Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Client EMC Technologies Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com ## **DASY** # Dipole Validation Kit Type: D1800V2 Serial: 242 Manufactured: December 10, 1998 Calibrated: July 13, 2004 #### 1. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 1800 MHz: Relative Dielectricity 39.9 $\pm 5\%$ Conductivity 1.36 mho/m $\pm 5\%$ The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.08 at 1800 MHz) was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power. ### 2. SAR Measurement with DASY4 System Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are: averaged over 1 cm³ (1 g) of tissue: 38.2 mW/g \pm 16.8 % (k=2)¹ averaged over $10 \text{ cm}^3 (10 \text{ g})$ of tissue: **20.4 mW/g** ± $16.2 \% (k=2)^1$ ¹ validation uncertainty ## 3. Dipole Impedance and Return Loss The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are: Electrical delay: 1.195 ns (one direction) Transmission factor: 0.980 (voltage transmission, one direction) The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements. Feedpoint impedance at 1800 MHz: $Re\{Z\} = 47.2 \Omega$ Im $\{Z\} = -4.9 \Omega$ Return Loss at 1800 MHz -24.5 dB ### 4. Handling Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole. #### 5. Design The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. ## 6. Power Test After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.