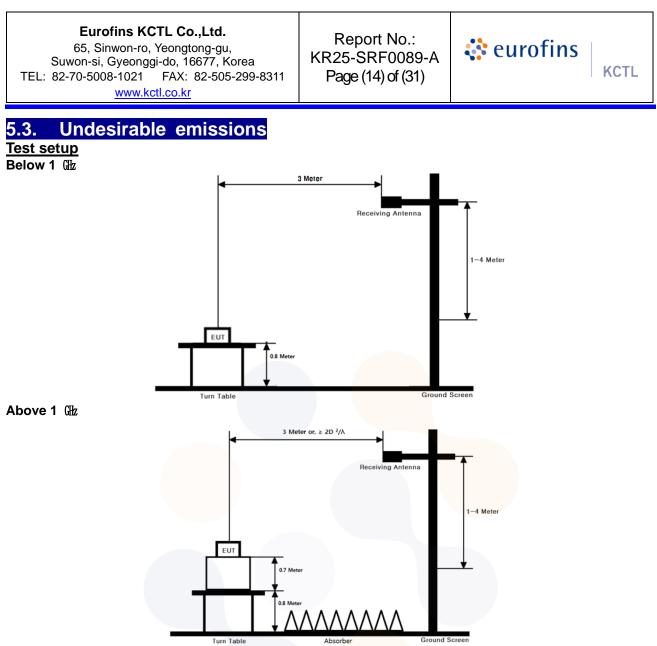
<u>TM2</u>								
Measurement distance(D)	Frequency (础)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dBm)	AFCL (dB/m)	P.C.F (dB)	E (dBµN/m)
1.5 m	76.45	V	Х	Peak	-36.66	54.86	6.46	131.66
1.5 m	76.50	V	Х	Average	-45.97	54.52	-	115.55

Note.

1. The EIRP was measured in each axis EUT positions and the worst case data was reported.

Report No.: KR25-SRF0089-A Page (13) of (31)




<u>TM3</u>

11015										
Measurement distance(D)	Frequency (@b)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dBm)	AFCL (dB/m)	P.C.F (dB)	E (dBµN/m)	EIRP (dBm)	Limit (dBm)
1.5 m	76.55	V	Х	Peak	-37.53	54.88	6.46	130.81	29.53	55.00
1.5 m	76.50	V	Х	Average	-47.11	54.52	-	114.41	13.13	50.00

Note.

1. The EIRP was measured in each axis EUT positions and the worst case data was reported.

These measurements were performed at 3 test site. The equipment under test is placed on a non-conductive table 1.5-meters above a turntable which is flush with the ground plane and 3 meters (for below 1 \mathbb{G} : 0.8-m) from the receive antenna. For measurements above 1 \mathbb{G} absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 \mathbb{G} , the absorbers are removed.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr

<u>Limit</u>

FCC

(a) The power density of any emissions outside the 76-81 \mathbb{G} band shall consist solely of spurious emissions and shall not exceed the following:

(1) Radiated emissions below 40 \mathbb{G} shall not exceed the field strength as shown in the following emissions table.

Frequency (Mz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

(i) In the emissions table in paragraph (a)(1) of this section, the tighter limit applies at the band edges.

(ii) The limits in the table in paragraph (a)(1) of this section are based on the frequency of the unwanted emissions and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

(iii) The emissions limits shown in the table in paragraph (a)(1) of this section are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9.0-90.0 kHz, 110.0-490.0 kHz, and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector with a 1 MHz RBW.

(2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:
(i) For radiated emissions outside the 76-81 GHz band between 40 GHz and 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 600 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

(ii) For radiated emissions above 200 \mathbb{G} from field disturbance sensors and radar systems operating in the 76-81 \mathbb{G} band: 1000 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

(3) For field disturbance sensors and radar systems operating in the 76-81 \mathbb{G} band, the spectrum shall be investigated up to 231.0 \mathbb{G} .

Report No.: KR25-SRF0089-A Page (16) of (31)

KCTL

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MEZ	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525	2 483.5 – 2 500	17.7 - 21.4
8.376 25 - 8.386 75	25	<mark>2 690 –</mark> 2 900	22.01 - 23.12
8.414 25 - 8.414 75	156.7 - 156.9	<u>3 260 – 3</u> 267	23.6 - 24.0
12.29 - 12.293	162.012 5 - 167.17	<u>3 332 – 3</u> 339	31.2 - 31.8
12.519 75 - 12.520 25	167.72 - 173.2	<mark>3 345.8 – 3</mark> 358	36.43 - 36.5
12.576 75 - 12.577 25	240 - 285	3 600 – 4 <mark>4</mark> 00	Above 38.6
13.36 - 13.41	322 - 335.4		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1 000 Mb, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

IC

According to RSS-251(10.2), The radar device's unwanted emissions outside the 76-81 GHz frequency band shall comply with the limits in table 1, below.

Table 1: Unwanted emissions limit	ts outside the 7	76- <mark>81 GHz freq</mark> ue	ency band

Emission frequency range	Limit	Applicable detector
Below 40 GHz	RSS-Gen general field strength limits for licence-exempt radio apparatus	RSS-Gen requirements
40-162 GHz*	-30 dBm/M₺ (e.i.r.p.)	RMS detector
40-162 GHz*	11	RMS detector

Note:

* For radar devices that operate solely in the 76-77 GL band (i.e. the occupied bandwidth is entirely contained in the 76-77 GL band), an unwanted emissions limit of 0 dBm/ML shall apply for the unwanted emission that fall in the 73.5-76 GL band. Outside of the 73.5-76 GL band, the unwanted emission limits prescribed in table 1 shall apply.

KCTL

According to RSS-Gen(8.9), Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

5	•
Frequency(Mz)	Field strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

Table 5- General field strength limits at frequencies above 30 Mb

Table 6- General field strength limits at frequencies below 30 Mz

Frequency	Magnetic field strength (H-Field) (µ A/m)	Measurement distance(m)
9-490 kHz ¹⁾	6.37/F (F in ktz)	300
490 – 1705 kHz	63.7/F (F in 🗤)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

According to RSS-Gen(8.10), Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

- (a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).
- (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (18) of (31)

KCTL

MHz
0.090 - 0.110
0.495 - 0.505
2.1735 - 2.1905
3.020 - 3.026
4.125 - 4.128
4.17725 - 4.17775
4.20725 - 4.20775
5.677 - 5.683
6.215 - 6.218
6.26775 - 6.26825
6.31175 - 6.31225
8.291 - 8.294
8.362 - 8.366
8.37625 - 8.38675
8.41425 - 8.41475
12.29 - 12.293
12.51975 - 12.52025
12.57675 - 12.57725
13.36 - 13.41
16.42 - 16.423
16.69475 - 16.69525
16.80425 - 16.80475
25.5 - 25.67
37.5 - 38.25
73 - 74.6
74.8 - 75.2
108 - 138

MHz
149.9 - 150.05
156.52475 - 156.52525
156.7 - 156.9
162.0125 - 167.17
167.72 - 173.2
240 - 285
322 - 335.4
399.9 - 410
608 - 614
960 - 1427
1435 - 16 <mark>26.5</mark>
1645.5 - 1646.5
1660 - 1710
1718.8 - 1722.2
2200 - 2300
2310 - 2390
2483.5 - 2500
2655 - 2900
3260 - 3267
3332 - 3339
3345.8 - 3358
3500 - <mark>4400</mark>
4500 <mark>- 51</mark> 50
5350 - <mark>5460</mark>
7250 - 7750
8025 - 8500

GHz
9.0 - 9.2
9.3 - 9.5
10.6 - 12.7
13.25 - 13.4
14.47 - 14.5
15.35 - 16.2
17.7 - 21.4
22.01 - 23.12
23.6 - 24.0
31.2 - 31.8
36.43 - 36.5
Above 38.6

* Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licenceexempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Test procedure

ANSI C63.26-2015 - Section 5.5 ANSI C63.10-2020 - Section 9.10

Test settings

Below 1 Gz RBW = 100 or 120 ktz, VBW = 3 x RBW, Detector= Peak or Quasi Peak

1~40 GHz

Peak Measurement RBW: 1 Mz, VBW= 3 Mz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes

Average Measurement

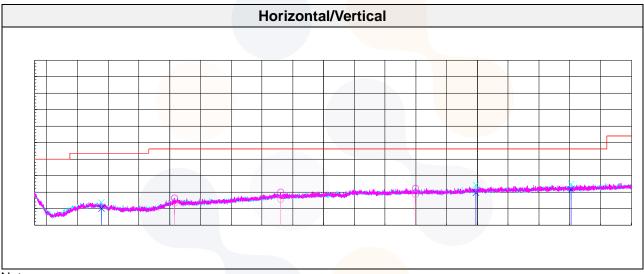
RBW: 1 Mb, VBW= 3 Mb, Detector = RMS, Sweep time = Auto, Trace mode = Averaging or Max Hold

Above 40 GHz

Average Measurement RBW: 1 Mz, VBW= 3 Mz, Detector = RMS, Sweep time = N * Transmission Time*Span/RBW, Trace mode = Averaging or Max Hold

The limits in CFR 47, part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impendance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dB μ N/m, which is equivalent to Y - 51.5 = Z dB μ N/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209 (a) limit.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (20) of (31)


KCTL

Test results

<u>TM1</u>

Frequency Range: 30 Mtz ~ 1 Gtz

Frequency (畑)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB _µ N)	A.F (dB/m)	A.C (dB)	Result (dB(µV/m))	Limit (dB(µV/m))	Margin (dB)
139.25	V		QP	24.00	17.48	-31.35	10.13	43.50	33.37
*257.47	Н		QP	25.10	19.32	-31.11	13.31	46.00	32.69
430.00	Н		QP	23.80	22.50	-30.84	15.46	46.00	30.54
649.22	Н		QP	24.00	24.90	-30.28	18.62	46.00	27.38
747.56	V		QP	24.00	25.70	-30.09	19.61	46.00	26.39
902.03	V		QP	23.80	26.50	-28.91	21.39	46.00	24.61

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result. -Calculation of distance factor = 20 log(applied distance / required distance)

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + A.F + A.C

Where, T.F= Total Factor, A.F= Antenna Factor, A.C= Amp. + Cable Loss

KCTL

requency (ᡅ)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB(μ V))	T.F (dB/m)	Distance Factor (dB)	Result (dB(<i>µ</i> V/m))	Limit (dB(µV/m))	Margin (dB)
			No	spurious em	nissions w	ere detected	l.		
			F	lorizontal/	Vertica	l_1~18 ⊞			
-									
	-		and the second secon						
					1				
and the second se									
			_						
			н	orizontal/	Vertical	_18~40 G	2		
			Н	orizontal/V	Vertical	_18~40 GH	Z		
			Н	orizontal/	Vertical_	_18~40 GH	2		
			H	orizontal/\	Vertical.	_18~40 GH			
			H	orizontal/\	Vertical_	_18~40 GH			
			H	orizontal/\	Vertical.	_18~40 G			
			H	orizontal/	Vertical	_18~40 GH			
			H	orizontal/	Vertical	_18~40 G			
			H	orizontal/	Vertical	_18~40 (#			
			H	orizontal/	Vertical	_18~40 G			
			H	orizontal/					

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result. -Calculation of distance factor = 20 log(applied distance / required distance)

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

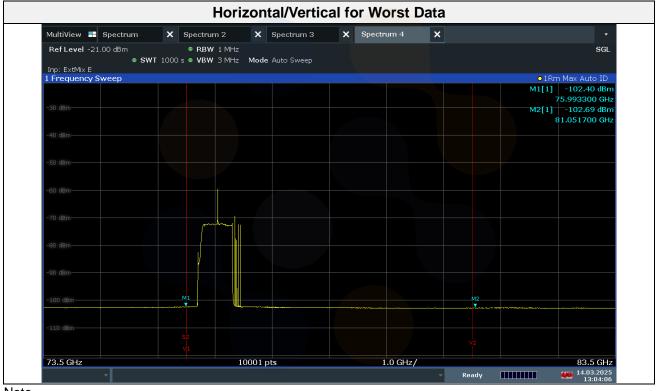
3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Facotr, CL= Cable Loss, AG= Amplifier Gain 4. *Noise floor.

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu,

Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (22) of (31)



KCTL

Frequency Range: 73.5 GHz ~ 83.5 GHz

- FCC

Frequency (砒)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(<i>µ</i> V/m))	EIRP (dBm)	Power density (pW/cm²)	Limit (pW/cm²)
75.99	V	Х	-102.40	54.50	59.10	-45.70	0.21	600.00
81.05	V	Х	-102.69	57.56	61.87	-42.93	0.40	600.00
- IC								
Frequency (趾)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(<i>µ</i> V/m))	EIRP (dBm)	Limit (dBm)	Margin (dB)
75.99	V	Х	-102.40	54.50	59.10	-45.70	-30.00	15.70
81.05	V	Х	-102.69	57.56	61.87	-42.93	-30.00	12.93

Note.

1. The radiated emissions were investigated up to 243 $\,{\rm Gh}$. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

 $E(dB\mu N/m) = Measured level (dBm) + 107 + AFCL(dB/m)$

The mixer loss was applied to the measured level by SA correction factor.

Where, E=field strength / AFCL = Antenna Factor(dB/m) + Cable Loss(dB/m)

 $EIRP(dBm) = E(dB\mu V/m) + 20log(D) - 104.8$; where, D is measurement distance(in the far field region) in m. PD = EIRP_{Linear}/4\pi d²

Where, PD = the power density at the distance specified by the limit, in $\rm W/m^{\,2}$

EIRP_{Linear}=EIRP, in watts

D= is the distance at which the power density limit is specified, in m

3.*Noise floor

4. Band edge test results.

Report No.: KR25-SRF0089-A Page (23) of (31)

Frequency Range: 40 GHz ~ 243 GHz

Frequency (Mb)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(<i>µ</i> V/m))	EIRP (dBm)	Power density (pW/cm²)	Limit (pW/cm²)
44.70	V	Х	-102.83	51.80	55.97	-45.30	0.10	600.00
72.80	V	Х	-100.71	66.66	72.95	-31.85	5.20	600.00
83.50	V	Х	-99.74	69.42	76.68	-28.12	12.26	600.00
114.37	V	Х	-108.28	62.35	61.07	-43.73	0.34	600.00
142.44	V	Х	-108.52	68.67	67.15	-37.65	1.37	600.00
234.07	V	Х	-94.51	72.80	85.29	-19.51	89.03	1 000.00

Note.

1. The worst case was based on maximum power(EIRP) of the test mode.

2. Measuring frequencies from 1 (#) to the 10th harmonic of highest fundamental frequency.

3. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

4. Radiated emissions measured in frequency above 1000 Mz were made with an instrument using Peak detector mode and average detector mode of the emission shown

in Actual FS column.

5. Total = Reading Value + Antenna Factor + Cable Loss - Amplifier Gain + Distance Factor

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (24) of (31)

KCTL

<u>TM2</u>

Frequency Range: 30 MHz ~ 1 GHz

Frequency (Mb)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dBµV)	A.F (dB/m)	A.C (dB)	Result (dB(µV/m))	Limit (dB(µV/m))	Margin (dB)
*117.06	Н		QP	24.10	17.80	-31.55	10.35	43.50	33.15
*264.13	Н		QP	23.90	19.57	-30.96	12.51	46.00	33.49
427.70	V		QP	23.80	22.72	-30.82	15.70	46.00	30.30
500.69	V		QP	24.10	23.50	-30.80	16.80	46.00	29.20
563.38	Н		QP	24.20	24.60	-30.49	18.31	46.00	27.69
937.19	V		QP	23.80	26.70	-28.52	21.98	46.00	24.02

Horizontal/Vertical

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result. -Calculation of distance factor = 20 log(applied distance / required distance)

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + A.F + A.C

Where, T.F= Total Factor, A.F= Antenna Factor, A.C= Amp. + Cable Loss

KCTL

requency (畑)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB(μ V))	T.F (dB/m)	Distance Factor (dB)	Result (dB(µN/m))	Limit (dB(µV/m))	Margin (dB)
			Nc	spurious em	iissions w	ere detected	I.		
			F	lorizontal/	Vertical	_1~18 GHz			
-									
-									
-									
			H	orizontal/\	/ertical_	_18~40 GH	ı.		
E									
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result. -Calculation of distance factor = 20 log(applied distance / required distance)

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

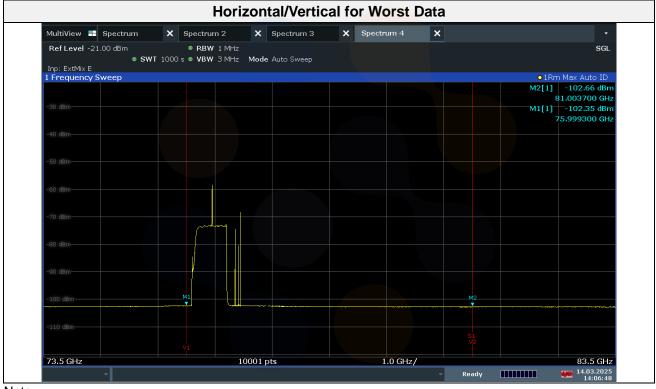
3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Facotr, CL= Cable Loss, AG= Amplifier Gain 4. *Noise floor.

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu,

Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (26) of (31)



KCTL

Frequency Range: 73.5 GHz ~ 83.5 GHz

- FCC

Frequency (础z)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(<i>µ</i> V/m))	EIRP (dBm)	Power density (pW/cm²)	Limit (pW/cm²)
76.00	V	Х	-102.35	54.50	59.15	-45.65	0.22	600.00
81.00	V	Х	-102.66	57.54	61.88	-42.92	0.41	600.00
- IC			•					
Frequency (强)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(#V/m))	EIRP (dBm)	Limit (dBm)	Margin (dB)
76.00	V	Х	-102.35	54.50	59.15	-45.65	-30.00	15.65
81.00	V	Х	-102.66	57.54	61.88	-42.92	-30.00	12.92

Note.

1. The radiated emissions were investigated up to 243 $\,{\rm Gh}$. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

 $E(dB\mu N/m) = Measured level (dBm) + 107 + AFCL(dB/m)$

The mixer loss was applied to the measured level by SA correction factor.

Where, E=field strength / AFCL = Antenna Factor(dB/m) + Cable Loss(dB/m)

 $EIRP(dBm) = E(dB_{\mu}N/m) + 20log(D) - 104.8$; where, D is measurement distance(in the far field region) in m. PD = EIRP_{Linear}/4 π d²

Where, PD = the power density at the distance specified by the limit, in $\rm W/m^{\,2}$

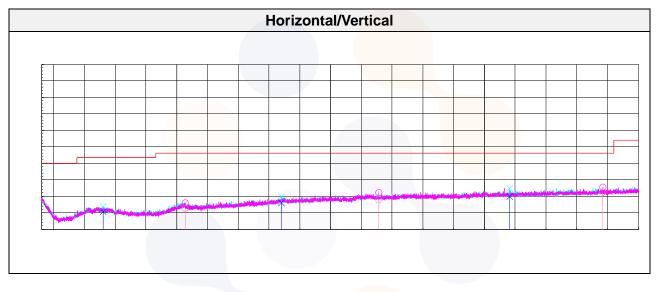
EIRP_{Linear}=EIRP, in watts

D= is the distance at which the power density limit is specified, in m

3.*Noise floor

4. Band edge test results.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (27) of (31)



KCTL

<u>TM3</u>

Frequency Range: 30 Mz ~ 1 GHz

Frequency (脏)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dBµV)	A.F (dB/m)	A.C (dB)	Result (dB(µV/m))	Limit (dB(µV/m))	Margin (dB)
*130.64	V		QP	24.10	17.94	-31.51	10.53	43.50	32.97
*264.01	Н		QP	23.90	19.60	-30.96	12.54	46.00	33.46
419.82	V		QP	24.00	22.69	-30.68	16.01	46.00	29.99
578.17	Н		QP	23.80	24.50	-30.37	17.93	46.00	28.07
790.97	V		QP	23.90	25.75	-29.77	19.88	46.00	26.12
941.92	Н		QP	24.00	26.80	-28.36	22.44	46.00	23.56

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result. -Calculation of distance factor = 20 log(applied distance / required distance)

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. Sample Calculation.

Margin=Limit - Result / Result = Measured Level + A.F + A.C

Where, T.F= Total Factor, A.F= Antenna Factor, A.C= Amp. + Cable Loss

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea

KCTL

TEI	L: 82-70-{)21 FAX ww.kctl.co.l	(: 82-505-2 <mark>kr</mark>	99-8311	Page	e (28) of (31)			KCIL
Freq	uency R	ange:	1 GHz ~	40 GHz						
	quency (Mb)	ANT Pol	EUT Position (Axis)	Detector Mode	Measured Level (dB(µV))	d T.F (dB/m)	Distance Factor (dB)	Result (dB(µV/m))	Limit (dB(µV/m))	Margin (dB)
				No	spurious e	emissions v	vere detected	ł.		
				Н	lorizonta	al/Vertica	l_1~18 ⊞			
	E	1								

	_		_		
н	orizo	ntal/\	Vertica	l 18~40	GHz

				مسلمه والمراجع والم	البالية ومستعد
and a state of the second states of the second stat	and the state of the second	and the second s	A State of the second		

Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced. In this case, the distance factor is applied to the result. -Calculation of distance factor = 20 log(applied distance / required distance)

When distance factor is "N/A", the distance is 3 m and distance factor is not applied. 3. Sample Calculation.

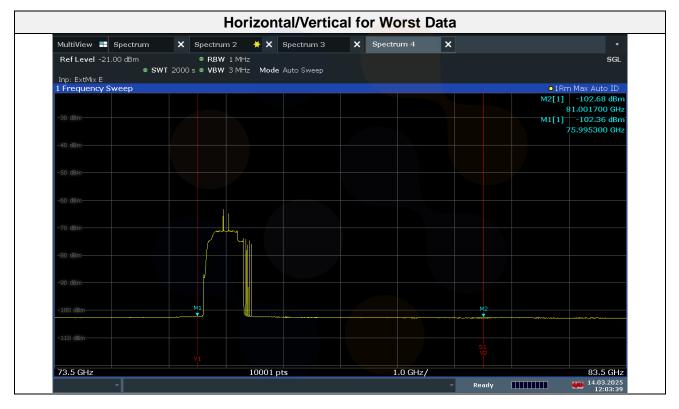
Margin=Limit - Result / Result = Measured Level + T.F + Distance factor / T.F = AF + CL - AG

Where, T.F= Total Factor, AF= Antenna Facotr, CL= Cable Loss, AG= Amplifier Gain

4. *Noise floor.

Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu,

TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (29) of (31)



KCTL

Frequency Range: 73.5 GHz ~ 83.5 GHz

- FCC

Frequency (趾)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(<i>µ</i> V/m))	EIRP (dBm)	Power density (pW/cm²)	Limit (pW/cm²)
76.00	V	Х	-102.36	54.50	59.14	-45.66	0.22	600.00
81.00	V	Х	-102.68	57.54	61.86	-42.94	0.40	600.00
- IC								
Frequency (础)	ANT Pol	EUT Position (Axis)	Measured Level (dBm)	AFCL (dB/m)	E (dB(<i>µ</i> V/m))	EIRP (dBm)	Limit (dBm)	Margin (dB)
76.00	V	Х	-102.36	54.50	59.14	-45.66	-30.00	15.66
81.00	V	Х	-102.68	57.54	61.86	-42.94	-30.00	12.94

Note.

1. The radiated emissions were investigated up to 243 $\,$ Ghz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

 $E(dB\mu N/m) = Measured level (dBm) + 107 + AFCL(dB/m)$

The mixer loss was applied to the measured level by SA correction factor.

Where, E=field strength / AFCL = Antenna Factor(dB/m) + Cable Loss(dB/m)

EIRP(dBm) = E(dB μ V/m) + 20log(D) - 104.8; where, D is measurement distance(in the far field region) in m. PD = EIRP_{Linear}/4 π d²

Where, PD = the power density at the distance specified by the limit, in W/m^2

EIRPLinear=EIRP, in watts

D= is the distance at which the power density limit is specified, in m

3.*Noise floor

4. Band edge test results.

4. Total = Reading Value + Antenna Factor + Cable Loss - Amplifier Gain + Distance Factor

Report No.: KR25-SRF0089-A Page (30) of (31)

KCTL

6. Measurement equipment							
Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date			
UXA Signal Analyzer	KEYSIGHT	N9041B	MY60100003	26.01.21			
Spectrum Analyzer	R&S	FSW50	101013	25.07.02			
DC Power Supply	AGILENT	E3632A	MY40016393	25.07.01			
Millimeter Wave Source Module	OML, Inc.	S19MS-A	190725-1	26.02.11			
Millimeter Wave Source Module	OML, Inc.	S12MS-A	190621-1	25.10.15			
Millimeter Wave Source Module	OML, Inc.	S08MS-A	190621-1	25.10.15			
Millimeter Wave Source Module	OML, Inc.	S05MS-A	190621-1	25.10.15			
Millimeter Wave Source Module	OML, Inc.	S03MS-A	190621-1	25.10.15			
Horn Antenna	OML, Inc.	M19RH	190621-1	25.10.23			
Horn Antenna	O <mark>ML, Inc</mark> .	M12RH	<mark>190621-1</mark>	25.10.23			
Horn Antenna	OML, Inc.	M08RH	<mark>190621-1</mark>	25.10.23			
Horn Antenna	OML, Inc.	M05RH	<mark>190621-1</mark>	25.10.23			
Horn Antenna	OML, Inc.	M03RH	190621-1	25.10.23			
Horn Antenna	OML, Inc.	M12RH	190621-2	25.10.23			
mmWave Down Converter	C&K Technologies, Inc.	DC4060FS-01A	1	26.02.06			
mmWave Down Converter	C&K Technologies, Inc.	DC6091FS-01A	1	26.02.06			
mmWave Down Converter	C&K Technologies, Inc.	DC90140F <mark>S-</mark> 01A	1	26.02.06			
mmWave Down Converter	C&K Technologies, Inc.	DC140220FS- 01A	1	26.02.06			
mmWave Down Converter	C&K Technologies, Inc.	DC220320FS- 01A	1	26.02.06			
Horn Antenna	OML, Inc.	M19RH	190621-3	26.01.23			
Horn Antenna	OML, Inc.	M12RH	190621-3	26.01.23			
Horn Antenna	OML, Inc.	M08RH	190621-3	26.01.21			
Horn Antenna	OML, Inc.	M05RH	190621-3	26.01.21			
Horn Antenna	OML, Inc.	M03RH	190621-3	26.01.21			
mmWave Single- Axis measuring jig	C&K Technologies, Inc.	N/A	MWJ01	-			
Single-Axis Control Driver & Power Supply	C&K Technologies, Inc.	DACD&P-4801	0001	-			

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-70-5008-1021 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR25-SRF0089-A Page (31) of (31)

KCTL

Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
Controller	INNCO SYSTEMS	CO3000	1442/54370322/P	-
Antenna Mast	INNCO SYSTEMS	MA4640-XP-ET	AM002	-
Turn Device	INNCO SYSTEMS	DS1200-S-1t	0001	-
Spectrum Analyzer	R&S	FSV40	100988	25.05.27
Low Noise Amplifier	TESTEK	TK-PA18H	220123-L	25.10.11
Low Noise Amplifier	TESTEK	TK-PA1840H	220234-L	25.10.14
Horn Antenna	SCHWARZBECK	BBHA9120D	2764	25.10.24
Horn Antenna	SCHWARZBECK	BBHA9170	1266	25.10.15
High Pass Filter	Qotana	DBHF058004000A	23041800061	25.06.24
Signal Generator	R&S	SMB100A	176206	26.01.17
Spectrum Analyzer	R&S	FS <mark>V40</mark>	100988	25.05.27
Amplifier	SONOMA INSTRUMENT	31 <mark>0N</mark>	421910	25.10.11
Bilog Antenna	Teseq GmbH	CBL 6112D	61521	26.12.11
DC Power Supply	POWERCOM	DCP-50100A	20220610-01	26.01.16
Vector Signal Generator	R&S	SMBV100A	257566	25.07.01

End of test report