

ELEMENT MATERIALS TECHNOLOGY

(formerly PCTEST)
7185 Oakland Mills Road, Columbia, MD 21046 USA
Tel. +1.410.290.6652 / Fax +1.410.381.1520
http://www.element.com

RF EXPOSURE PART 1 TEST REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 11/06/2024 - 11/25/2024 Test Site/Locations: Element, Columbia, MD, USA Element, Suwon, Korea Document Serial No.: 1M2408260070-01.A3L

FCC ID: A3LSMS938JPN

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Portable Handset Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model(s): SC-52F

Additional Model(s): SCG32

				SAR			
Equipment Class	Band & Mode	Tx Frequency	1g Head (W/kg)	1g Body-Worn (W/kg)	1g Hotspot (W/kg)	10g Phablet (W/kg)	
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.90	0.58	0.82	N/A	
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	<0.1	0.37	0.95	N/A	
PCE	UMTS 850	826.40 - 846.60 MHz	1.02	0.46	0.71	N/A	
PCE	LTE Band 12	699.7 - 715.3 MHz	1.01	0.34	0.48	N/A	
PCE	LTE Band 13	779.5 - 784.5 MHz	1.12	0.48	0.63	N/A	
PCE	LTE Band 5	824.7 - 848.3 MHz	1.13	0.55	0.69	N/A	
PCE	LTE Band 66	1710.7 - 1779.3 MHz	0.19	0.51	1.03	N/A	
PCE	LTE Band 4	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A	
PCE	LTE Band 2	1850.7 - 1909.3 MHz	0.10	0.50	0.99	N/A	
PCE	LTE Band 41	2498.5 - 2687.5 MHz	0.90	0.43	0.61	N/A	
PCE	NR Band n5	826.5 - 846.5 MHz	1.19	0.58	0.80	N/A	
PCE	NR Band n66	1712.5 - 1777.5 MHz	1.17	0.51	1.17	N/A	
PCE	NR Band n41	2501.01 - 2685 MHz	1.05	0.41	0.54	N/A	
DTS	2.4 GHz WIFI	2412 - 2472 MHz	0.78	0.39	0.84	N/A	
NII	5 GHz WIFI	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz U-NII-4: 5845 - 5885 MHz	0.99	0.49	0.59	2.62	
6CD	6 GHz WIFI	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz	0.70	<0.1	N/A	0.38	
DSS	2.4 GHz Bluetooth	2402 - 2480 MHz	0.99	0.17	0.53	N/A	
DXX	NFC	13.56 MHz	N/A	N/A	N/A	< 0.1	
UWB	UWB	6489.6 - 7987.2 MHz	N/A	N/A	N/A	< 0.1	
imultaneous S	SAR per KDB 690783 D01v01r	03:	1.59	1.51	1.59	2.62	
Equipment	Rand & Mode	Tx Frequency	APD (W/m/2)		Reported PD		
Class	Danu & Wode	1x Frequency	Head	Body-Wom	Phablet	(W/m/2)	
6CD	6 GHz WIFI	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz	4.17	0.58	8.94	7.24	
UWB	UWB	6489.6 - 7987.2 MHz	N/A	N/A	0.02	2.01	

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 2.9 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 1 of 107
·		REV 22 0

TABLE OF CONTENTS

1	IESI LAB	ORATORY INFORMATION	3
2	DEVICE U	NDER TEST	4
3	LTE AND I	NR INFORMATION	. 22
4	INTRODUC	CTION	. 24
5	DOSIMET	RIC ASSESSMENT	. 25
6	DEFINITIO	N OF REFERENCE POINTS	. 26
7	TEST CON	IFIGURATION POSITIONS	. 27
8	RF EXPOS	SURE LIMITS	. 31
9	FCC MEAS	SUREMENT PROCEDURES	. 33
10	RF CONDI	JCTED POWERS	. 39
11	SYSTEM \	/ERIFICATION	. 70
12	SAR DATA	A SUMMARY	. 76
13	POWER D	ENSITY DATA SUMMARY	. 95
14	SAR MEAS	SUREMENT VARIABILITY	. 97
15	ADDITION	AL TESTING PER FCC GUIDANCE	. 98
16	EQUIPMEI	NT LIST	101
17	MEASURE	MENT UNCERTAINTIES	102
18	CONCLUS	SION	105
19	REFEREN	CES	106
APPEN APPEN APPEN APPEN APPEN APPEN	IDIX B: SIDIX C: FIDIX D: SIDIX E: FIDIX F: FIDIX G: SIDIX H: LIDIX I: FIDIX J: IDIX J	SAR TEST PLOTS SAR DIPOLE VERIFICATION PLOTS PROBE AND DIPOLE CALIBRATION CERTIFICATES SAR TISSUE SPECIFICATIONS MULTI-TX AND ANTENNA SAR CONSIDERATIONS POWER REDUCTION VERIFICATION SAR SYSTEM VALIDATION LTE AND NR LOWER BANDWIDTH RF CONDUCTED POWERS RU SAR EXCLUSION DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS FCC ID A3LSMS938U UNLICENSED SAR REFERENCE TEST DATA	

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 2 of 107

TEST LABORATORY INFORMATION

1.1 Introduction

This test report for device subject to testing at an accredited testing laboratory has been generated by the testing laboratory that tested the device. Measurements were performed at various locations within Element Materials Technology. Detailed location and accredited information regarding the testing laboratories are provided below.

Test Laboratories Information 1.2

1.2.1 **Testing Laboratory 1**

Test Firm Name	ELEMENT MATERIALS TECHNOLOGY WASHINGTON DC LLC		
Test Lab Location	7185 Oakland Mills Road, Columbia, MD 21046, United States Tel. +1.410.290.6652 / Fax +1.410.381.1520		
	Lab Code. (ISED): 2451B		
	CAB Identifier (NIST): US0110		
Accreditation Info.	ISO/IEC 17025 (A2LA): CERT #2041.01		
	ACCREDITED CERT #204.01		
Measurement System No.	G, P, O, C, R		

1.2.2 **Testing Laboratory 2**

Test Firm Name	ELEMENT MATERIALS TECHNOLOGY SUWON, LTD.		
(Tower-dong#P136) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeon 16954, South Korea Tel. +82.31.660.7391 / Fax +82)31-660-7318			
	Lab Code. (ISED): 26168		
	CAB Identifier (NIST): KR0169		
Accreditation Info.	ISO/IEC 17025 (A2LA): CERT #2041.04		
Accieditation into.	ACCREDITED CENT #2041.04		
Measurement System No.	K2, K3, K4, K6		

Note: For each test performed, the test site can be verified with the probe serial numbers specified in the table of Test System Verification and Equipment List.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 3 of 107

DEVICE UNDER TEST

2.1 **Device Overview**

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 5	Voice/Data	824.7 - 848.3 MHz
LTE Band 66	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 2	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
NR Band n5	Voice/Data	826.5 - 846.5 MHz
NR Band n66	Voice/Data	1712.5 - 1777.5 MHz
NR Band n41	Voice/Data	2501.01 - 2685 MHz
2.4 GHz WIFI	Voice/Data	2412 - 2462 MHz
5 GHz WIFI	Voice/Data	U-NII-1: 5180 - 5240 MHz U-NII-2A: 5260 - 5320 MHz U-NII-2C: 5500 - 5720 MHz U-NII-3: 5745 - 5825 MHz U-NII-4: 5845 - 5885 MHz
6 GHz WIFI	Voice/Data	U-NII-5: 5935 - 6415 MHz U-NII-6: 6435 - 6515 MHz U-NII-7: 6535 - 6875 MHz U-NII-8: 6895 - 7115 MHz
2.4 GHz Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz
UWB	Data	6489.6 - 7987.2 MHz

2.2 **Data Referencing**

Reference Device		Variant Device	Key differences
FCC ID: A3LSMS938U		FCC ID: A3LSMS938JPN	See change documentation
Equipment Class Mode		Data Referencing	Comments
DTS	2.4 GHz WIFI	Υ	See RF Exposure Report Sections 12.13 through 12.14 for spotcheck data
NII	5 GHz WIFI	Υ	See RF Exposure Report Sections 12.15 through 12.16 for spotcheck data
6CD	6 GHz WIFI	Υ	See RF Exposure Report Sections 12.17 through 12.18 for spotcheck and tested data

Per manufacturer declaration, there are two Portable Handset devices FCC ID: A3LSMS938U and FCC ID: A3LSMS938JPN, with high degree of similarity, reference model FCC ID: A3LSMS938U and variant model FCC ID: A3LSMS938JPN. Both models share the same material, form factor, circuit design, and components, including antennas and their locations. The reference and variant models use the same material, form factor, circuit design, and components, including antennas and their locations. The reference and variant models use the same power tables and have same tune-up tolerances.

Per FCC Approved Data Referencing Test Plan, testing was done fully on the reference model FCC ID:

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 4 of 107
	<u> </u>	REV 22.0

03/30/2022

A3LSMS938U, while spot-check verification has been performed on variant model FCC ID: A3LSMS938JPN. The spot check verification has been performed in the worst case for each exposure/each antenna condition and if the spot check SAR value was higher, it was applied to the simultaneous transmission results and SAR CHAR on variant model FCC ID: A3LSMS938JPN. The reference and variant model comparison data summary is included in section 12(12.13 to 12.18). Please see RF exposure technical reports in Appendix K: for complete compliance evaluation for the reference model.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 5 of 107

2.3 Time-Averaged Algorithm

This Device is enabled with the Qualcomm® Smart Transmit Gen2 feature with antenna grouping. This feature performs time-averaging algorithm in real time to control and manage transmitting power and ensure the time-averaged RF exposure is in compliance with FCC requirements all the time. Refer to Compliance Summary document for detailed description of Qualcomm® Smart Transmit feature (report SN could be found in Section 2.11– Bibliography).

The Smart Transmit algorithm maintains the time-averaged transmit power, in turn, time-averaged RF exposure of *SAR_design_target* below the predefined time-averaged power limit (i.e., P_{limit} for WWAN sub-6/WLAN/BT radio), for each characterized technology and band. Characterization is achieved by determining P_{limit} for WWAN sub-6/WLAN/BT that corresponds to the exposure design targets after accounting for all device design related uncertainties, i.e., SAR_design_target (<FCC SAR Limit) for sub-6 radio. The SAR characterization is denoted as SAR char in this report (see SAR Summary Section and Part 0 SAR Test Results for P_{limit} Calculations Appendix).

Smart Transmit allows the device to transmit at higher power instantaneously, as high as P_{max} , when needed, but enforces power limiting to maintain time-averaged transmit power to P_{limit} . Below table shows P_{limit} EFS settings and maximum tune up output power P_{max} configured for this EUT for various transmit conditions (Device State Index DSI). Note that the device uncertainty for WWAN sub-6/WLAN/BT is 1.0dB for this EUT.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 6 of 107

		Body-Worn, Hotspot, or	Head				
Exposure Scenario			Maximum Tune-Up	Phablet			
Averaging Volume	Output	1g/10g	1g				
Spacing		Power*	10mm, 0mm	0mm			
Configuration							
DSI				0	1		
Technology/Band	Antenna	Antenna Group	P _{max}	P_{limit}	P_{limit}		
GSM 850	Α	AG0	25.3	29.5	34.4		
GSM 850	Е	AG1	25.3	26.6	20.3		
GSM 1900	Α	AG0	22.1	18.8	34.8		
UMTS 850	Α	AG0	24.0	26.7	32.4		
UMTS 850	Е	AG1	24.0	26.5	20.5		
LTE Band 12	А	AG0	24.0	26.9	32.1		
LTE Band 12	Е	AG1	24.0	26.1	21.5		
LTE Band 13	Α	AG0	24.0	28.6	31.7		
LTE Band 13	Е	AG1	24.0	26.9	21.5		
LTE Band 5	Α	AG0	24.0	27.2	32.7		
LTE Band 5	Е	AG1	24.0	26.5	21.0		
LTE Band 66/4	Α	AG0	23.5	19.0	31.8		
LTE Band 2	Α	AG0	23.5	18.0	32.4		
LTE Band 41	В	AG0	22.0	20.0	34.4		
LTE Band 41	F	AG1	22.0	19.5	16.0		
NR Band n5	Α	AG0	24.0	26.0	31.7		
NR Band n5	Е	AG1	24.0	25.9	21.0		
NR Band n66	Α	AG0	23.5	19.0	31.5		
NR Band n66	F	AG1	23.5	20.5	18.5		
NR Band n41 PC2 (Path1)	F	AG1	26.0	19.5	16.5		
NR Band n41 PC2 (Path 2)	В	AG0	26.0	20.0	21.0		
2.4 GHz WIFI	Н	AG1	19.0	19.5	16.0		
2.4 GHz WIFI	J	AG1	19.0	30.2	16.0		
2.4 GHz WIFI	MIMO	AG1	17.0	19.4	16.0		
5 GHz WIFI	Н	AG1	17.0	15.0	15.0		
5 GHz WIFI	Е	AG1	17.0	15.0	15.0		
5 GHz WIFI	MIMO	AG1	17.0	15.0	15.0		
6 GHz WIFI	Н	AG1	16.0	8.0	18.5		
6 GHz WIFI	Е	AG1	16.0	8.0	22.9		
6 GHz WIFI	MIMO	AG1	16.0	8.0	18.5		
2.4 GHz Bluetooth	Н	AG1	17.4	20.0	18.4		
2.4 GHz Bluetooth	J	AG1	17.4	25.3	21.0		
2.4 GHz Bluetooth	MIMO	AG1	13.4	19.8	18.1		

The maximum time-averaged output power (dBm) for any WWAN sub-6/WLAN/BT technology, band, and DSI is the minimum of (" P_{limit} EFS" and "Maximum tune up output power P_{max} ") + 1dB device uncertainty. SAR values in this report were scaled to this maximum time-averaged output power to determine compliance per KDB Publication 447498 D01v06.

FCC ID: A3LSMS938JPN RF EX	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 7 of 107

Nominal and Maximum Output Power Specifications 2.4

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Note: Targets for 802.11ax/be RU operations can be found in 802.11ax/be RU SAR Exclusion Appendix.

2.4.1 **Licensed Output Power**

		GS	M/GPRS/EI	OGE 850										
			Antenna											
Power Level		Voice (in dBm)	I Data - Burst Average GMSK (in dBm) Data - Burst Ave							rage 8-PSK (in dBm)				
. 0.13. 2570.		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots				
Pmax	Max Allowed Power	33.5	33.5	32.5	30.5	28.5	28.0	26.0	24.0	23.0				
	Nominal	32.5	32.5	31.5	29.5	27.5	27.0	25.0	23.0	22.0				
DSI = 0 (Body-Worn, Hotspot, or Phablet)	Max Allowed Power	33.5	33.5	32.5	30.5	28.5	28.0	26.0	24.0	23.0				
	Nominal	32.5	32.5	31.5	29.5	27.5	27.0	25.0	23.0	22.0				
DSI = 1 (Head)	Max Allowed Power	33.5	33.5	32.5	30.5	28.5	28.0	26.0	24.0	23.0				
	Nominal	32.5	32.5	31.5	29.5	27.5	27.0	25.0	23.0	22.0				
GSM/GPRS/EDGE 850 Antenna E														
		Voice			014017	· ID \	5.	D	0 DOI((
Power Level		(in dBm)	Data -	Burst Avera	ge GMSK (in dBm)	Data -	Burst Avera	ige 8-PSK (ın dBm)				
i ower Level		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots				
Pmax	Max Allowed Power	33.5	33.5	32.5	30.5	28.5	28.0	26.0	24.0	23.0				
	Nominal	32.5	32.5	31.5	29.5	27.5	27.0	25.0	23.0	22.0				
DSI = 0 (Body-Worn, Hotspot, or Phablet)	Max Allowed Power	33.5	33.5	32.5	30.5	28.5	28.0	26.0	24.0	23.0				
	Nominal	32.5	32.5	31.5	29.5	27.5	27.0	25.0	23.0	22.0				
DSI = 1 (Head)	Max Allowed Power	30.5	30.5	27.5	25.7	24.5	28.0	26.0	24.0	23.0				
	Nominal	29.5	29.5	26.5	24.7	23.5	27.0	25.0	23.0	22.0				
		GSI	M/GPRS/ED Antenna											
		Voice				_		_						
Power Level		(in dBm)	Data -	Burst Avera	ge GMSK (i	in dBm)	Data -	Burst Avera	ige 8-PSK (in dBm)				
Power Level		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots				
Pmax	Max Allowed Power	30.5	30.5	29.0	27.5	25.5	27.0	25.0	23.0	22.0				
	Nominal	29.5	29.5	28.0	26.5	24.5	26.0	24.0	22.0	21.0				
DSI = 0 (Body-Worn, Hotspot, or Phablet)	Max Allowed Power	29.0	29.0	26.0	24.2	23.0	27.0	25.0	23.0	22.0				
· · · · · · · · · · · · · · · · · · ·	Nominal	28.0	28.0	25.0	23.2	22.0	26.0	24.0	22.0	21.0				
DSI = 1 (Head)	Max Allowed Power	30.5	30.5	29.0	27.5	25.5	27.0	25.0	23.0	22.0				
, ,	Nominal	29.5	29.5	28.0	26.5	24.5	26.0	24.0	22.0	21.0				

For GSM, the above powers listed are GSM burst average values.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 8 of 107

UMTS Band 5 (850 MHz)

Antenna A

		verage Output Po	Output Power (in dBm)						
Power Level		3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6					
Pmax	Max Allowed Power	25.0	24.0	24.0					
Fillax	Nominal	24.0	23.0	23.0					
DSI = 0 (Body-Worn, Hotspot, or	Max Allowed Power	25.0	24.0	24.0					
Phablet)	Nominal	24.0	23.0	23.0					
DSI _ 1 (Hood)	Max Allowed Power	25.0	24.0	24.0					
DSI = 1 (Head)	Nominal	24.0	23.0	23.0					

UMTS Band 5 (850 MHz)

Antenna E

		Modulated Av	erage Output Po	put Power (in dBm)						
Power Level		3GPP WCDMA Rel 99	3GPP HSDPA Rel 5	3GPP HSUPA Rel 6						
Pmax	Max Allowed Power	25.0	24.0	24.0						
Fillax	Nominal	24.0	23.0	23.0						
DSI = 0 (Body-Worn, Hotspot, or	Max Allowed Power	25.0	24.0	24.0						
Phablet)	Nominal	24.0	23.0	23.0						
DSI – 1 (Hood)	Max Allowed Power	21.5	20.5	20.5						
DSI = 1 (Head)	Nominal	20.5	19.5	19.5						

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 9 of 107

			Modulated A	Average Outp	ut Power (in
Mode / Band	Antenna		Pmax	(Body- Worn, Hotspot, or	DSI = 1 (Head)
LTE D 142		Max Allowed Power	25.0	25.0	25.0
LTE Band 12	A	Nominal	24.0	24.0	24.0
LTE Band 12	E	Max Allowed Power	25.0	25.0	22.5
LIE Ballu 12		Nominal	24.0	24.0	21.5
LTE Band 13	А	Max Allowed Power	25.0	25.0	25.0
LIL Ballu 13	A	Nominal	24.0	24.0	24.0
LTE Band 13	E	Max Allowed Power	25.0	25.0	22.5
LIE Ballu 15		Nominal	24.0	24.0	21.5
LTE Band 5	А	Max Allowed Power	25.0	25.0	25.0
LIE Ballu 5	A	Nominal	24.0	24.0	24.0
LTE Band 5	E	Max Allowed Power	25.0	25.0	22.0
LIL Ballu 3	L	Nominal	24.0	24.0	21.0
LTE Band 66/4	А	Max Allowed Power	24.5	20.0	24.5
LIE Ballu 00/4	A	Nominal	23.5	19.0	23.5
LTE Band 2	A	Max Allowed Power	24.5	19.0	24.5
LIL Ballu Z	A	Nominal	23.5	18.0	23.5
LTE Band 41	В	Max Allowed Power	25.0	23.0	25.0
LIL Ballu 41	В	Nominal	24.0	22.0	24.0
LTE Band 41	F	Max Allowed Power	25.0	22.5	19.0
LIL Ballu 41	Г	Nominal	24.0	21.5	18.0
			Frame Avera	age Output Po	wer (in dBm)
Mode / Band	Antenna		Pmax	DSI = 0 (Body-Worn, Hotspot, or Phablet)	DSI = 1 (Head)
LTE Donal 41	D	Max Allowed Power	23.0	21.0	23.0
LTE Band 41	В	Nominal	22.0	20.0	22.0
LTC Do and 44	_	Max Allowed Power	23.0	20.5	17.0
LTE Band 41	F	Nominal	22.0	19.5	16.0

For LTE TDD, the above powers listed are TDD burst average values.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 10 of 107

			Modulated A	Average Outp	ut Power (in
				DSI = 0	
Mode / Band	Antenna			(Body-	DSI = 1
Wiode / Baria	/		Pmax	Worn,	(Head)
				Hotspot, or	(ricau)
				Phablet)	
NR Band n5	A	Max Allowed Power	25.0	25.0	25.0
TVIX Build 113		Nominal	24.0	24.0	24.0
NR Band n5	E	Max Allowed Power	25.0	25.0	22.0
INN Ballu IIS	L	Nominal	24.0	24.0	21.0
NR Band n66	A	Max Allowed Power	24.5	20.0	24.5
INK Ballu 1100	A	Nominal	23.5	19.0	23.5
NR Band n66	F	Max Allowed Power	24.5	21.5	19.5
INN Ballu 1100	Г	Nominal	23.5	20.5	18.5
NR Band n41 PC2 (Path1)	F	Max Allowed Power	27.0	20.5	17.5
INN Ballu 1141 PC2 (Patili)		Nominal	26.0	19.5	16.5
NR Band n41 PC2 (Path 2)	В	Max Allowed Power	27.0	21.0	22.0
INN Ballu 1141 PCZ (Patil Z)	•	Nominal	26.0	20.0	21.0

For NR TDD, the above powers listed are TDD burst average and framed average values

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 11 of 107

2.4.2 2.4 GHz WLAN Output Power

The below table is applicable in the following conditions:

• Pmax, DSI=0 (Body-worn, Hotspot or Phablet)

-	-			ESS 982:11 Modulated Cusput Power (in dBirs)																																		
		950 950											SSC IN MINO											$\overline{}$														
Made	Rand	Power Level		Actor N										Reseau												MAC										-		
						-		-		= (0.1)		in (0.0)								-		- (No)		he (84)		C00 + E36	9	C00 - FTMC		con a trac.	10M)	(00 + ENC, 10	2040	as (53) (000 + 879C, 5	504)	in (Si (CDO + ETR)	. 10Mg	
Mai	num / Nomine	si Power	Max	Non.	Mex	Non.	Max	Non.	Max	Non.	Max	Non.	Max	Non.	Max	Non.	Max	Non.	Max	Non.	bbsc	Non.	Max	Non.	Max	Non.	Max	Nan.	Max	Nom.	Max	Non	Max	Non.	Max	Non.	Max	Nom.
	2.4 GHz WLAN	2.45 GHz	20.0	19.0	19.0	17.0	18.0	17.0	18.0	17.0	180 sk.1 168 sk.11 160	17.0 18.8 18.0	18.0 sh.1: 16.8 sh.11: 16.0	17.0 16.6 16.0	20.0	19.0	18.0	17.0	18.0	17.0	18.0	17.0		17.0 18.8 18.0		17.0 16.5 16.0			18.0	17.0	18.0	17.0	19.0		19.0 sh.1 16.0 sh.11 16.0	17.0 18.8 18.0		17.0 18.8 18.0

The below table is applicable in the following conditions:

• DSI=1 (RCV)

	- 1								- 51	60											- 56												5650 ir	MMO					
	Rode	Rand	Power Level						Acte	eca H											Acteo	a.J											Mi	80					
										-		= (0.0)		he (0.0)								-		m (No)		in (62)		COD - ETHIC	3	COD - 1700		coo enic, e	OM)	(00 + ETIC,	SDN)	(CDO + 879C,	DW)	(CEO + 879C)	50M)
	Masi	imum / Nomina	Power	Max	Non.	Mex	Non.	Max	Non.	Max	Non.	Max	Non.	Max	Non.	Max	Non	Max	Non.	Max	Non.	Max	Non.	Max	Non.	Max	Non.	Max	Non.	Max	Nom.	Max	Non	Max	Non.	Max	Non.	Max	Non.
0	il = 1 lead	2.4 GHz WLAN	2.45 GHz	17.0	16.0	17.0	16.0	17.0	160	17.0	16.0	6.1 165	16.0 16.5 16.0		16.0 16.1 16.0			17.0	16.0	17.0	16.0	17.0	16.0	17.0 sh.1: 16.6 sh.11: 16.0	16.0 18.8 18.0	17.0 (A.1. 16.0 (B.1) 16.0	16.0 16.5 16.0			17.0	16.0	17.0	16.0	17.0	16.0	17.0 sh.1 Wa sh.11 Wa	16.0 16.6 16.0	17.0 on.1 16.5 on.11 16.0	16.0 18.8 18.0

2.4.3 5 GHz WLAN Output Power

The below table is applicable in the following conditions:

Pmax

				iun																												
							SISO									EEE 8	02.11 Modulated Outp SISO	ut Power	(in dBm)								SISO In MIM					
Power	Mode	Band					Antenna										Antenna E	_									SISO II MIMO	-				-
Level	MEGR	DIMINO										_										_					MINU		ax dist		te GU	_
			,		- 1				as (SU)		be (SU)						*		ax (SU)		Ser (SU)		(C00 + STBC)		(CDD + STRC, SI	onq par	(CDD + STRC, SD	n	(CDO + STRC, SC	MO.	(CDD + STRC, S	DM)
Maxima	m / Nomina	al Power	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
		UNII-1	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch 36 15.0	17.0	18.0 ch.36: 16.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch.36: 16.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch 36: 16.0	17.0
	5 GHz	UNII-2A	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch. 64 15.5	17.0	18.0 ch. 64 15.5	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch.64: 15.5	17.0	18.0 ch. 64: 15.5	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch 64: 15.5	17.0	18.0 ch.64: 15.5	17.0
	W1F1 (20MHz BW)	UNII-2C	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch.100: 15.0	17.0	18.0 ch. 100: 15.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch.100: 15.0	17.0	18.0 ch. 100: 15.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch.100: 15.0	17.0	18.0 ch. 100: 15.0	17.0
		UNII-3	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch 165: 17.0	17.0	18.0 ch. 165: 17.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch.165: 17.0	17.0	18.0 ch. 165: 17.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0 ch.165: 17.0	17.0	18.0 ch.165: 17.0	17.0
		UNI-4	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0
		UNII-1			18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0			18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0			18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0
					ch. 38: 16.0	15.0	ch. 38 16.0	15.0	ch. 38: 15.5	14.5	ch. 38: 15.5 18.0	14.5			ch. 38: 16.0 18.0	15.0	ch. 38: 16.0 18.0	15.0	ch. 38: 15.5	14.5	ch. 38: 15.5 18.0	14.5			ch. 38: 16.0 18.0	15.0	ch.38: 16.0 18.0	15.0	ch. 38: 15.5 18.0	14.5	ch. 38: 15.5	14.5
	5 GHz	UNII-2A			ch. 62: 17.0	15.0	ch. 62: 17.0	16.0	ch. 62 14.5	13.5		13.5			ch. 62: 17.0	16.0	ch. 62: 17.0	16.0	ch. 62: 14.5	13.5	ch. 62: 14.5	13.5			ch. 62: 17.0	16.0	ch 62: 17.0	16.0	ch 62: 14.5	13.5	ch 62: 14.5	13.5
	W1F1 (40MHz	UNII-2C			18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0			18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0			18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0
Pmax	BW)				ch. 102: 16.5	15.5	ch 102: 16.5	15.5	ch. 102: 14.0	13.0	ch. 102: 14.0	13.0			ch. 102 16.5	15.5	ch. 102: 16.5	15.5	ch. 102: 14.0	13.0	ch. 102: 14.0	13.0			ch. 102: 16.5	15.5	ch. 102: 16.5	15.5	ch. 102: 14.0	13.0	ch. 102: 14.0	13.0
		UNII-3			18.0	17.0	18.0	17.0	18.0 ch. 159: 16.0	17.0	18.0 ch. 159: 16.0	17.0			18.0	17.0	18.0	17.0	18.0 ch. 159. 16.0	17.0	18.0 ch. 159: 16.0	17.0			18.0	17.0	18.0	17.0	18.0 ch. 159: 16.0	17.0	18.0 ch. 159: 16.0	17.0
		UNII-4			18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0			18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0			18.0	17.0	18.0	17.0	18.0	17.0	18.0	17.0
		UNII-1					16.5	15.5	ch. 175: 16.0	15.0	ch. 175: 16.0 15.5	15.0					16.5	15.5	ch. 175: 16.0	15.0	ch. 175: 16.0	15.0					16.5	15.5	ch. 175: 16.0	15.0	ch. 175: 16.0	15.0
		UNI-2A					16.5	15.5	15.5	14.5	15.5	14.5					16.5	15.5	15.5	14.5	15.5	14.5					16.5	15.5	15.5	14.5	15.5	14.5
	5 GHz WIFI	UNII-2C					15.0	17.0	18.0	17.0	18.0	17.0					18.0	17.0	18.0	17.0	18.0	17.0					18.0	17.0	18.0	17.0	18.0	17.0
	(BOMHz BW)	UNII-2C					ch 106: 15.5	14.5	ch 106: 13.5	12.5	ch 106: 13.5	12.5					ch. 106: 15.5	14.5	ch. 106: 13.5	12.5	ch. 106: 13.5	12.5					ch. 106: 15.5	14.5	ch. 106: 13.5	12.5	ch. 106: 13.5	12.5
		UNI-3					18.0	17.0	16.5	15.5	16.5	15.5					18.0	17.0	16.5	15.5	16.5	15.5					18.0	17.0	16.5	15.5	16.5	15.5
	_	UNI-4					18.0	17.0	17.0	16.0	17.0	16.0					18.0	17.0	17.0	16.0	17.0	16.0					18.0	17.0	17.0	16.0	17.0	15.0
	5 GHz WIFI	UNI-1/2A					15.5	14.5	14.0	13.0	14.0	13.0					15.5	14.5	14.0	13.0	14.0	13.0					15.5	14.5	14.0	13.0	14.0	13.0
	(160MHz BW)	-					12.0	11.0	12.0	11.0	12.0	11.0					12.0	11.0	12.0	11.0	12.0	11.0					12.0	11.0	12.0	11.0	12.0	11.0
		UNI-3/4					15.0	14.0	14.5	13.5	14.5	13.5					15.0	14.0	14.5	13.5	14.5	13.5					15.0	14.0	14.5	13.5	14.5	13.5

The below table is applicable in the following conditions:

• DSI=0 (Body-worn, Hotspot or Phablet)

																EEE &	02.11 Modulated Outp	ut Power	in dBm)													
Power							SISO										SISO										SISO in MIN	р				_
Level	Mode	Band		_		_	Antenna I	1		_				_			Antenna E										MIMO					
			a a		4				as (SU)		be (SU)		à				~		ax (SU)		te (SU)		(C00 + STBC)		(CDD + STRC, S	csq	(CDO + STRC, SI	960	ax (SU) (CDD + STRC, S	260)	te (\$1) (CDD + \$19C, \$	DM)
Maximu	m / Nominal	Power	Max	Nom.	Max	Nom	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Non.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
		UNII-1	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
		UNII-2A	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
	5 GHz WIFI (20MHz	UNII-2C	16.0	15.0	16.0	15.0	16.0	15.0	ch. 64: 15.5 16.0	14.5	ch. 64: 15.5	14.5	16.0	15.0	16.0	15.0	16.0	15.0	ch. 64: 15.5 16.0	14.5	ch. 64: 15.5	14.5	16.0	15.0	16.0	15.0	16.0	15.0	ch 64: 15.5	14.5	ch. 64: 15.5 16.0	14.5
	BW)								ch 100: 15.0	14.0	ch. 100: 15.0	14.0							ch. 100: 15.0	14.0	ch. 100 15.0	14.0							ch. 100: 15.0	14.0	ch. 100: 15.0	14.0
		UNII-3	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
		UNII-4	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
		UNII-1			16.0	15.0	16.0	15.0	16.0 ch.38: 15.5	15.0	16.0 ch.38: 15.5	15.0			16.0	15.0	16.0	15.0	16.0 ch.38: 15.5	15.0	16.0 ch.38: 15.5	15.0			16.0	15.0	16.0	15.0	16.0 ch.38: 15.5	15.0	16.0 ch.38: 15.5	15.0
	5 GHz	UNII-2A	1		16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
0_Body-	WIFI (40MHz	-			16.0	15.0	16.0	15.0	ch. 62: 14.5 16.0	13.5	ch. 62: 14.5	13.5			16.0	15.0	16.0	15.0	ch. 62: 14.5	13.5	ch. 62: 14.5	13.5		-	16.0	15.0	16.0	15.0	ch. 62: 14.5	13.5	ch. 62: 14.5	13.5
Worn, Hotspot.	BW)	UNII-2C				15.0		15.0	ch. 102: 14.0	13.0	ch 102: 14.0	13.0			10.0	15.0	10.0	15.0	ch. 102: 14.0			13.0			10.0	15.0	10.0	15.0	ch. 102: 14.0			13.0
or Shablet		UNI-3			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
		UNI-4			16.0	15.0	15.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
		UNII-1					16.0	15.0	15.5	14.5	15.5	14.5					16.0	15.0	15.5	14.5	15.5	14.5				ļ	16.0	15.0	15.5	14.5	15.5	14.5
	5 GHz	UNI-2A					16.0	15.0	15.5	14.5	15.5	14.5					16.0	15.0	15.5	14.5	15.5	14.5					16.0	15.0	15.5	14.5	15.5	14.5
	W1F1 (80MHz	UNII-2C					15.0 ch.106: 15.5	15.0	16.0 ch.106: 13.5	15.0	16.0 ch 106: 13.5	15.0					16.0 ch.106 15.5	15.0	16.0 ch.106: 13.5	15.0	16.0 ch. 106: 13.5	15.0					16.0 ch. 106: 15.5	15.0	16.0 ch.106: 13.5	15.0	16.0 ch. 106: 13.5	15.0
	BW)	UNI-3					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0				1	16.0	15.0	16.0	15.0	16.0	15.0
		UNII-4	1				16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0				Ì	16.0	15.0	16.0	15.0	16.0	15.0
	5 GHz	UNI-1/2A					15.5	14.5	14.0	13.0	14.0	13.0					15.5	14.5	14.0	13.0	14.0	13.0					15.5	14.5	14.0	13.0	14.0	13.0
	W1F1 (160MHz	UNII-2C					12.0	11.0	12.0	11.0	12.0	11.0					12.0	11.0	12.0	11.0	12.0	11.0					12.0	11.0	12.0	11.0	12.0	11.0
	BW)	UNI-3/4					15.0	14.0	14.5	13.5	14.5	13.5					15.0	14.0	14.5	13.5	14.5	13.5					15.0	14.0	14.5	13.5	14.5	13.5

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 12 of 107
		REV 22 0

The below table is applicable in the following conditions:

• DSI=1 (RCV)

																EEE 80	2.11 Modulated Outp	ut Power (in diSm)													
Drosser		ı					\$150										880	_				_					SISO in MIN	0				
Power	Mode	Band					Antenna I										Antenna E										MIMO					
							*		as (SU)		be (SU)						*		ax (SU)		Ser (SIU)		(C00 + STBC)		(CDD + STRC, S	ONG	(CDD + STRC, SI	MO.	ax (SU) (CDD + STRC, S	OM)	te (SU) (CDD + STBC; S	DM)
Masima	m / Nominal	al Power	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
		UNII-1	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
		UNI-2A	15.0	15.0	16.0	15.0	15.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
	W1F1 (20MHz BW)	UNII-2C	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
		UNII-3	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
	-	UNII-4	16.0	15.0	16.0	15.0	15.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
		UNII-1			16.0	15.0	15.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
	5 GHz	UNII-2A			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
	(40MHz	UNII-2C			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
1_Head	,	UNII-3			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
	\vdash	UNII-4			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0	16.0	15.0	16.0	15.0
		UNII-1					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0
	SUM	UNII-2A	4				16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0
	(BOMHz (MM)	UNII-2C					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0
		UNII-3					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0
	-	UNII-4					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0
	5 GHz	UNI-1/2A					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0
	(160MHz	UNII-2C	4				16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0
		UNI-3/4					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0					16.0	15.0	16.0	15.0	16.0	15.0

2.4.4 **6 GHz WLAN Output Power**

The below table is applicable in the following conditions:

Pmax, DIS=1(Head)

			ax, Dio	. /.	iouu,															
					SISO					IEEE 80	2.11 Modulated Outp SISO	ut Power	(in dBm)				SISO in MIN	10		
Power	Mode	Band			Antenna H						Antenna E						MIMO			
Level			a		ax (SU)		be (SU)		a		ax (SU)		be (SU)		a (CDD + STBC		ax (SU)		be (SU)	
					(00)		()		-		()		25 (25)		(CDD + STBC	i)	(CDD + STBC, S	DM)	(CDD + STBC, S	DM)
Maximu	ım / Nomina	l Power	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
	6 GHz	UNII-5	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0
	WIFI (20MHz	UNIII-S	ch. 2: 8.0	7.0	ch. 2: 7.0	6.0	ch. 2: 7.0	6.0	ch. 2: 8.0	7.0	ch. 2: 7.0	6.0	ch. 2: 7.0	6.0	ch. 2: 8.0	7.0	ch. 2: 7.0	6.0	ch. 2: 7.0	6.0
	BW) - SP	UNII-7	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0	17.0	16.0
	6 GHz	UNII-5			17.0	16.0	17.0	16.0	·		17.0	16.0	17.0	16.0	·		17.0	16.0	17.0	16.0
	WIFI (40MHz BW) - SP	UNII-7			17.0	16.0	17.0	16.0			17.0	16.0	17.0	16.0			17.0	16.0	17.0	16.0
Pmax	6 GHz WIFI	UNII-5			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0
FIIIdA	(80MHz	UNII-7			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0
	BW) - SP 6 GHz																			
	WIFI	UNII-5			15.0	14.0	15.0	14.0			15.0	14.0	15.0	14.0			15.0	14.0	15.0	14.0
	(160MHz BW) - SP	UNII-7			14.5	13.5	14.5	13.5			14.5	13.5	14.5	13.5			14.5	13.5	14.5	13.5
	6 GHz WIFI	UNII-5					15.0	14.0					15.0	14.0					15.0	14.0
	(320MHz	UNII-7					14.5	13.5					14.5	13.5					14.5	13.5
	BW) - SP							10.0		IFFF 80	2.11 Modulated Outp	ut Power		10.0					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.0
Power					SISO					ILLE OU	SISO	ut rower	(iii dbiii)				SISO in MIN	10		
Level	Mode	Band			Antenna H						Antenna E						MIMO			
			a		ax (SU)		be (SU)		a		ax (SU)		be (SU)		(CDD + STBC	;)	ax (SU) (CDD + STBC, S	DM)	be (SU) (CDD + STBC, S	iDM)
Maximu	ım / Nomina	I Power	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
		UNII-5	9.5	8.5	10.0	9.0	10.0	9.0	9.5	8.5	10.0	9.0	10.0	9.0	9.5	8.5	10.0	9.0	10.0	9.0
	6 GHz	CHINO	ch. 2: 8.0	7.0	ch. 2: 7.0	6.0	ch. 2: 7.0	6.0	ch. 2: 8.0	7.0	ch. 2: 7.0	6.0	ch. 2: 7.0	6.0	ch. 2: 8.0	7.0	ch. 2: 7.0	6.0	ch. 2: 7.0	6.0
	WIFI (20MHz	UNII-6	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0
	BW) - LPI	UNII-7	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0
		UNII-8	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0	10.0	9.0
	6 GHz	UNII-5			13.0	12.0	13.0	12.0			13.0	12.0	13.0	12.0			13.0	12.0	13.0	12.0
	WIFI	UNII-6			13.0	12.0	13.0	12.0			13.0	12.0	13.0	12.0			13.0	12.0	13.0	12.0
	(40MHz BW) - LPI	UNII-7			13.0	12.0	13.0	12.0			13.0	12.0	13.0	12.0			13.0	12.0	13.0	12.0
		UNII-8			13.0	12.0	13.0	12.0			13.0	12.0	13.0	12.0			13.0	12.0	13.0	12.0
	6 GHz	UNII-5			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0
Pmax	WIFI (80MHz	UNII-6			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0
	BW) - LPI	UNII-7			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0			16.0	15.0	16.0	15.0
		UNII-8			15.5	14.5	15.5	14.5			15.5	14.5	15.5	14.5			15.5	14.5	15.5	14.5
	6 GHz	UNII-5			15.0	14.0	15.0	14.0			15.0	14.0	15.0	14.0			15.0	14.0	15.0	14.0
	WIFI (160MHz	UNII-6			15.0	14.0	15.0	14.0			15.0	14.0	15.0	14.0			15.0	14.0	15.0	14.0
	BW) - LPI	UNII-7			14.5	13.5	14.5	13.5			14.5	13.5	14.5	13.5			14.5	13.5	14.5	13.5
		UNII-8			14.5	13.5	14.5	13.5			14.5	13.5	14.5	13.5			14.5	13.5	14.5	13.5
	l	UNII-5					15.0	14.0					15.0	14.0					15.0	14.0
	6 GHz WIFI	UNII-6					15.0	14.0					15.0	14.0					15.0	14.0
	(320MHz BW) - LPI	UNII-7					14.5	13.5					14.5	13.5					14.5	13.5
		UNII-8					14.5	13.5					14.5	13.5					14.5	13.5

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 13 of 107

								IE.	EEE 802.11	Modulated/Frame C	utput Pow	er (in dBm)							
				SISO						SISO						SISO in MIN	10		
Mode	Band			Antenna H						Antenna E						MIMO			
		a		ax (SU)		be (SU)		a		ax (SU)		be (SU)		(CDD + STBC)	ax (SU) (CDD + STBC, S	DM)	be (SU) (CDD + STBC, S	iDM)
Maximum / I Powe		Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
6 GHz WIFI (20MHz BW) -	UNII-5	5.5	4.5	6.0	5.0	6.0	5.0	5.5	4.5	6.0	5.0	6.0	5.0	5.5	4.5	6.0	5.0	6.0	5.0
VLP	UNII-7	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0
6 GHz WIFI (40MHz BW) -	UNII-5			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
VLP	UNII-7			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
6 GHz WIFI (80MHz BW) -	UNII-5			12.0	11.0	12.0	11.0			12.0	11.0	12.0	11.0			12.0	11.0	12.0	11.0
VLP	UNII-7			12.0	11.0	12.0	11.0			12.0	11.0	12.0	11.0			12.0	11.0	12.0	11.0
6 GHz WIFI (160MHz BW)	UNII-5			12.0	11.0	12.0	11.0			12.0	11.0	12.0	11.0			12.0	11.0	12.0	11.0
VLP	UNII-7			12.0	11.0	12.0	11.0			12.0	11.0	12.0	11.0			12.0	11.0	12.0	11.0
6 GHz WIFI (320MHz BW)	UNII-5					12.0	11.0					12.0	11.0					12.0	11.0
VLP	UNII-7					12.0	11.0					12.0	11.0					12.0	11.0

The below table is applicable in the following conditions:

• DSI=0 (Body-worn or Phablet)

	•	טט	1-0 (D0	ay-v	orn or i	Tilai	olet)													
					SISO					IEEE 80	2.11 Modulated Outp SISO	ut Power	(in dBm)				SISO in MIN	10		
Power Level	Mode	Band			Antenna H						Antenna E						MIMO			
			a		ax (SU)		be (SU)		a		ax (SU)		be (SU)		(CDD + STBC)	ax (SU) (CDD + STBC, S	DM)	be (SU) (CDD + STBC, S	iDM)
Maxim	ım / Nomina	l Power	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
	6 GHz WIFI	UNII-5	9.0 ch. 2: 8.0	8.0 7.0	9.0 ch. 2: 7.0	8.0	9.0 ch. 2: 7.0	8.0	9.0 ch. 2: 8.0	8.0 7.0	9.0 ch. 2: 7.0	8.0	9.0 ch. 2: 7.0	8.0	9.0 ch. 2: 8.0	8.0 7.0	9.0 ch. 2: 7.0	8.0 6.0	9.0 ch. 2: 7.0	8.0 6.0
	(20MHz BW) - SP	UNII-7	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0
	6 GHz WIFI	UNII-5	5.5	0.0	9.0	8.0	9.0	8.0	5.5	0.0	9.0	8.0	9.0	8.0	0.0	0.0	9.0	8.0	9.0	8.0
DSI = 0	(40MHz BW) - SP	UNII-7			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
(Body- Worn,	6 GHz WIFI	UNII-5			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
or Phablet)	(80MHz BW) - SP	UNII-7			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
Phablet)	6 GHz WIFI	UNII-5			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
	(160MHz BW) - SP	UNII-7			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
	6 GHz WIFI (320MHz	UNII-5					9.0	8.0					9.0	8.0					9.0	8.0
	BW) - SP	UNII-7			<u> </u>		9.0	8.0	<u> </u>				9.0	8.0					9.0	8.0
					SISO					IEEE 80	2.11 Modulated Outp SISO	ut Power	(in dBm)				SISO in MIN	10		
Power Level	Mode	Band			Antenna H						Antenna E						MIMO			
			a		ax (SU)		be (SU)		a		ax (SU)		be (SU)		a (CDD + STBC)	ax (SU) (CDD + STBC, S	DM)	be (SU) (CDD + STBC, S	iDM)
Maximi	m / Nomina	l Power	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
		UNII-5	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0
	6 GHz WIFI	UNII-6	ch. 2: 8.0 9.0	7.0 8.0	ch. 2: 7.0 9.0	6.0 8.0	ch. 2: 7.0 9.0	6.0 8.0	ch. 2: 8.0 9.0	7.0 8.0	ch. 2: 7.0 9.0	6.0 8.0	ch. 2: 7.0 9.0	6.0 8.0	ch. 2: 8.0 9.0	7.0 8.0	ch. 2: 7.0 9.0	6.0 8.0	ch. 2: 7.0 9.0	6.0 8.0
	(20MHz BW) - LPI	UNII-7	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0
	LPI	UNII-8	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0	9.0	8.0
		UNII-5			9.0	8.0	9.0	8.0	·		9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
	6 GHz WIFI (40MHz	UNII-6			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
	BW) -	UNII-7			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
		UNII-8			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
DSI = 0 (Body-	6 GHz	UNII-5			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
Worn, Hotspot,	WIFI (80MHz	UNII-6			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
or Phablet)	BW) - LPI	UNII-7			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
		UNII-8			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
	6 GHz	UNII-5			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
	WIFI (160MHz	UNII-6			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
	BW) - LPI	UNII-7 UNII-8			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
		UNII-8			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
	6 GHz WIFI	UNII-6					9.0	8.0					9.0	8.0					9.0	8.0
	(320MHz BW) -	UNII-6					9.0	8.0					9.0	8.0					9.0	8.0
	LPI	UNII-8					9.0	8.0					9.0	8.0					9.0	8.0

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 14 of 107

								IE	EEE 802.11	Modulated/Frame C	utput Pow	rer (in dBm)							
				SISO						SISO						SISO in MIN	10		
Mode	Band			Antenna H	l .					Antenna E						MIMO			
		a		ax (SU)		be (SU)		a		ax (SU)		be (SU)		(CDD + STBC	;)	ax (SU) (CDD + STBC, S	DM)	be (SU) (CDD + STBC, S	iDM)
Maximum / I Powe		Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.	Max	Nom.
6 GHz WIFI (20MHz BW) -	UNII-5	5.5	4.5	6.0	5.0	6.0	5.0	5.5	4.5	6.0	5.0	6.0	5.0	5.5	4.5	6.0	5.0	6.0	5.0
VLP	UNII-7	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0	6.0	5.0
6 GHz WIFI (40MHz BW) -	UNII-5			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
VLP	UNII-7			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
6 GHz WIFI (80MHz BW) -	UNII-5			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
VLP	UNII-7			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
6 GHz WIFI (160MHz BW)	UNII-5			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
VLP	UNII-7			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0			9.0	8.0	9.0	8.0
6 GHz WIFI (320MHz BW)	UNII-5					9.0	8.0					9.0	8.0					9.0	8.0
VLP	UNII-7					9.0	8.0					9.0	8.0					9.0	8.0

2.4.5 2.4 GHz Maximum Bluetooth Output Power

The below table is applicable in the following conditions:

• Pmax, DSI=0 (Body-worn, Hotspot or Phablet), DSI=1(Head)

			Tiotspot of Triable		dulated Output Pov	wer (in dB	m)	
Power	Mode	Data		Single /	Antenna		Each Chain in Du	al Mode
Level	Mode	Rate	Antenna H	ł	Antenna J	ı	SISO in MIN	10
Maxir	mum / Nominal Po	wer	Max	Nom.	Max	Nom.	Max	Nom.
	Bluetooth	1Mbps	19.5	18.5	19.5	18.5	15.5	14.5
	Bluetooth EDR	2Mbps	16.5	15.5	16.5	15.5	12.5	11.5
	Bluetooth EDR	3Mbps	16.0	15.0	16.0	15.0	12.5	11.5
Pmax	Bluetooth LE	1Mbps	11.5	10.5	11.5	10.5	N/A	N/A
	Bluetooth LE	2Mbps	11.5	10.5	11.5	10.5	N/A	N/A
	Bluetooth LE	125kbps	13.0	12.0	13.0	12.0	N/A	N/A
	Bluetooth LE	500kbps	13.0	12.0	13.0	12.0	N/A	N/A

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 15 of 107

2.5 **DUT Antenna Locations**

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in DUT Antenna Diagram & SAR Test Setup Photographs Appendix. Since the display diagonal dimension of this device is > 150 mm and <200 mm, it is considered a "phablet." Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC filing.

> Table 2-1 **Device Edges/Sides for SAR Testing**

Antenna	Back	Front	Top	Bottom	Right	Left
Α	Yes	Yes	No	Yes	Yes	Yes
В	Yes	Yes	No	Yes	Yes	No
E	Yes	Yes	Yes	No	Yes	No
F	Yes	Yes	Yes	No	No	Yes
Н	Yes	Yes	Yes	No	No	Yes
J	Yes	Yes	Yes	No	Yes	No
MIMO	Yes	Yes	Yes	No	Yes	Yes

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D01v06r03. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-1, U-NII-2A, U-NII-2C, U-NII-4, and WIFI6E operations are disabled.

2.6 **Near Field Communications (NFC) Antenna**

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in DUT Antenna Diagram & SAR Test Setup Photographs Appendix.

2.7 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 procedures.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 16 of 107

Table 2-2 Simultaneous Transmission Scenarios

No.	Simultaneous Trai		1551		,,,,,	
	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes
- 1	GSM voice + 2.4 GHz Bluetooth SISO	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered only on Ant H
2	GSM voice + 2.4 GHz Bluetooth Dual	Yes	Yes	N/A	Yes	Discount realizing a considered only offeren
3	GSM voice + 2.4 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
4	GSM voice + 2.4 GHz WLAN SISO	Yes	Yes	N/A	Yes	
5	GSM voice + 5 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
7	GSM voice + 5 GHz WLAN SISO GSM voice + 6 GHz WLAN MIMO	Yes Yes	Yes Yes	N/A N/A	Yes Yes	
8	GSM voice + 6 GHz WLAN SISO	Yes	Yes	N/A	Yes	
9	GSM voice + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
10	GSM voice + 2.4 GHz WLAN MIMO + 5 GHz WLAN SISO	Yes	Yes	N/A	Yes	
11	GSM voice + 2.4 GHz WLAN MIMO + 6 GHz WLAN MIMO GSM voice + 2.4 GHz WLAN MIMO + 6 GHz WLAN SISO	Yes	Yes	N/A	Yes	
12	GSM voice + 2.4 GHz WLAN MIMO + 6 GHz WLAN SISO GSM voice + 2.4 GHz WLAN SISO + 5 GHz WLAN MIMO	Yes Yes	Yes Yes	N/A N/A	Yes Yes	
14	GSM voice + 2.4 GHz WLAN SISO + 5 GHz WLAN SISO GSM voice + 2.4 GHz WLAN SISO + 5 GHz WLAN SISO	Yes	Yes	N/A	Yes	
15	GSM voice + 2.4 GHz WLAN SISO + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
16	GSM voice + 2.4 GHz WLAN SISO + 6 GHz WLAN SISO	Yes	Yes	N/A	Yes	
17	GSM voice + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J	Yes^	Yes	N/A	Yes	A Bluetooth Tethering is considered only on Ant H
18	GSM voice + 2.4 GHz Bluetooth SISO + 5 GHz WLAN MIMO	Yes^ Yes^	Yes	N/A	Yes	A Bluetooth Tethering is considered only on Ant H A Bluetooth Tethering is considered only on Ant H
19 20	GSM voice + 2.4 GHz Bluetooth SISO + 5 GHz WLAN SISO GSM voice + 2.4 GHz Bluetooth SISO + 6 GHz WLAN MIMO	Yes^	Yes Yes	N/A N/A	Yes Yes	A Bluetooth Tethering is considered only on Ant H
21	GSM voice + 2.4 GHz Bluetooth SISO + 6 GHz WLAN SISO	Yes^	Yes	N/A	Yes	A Bluetooth Tethering is considered only on Ant H
22	GSM voice + 2.4 GHz Bluetooth Dual + 5 GHz WLAN MIMO	Yes	Yes	N/A	Yes	,
23	GSM voice + 2.4 GHz Bluetooth Dual + 5 GHz WLAN SISO	Yes	Yes	N/A	Yes	
24 25	GSM voice + 2.4 GHz Bluetooth Dual + 6 GHz WLAN MIMO	Yes	Yes	N/A N/A	Yes	
26	GSM voice + 2.4 GHz Bluetooth Dual + 6 GHz WLAN SISO GSM voice + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J + 5 GHz WLAN MIMO	Yes^	Yes Yes	N/A	Yes Yes	* Bluetooth Tethering is considered only on Ant H
27	GSM voice + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J + 5 GHz WLAN SISO	Yes^	Yes	N/A	Yes	A Bluetooth Tethering is considered only on Ant H
28	GSM voice + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J + 6 GHz WLAN MIMO	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered only on Ant H
29	GSM voice + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J + 6 GHz WLAN SISO	Yes^	Yes	N/A	Yes	A Bluetooth Tethering is considered only on Ant H
30 31	UMTS/LTE/NR + 2.4 GHz Bluetooth SISO UMTS/LTE/NR + 2.4 GHz Bluetooth Dual	Yes^	Yes Yes	Yes^ N/A	Yes Yes	A Bluetooth Tethering is considered only on Ant H
31	UMTS/LTE/NR + 2.4 GHz Bluetooth Dual UMTS/LTE/NR + 2.4 GHz WLAN MIMO	Yes Yes	Yes	N/A Yes	Yes	
33	UMTS/LTE/NR + 2.4 GHz WLAN NIMO UMTS/LTE/NR + 2.4 GHz WLAN SISO	Yes	Yes	Yes	Yes	
34	UMTS/LTE/NR + 5 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
35	UMTS/LTE/NR + 5 GHz WLAN SISO	Yes	Yes	Yes	Yes	
36	UMTS/LTE/NR + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
37 38	UMTS/LTE/NR + 6 GHz WLAN SISO UMTS/LTE/NR + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO	Yes Yes	Yes Yes	N/A Yes	Yes Yes	
38	UMTS/LTE/NR + 2.4 GHz WLAN MIMO + 5 GHz WLAN MIMO UMTS/LTE/NR + 2.4 GHz WLAN MIMO + 5 GHz WLAN SISO	Yes	Yes	Yes	Yes Yes	
40	UMTS/LTE/NR + 2.4 GHz WLAN MIMO + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
41	UMTS/LTE/NR + 2.4 GHz WLAN MIMO + 6 GHz WLAN SISO	Yes	Yes	N/A	Yes	
42	UMTS/LTE/NR + 2.4 GHz WLAN SISO + 5 GHz WLAN MIMO UMTS/LTE/NR + 2.4 GHz WLAN SISO + 5 GHz WLAN SISO	Yes	Yes	Yes Yes	Yes	
44	UMTS/LTE/NR + 2.4 GHz WLAN SISO + 5 GHz WLAN SISO UMTS/LTE/NR + 2.4 GHz WLAN SISO + 6 GHz WLAN MIMO	Yes Yes	Yes Yes	Yes N/A	Yes Yes	
45	UMTS/LTE/NR + 2.4 GHz WLAN SISO + 6 GHz WLAN SISO UMTS/LTE/NR + 2.4 GHz WLAN SISO + 6 GHz WLAN SISO	Yes	Yes	N/A	Yes	
46	UMTS/LTE/NR + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J	Yes^	Yes	Yes^	Yes	A Bluetooth Tethering is considered only on Ant H
47	UMTS/LTE/NR + 2.4 GHz Bluetooth SISO + 5 GHz WLAN MIMO	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered only on Ant H
48	UMTS/LTE/NR + 2.4 GHz Bluetooth SISO + 5 GHz WLAN SISO	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered only on Ant H
49 50	UMTS/LTE/NR + 2.4 GHz Bluetooth SISO + 6 GHz WLAN MIMO	Yes^ Yes^	Yes Yes	N/A N/A	Yes	Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H
51	UMTS/LTE/NR + 2.4 GHz Bluetooth SISO + 6 GHz WLAN SISO UMTS/LTE/NR + 2.4 GHz Bluetooth Dual + 5 GHz WLAN MIMO	Yes	Yes	N/A	Yes Yes	A Bluetooth 1 ethering is considered only on Ant H
52	UMTS/LTE/NR + 2.4 GHz Bluetooth Dual + 5 GHz WLAN SISO	Yes	Yes	N/A	Yes	
53	UMTS/LTE/NR + 2.4 GHz Bluetooth Dual + 6 GHz WLAN MIMO	Yes	Yes	N/A	Yes	
54	UMTS/LTE/NR + 2.4 GHz Bluetooth Dual + 6 GHz WLAN SISO	Yes	Yes	N/A	Yes	
55	UMTS/LTE/NR + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J + 5 GHz WLAN MIMO UMTS/LTE/NR + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J + 5 GHz WLAN SISO	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered only on Ant H
56 57	UMTS/LTE/NR + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J + 5 GHz WLAN SISO UMTS/LTE/NR + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J + 6 GHz WLAN MIMO	Yes^ Yes^	Yes Yes	Yes^ N/A	Yes Yes	Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H
58	UMTS/LTE/NR + 2.4 GHz Bluetooth Ant H + 2.4 GHz WLAN Ant J + 6 GHz WLAN SISO	Yes^	Yes	N/A	Yes	A Bluetooth Tethering is considered only on Ant H
59	LTE + NR	Yes	Yes	N/A	Yes	
60	LTE + NR + 2.4 GHz Bluetooth SISO	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered only on Ant H
61	LTE + NR + 2.4 GHz Bluetooth Dual	Yes	Yes	N/A	Yes	
62	LTE + NR + 2.4 GHz WLAN MIMO LTE + NR + 2.4 GHz WLAN SISO	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
	LTE + NR + 5 GHz WLAN MIMO	Yes	Yes	Yes	Yes	
64						
	LTE + NR + 5 GHz WLAN SISO	Yes	Yes	Yes	Yes	
64 65 66	LTE + NR + 5 GHz WLAN SISO LTE + NR + 6 GHz WLAN MIMO	Yes Yes	Yes Yes	N/A	Yes	
64 65 66 67	LTE + NR + 5 GHz WLAN SISO LTE + NR + 6 GHz WLAN MIMO LTE + NR + 6 GHz WLAN SISO	Yes Yes Yes	Yes Yes Yes	N/A N/A	Yes Yes	
64 65 66 67 68	LTE + NR + S GHz WLAN SISO LTE + NR + G GHz WLAN MIMO LTE + NR + G GHz WLAN SISO LTE + NR + 2.4 GHz WLAN SISO LTE + NR + 2.4 GHz WLAN MIMO + S GHz WLAN MIMO	Yes Yes Yes Yes	Yes Yes Yes Yes	N/A N/A Yes	Yes Yes Yes	
64 65 66 67 68 69 70	TE + NR - 5 GH: WILAN SISO	Yes Yes Yes	Yes Yes Yes	N/A N/A	Yes Yes	
64 65 66 67 68 69 70 71	TIT = NR - 5 GHE WILAM SSO ITE = NR - 6 GHE WILAM SMOD ITE = NR - 6 GHE WILAM SMOD ITE = NR - 2 GHE WILAM SMOD + 5 GHE WILAM SMOD ITE = NR - 2 A GHE WILAM SMOD + 5 GHE WILAM SMOD ITE = NR - 2 A GHE WILAM SMOD - 5 GHE WILAM SSO ITE = NR - 2 A GHE WILAM SMOD - 6 GHE WILAM SSO ITE = NR - 2 A GHE WILAM SMOD - 6 GHE WILAM SMOD	Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes Yes Yes	N/A N/A Yes Yes N/A N/A	Yes Yes Yes Yes Yes Yes Yes Yes	
64 65 66 67 68 69 70 71	TE + RR + 5 GH: WLAN SSO) TE + RR + 6 GH: WLAN SMO TE + RR + 6 GH: WLAN SMO TE + RR + 6 GH: WLAN SMO TE + RR + 2 AG: WLAN SSO + 5 GH: WLAN SMO	Yes	Yes	N/A N/A Yes Yes N/A N/A Yes	Yes Yes Yes Yes Yes Yes Yes Yes Yes	
64 65 66 67 68 69 70 71 72 73	1T = NR = 5 GHE WAAN SSO 1T = NR = 6 GHE WAAN SMO 1T = NR = 6 GHE WAAN SMO 1T = NR = 6 GHE WAAN SMO 1T = NR = 2 A GHE WAAN SMO 1T = NR = 2 A GHE WAAN SMO 1T = NR = 2 A GHE WAAN SMO 1T = NR = 2 A GHE WAAN SMO 1T = NR = 2 A GHE WAAN SSO = 5 GHE WAAN SMO	Yes	Yes	N/A N/A Yes Yes N/A N/A Yes Yes	Yes	
64 65 66 67 68 69 70 71	TE + RR + 5 GH: WLAN SSO) TE + RR + 6 GH: WLAN SMO TE + RR + 6 GH: WLAN SMO TE + RR + 6 GH: WLAN SMO TE + RR + 2 AG: WLAN SSO + 5 GH: WLAN SMO	Yes	Yes	N/A N/A Yes Yes N/A N/A Yes	Yes	
64 65 66 67 68 69 70 71 72 73 74 75	TE = RR = 5 GER WALN SSO TE = RR = 6 GER WALN SSO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SSO = 5 GER WALN SSO TE = RR = 2 A GER WALN SSO = 5 GER WALN SSO TE = RR = 2 A GER WALN SSO = 5 GER WALN SSO TE = RR = 2 A GER WALN SSO = 5 GER WALN SSO TE = RR = 2 A GER WALN SSO = 5 GER WALN SSO TE = RR = 2 A GER WALN SSO = 5 GER WALN SMO TE = RR = 2 A GER WALN SSO = 5 GER WALN SMO	Yes	Yes	N/A N/A Yes Yes N/A N/A Yes Yes N/A Yes Yes N/A N/A Yes	Yes	* Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76	TE = NR = 5 GHE WALM SIGO	Yes	Yes	N/A N/A Yes Yes N/A N/A Yes N/A Yes Yes N/A Yes Yes N/A N/A Yes^	Yes	^ Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77	TE = RR = 5 GER WALN SSO TE = RR = 6 GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SMO TE = RR = 2 A GER WALN SSO = 5 GER WALN SSO TE = RR = 2 A GER WALN SSO = 5 GER WALN SMO TE = RR = 2 A GER WALN SSO = 5 GER WALN SMO TE = RR = 2 A GER WALN SSO = 5 GER WALN SMO TE = RR = 2 A GER WALN SSO = 5 GER WALN SMO	Yes	Yes	N/A N/A Yes Yes N/A N/A Yes N/A N/A Yes Yes N/A Yes Yes N/A N/A N/A Yes^	Yes	Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77	T1 = NR - 5 GHE WALM SIGO	Yes	Yes	N/A N/A Yes Yes N/A Yes Yes N/A Yes Yes N/A Yes N/A N/A N/A Yes^ Yes^ N/A N/A	Yes	A Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	T1 = NR - 5 GHE WALN SSO	Yes	Yes	N/A N/A Yes Yes N/A N/A Yes Yes N/A N/A Yes N/A N/A Yes^ Yes^ N/A N/A N/A N/A N/A	Yes	Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81	TE = NR = 5 GER WALN SSO TE = NR = 6 GER WALN SMO TE = NR = 2 GER WALN SSO = 5 GER WALN SMO TE = NR = 2 GER WALN SSO = 5 GER WALN SMO TE = NR = 2 GER WALN SSO = 5 GER WALN SMO TE = NR = 2 GER WALN SSO = 5 GER WALN SMO TE = NR = 2 GER WALN SSO = 5 GER WALN SMO TE = NR = 2 GER WALN SSO = 5 GER WALN SMO TE = NR = 2 GER WALN SSO = 5 GER WALN SMO TE = NR = 2 GER WALN SMO = 5 GER WALN SSO TE = 1 GER WALN SMO	Yes	Yes	N/A N/A Yes N/A N/A Yes N/A N/A Yes N/A N/A Yes N/A N/A N/A N/A N/A N/A N/A N/A	Yes	A Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83	T1 = NR - 5 GHE WALN SSO T1 = NR - 6 GHE WALN SMO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO	Yes	Yes	N/A N/A N/A N/A Yes Yes N/A N/A Yes Yes N/A Yes N/A Yes N/A Yes Yes N/A N/A N/A N/A N/A N/A N/A	Yes	A Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83	11 F - NR - 5 GHE WALM SISO 11 F - NR - 5 GHE WALM SIMO 11 F - NR - 5 GHE WALM SIMO 11 F - NR - 5 GHE WALM SIMO 11 F - NR - 5 GHE WALM SIMO 11 F - NR - 2 GH	Yes	Yes	N/A N/A N/A Yes N/A N/A N/A N/A N/A Yes Yes N/A	Yes	A Bluetooth Tethering is considered only on Ant H A Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85	T1 = NR - 5 GHE WALN SSO T1 = NR - 6 GHE WALN SMO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO T1 = NR - 2 GHE WALN SSO - 5 GHE WALN SSO	Yes	Yes	N/A N/A N/A N/A Yes Yes N/A N/A Yes Yes N/A Yes N/A Yes N/A Yes Yes N/A N/A N/A N/A N/A N/A N/A	Yes	A Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86	TIT = NR = 5 GER WALM SISO	Yes	Yes	N/A N/A N/A N/A Yes Yes N/A N/A Yes Yes N/A	Yes	- Bluetooth Tethering is considered only on Ant II - Blu
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	TIT = NR = 5 GER WALM SISO	Yes	Yes	N/A N/A N/A N/A Yes Yes N/A Yes N/A Yes N/A	Yes Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88	TIT = NR = 5 GER WALM SISO	Yes	Yes	N/A N/A N/A N/A Yes Yes N/A N/A Yes N/A Yes N/A	Yes	- Bluetooth Tethering is considered only on Ant II - Blu
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	TIT = NR = 5 GER WALM SISO	Yes	Yes	N/A N/A N/A N/A Yes Yes N/A Yes N/A Yes N/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 88 89	11	Yes	Yes	N/A N/A N/A N/A N/A Yes Yes N/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 88 89 90 91 92 93	11	Yes	Yes	N/A N/A N/A N/A Yes Yes N/A N/A N/A Yes Yes N/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 80 81 82 83 84 85 86 87 90 91 92 93	TE = NR = 5 GHE WALM SISO	Yes	Yes	N/A N/A N/A N/A N/A N/A Yes Yes N/A N/A N/A Yes N/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 89 99 90 91 91 92 93 94	TE - NR - 5 GRE WALM SISO	Yes	Yes	N/A N/A N/A N/A Yes Yes N/A N/A N/A N/A Yes Yes N/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 69 70 71 72 73 74 75 80 81 82 83 84 85 89 90 90 91 92 92 93 94 95 96	TIT = NR = 5 GER WALM SISO	Yes	Yes	N/A N/A N/A N/A N/A Yes Yes N/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 70 72 73 74 75 77 78 80 81 82 83 84 85 86 89 90 91 92 93 94	TE - NR - 5 GHE WALM SISO	Yes	Yes	N/A N/A Yes Yes N/A N/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 70 71 72 73 74 75 76 80 81 81 82 83 84 85 86 99 91 92 93 94 95 99	TE - NR - 5 GIR WALM SISO	Yes	Yes	NI/A NI/A Yes Yes NI/A Yes NI/A NI/A Yes NI/A NI/A Yes NI/A NI/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 70 71 72 73 74 75 76 77 77 78 80 81 82 83 84 85 89 90 90 91 92 92 93 94 99 99 99 99	TE - NR - 5 GHE WALM SISO	Yes	Yes	N/A N/A Yes Yes N/A Yes Yes N/A Yes N/A Yes N/A Yes N/A Yes N/A Yes N/A N/A Yes N/A N/A Yes Yes N/A N/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 68 69 70 71 72 73 74 75 75 76 77 78 80 81 82 83 84 84 85 86 87 99 99 99 99 99 99 99	TE - NR - 5 GIR WALM SISO	Yes	Yes	NI/A NI/A Yes NI/A Yes NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 66 67 70 71 72 73 80 75 76 88 84 85 86 89 91 92 93 99 99 99 99 99 99 99 99 99 99 99 99	11	Yes	Yes	NI/A NI/A Ves NI/A Ves NI/A Ves NI/A Ves NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on Ant H
64 65 66 67 68 68 69 70 71 72 73 74 75 75 76 77 78 80 81 82 83 84 84 85 86 87 99 99 99 99 99 99 99	TE - NR - 5 GIR WALM SISO	Yes	Yes	NI/A NI/A Yes NI/A Yes NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	Yes	- Bluetooth Tethering is considered only on Ant H - Bluetooth Tethering is considered only on A
64 65 66 66 67 70 71 72 73 74 75 77 77 78 80 81 82 88 88 88 89 90 91 92 93 94 94 95 96 97 97 97 97 97 97 97 97 97 97 97 97 97	TIT = NR = 6 GHE WALM SISO	Yes	Yes	NI/A Ves Ves NI/A Ves NI/A NI/A Ves NI/A NI/A Ves NI/A Ves Ves Ves NI/A NI/A NI/A NI/A NI/A Ves Ves Ves NI/A NI/A NI/A NI/A Ves Ves Ves NI/A NI/A Ves Ves Ves NI/A Ves Ves Ves NI/A NI/A Ves Ves NI/A NI/A Ves Ves Ves NI/A NI/A Ves Ves Ves NI/A NI/A NI/A NI/A Ves Ves NI/A NI/A NI/A NI/A NI/A Ves Ves NI/A NI/A NI/A NI/A Ves Ves NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	Yes	- Bluetooth Tethering is considered on dry on Ant H - Bluetooth Tethering is considered only on
64 65 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 81 82 83 84 85 86 79 99 99 99 90 90 90 90 90 90 90 90 90 90	TE - NR - 5 GHE WALM SISO	Yes	Yes	NI/A Ves NI/A Ves NI/A Ves NI/A Ves NI/A Ves NI/A Ves NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	Yes	- Bluetooth Tethering is considered on you Ant H - Bluetooth Tethering is considered only on An
64 65 66 67 68 68 69 70 71 72 73 74 75 76 77 78 80 80 81 82 83 84 85 86 87 99 99 99 91 100 102 102 103 104 105 106 106 106 107 107 107 107 107 107 107 107 107 107	TE - NR - 5 GHE WALM SISO	Yes	Yes	NI/A Ves Ves NI/A Ves NI/A Ves NI/A Ves NI/A Ves NI/A Ves Ves Ves NI/A NI/A Ves Ves Ves NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	Yes	- Bluetooth Tethering is considered on dry on Ant H - Bluetooth Tethering is considered only on
64 65 66 67 68 68 69 70 71 72 73 74 75 76 77 78 81 81 82 88 86 88 89 90 91 91 92 93 94 95 95 99 91 101 102 103 104 105 105 105 106 106 106 106 106 106 106 106 106 106	TE - NR - 5 GIR WALM SISO	Yes	Yes	NI/A NI/A Yes NI/A Yes NI/A Yes NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	Yes	** Bluetooth Tethering is considered only on ARI H **Bluetooth Tethering is considered **Bluetooth Tethering is considered **Bluetooth Tethering is considered
64 65 66 67 68 68 69 70 71 72 73 74 75 76 77 78 80 80 81 82 83 84 85 86 87 99 99 99 91 100 102 102 103 104 105 106 106 106 107 107 107 107 107 107 107 107 107 107	TE - NR - 5 GHE WALM SISO	Yes	Yes	NI/A Ves Ves NI/A Ves NI/A Ves NI/A Ves NI/A Ves NI/A Ves Ves Ves NI/A NI/A Ves Ves Ves NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	Yes	** Bluetooth Tethering is considered only on ARI H **Bluetooth Tethering is considered **Bluetooth Tethering is considered **Bluetooth Tethering is considered
64 65 66 67 68 68 69 70 70 71 72 73 74 75 76 77 78 80 81 82 83 84 84 85 86 87 99 90 100 100 100 100 100 100 100 100 1	TIT = NR = 6 GHE WALM SISO	Yes	Yes	N/A N/A Yes N/A Yes N/A Yes N/A	Yes	** Bluetooth Tethering is considered only on ARI H **Bluetooth Tethering is considered **Bluetooth Tethering is considered **Bluetooth Tethering is considered
64 65 66 66 67 68 68 69 70 71 72 72 72 78 78 79 79 77 78 80 81 82 82 83 84 84 85 86 79 99 19 100 101 102 103 104 105 107 107 107 107 107 107 107 107 107 107	TIT = NR = 6 GHE WALM SISO	Yes	Yes	NI/A NI/A NI/A Ves NI/A Ves NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	Yes	* Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered only on An H H * Bluetooth Tethering is considered
64 65 66 67 68 68 69 70 70 71 72 73 74 75 76 77 78 80 81 82 83 84 84 85 86 87 99 90 100 100 100 100 100 100 100 100 1	TIT = NR = 6 GHE WALM SISO	Yes	Yes	N/A N/A Yes N/A Yes N/A Yes N/A	Yes	- Bluetooth Tethering is considered on sky on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered only on Art it - Bluetooth Tethering is considered
64 65 66 67 68 68 69 70 70 72 73 74 75 76 77 77 78 80 81 82 83 84 84 85 86 87 90 90 91 90 90 90 90 90 90 90 90 90 90 90 90 90	TE = NR = 5 GHE WALM SISO	Yes	Yes	N/A	Yes	** Bluetooth Tethering is considered only on ARI H **Bluetooth Tethering is considered **Bluetooth Tethering is considered **Bluetooth Tethering is considered

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 17 of 107

- 1. No other simultaneous scenarios besides described above is supported for this model.
- SISO represents 2.4 GHz WLAN/BT transmission on Ant H or Ant J. and 5/6 GHz transmission on Ant H or Ant E.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel) [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. 5 GHz Wireless Router is only supported for the U-NII-3 by S/W, therefore U-NII-1, U-NII-2A, U-NII-2C, and U-NII-4 were not evaluated for wireless router conditions.
- 6. 6 GHz Wireless Router is not supported, therefore it was not evaluated for wireless router conditions.
- 7. This device supports 2x2 MIMO Tx for WLAN 802.11a/b/q/n/ac/ax/be, 802.11a/b/q/n/ac/ax/be supports CDD and STBC and 802.11n/ac/ax/be additionally supports SDM.
- 8. This device supports VoWIFI.
- 9. This device supports Bluetooth Tethering on Ant H only.
- 10. This device supports VoLTE.
- 11. This device supports VoNR.
- 12. LTE + 5G NR FR1 Scenarios are limited to EN-DC combinations with anchor bands as shown in the NR FR1 checklist.
- 13. UWB and NFC were evaluated for phablet based on expected usage conditions.

2.8 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-1, U-NII-2A, U-NII-2C, U-NII-4 WIFI and 6 GHz, only 2.4 GHz WIFI, 2.4 GHz Bluetooth, and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ax/be with the following features:

- a) Up to 320 MHz Bandwidth only for 6GHz
- b) Up to 160 MHz Bandwidth only for 5/6 GHz
- c) Up to 20 MHz Bandwidth only for 2.4 GHz
- d) 2 Tx antenna output
- e) Up to 4KQAM is supported
- TDWR and Band gap channels are supported for 5/6 GHz
- g) MU-MIMO UL Operations are not supported

Per FCC KDB Publication 648474 D01v06r03, this device is considered a "phablet" since the display diagonal dimension is greater than 150mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-1, U-NII-2A, U-NII-2C, U-NII-4 WIFI and 6 GHz, phablet SAR tests were performed. Phablet SAR was not evaluated for 2.4 GHz WLAN, 2.4 GHz Bluetooth, and U-NII-3 WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

Per April 2019 TCB Workshop Notes and FCC guidance, SAR testing for 802.11ax/be follows initial test configuration procedures of KDB 248227, with 802.11ax/be considered a higher order 802.11 mode.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager	
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 18 of 107	

REV/ 22.0

Per FCC guidance, SAR was performed using 6.5 GHz SAR probe calibration factors for WIFI 6GHz/UWB and 8GHz SAR probe calibration factors for UWB, FCC KDB 648474, FCC KDB 941225 D07 and FCC KDB 248227 were followed for test positions, distances, and modes. Absorbed power density (APD) using a 4cm² averaging area is reported based on SAR measurements. Incident power density is evaluated at 2mm ensuring that the resolution is sufficient such that integrated power density (iPD) between d=2mm and d=λ/5mm is ≥ -1dB per equipment manufacturer guidance. Power density results are scaled up for uncertainty above 30%. Per TCB workshop October 2020 notes, 5 channels were tested for WIFI 6 GHz.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Downlink LTE CA RF Conducted Powers Appendix.

Per FCC KDB Publication 648474 D01v06r03, this device is considered a "phablet" since the display diagonal dimension is greater than 150mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.

This device supports downlink 4x4 MIMO operations for some LTE Bands. Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4x4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4x4 DL MIMO inactive. Additionally, SAR for 4x4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4x4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4x4 MIMO Downlink and downlink carrier aggregation inactive.

This device supports LTE/NR capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE/NR Band falls completely within an LTE/NR band with a larger transmission frequency range, both LTE/NR bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE/NR bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

This device can transmit with antenna switching for bands/modes on antenna A, B, E, and F. SAR tests were performed for each antenna where switching is used per band/mode to ensure compliance. Antennas and indicated band/modes are included in section 2.4.1 of this report.

This device uses two transmit pathways for n41 operations (Path 1 and Path 2). For each exposure condition, the pathway with the highest target power was fully evaluated. The worst case for each antenna and exposure condition was additionally evaluated using the other path.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 19 of 107

REV/ 22.0

NR implementation supports SA and NSA mode. In EN-DC mode, NR operates with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE Anchors Bands were performed separately due to limitations in SAR probe calibration factors.

Per Qualcomm guidance in 80-W2112-4, when hotspot mode applies, 10-g extremity SAR is required for the surfaces and edges with hotspot mode 1g reported SAR > 1.2 W/kg. For surfaces and edges with hotspot mode 1g SAR < 1.2 W/kg, the 10-g extremity can be excluded when the normalized SAR_design_target for extremity DSI is less than or equal to that of hotspot DSI.

$$SAR_design_target_extremity \leq \frac{SAR_design_target_hotspot}{1g\;SAR\;limit} * 10g\;SAR\;limit$$

2.9 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r05, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D01v06r03 (Phablet Procedures)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- May 2017 TCB Workshop Notes (LTE 4x4 Downlink MIMO)
- November 2017, April 2018, October 2018 TCB Workshop Notes (LTE Carrier Aggregation)
- April 2019 TCB Workshop Notes (IEEE 802.11ax, Dynamic Antenna Tuning)
- November 2017, October 2018, April 2019, November 2019, October 2020 TCBC Workshop Notes (6-8 GHz)
- SPEAG DASY6 Application Note (Interim Procedures for Devices Operating at 6-10 GHz) (Nov 2021)
- IEC/IEEE 63195-1:2022
- IEC 62479:2010

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 20 of 107
		REV 22.0

2.10 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 12.

Bibliography 2.11

Report Type	Report Serial Number
RF Exposure Part 0 Test Report	1M2408260070-02.A3L
RF Exposure Part 2 Test Report	1M2408260070-04.A3L
RF Exposure Compliance Summary Report	1M2408260070-03.A3L

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 21 of 107

LTE AND NR INFORMATION

		LTE Information						
Form Factor	Portable Handset							
Frequency Range of each LTE transmission band		LT	E Band 12: 699.7 - 715.3 I	ИHz				
	LTE Band 13: 779.5 - 784.5 MHz							
	LTE Band 5: 824.7 - 848.3 MHz							
	LTE Band 66: 1710.7 - 1779.3 MHz							
	LTE Band 4: 1710.7 - 1754.3 MHz							
		LTE Band 2: 1850.7 - 1909.3 MHz						
	LTE Band 41: 2498.5 - 2687.5 MHz							
Channel Bandwidths		LTE Band	12: 1.4 MHz, 3 MHz, 5 MH					
			TE Band 13: 5 MHz, 10 Mi	•				
		LTE Band	d 5: 1.4 MHz, 3 MHz, 5 MH	lz, 10 MHz				
		LTE Band 66: 1.4 I	MHz, 3 MHz, 5 MHz, 10 MH	Hz, 15 MHz, 20 MHz				
		LTE Band 4: 1.4 N	MHz, 3 MHz, 5 MHz, 10 MH	lz, 15 MHz, 20 MHz				
		LTE Band 2: 1.4 N	MHz, 3 MHz, 5 MHz, 10 MH	lz, 15 MHz, 20 MHz				
		LTE Band	41: 5 MHz, 10 MHz, 15 Mi	-lz, 20 MHz				
Channel Numbers and Frequencies (MHz)	Low	Low-Mid	Mid	Mid-High	High			
TE Band 12: 1.4 MHz	-	(23017)	707.5 (23095)		(23173)			
TE Band 12: 3 MHz		(23025)	707.5 (23095)		(23165)			
TE Band 12: 5 MHz		(23035)	707.5 (23095)		(23155)			
TE Band 12: 10 MHz		23060)	707.5 (23095)		23130)			
TE Band 13: 5 MHz		(23205)	782 (23230)	,	(23255)			
TE Band 13: 10 MHz		√A)	782 (23230)		√A)			
TE Band 5: 1.4 MHz		(20407)	836.5 (20525)	,	(20643)			
TE Band 5: 3 MHz		(20415)	836.5 (20525)		(20635)			
TE Band 5: 5 MHz		(20415)			· ,			
TE Band 5: 10 MHz		· ,	836.5 (20525)		(20625)			
	,	20450)	836.5 (20525)	844 (20600)				
TE Band 66: 1.4 MHz TE Band 66: 3 MHz		(131979)	1745 (132322)	1779.3 (132665)				
TE Band 66: 5 MHz		(131987)	1745 (132322)	1778.5 (132657)				
		(131997)	1745 (132322)	1777.5 (132647)				
TE Band 66: 10 MHz	,	132022)	1745 (132322)	1775 (132622)				
TE Band 66: 15 MHz		(132047)	1745 (132322)	1772.5 (132597) 1770 (132572)				
TE Band 66: 20 MHz		132072)	1745 (132322)	,	,			
TE Band 4: 1.4 MHz		(19957)	1732.5 (20175)	1754.3 (20393) 1753.5 (20385)				
TE Band 4: 3 MHz		(19965)	1732.5 (20175)	1753.5 (20385)				
TE Band 4: 5 MHz		(19975)	1732.5 (20175)	1752.5 (20375)				
TE Band 4: 10 MHz	1715 ((20000)	1732.5 (20175)	1750 (20350)				
TE Band 4: 15 MHz	1717.5	(20025)	1732.5 (20175)	1747.5 (20325)				
TE Band 4: 20 MHz	1720 ((20050)	1732.5 (20175)	1745 (20300)				
TE Band 2: 1.4 MHz	1850.7	(18607)	1880 (18900)	1909.3 (19193)				
TE Band 2: 3 MHz	1851.5	(18615)	1880 (18900)	1908.5 (19185)				
TE Band 2: 5 MHz	1852.5	(18625)	1880 (18900)	1907.5	(19175)			
TE Band 2: 10 MHz	1855 ((18650)	1880 (18900)	1905 ((19150)			
TE Band 2: 15 MHz	1857.5	(18675)	1880 (18900)	1902.5	(19125)			
TE Band 2: 20 MHz	1860	(18700)	1880 (18900)	1900	(19100)			
TE Band 41: 5 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)			
TE Band 41: 10 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)			
TE Band 41: 15 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)			
TE Band 41: 20 MHz	2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055)	2680 (41490)			
JE Category		U	IL UE Cat: 13, DL UE Cat:	20				
Modulations Supported in UL			QPSK, 16QAM, 64QAM					
TE MPR Permanently implemented per 3GPP TS 36.101 ection 6.2.3~6.2.5? (manufacturer attestation to be rovided)			YES					
-MPR (Additional MPR) disabled for SAR Testing?			YES					
TE Carrier Aggregation Possible Combinations	The	e technical description in		ier aggregation combinat	ions			
TE Additional Information	The technical description includes all the possible carrier aggregation combinations This device does not support full CA features on 3GPP Release 16. It supports carrier aggregation, downlink MIMO features as shown in the RF Conducted Powers section of this report and the Downlink LTE CA RF Conducted Powers Appendix. All uplink communications are identical to the Release 8 Specifications. Uplink communications are done on the PCC. The following LTE Release 16 Features are not supported: Relay, HetNet, Enhanced MIMO, eICIC, eMBMS, Wifi Offloading, Cross-Carrier Scheduling, Enhanced SC-FDMA.							

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 22 of 107

03/30/2022

		NR Information			
Form Factor			Portable Handset		
Frequency Range of each NR transmission band			NR Band n5: 826.5 - 846.5 MHz		
			NR Band n66: 1712.5 - 1777.5 MHz		
			NR Band n41: 2501.01 - 2685 MHz		
Channel Bandwidths	NR Band n5: 5 MHz, 10 MHz, 15 MHz, 20 MHz NR Band n66: 5 MHz, 10 MHz, 15 MHz, 25 MHz, 25 MHz, 30 MHz, 45 MHz, 45 MHz, NR Band n41: 10 MHz, 15 MHz, 20 MHz, 35 MHz, 40 MHz, 45 MHz, 60 MHz, 70 MHz, 90 MHz, 90 MHz, 100 MHz				
				Hz, 40 MHz, 45 MHz	
Channel Numbers and Frequencies (MHz)					
NR Band n5: 5 MHz	826.5 (165300)	836.5 (167300)	846.5 (1	169300)
NR Band n5: 10 MHz	829 (1	(65800)	836.5 (167300)	844 (10	68800)
NR Band n5: 15 MHz		166300)	836.5 (167300)	841.5 (1	
NR Band n5: 20 MHz		(66800)	836.5 (167300)	839 (1)	
NR Band n66: 5 MHz		(342500)	1745 (349000)	1777.5 (,
NR Band n66: 10 MHz		343000)	1745 (349000)	1775 (3	
NR Band n66: 15 MHz		(343500)	1745 (349000)	1772.5 (
NR Band n66: 20 MHz		344000)	1745 (349000)	1770 (3	
NR Band n66: 25 MHz		(344500)	1745 (349000)	1767.5 (
NR Band n66: 30 MHz		345000)	1745 (349000)	1765 (3	
NR Band n66: 35 MHz		(345500)	1745 (349000)	1762.5 (
NR Band n66: 40 MHz		346000)	1745 (349000)	1762.3 (352300)	
NR Band n66: 45 MHz		(346500)	1745 (349000)	1757.5 (351500)	
NR Band n41: 10 MHz	2501.01 (500202)	2547 (509400)	2592.99 (518598)	2639.01 (527802)	2685 (537000)
NR Band n41: 15 MHz	2503.5 (500700)	2548.26 (509652)	2592.99 (518598)	2637.75 (527550)	2682.51 (536502)
NR Band n41: 20 MHz	2506.02 (501204)	2549.49 (509898)	2592.99 (518598)	2636.49 (527298)	2679.99 (535998)
NR Band n41: 25 MHz	2508.51 (501702)	2550.75 (510150)	2592.99 (518598)	2635.26 (527052)	2677.5 (535500)
NR Band n41: 30 MHz	2511 (502200)	2552.01 (510402)	2592.99 (518598)	2634 (526800)	2674.98 (534996)
NR Band n41: 35 MHz	2513.52 (502704)	2553.24 (510648)	2592.99 (518598)	2632.74 (526548)	2672.49 (534498)
NR Band n41: 40 MHz	2616.01 (523202)	2567.34 (513468)	(NA)	2618.67 (523734)	2670 (534000)
NR Band n41: 45 MHz	2518.5 (503700)	2568.18 (513636)	(NA)	2617.83 (523566)	2667.48 (533496)
NR Band n41: 50 MHz		(504204)	2592.99 (518598)	2664.99	
NR Band n41: 60 MHz		505200)	2592.99 (518598)	2659.98	
NR Band n41: 70 MHz		(506202)	(NA)	2655 (5	,
NR Band n41: 80 MHz		(507204)	(NA)	2649.99	
NR Band n41: 90 MHz		508200)	(N/A)	2644.98	. ,
NR Band n41: 100 MHz		(509202)	2592,99 (518598)	2640 (5	
SCS for NR Band n5, n66	2040.01	(309202)	15 kHz	2040 (3	120000)
SCS for NR Band n41			30 kHz		
3C3 101 141 Balld 141			*****		
Modulations Supported in UL		DFT-s-OFDM: π/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM CP-OFDM: QPSK, 16QAM, 256QAM			
A-MPR (Additional MPR) disabled for SAR Testing?			YES		
EN-DC and NR Carrier Aggregation Possible Combinations		The techni	cal description includes all the possible carrier aggregation	on combinations	
LTE Anchor Bands for NR Band n5			2/66		
LTE Anchor Bands for NR Band n66			2/13		
LTE Anchor Bands for NR Band n41		66			

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 23 of 107

INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofreguency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

4.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 4-1).

Equation 4-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [6]

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 24 of 107

DOSIMETRIC ASSESSMENT

5.1 **Measurement Procedure**

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

Figure 5-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 5-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 5-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 5-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

_	Maximum Area Scan	Maximum Zoom Scan	Maximum Zoom Scan Spatial Resolution (mm)		Minimum Zoom Scan	
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	Graded Grid		Volume (mm) (x,y,z)
	alcu- yulcuy	1 20011 7 200117	Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	, ,,, ,
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤ 2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 25 of 107

REV/ 22.0

DEFINITION OF REFERENCE POINTS

EAR REFERENCE POINT 6.1

Figure 6-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 6-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 6-1 Close-Up Side view of ERP

HANDSET REFERENCE POINTS 6.2

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 6-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 6-2 Front, back and side view of SAM Twin Phantom

Figure 6-3 **Handset Vertical Center & Horizontal Line Reference Points**

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 26 of 107

TEST CONFIGURATION POSITIONS

7.1 **Device Holder**

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

7.2 **Positioning for Cheek**

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 7-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- The phone was then rotated around the vertical centerline until the phone (horizontal line) was 4. symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 7-2).

7.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- The phone was then rotated around the horizontal line by 15 degrees. 2.
- While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 7-2).

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 27 of 107

Figure 7-2 Front, Side and Top View of Ear/15° Tilt **Position**

Figure 7-3 Side view w/ relevant markings

7.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D01v06r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

7.5 **Body-Worn Accessory Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 7-4). Per FCC KDB Publication 648474 D01v06r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance. without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Figure 7-4 Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 28 of 107

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

Extremity Exposure Configurations 7.6

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions: i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

7.7 **Wireless Router Configurations**

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

7.8 **Phablet Configurations**

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 29 of 107

REV/ 22.0

support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D01v06r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 30 of 107

RF EXPOSURE LIMITS

Uncontrolled Environment 8.1

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

8.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

11010	MAN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR _{Head}	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 31 of 107

8.3 RF Exposure Limits for Frequencies above 6 GHz

Per §1.1310 (d)(3), the MPE limits are applied for frequencies above 6 GHz. Power Density is expressed in units of W/m² or mW/cm².

Peak Spatially Averaged Power Density was evaluated over a circular area of 4 cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes.

Table 8-2
Human Exposure Limits Specified in FCC 47 CFR §1.1310

Human Exposure to Radiofrequency (RF) Radiation Limits			
Frequency Range [MHz]	Power Density [mW/cm ²]	Average Time [Minutes]	
(A) Limits For Occupational / Controlled Environments			
1,500 – 100,000	5.0	6	
(B) Limits For General Population / Uncontrolled Environments			
1,500 – 100,000	1.0	30	

Note: 1.0 mW/cm² is 10 W/m²

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 32 of 107
	•	REV 22 0

9 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

9.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

9.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

9.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

9.4 SAR Measurement Conditions for UMTS

9.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 33 of 107
		RE\/ 22.0

9.4.2 **Head SAR Measurements**

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

9.4.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH₀ configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2 kbps RMC.

SAR Measurements with Rel 5 HSDPA 9.4.4

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

9.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

9.5 **SAR Measurement Conditions for LTE**

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

9.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

9.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 34 of 107

9.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

9.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

9.5.5 **TDD**

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

9.5.6 **Downlink Only Carrier Aggregation**

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 35 of 107

9.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

9.6.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

9.6.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands, SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

9.6.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 - 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled. SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

9.6.4 **Initial Test Position Procedure**

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 36 of 107

9.6.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n/ax OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

9.6.6 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per April 2019 TCB Workshop and FCC guidance, 802.11ax/be was considered the highest order 802.11 mode. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

9.6.7 **Initial Test Configuration Procedure**

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 9.6.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Subsequent Test Configuration Procedures 9.6.8

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 37 of 107

subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

9.6.9 MIMO SAR considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01v06 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 38 of 107

10 RF CONDUCTED POWERS

All conducted power measurements for Sub6 WWAN technologies and bands in this section were performed by setting Reserve_power_margin Qualcomm® Smart Transmit EFS entry) to 0dB, so that the EUT transmits continuously at minimum (Plimit, maximum tune up output power (max).

10.1 GSM Conducted Powers

Table 10-1 Measured P_{max} for all DSI for GSM 850 Ant A Measured P_{limit} for DSI = 0 (Body-worn, Hotspot or Phablet) for GSM 1900 Ant A

	Maximum Burst-Averaged Output Power										
		Voice		GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	31.63	31.61	30.01	28.17	26.51	25.52	24.01	22.20	20.69	
GSM 850	190	31.77	31.63	30.54	28.68	26.77	26.27	24.43	22.39	21.45	
	251	32.28	32.19	30.55	28.65	27.03	26.51	24.65	22.51	21.73	
	512	27.77	27.82	24.95	23.25	21.75	25.72	24.27	22.16	21.27	
GSM 1900	661	27.95	27.98	25.81	23.26	21.85	26.04	24.00	22.16	21.19	
	810	27.80	27.80	24.79	23.42	21.88	25.72	23.90	21.88	21.02	
		Calcula	ted Maxim	num Fram	e-Average	d Output	Power				
		Voice		GPRS/EL	DGE Data NSK)			EDGE (8-F			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	22.43	22.41	23.82	23.74	23.33	16.32	17.82	17.77	17.51	
GSM 850	190	22.57	22.43	24.35	24.25	23.59	17.07	18.24	17.96	18.27	
	251	23.08	22.99	24.36	24.22	23.85	17.31	18.46	18.08	18.55	
	512	18.57	18.62	18.76	18.82	18.57	16.52	18.08	17.73	18.09	
GSM 1900	661	18.75	18.78	19.62	18.83	18.67	16.84	17.81	17.73	18.01	
	810	18.60	18.60	18.60	18.99	18.70	16.52	17.71	17.45	17.84	
GSM 850	Frame	23.30	23.30	25.31	25.07	24.32	17.80	18.81	18.57	18.82	
GSM 1900	Avg.Targets:	18.80	18.80	18.81	18.77	18.82	16.80	17.81	17.57	17.82	

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 39 of 107

Table 10-2 Measured P_{max} for DSI = 1 (Head) for GSM 1900 Ant A

	Measured P _{max} for DSI = 1 (Head) for GSM 1900 Ant A										
	Maximum Burst-Averaged Output Power										
		Voice			OGE Data MSK)			EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	512	29.85	29.90	27.73	26.50	23.66	25.72	24.27	22.16	21.27	
GSM 1900	661	29.73	29.71	27.72	26.16	23.64	26.04	24.00	22.16	21.19	
	810	29.60	29.60	27.51	26.30	23.65	25.72	23.90	21.88	21.02	
		Calcula	ted Maxim	num Frame	e-Average	d Output	Power				
		Voice			DGE Data MSK)			EDGE (8-F			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	512	20.65	20.70	21.54	22.07	20.48	16.52	18.08	17.73	18.09	
GSM 1900	661	20.53	20.51	21.53	21.73	20.46	16.84	17.81	17.73	18.01	
	810	20.40	20.40	21.32	21.87	20.47	16.52	17.71	17.45	17.84	
GSM 1900	Frame Avg.Targets:	20.30	20.30	21.81	22.07	21.32	16.80	17.81	17.57	17.82	

Table 10-3 Measured P_{max} for DSI = 0 (Body-worn, Hotspot or Phablet) for GSM 850 Ant E

Maximum Burst-Averaged Output Power										
		Voice	GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	31.71	32.00	30.50	28.62	26.92	25.51	23.88	21.80	20.55
GSM 850	190	31.65	32.07	30.77	28.92	27.20	25.90	24.16	22.24	21.04
	251	31.98	32.65	31.00	29.29	27.27	26.14	24.41	22.61	21.44
		Calcula	ted Maxim	num Frame	e-Average	d Output	Power			
		Voice	GPRS/EDGE Data EDGE Data (GMSK) (8-PSK)							
					,			(Sry	
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm]	GPRS [dBm]	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm]	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
Band	Channel 128	[dBm] CS	[dBm]	GPRS [dBm]	GPRS [dBm]	[dBm]	[dBm]	EDGE [dBm]	EDGE [dBm]	[dBm]
Band GSM 850		[dBm] CS (1 Slot)	[dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	[dBm] 4 Tx Slot	[dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	[dBm] 4 Tx Slot
	128	[dBm] CS (1 Slot) 22.51	[dBm] 1 Tx Slot 22.80	GPRS [dBm] 2 Tx Slot 24.31	GPRS [dBm] 3 Tx Slot 24.19	[dBm] 4 Tx Slot 23.74	[dBm] 1 Tx Slot 16.31	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	[dBm] 4 Tx Slot 17.37

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 40 of 107

Table 10-4 Measured Pimis for DSI - 1 (Head) for GSM 850 Ant F

	ivieas	sured Pi	•			•		ant E		
		N	laximum E	Burst-Aver	aged Out	put Power				
		Voice		GPRS/EL (GN	OGE Data NSK)		EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	29.05	29.09	25.68	23.96	22.57	25.51	23.88	21.80	20.55
GSM 850	190	29.08	29.09	26.27	24.35	23.01	25.90	24.16	22.24	21.04
	251	29.41	29.41	26.15	24.91	23.51	26.14	24.41	22.61	21.44
		Calcula	ted Maxim	num Fram	e-Average	d Output	Power			
		Voice		GPRS/EL	OGE Data NSK)		EDGE Data (8-PSK)			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot
	128	19.85	19.89	19.49	19.53	19.39	16.31	17.69	17.37	17.37
GSM 850	190	19.88	19.89	20.08	19.92	19.83	16.70	17.97	17.81	17.86
	251	20.21	20.21	19.96	20.48	20.33	16.94	18.22	18.18	18.26
	512	-9.20	-9.20	-6.19	-4.43	-3.18	-9.20	-6.19	-4.43	-3.18
GSM 1900	661	-9.20	-9.20	-6.19	-4.43	-3.18	-9.20	-6.19	-4.43	-3.18
OOM 1300										
OSW 1900	810	-9.20	-9.20	-6.19	-4.43	-3.18	-9.20	-6.19	-4.43	-3.18
	810									
GSM 850	810 Frame Avg.Targets:	-9.20 20.30	-9.20 20.30	-6.19 20.31	-4.43 20.27	-3.18 20.32	-9.20 17.80	-6.19 18.81	-4.43 18.57	-3.18 18.82

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

GSM Class: B GPRS Multislot class: 33 (Max 4 Tx uplink slots) EDGE Multislot class: 33 (Max 4 Tx uplink slots) DTM Multislot Class: N/A

Wireless RF Connector Device

Figure 10-1 **Power Measurement Setup**

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 41 of 107
		REV 22.0

10.2 UMTS Conducted Powers

Table 10-5 Measured P_{max} for all DSI for UMTS 850 Ant A

3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	lar Band [dBm]	3GPP MPR [dB]
Version		Oublest	4132	4183	4233	[ub]
99	WCDMA	12.2 kbps RMC	23.85	23.99	23.97	-
99	VVCDIVIA	12.2 kbps AMR	23.87	24.03	23.96	-
6		Subtest 1	22.55	22.59	22.52	0
6	HSDPA	Subtest 2	22.58	22.60	22.56	0
6	TIODEA	Subtest 3	22.09	22.10	22.05	0.5
6		Subtest 4	22.06	22.09	22.03	0.5
6		Subtest 1	22.53	22.55	22.55	0
6		Subtest 2	20.52	20.49	20.49	2
6	HSUPA	Subtest 3	21.50	21.52	21.51	1
6		Subtest 4	20.42	20.39	20.39	2
6		Subtest 5	22.41	22.41	22.41	0

Table 10-6 Measured P_{max} for DSI = 0 (Body-worn, Hotspot or Phablet) for UMTS 850 Ant E

3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	lar Band [dBm]	3GPP MPR [dB]
Version		Subtest	4132	4183	4233	[ub]
99	WCDMA	12.2 kbps RMC	23.78	23.99	23.86	-
99	VVCDIVIA	12.2 kbps AMR	23.79	24.01	23.91	-
6		Subtest 1	22.67	22.63	22.62	0
6	HSDPA	Subtest 2	22.69	22.64	22.62	0
6	TIODEA	Subtest 3	22.17	22.15	22.14	0.5
6		Subtest 4	22.16	22.12	22.10	0.5
6		Subtest 1	22.65	22.65	22.66	0
6		Subtest 2	20.59	20.57	20.60	2
6	HSUPA	Subtest 3	21.57	21.59	21.54	1
6		Subtest 4	20.61	20.59	20.57	2
6		Subtest 5	22.62	22.60	22.59	0

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 42 of 107

Table 10-7 Measured Plimit for DSI = 1 (Head) for UMTS 850 Ant E

			(11000)			
3GPP Release	Mode	3GPP 34.121 Subtest	Cellu	lar Band [dBm]	3GPP MPR [dB]
Version		Subtest	4132	4183	4233	լսեյ
99	WCDMA	12.2 kbps RMC	20.35	20.51	20.49	-
99	VVCDIVIA	12.2 kbps AMR	20.36	20.54	20.49	-
6		Subtest 1	19.43	19.41	19.36	0
6	HSDPA	Subtest 2	19.43	19.39	19.39	0
6	TIODEA	Subtest 3	18.95	18.91	18.89	0.5
6		Subtest 4	18.90	18.90	18.88	0.5
6		Subtest 1	19.38	19.38	19.39	0
6		Subtest 2	17.39	17.34	17.32	2
6	HSUPA	Subtest 3	18.41	18.38	18.35	1
6		Subtest 4	17.39	17.35	17.32	2
6		Subtest 5	19.38	19.39	19.36	0

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- The DUT supports UE category 24 for HSDPA

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Figure 10-2 **Power Measurement Setup**

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 43 of 107

10.3 LTE Conducted Powers

Note: Per FCC KDB Publication 941225 D05v02r05, LTE SAR for the lower bandwidths was not required for testing since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg. Lower bandwidth conducted powers for all LTE bands can be found in LTE and NR Lower Bandwidth RF Conducted Powers Appendix.

Note: Some bands do not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

LTE Carrier Aggregation Notes:

- 1. This device supports uplink carrier aggregation for LTE CA_ 41C, with a maximum of two component carriers. For intraband contiguous carrier aggregation scenarios, 3GPP 36.101 Table 6.2.2A-1 specifies that the aggregate maximum allowed output power is equivalent to the single carrier scenario. 3GPP 36.101 6.2.3A allows for several dB of MPR to be applied when non-contiguous RB allocation is implemented. The conducted powers and MPR settings in this device are permanently implemented per the above 3GPP requirements.
- 2. Per FCC Guidance, the output power with uplink CA active was measured for the configuration with the highest reported SAR with single carrier for each exposure condition. The power was measured with wideband signal integration over both component carriers.

10.3.1 LTE Band 12

Table 10-8 LTE Band 12 Ant A Measured P_{Max} for all DSI - 10 MHz Bandwidth

LTE Band 12 10 MHz Bandwidth					
			Mid Channel		
Modulation	RB Size	RB Size RB Offset	23095	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power	00.1 [42]	
			[dBm]		
	1	0	23.22		0
	1	25	23.27	0	0
	1	49	23.28		0
QPSK	25	0	22.20		1
	25	12	22.22	0-1	1
	25	25	22.27	0-1	1
	50	0	22.25		1
	1	0	22.30		1
	1	25	22.52	0-1	1
	1	49	22.51		1
16QAM	25	0	21.22		2
	25	12	21.20	0-2	2
	25	25	21.24	0-2	2
	50	0	21.23		2
	1	0	21.33		2
	1	25	21.34	0-2	2
	1	49	21.19		2
64QAM	25	0	20.17		3
	25	12	20.19		3
	25	25	20.30	0-3	3
	50	0	20.27		3

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 44 of 107
·		REV/ 22.0

Table 10-9
LTE Band 12 Ant E Measured P_{Max} for DSI = 0 (Body-worn, Hotspot or Phablet) - 10 MHz Bandwidth

LTE Band 12 10 MHz Bandwidth					
			Mid Channel		
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power	33[42]	
			[dBm]		
	1	0	23.53		0
	1	25	23.64	0	0
	1	49	23.57		0
QPSK	25	0	22.59		1
	25	12	22.57	0-1	1
	25	25	22.61		1
	50	0	22.60		1
	1	0	22.70	0-1	1
	1	25	22.83		1
	1	49	22.69		1
16QAM	25	0	21.54		2
	25	12	21.65	0-2	2
	25	25	21.62	0-2	2
	50	0	21.58		2
	1	0	21.68		2
	1	25	21.81	0-2	2
	1	49	21.75		2
64QAM	25	0	20.51		3
	25	12	20.57	0.0	3
	25	25	20.57	0-3	3
	50	0	20.56		3

Table 10-10 LTE Band 12 Ant E Measured P_{Limit} for DSI = 1 (Head) - 10 MHz Bandwidth

		LTE Band 12					
			10 MHz Bandwidth				
			Mid Channel				
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			Conducted Power				
			[dBm]				
	1	0	21.79		0		
	1	25	21.76	0	0		
	1	49	21.82		0		
QPSK	25	0	21.80		0		
	25	12	21.81	0-1	0		
	25	25	21.80	0-1	0		
	50	0	21.80		0		
	1	0	22.00		0		
	1	25	22.00	0-1	0		
	1	49	21.90		0		
16QAM	25	0	21.56		0		
	25	12	21.64	0-2	0		
	25	25	21.65	0-2	0		
	50	0	21.61		0		
	1	0	21.55		0		
	1	25	21.83	0-2	0		
	1	49	21.62		0		
64QAM	25	0	20.50		0.5		
	25	12	20.54	0.0	0.5		
	25	25	20.56	0-3	0.5		
	50	0	20.57		0.5		

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 45 of 107
		REV 22.0

10.3.2 LTE Band 13

Table 10-11 LTE Band 13 Ant A Measured PMax for all DSI - 10 MHz Bandwidth

			LTE Band 13	all D31 - 10 WIF12	
			10 MHz Bandwidth		
Modulation RB	RB Size	RB Offset	Mid Channel 23230 RB Offset (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]	JOFF [db]	
	1	0	23.64		0
	1	25	23.49	0	0
	1	49	23.04		0
QPSK	25	0	22.54		1
	25	12	22.45	0-1	1
25	25	25	22.25	U-1	1
	50	0	22.32		1
	1	0	22.86	0-1	1
	1	25	22.62		1
	1	49	22.10		1
16QAM	25	0	21.55		2
	25	12	21.46	0-2	2
	25	25	21.29	1 0-2	2
	50	0	21.35]	2
	1	0	21.71		2
	1	25	21.69	0-2	2
	1	49	21.04		2
64QAM	25	0	20.52		3
	25	12	20.47	0.0	3
	25	25	20.26	0-3	3
	50	0	20.33]	3

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 46 of 107

Table 10-12 LTE Band 13 Ant E Measured P_{Max} for DSI = 0 (Body-worn, Hotspot or Phablet) - 10 MHz Bandwidth

LTE Band 13 10 MHz Bandwidth					
Modulation		Mid Channel 23230		MPR Allowed per	MPR [dB]
WOGUIACION	RB Size	RB Offset	Conducted Power [dBm]	3GPP [dB]	WIFK [UB]
	1	0	23.95		0
	1	25	23.85	0	0
	1	49	23.24		0
QPSK	25	0	22.87		1
	25	12	22.86	0-1	1
	25	25	22.59	0-1	1
	50	0	22.71		1
	1	0	23.05	0-1	1
	1	25	23.09		1
	1	49	22.50		1
16QAM	25	0	21.90		2
	25	12	21.81	0-2	2
	25	25	21.70	0-2	2
	50	0	21.77		2
	1	0	22.03		2
	1	25	22.10	0-2	2
	1	49	21.51		2
64QAM	25	0	20.91		3
	25	12	20.82	0-3	3
	25	25	20.61] U-3	3
	50	0	20.71		3

Table 10-13 LTE Band 13 Ant E Measured P_{Limit} for DSI = 1 (Head) - 10 MHz Bandwidth

	LTE Band 13 10 MHz Bandwidth					
			Mid Channel			
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			Conducted Power [dBm]	0011 [05]		
	1	0	22.09		0	
	1	25	22.08	0	0	
	1	49	21.62		0	
QPSK	25	0	22.08		0	
	25	12	22.05	0-1	0	
	25	25	21.80	0-1	0	
	50	0	22.04		0	
	1	0	22.09		0	
	1	25	22.05	0-1	0	
	1	49	21.90		0	
16QAM	25	0	21.90		0	
	25	12	21.91	0-2	0	
	25	25	21.69	0-2	0	
	50	0	21.70		0	
	1	0	21.72		0	
	1	25	22.00	0-2	0	
	1	49	21.42		0	
64QAM	25	0	20.90		0.5	
	25	12	20.88	0-3	0.5	
	25	25	20.65	0-3	0.5	
	50	0	20.70		0.5	

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 47 of 107
		REV 22.0

10.3.3 LTE Band 5

Table 10-14 LTE Band 5 Ant A Measured P_{Max} for all DSI - 10 MHz Bandwidth

			LTE Band 5 (Cell) 10 MHz Bandwidth		
Modulation	RB Size	Mid Channel 20525 (836.5 MHz)		MPR Allowed per 3GPP [dB]	MPR [dB]
	1	0	24.34		0
	1	25	24.26	0	0
	1	49	24.35		0
QPSK	25	0	23.26		1
	25	12	23.26	0-1	1
	25	25	23.27	0-1	1
	50	0	23.22		1
	1	0	23.49		1
	1	25	23.43	0-1	1
	1	49	23.49		1
16QAM	25	0	22.24		2
	25	12	22.25	0-2	2
	25	25	22.28	0-2	2
	50	0	22.22		2
	1	0	22.38		2
	1	25	22.35	0-2	2
	1	49	22.23		2
64QAM	25	0	21.18		3
	25	12	21.27	0-3	3
	25	25	21.31] 0-3	3
	50	0	21.20	1	3

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 48 of 107

Table 10-15 LTE Band 5 Ant E Measured P_{Max} for DSI = 0 (Body-worn, Hotspot or Phablet) - 10 MHz Bandwidth

			LTE Band 5 (Cell) 10 MHz Bandwidth	.,	,
			Mid Channel		
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per	MPR [dB]
			Conducted Power [dBm]	3GPP [dB]	
	1	0	24.73		0
	1	25	24.66	0	0
	1	49	24.75		0
QPSK	25	0	23.73		1
	25	12	23.65	0-1	1
	25	25	23.68	0-1	1
	50	0	23.69		1
	1	0	23.89		1
	1	25	23.87	0-1	1
	1	49	23.85		1
16QAM	25	0	22.68		2
	25	12	22.66	0-2	2
	25	25	22.64	0-2	2
	50	0	22.62		2
	1	0	22.85		2
	1	25	22.88	0-2	2
	1	49	22.74		2
64QAM	25	0	21.65		3
	25	12	21.69	0.2	3
	25	25	21.71	0-3	3
	50	0	21.64		3

Table 10-16

LTE Band 5 Ant E Measured PLimit for DSI = 1 (Head) - 10 MHz Bandwidth

	LTE Band 5 (Cell) 10 MHz Bandwidth										
			Mid Channel								
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per	MPR [dB]						
			Conducted Power [dBm]	3GPP [dB]							
	1	0	21.32		0						
	1	25	21.37	0	0						
	1	49	21.31		0						
QPSK	25	0	21.37		0						
	25	12	21.35	0-1	0						
	25	25	21.31	0-1	0						
	50	0	21.32		0						
	1	0	21.58		0						
	1	25	21.64	0-1	0						
	1	49	21.54		0						
16QAM	25	0	21.37		0						
	25	12	21.35	0-2	0						
	25	25	21.35	0-2	0						
	50	0	21.35		0						
	1	0	21.64		0						
	1	25	21.54	0-2	0						
	1	49	21.44		0						
64QAM	25	0	21.35		0						
	25	12	21.39	0.2	0						
	25	25	21.46	0-3	0						
	50	0	21.34		0						

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 49 of 107

10.3.4 LTE Band 66

Table 10-17 LTE Band 66 (AWS) Ant A Measured P_{Limit} for DSI = 0 (Body-worn, Hotspot or Phablet) - 20 MHz Bandwidth

				LTE Band 66 (AWS) 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	19.10	19.25	19.26		0
	1	50	19.66	19.32	19.22	0	0
	1	99	19.37	19.40	19.55		0
QPSK	50	0	19.26	19.13	19.21		0
	50	25	19.30	19.19	19.28	0-1	0
	50	50	19.46	19.25	19.38	U- I	0
	100	0	19.24	19.30	19.31		0
	1	0	19.37	19.48	19.64		0
	1	50	19.50	19.34	19.47	0-1	0
	1	99	19.88	19.19	19.34		0
16QAM	50	0	19.14	19.13	19.34		0
	50	25	19.29	19.21	19.29	0-2	0
	50	50	19.31	19.28	19.36	0-2	0
	100	0	19.34	19.23	19.28		0
	1	0	19.59	19.27	19.32		0
	1	50	19.37	19.41	19.65	0-2	0
	1	99	19.29	19.41	19.57		0
64QAM	50	0	19.14	19.12	19.23		0
	50	25	19.34	19.21	19.26	0-3	0
	50	50	19.37	19.29	19.38	0-3	0
	100	0	19.29	19.25	19.33		0

Table 10-18 LTE Band 66 (AWS) Ant A Measured P_{Max} for DSI = 1 (Head) - 20 MHz Bandwidth

		,	,	LTE Band 66 (AWS)	(crosse)		
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072	132322	132572	MPR Allowed per	MPR [dB]
			(1720.0 MHz)	(1745.0 MHz)	(1770.0 MHz)	3GPP [dB]	
				Conducted Power [dBm			
	1	0	23.19	23.19	23.29		0
	1	50	23.46	23.59	23.60	0	0
	1	99	23.50	23.52	23.61		0
QPSK	50	0	22.20	22.21	22.39		1
	50	25	22.34	22.24	22.38	0-1	1
	50	50	22.35	22.32	22.51	0-1	1
	100	0	22.30	22.39	22.49		1
	1	0	22.30	22.55	22.55		1
	1	50	22.55	22.62	22.69	0-1	1
	1	99	22.78	22.59	22.47	1	1
16QAM	50	0	21.37	21.18	21.46		2
	50	25	21.37	21.34	21.43	0-2	2
	50	50	21.42	21.32	21.44	0-2	2
	100	0	21.36	21.27	21.38		2
	1	0	21.37	21.54	21.54		2
	1	50	21.85	21.50	21.49	0-2	2
	1	99	21.39	21.36	21.63		2
64QAM	50	0	20.39	20.25	20.48		3
	50	25	20.38	20.32	20.42	0-3	3
64QAM	50	50	20.37	20.34	20.43	0-3	3
	100	0	20.38	20.33	20.43		3

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 50 of 107
		REV 22.0

10.3.5 LTE Band 2

Table 10-19
LTE Band 2 (PCS) Ant A Measured P_{Limit} for DSI = 0 (Body-worn, Hotspot or Phablet)
- 20 MHz Bandwidth

				LTE Band 2 (PCS)			
			Low Channel	20 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	18.35	18.22	18.11		0
	1	50	18.34	18.45	18.40	0	0
	1	99	18.47	18.13	17.99]	0
QPSK	50	0	18.36	18.24	18.00		0
	50	25	18.37	18.20	18.04	0-1	0
	50	50	18.23	18.09	18.00	0-1	0
	100	0	18.30	18.14	18.05		0
	1	0	18.53	18.17	18.38		0
	1	50	18.29	18.32	17.94	0-1	0
	1	99	18.48	18.42	18.53		0
16QAM	50	0	18.37	18.22	17.99		0
	50	25	18.38	18.18	18.04	0-2	0
	50	50	18.31	18.16	18.04	0-2	0
	100	0	18.38	18.18	18.07		0
	1	0	18.66	18.31	18.52		0
	1	50	18.53	18.30	18.13	0-2	0
	1	99	18.28	18.36	18.13		0
64QAM	50	0	18.39	18.17	18.08		0
	50	25	18.40	18.24	18.03	0-3	0
	50	50	18.42	18.17	17.98	0-3	0
	100	0	18.39	18.16	18.08		0

Table 10-20 LTE Band 2 (PCS) Ant A Measured P_{Max} for DSI = 1 (Head) - 20 MHz Bandwidth

				LTE Band 2 (PCS)	· · · · · · · · · · · · · · · · · · ·		
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm			
	1	0	23.40	23.36	23.37		0
	1	50	23.37	23.36	23.21	0	0
	1	99	23.54	23.53	23.50		0
QPSK	50	0	22.52	22.31	22.17		1
	50	25	22.49	22.36	22.26	0-1	1
	50	50	22.45	22.30	22.13	0-1	1
	100	0	22.45	22.30	22.21		1
	1	0	23.03	22.34	22.63		1
	1	50	22.65	22.47	22.26	0-1	1
	1	99	22.55	22.24	22.39		1
16QAM	50	0	21.50	21.35	21.32		2
	50	25	21.58	21.38	21.21	0-2	2
	50	50	21.43	21.24	21.21	0-2	2
	100	0	21.48	21.25	21.20		2
	1	0	21.79	21.58	21.15		2
	1	50	21.54	21.56	21.25	0-2	2
	1	99	21.59	21.27	21.23		2
64QAM	50	0	20.47	20.40	20.21		3
	50	25	20.59	20.38	20.23	0-3	3
	50	50	20.47	20.23	20.20	0-3	3
	100	0	20.53	20.27	20.18		3

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 51 of 107
		REV 22.0

10.3.6 LTE Band 41

Table 10-21 LTE Band 41 Ant B Measured P_{Limit} for DSI = 0 (Body-worn, Hotspot or Phablet) - 20 MHz Bandwidth

								E Band 41 Iz Bandwi									
				Low Channe	l Low-	-Mid Chan	nel	Mid Chanr	nel Mi	d-High Ch	annel	High Channe					
Modulation	RB Size	RB Size	RB	Offset	39750 (2506.0 MHz) (40620 (2593.0 MHz)		41055 (2636.5 MF	Hz)	41490 (2680.0 MHz)		MPR Allowed per 3GPP [dB]		R [dB]
							Condu	cted Pow	er [dBm]								
	1		0	22.02		22.06		22.03		22.10		22.02				0	
	1		50	21.96		22.03		22.23		22.09		21.95		0		0	
	1		99	22.01		22.03		22.06		21.98		21.98				0	
QPSK	50		0	22.18		22.18		22.25		22.23		22.13				0	
	50		25	22.28		22.25		22.32		22.24		22.25		0-1		0	
	50		50	22.21		22.22		22.29		22.27		22.22		0 1		0	
	100		0	22.20		22.21		22.22		22.20		22.17				0	
	1		0	22.34		22.44		22.33		22.23		22.02				0	
	1	_	50	22.61		22.44		22.56		22.45		22.24		0-1		0	
	1		99	22.29		22.38		22.27		22.22		22.02				0	
16QAM	50		0	21.98		22.00		22.07		22.02		21.96				0	
	50	_	25	22.08		22.10		22.10		22.04		22.05		0-2		0	
	50		50	22.05		22.05		22.08		22.06		22.05		0.2		0	
	100		0	22.00		22.05		22.08		21.97		22.03				0	
	1		0	22.02		21.94		22.18		22.10		22.08				0	
	1		50	22.05		22.07		22.08		22.02		22.03		0-2		0	
	1		99	22.07		21.95		22.13		21.97		21.99				0	
64QAM	50		0	20.98		21.01		21.09		21.02		20.93				1	
	50		25	21.06		21.10		21.11		21.06		21.07		0-3		1	
	50		50	21.05		21.07		21.13		21.04		21.02		0-3		1	
	100		0	21.01		21.02		21.03		21.00		20.99				1	
				PCC							scc				Pov	ver	
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	SCC Band	SCC Bandwidt [MHz]	SCC (UL/DL) Channel	SCC (UL/DL) Frequency [MHz]	Modulation	SCC UL# RB	SCC UL RB Offset	LTE Tx.Power with UL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)	
CA_41C	LTE B41	20	40620	2593.0	QPSK	1	99	LTE B41	20	40818	2612.8	QPSK	1	0	22.72	22.06	

Table 10-22 LTE Band 41 Ant B Measured P_{Max} for DSI = 1 (Head) - 20 MHz Bandwidth

	LIE	Band	3 41 <i>P</i>	ant B IV	ieasi	ırea				= 1 (HE	eaa)	- 20 Mi	12 Ba	nawic	ıtn	
								E Band 41 Iz Bandwi								
				Low Channe	Low-	Mid Chan		Mid Chann		Mid-High Ch	annel	High Channe	ı			
Modulation	RB Size	RB	Offset	39750 (2506.0 MHz)	(25	40185 49.5 MHz) (40620 2593.0 MH	iz)	41055 (2636.5 MH	łz)	41490 (2680.0 MHz)	20	MPR Allowed per 3GPP [dB]		MPR [dB]
							Condu	cted Pow	er [dBm	1						
	1		0	23.77		23.70		23.69		23.77		23.74				0
	1		50	23.82		23.64		23.66		23.90		23.90		0		0
	1		99	23.71		23.74		23.56		23.83		23.97				0
QPSK	50		0	22.97		23.00		23.05		23.03		22.91				1
	50		25	23.09		23.10		23.08		23.06		23.15		0-1		1
	50		50	23.05		23.06		23.10		23.06		23.01		0-1		1
	100		0	23.02		23.06		23.04		23.00		23.00				1
	1		0	23.14		23.13		23.28		23.15		23.01				1
	1		50	22.97		23.43		23.35		23.15		22.92	0-1	0-1		1
	1		99	23.13		23.18		23.26		23.06		22.89				1
16QAM	50		0	22.01		22.04		22.07		22.04		21.90				2
	50		25	22.10		22.14		22.08		22.04		22.04		0-2		2
	50		50	22.04		22.08		22.15		22.06		22.01		0-2		2
	100		0	22.07		22.09		22.05		22.00		22.04				2
	1		0	21.99		22.12		22.10		21.90		22.04				2
	1		50	22.05		22.11		22.15		22.05		22.09		0-2		2
	1		99	22.09		22.06		22.22		22.03		21.99				2
64QAM	50		0	21.02		20.99		21.05		21.01		20.89				3
	50		25	21.07		21.10		21.08		21.00		21.04				3
	50		50	21.07		21.02		21.13		21.05		20.98		0-3		3
	100		0	21.02		21.08		21.06		20.98		21.02				3
				PCC							sco				Pov	ver
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	SCC Band	SCC Bandwid	dth (UL/DL)	SCC (UL/DL) Frequenc [MHz]	Modulation	SCC UL# RB	SCC UL RB Offset	LTE Tx.Power with UL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_41C	LTE B41	20	41490	2680.0	QPSK	1	0	LTE B41	20	41292	2660.2	QPSK	1	99	23.20	23.74

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 52 of 107

Table 10-23 LTE Band 41 Ant F Measured P_{Limit} for DSI = 0 (Body-worn, Hotspot or Phablet) - 20 MHz Bandwidth

								E Band 41								
				Low Channe	l Low-	Mid Chan		Mid Channel		Mid-High Ch	annel	High Channe				
Modulation	RB Size	RB	Offset	39750 (2506.0 MHz) (25	40185 649.5 MHz)	40620 (2593.0 MH	łz)	41055 (2636.5 MI	Hz)	41490 (2680.0 MHz)	20	Allowed per SPP [dB]	MPI	R [dB]
							Condu	cted Pow	er [dBn	n]						
	1		0	21.80		21.70		21.64		21.56		21.56				0
	1		50	21.84		21.77		21.68		21.71		21.63		0		0
	1		99	21.95		21.75		21.59		21.57		21.47				0
QPSK	50		0	21.91		21.86		21.78		21.71		21.67				0
	50		25	21.94		21.86		21.77		21.72		21.66		0-1		0
	50		50	22.02		21.81		21.77		21.76		21.73		0.1		0
	100		0	21.92		21.76		21.75		21.67		21.67				0
	1		0	21.84		21.80		21.64		21.68		21.60				0
	1		50	21.97		21.96		21.69		21.83		21.79		0-1		0
	1		99	21.74		21.79		21.71		21.77		21.74				0
16QAM	50		0	21.90		21.87		21.78		21.71		21.74				0
	50		25	21.82		21.87		21.75		21.76		21.70		0-2		0
	50		50	21.80		21.83		21.70		21.81		21.72		0-2		0
	100		0	21.80		21.86		21.74		21.72		21.63				0
	1		0	21.96		21.84		21.78		21.58		21.76				0
	1		50	21.94		21.84		21.78		21.88		21.86		0-2		0
	1		99	21.81		21.93		21.57		21.73		21.61				0
64QAM	50		0	21.40		21.34		21.31		21.21		21.21				1
	50		25	21.30		21.40		21.33		21.22		21.20				1
	50		50	21.30		21.29		21.26		21.29		21.23		0-3		1
	100		0	21.28		21.34		21.28		21.22		21.18				1
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL Channe		Modulation	PCC UL#	PCC UL RB Offse	SCC Band	SCC Bandw [MH	idth (UL/DL)	SCC (UL/DL Frequen [MHz]) Modulation	SCC UL# RB	SCC UL RB Offset	LTE Tx.Power with UL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_41C	LTE B41	20	39750	2506.0	QPSK	50	50	LTE B41	20	39948	2525.8	QPSK	50	0	21.97	22.02

Table 10-24 LTE Band 41 Ant F Measured P_{Limit} for DSI = 1 (Head) - 20 MHz Bandwidth

	LIEE	sar	<u>10 41</u>	Ant F N	leas	sured				= 1 (H	ead)	- 20 M	HZ B	<u>andw</u>	ıdth	
	LTE Band 41 20 MHz Bandwidth															
				Low Chan	nel L	Low-Mid Char		Mid Chann		Mid-High Ch	annel	High Channel				
Modulation	RB Size		RB Offset	39750 (2506.0 MH	lz)	40185 (2549.5 MH	z)	40620 (2593.0 MH	lz)	41055 (2636.5 MI	Hz)	41490 (2680.0 MHz)	٠,	Allowed per GPP [dB]	MPI	R [dB]
							Cond	ucted Powe	er [dBn	n]						
	1		0	18.30		18.15		17.93		17.99		18.04				0
	1		50	18.24		18.25		18.00		17.93		18.02		0		0
	1		99	18.35		18.28		18.01		17.88		17.94				0
QPSK	50		0	18.49		18.25		18.05		18.05		18.09				0
	50		25	18.50		18.26		17.97		18.00		18.05		0-1		0
	50		50	18.52		18.28		17.91		18.03		18.01		0-1		0
	100		0	18.24		18.19		17.94		18.03		18.02				0
	1		0	18.26		18.17		17.93		17.87		18.03				0
	1		50	18.15		18.22		17.95		18.00		18.08		0-1		0
	1		99	18.07		18.23		17.88		17.95		17.79			0	
16QAM	50		0	18.31		18.23		18.06		17.99		18.00				0
	50		25	18.22		18.30		18.01		18.10		18.13		0-2		0
	50		50	18.19		18.24		17.92		18.05		18.08		0-2		0
	100		0	18.17		18.27		17.96		18.03		18.07				0
	1		0	18.38		18.29		18.18		18.05		18.00				0
	1		50	18.40		18.33		18.10		18.14		18.13		0-2		0
	1		99	18.17		18.33		17.91		17.99		18.07				0
64QAM	50		0	18.32		18.32		18.10		17.99		18.00				0
	50		25	18.20		18.30		18.01		18.08		18.11				0
	50		50	18.18		18.29		17.96	\neg	18.08		18.10		0-3		0
	100		0	18.13		18.31		17.97		18.07		18.09				0
Combination	PCC Band	PC Bandy [MI	width (UL,	DL) (UL/DL)	Modula	PCC UL#	PCC U RB Offs	ISCC Band	SC Bandv [MF	vidth (UL/DL)		Modulation	SCC UL# RB	SCC UL RB Offset	LTE Tx.Power with UL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA 41C	LTE B41	20	0 391	50 2506.0	QPS	SK 50	50	LTE B41	20	39948	2525.8	QPSK	50	0	18.45	18.52

Figure 10-3
Power Measurement Setup

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 53 of 107

10.4 NR Conducted Powers

Per October 2020 TCB Workshop Guidance, NR FR1 SAR evaluations are being generally based on adapting the existing LTE SAR procedures (FCC KDB Publication 941225 D05v02r05). Therefore, NR SAR for the lower bandwidths was not required for testing based on the measured output power and the reported NR SAR for the highest bandwidth. Lower bandwidth conducted powers for all NR bands can be found in LTE and NR Lower Bandwidth RF Conducted Powers Appendix.

Note: Some bands do not support non-overlapping channels. Per FCC Guidance, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

NR Band n5 10.4.1

Table 10-25 NR Band n5 Ant A Measured P_{Max} for all DSI - 20 MHz Bandwidth

NR Band n5											
20 MHz Bandwidth											
			Channel	MPR							
Modulation	RB Size	RB	167300 (836.5 MHz)	Allowed per	MPR [dB]						
		Offset	Conducted Power [dBm]	3GPP [dB]	[**-]						
	1	1	23.64		0.0						
	1	53	23.72	0	0.0						
DFT-s-OFDM	1	104	23.69		0.0						
QPSK	50	0	22.77	0-1	1.0						
Qi Oit	50	28	23.78	0	0.0						
	50	56	22.71	0-1	1.0						
	100	0	22.80	0-1	1.0						
DFT-s-OFDM 16QAM	1	1	23.25	0-1	1.0						
CP-OFDM QPSK	1	1	22.31	0-1.5	1.5						

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 54 of 107

Table 10-26 NR Band n5 Ant E Measured P_{Max} for DSI = 0 (Body-worn, Hotspot or Phablet) - 20 MHz Bandwidth

NR Band n5											
		20 MHz B	andwidth								
			Channel	MPR							
Modulation	RB Size	RB	167300 (836.5 MHz)	Allowed per	MPR [dB]						
		Offset	Conducted Power [dBm]	3GPP [dB]							
	1	1	23.79		0.0						
	1	53	23.85	0	0.0						
DFT-s-OFDM	1	104	23.77		0.0						
QPSK	50	0	22.92	0-1	1.0						
QF SIX	50	28	23.99	0	0.0						
	50	56	22.89	0-1	1.0						
	100	0	22.99	0-1	1.0						
DFT-s-OFDM 16QAM	1	1	23.45	0-1	1.0						
CP-OFDM QPSK	1	1	22.50	0-1.5	1.5						

Table 10-27 NR Band n5 Ant E Measured PLimit for DSI = 1 (Head) - 20 MHz Bandwidth

NR Band n5 20 MHz Bandwidth										
			Channel	MPR						
Modulation	RB Size	RB	167300 (836.5 MHz)	Allowed per	MPR [dB]					
	113 0.20	Offset	Conducted Power [dBm]	3GPP [dB]	[]					
	1	1	21.26		0.0					
	1	53	21.46	0	0.0					
DFT-s-OFDM	1	104	21.29		0.0					
QPSK	50	0	21.36	0-1	0.0					
Qi Oit	50	28	21.45	0	0.0					
	50	56	21.26	0-1	0.0					
	100	0	21.39	0-1	0.0					
DFT-s-OFDM 16QAM	1	1	21.17	0-1	0.0					
CP-OFDM QPSK	1	1	21.35	0-1.5	0.0					

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 55 of 107

10.4.2 NR Band n66

Table 10-28

NR Band n66 Ant A Measured *P_{Limit}* for DSI = 0 (Body-worn, Hotspot or Phablet) - 45 MHz Bandwidth

NR Band n66												
	45 MHz Bandwidth											
			Channel	MPR								
Modulation	RB Size	RB	349000 (1745 MHz)	Allowed per	MPR [dB]							
		Offset	Conducted Power [dBm]	3GPP [dB]								
	1	1	18.90		0.0							
	1	121	18.72	0	0.0							
DFT-s-OFDM	1	240	18.78		0.0							
QPSK	120	0	18.84	0-1	0.0							
Qi Oit	120	61	18.76	0	0.0							
	120	122	18.71	0-1	0.0							
	240	0	18.82	0-1	0.0							
DFT-s-OFDM 16QAM	1	1	19.26	0-1	0.0							
CP-OFDM QPSK	1	1	18.89	0-1.5	0.0							

Table 10-29 NR Band n66 Ant A Measured P_{Max} for DSI = 1 (Head) - 45 MHz Bandwidth

NR Band n66 45 MHz Bandwidth										
			Channel	MPR						
Modulation	RB Size	RB	349000 (1745 MHz)	Allowed per	MPR [dB]					
	NB Oize	Offset	Conducted Power [dBm]	3GPP [dB]						
	1	1	22.92		0.0					
	1	121	22.72	0	0.0					
DFT-s-OFDM	1	240	22.76		0.0					
QPSK	120	0	21.85	0-1	1.0					
Qi Oit	120	61	22.78	0	0.0					
	120	122	21.79	0-1	1.0					
	240	0	21.78	0-1	1.0					
DFT-s-OFDM 16QAM	1	1	22.12	0-1	1.0					
CP-OFDM QPSK	1	1	21.22	0-1.5	1.5					

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 56 of 107
		REV 22.0

Table 10-30 NR Band n66 Ant F Measured PLimit for DSI = 0 (Body-worn, Hotspot or Phablet) - 45 MHz Bandwidth

NR Band n66							
45 MHz Bandwidth							
			Channel	MPR			
Modulation	RB Size	RB	349000 (1745 MHz)	Allowed per MPR			
		Offset	Conducted Power [dBm]	3GPP [dB]	,		
	1	1	20.24	0	0.0		
	1	121	20.28		0.0		
DFT-s-OFDM	1	240	20.32		0.0		
QPSK	120	0	20.04	0-1	0.0		
Qi Oit	120	61	20.26	0	0.0		
	120	122	20.22	0-1	0.0		
	240	0	20.19	0-1	0.0		
DFT-s-OFDM 16QAM	1	1	20.69	0-1	0.0		
CP-OFDM QPSK	1	1	20.16	0-1.5	0.0		

Table 10-31 NR Band n66 Ant F Measured P_{Limit} for DSI = 1 (Head) - 45 MHz Bandwidth

NR Band n66						
45 MHz Bandwidth						
			Channel	MDD		
Modulation	RB Size	RB	349000 (1745 MHz)	MPR Allowed per 3GPP	MPR [dB]	
		Offset	Offset Conducted Power [dBm]		[4:2]	
	1	1	18.25		0.0	
	1	121	18.37	0	0.0	
DFT-s-OFDM	1	240	18.21		0.0	
QPSK	120	0	18.25	0-1	0.0	
Qi Oit	120	61	18.36	0	0.0	
	120	122	18.24	0-1	0.0	
	240	0	18.34	0-1	0.0	
DFT-s-OFDM 16QAM	1	1	18.68	0-1	0.0	
CP-OFDM QPSK	1	1	18.10	0-1.5	0.0	

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 57 of 107

10.4.3 NR Band n41

Table 10-32 NR Band n41 PC2 Antenna F Path 1 Measured P_{Limit} for DSI = 0 (Body-worn, Hotspot or Phablet) - 100 MHz Bandwidth

NR Band n41						
100 MHz Bandwidth						
			Channel	MPR		
Modulation	RB Size	RB	518598 (2592.99 MHz)	Allowed per	MPR [dB]	
		Offset Condu Power		3GPP [dB]	[]	
	1	1	19.35		0.0	
	1	137	19.56	0	0.0	
DFT-s-OFDM	1	271	19.68		0.0	
QPSK	135	0	19.46	0-1	0.0	
Qi Oit	135	69	19.59	0	0.0	
	135	138	19.64	0-1	0.0	
	270	0	19.58	0-1	0.0	
DFT-s-OFDM 16QAM	1	1	19.44	0-1	0.0	
CP-OFDM QPSK	1	1	19.53	0-1.5	0.0	

Table 10-33 NR Band n41 PC2 Antenna F Path 1 Measured P_{Limit} for DSI = 1 (Head) - 100 MHz Bandwidth

NR Band n41						
100 MHz Bandwidth						
			Channel	MPR		
Modulation	RB Size	RB	518598 (2592.99 MHz)	Allowed per	MPR [dB]	
		Offset	Conducted Power [dBm]	3GPP [dB]	[]	
	1	1	16.53	0	0.0	
	1	137	16.73		0.0	
DFT-s-OFDM	1	271	16.84		0.0	
QPSK	135	0	16.62	0-1	0.0	
Qi Oit	135	69	16.74	0	0.0	
	135	138	16.80	0-1	0.0	
	270	0	16.71		0.0	
DFT-s-OFDM 16QAM	1	1	16.64	0-1	0.0	
CP-OFDM QPSK	1	1	16.67	0-1.5	0.0	

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 58 of 107
		REV 22.0

Table 10-34
NR Band n41 PC2 Antenna B Path 2 Measured P_{Limit} for DSI = 0 (Body-worn, Hotspot or Phablet)
- 100 MHz Bandwidth

NR Band n41						
100 MHz Bandwidth						
			Channel	MPR		
Modulation	RB Size	RB	518598 (2592.99 MHz)	Allowed per	MPR [dB]	
		Offset	Conducted Power [dBm]	3GPP [dB]		
	1	1	20.51		0.0	
	1	137	20.25	0	0.0	
DFT-s-OFDM	1	271	20.27		0.0	
QPSK	135	0	20.44	0-1	0.0	
Qi Oit	135	69	20.24	0	0.0	
	135	138	20.25	0-1	0.0	
	270	0	20.30	0,1	0.0	
DFT-s-OFDM 16QAM	1	1	20.47	0-1	0.0	
CP-OFDM QPSK	1	1	20.69	0-1.5	0.0	

Table 10-35 NR Band n41 PC2 Antenna B Path 2 Measured P_{Limit} for DSI = 1 (Head) - 100 MHz Bandwidth

NR Band n41 100 MHz Bandwidth						
		100 1111 12 1	Channel	MDD		
Modulation	RB Size	RB	518598 (2592.99 MHz)	MPR Allowed per	MPR [dB]	
modulation	113 0120	Offset	Conducted Power [dBm]	3GPP [dB]	[GD]	
	1	1	21.34	0	0.0	
	1	137	21.10		0.0	
DFT-s-OFDM	1	271	21.05		0.0	
QPSK	135	0	21.14	0-1	0.0	
Qi Oit	135	69	21.02	0	0.0	
	135	138	20.94	0-1	0.0	
	270	0	21.00		0.0	
DFT-s-OFDM 16QAM	1	1	21.10	0-1	0.0	
CP-OFDM QPSK	1	1	20.71	0-1.5	0.0	

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 59 of 107

Figure 10-4 Power Measurement Setup - NR FDD

Figure 10-5 Power Measurement Setup - NR TDD

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 60 of 107

10.5 WLAN Conducted Powers

Table 10-36

2.4 GHz WLAN Measured PLimit Average RF Power for DSI = 1 (Head) - Ant H

2.4GHz WIFI (20MHz 802.11b SISO ANT H)						
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]			
2412	1	Average	16.90			
2437	6		16.58			
2462	11		16.82			

Table 10-37

2.4 GHz WLAN Measured PLimit Average RF Power for DSI = 1 (Head) - Ant J

2.4GHz WIFI (20MHz 802.11b SISO ANT J)						
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]			
2412	1		16.70			
2437	6	Average	16.90			
2462	11		16.78			

Table 10-38

2.4 GHz WLAN Measured PLimit Average RF Power for DSI = 1 (Head) - MIMO

2.4GHz WIFI (20MHz 802.11b MIMO)						
Freq [MHz]	Channel	Detector	Conducted Power [dBm]			
			ANT1	ANT2	MIMO	
2412	1		16.94	16.97	19.97	
2437	6	Average	16.53	16.87	19.71	
2462	11		16.78	16.79	19.80	

Table 10-39

2.4 GHz WLAN Measured P_{max} Average RF Power for DSI = 0 (Body-worn, Hotspot or Phablet) – Ant H

2.4GHz WIFI (20MHz 802.11b SISO ANT H)						
Freq. [MHz]	Conducted Power [dBm]					
2412	1		19.78			
2437	6	Average	19.46			
2462	11		19.85			

Table 10-40

2.4 GHz WLAN Measured P_{max} Average RF Power for DSI = 0 (Body-worn, Hotspot or Phablet) – Ant J

2.4GHz WIFI (20MHz 802.11b SISO ANT J)					
Freq. [MHz]	Channel	Detector	Conducted Power [dBm]		
2412	1		19.78		
2437	6	Average	19.69		
2462	11		19.60		

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 61 of 107

Table 10-41

2.4 GHz WLAN Measured P_{max} Average RF Power for DSI = 0 (Body-worn, Hotspot or Phablet) – MIMO

2.4GHz WIFI (20MHz 802.11g MIMO)						
Freq [MHz]	Channel	Detector				
2412	1		17.27	17.17	20.23	
2437	6	Average	17.44	17.75	20.61	
2462	11		17.23	17.17	20.21	

Table 10-42

5 GHz WLAN Measured P_{Limit} Average RF Power for DSI = 0 (Body-worn, Hotspot or Phablet) and DSI = 1 (Head) - Ant H

5GHz WIFI (80MHz 802.11ac SISO ANT H)						
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]			
UNII-1	5210	42	14.70			
UNII-2A	5290	58	14.65			
	5530	106	14.50			
UNII-2C	5610	122	14.96			
	5690	138	15.06			
UNII-3	5775	155	14.80			
UNII-4	5885	171	14.69			

Table 10-43

5 GHz WLAN Measured P_{Limit} Average RF Power for DSI = 0 (Body-worn, Hotspot or Phablet) and DSI = 1 (Head) - Ant E

5GHz WIFI (80MHz 802.11ac SISO ANT E)						
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]			
UNII-1	5210	42	14.02			
UNII-2A	5290	58	14.10			
	5530	106	14.30			
UNII-2C	5610	122	15.20			
	5690	138	15.20			
UNII-3	5775	155	15.20			
UNII-4	5885	171	15.32			

Table 10-44

5 GHz WLAN Measured P_{Limit} Average RF Power for DSI = 0 (Body-worn, Hotspot or Phablet) and DSI = 1 (Head) - MIMO

5GHz WIFI (80MHz 802.11ac MIMO)							
Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]				
			ANT1	ANT2	MIMO		
UNII-1	5210	42	15.99	14.01	18.12		
UNII-2A	5290	58	15.98	14.33	18.24		
	5530	106	14.67	14.51	17.60		
UNII-2C	5610	122	15.33	15.50	18.43		
	5690	138	15.42	15.58	18.51		
UNII-3	5775	155	15.14	15.40	18.28		
UNII-4	5885	171	15.02	15.60	18.33		

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 62 of 107

Table 10-45 6 GHz WLAN Measured P_{Limit} Average RF Power for DSI = 1 (Head) – Ant H

6GHz WIFI (40MHz 802.11ax SISO ANT H)					
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-5	5965	3	16.78		
UNII-3	6285	67	16.81		
UNII-7	6685	147	16.65		
6GHz \	WIFI (80MHz	802.11ax S	SISO ANT H)		
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]		
UNII-6	6465	103	15.87		
UNII-8	7025	215	15.20		

Table 10-46

6 GHz WLAN Measured PLimit Average RF Power for DSI = 1 (Head) - Ant E

6GHz	6GHz WIFI (40MHz 802.11ax SISO ANT E)						
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]				
UNII-5	5965	3	16.21				
UNII-3	6285	67	16.76				
UNII-7	6685	147	16.89				
6GHz	WIFI (80MH:	z 802.11ax S	SISO ANT E)				
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]				
UNII-6	6465	103	15.97				
UNII-8	7025	215	15.36				

Table 10-47

6 GHz WLAN Measured PLimit Average RF Power for DSI = 1 (Head) - MIMO

WEAR Measured I Limit Average Ki Tower for Dor = 1 (flead) - 1								
	6GHz WIFI (40MHz 802.11ax MIMO)							
Band	Freq	Channel	Avg. Conducted Powers [dBm]					
	[MHz]		ANT1	ANT2	MIMO			
UNII-5	5965	3	16.99	16.41	19.72			
OIVII-3	6285	67	16.93	16.45	19.71			
UNII-7	6685	147	16.98	16.70	19.85			
	_	6GHz WIFI	(80MHz 802.11a	x MIMO)				
Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]					
			ANT1	ANT2	MIMO			
UNII-6	6465	103	15.80	15.99	18.91			
LIMILLO	7005	01 E	15.00	15 10	10.01			

Table 10-48

6 GHz WLAN Measured P_{max} Average RF Power for DSI = 0 (Body-worn or Phablet) – Ant H

1	max Average Ki i ower for bor = 0 (Body							
	6GHz WIFI (160MHz 802.11ax SISO ANT H)							
	Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]				
	LINILE	6025	15	8.32				
	UNII-5	6345	79	8.70				
	UNII-6	6505	111	8.43				
	UNII-7	6825	175	8.24				
	UNII-8	6985	207	8.35				

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 63 of 107
	•	REV 22.0

Table 10-49 6 GHz WLAN Measured P_{max} Average RF Power for DSI = 0 (Body-worn or Phablet) – Ant E

6GHz WIFI (160MHz 802.11ax SISO ANT E)							
Band	Freq. [MHz]	Channel	Avg. Conducted Power [dBm]				
UNII-5	6025	15	8.56				
UNII-3	6345	79	8.06				
UNII-6	6505	111	8.29				
UNII-7	6825	175	8.54				
UNII-8	6985	207	8.46				

Table 10-50 6 GHz WLAN Measured P_{max} Average RF Power for DSI = 0 (Body-worn or Phablet) – MIMO

6GHz WIFI (160MHz 802.11ax MIMO)							
Band	Freq [MHz]	Channel	Avg. Conducted Powers [dBm]				
			ANT1	ANT2	MIMO		
UNII-5	6025	15	8.23	8.50	11.38		
UNII-3	6345	79	8.56	8.02	11.31		
UNII-6	6505	111	8.42	8.39	11.42		
UNII-7	6825	175	8.26	8.99	11.65		
UNII-8	6985	207	8.35	8.55	11.46		

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

Figure 10-6
Power Measurement Setup

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 64 of 107
		REV 22 0

10.6 Bluetooth Conducted Powers

Table 10-51 Bluetooth Measured for Data Referencing P_{Max} Average RF Power for all DSI – Ant H

Frequency [MHz]	Data Rate [Mbps]	Mod.	Power Scheme	Channel No.	_	nducted wer
					[dBm]	[mW]
2402	1.0	GFSK	ePA	0	17.84	60.814
2441	1.0	GFSK	ePA	39	18.69	73.961
2480	1.0	GFSK	ePA	78	17.98	62.806

Table 10-52 Bluetooth Measured for Data Referencing PMax Average RF Power for all DSI - Ant J

Frequency [MHz]	Data Rate [Mbps]	Mod.	Power Scheme	Channel No.		nducted wer
					[dBm]	[mW]
2402	1.0	GFSK	ePA	0	17.94	62.230
2441	1.0	GFSK	ePA	39	18.59	72.277
2480	1.0	GFSK	ePA	78	18.23	66.527

Bluetooth PLimit Average RF Power for all DSI - MIMO

Frequency [MHz]	Data Rate [Mbps]	Mod.	Power Scheme	Channel No.	ANT1	l Avg ed Power	ANT1 Target	ANT2 Conducte	2 Avg ed Power	ANT2 Target	Dual Conducto	l Avg ed Power
					[dBm]	[mW]	[dBm]	[dBm]	[mW]	[dBm]	[dBm]	[mW]
2402	1.0	GFSK	iPA	0	14.63	29.040	14.500	14.12	25.823	14.500	17.39	54.863
2441	1.0	GFSK	iPA	39	15.30	33.884	14.500	14.74	29.785	14.500	18.04	63.670
2480	1.0	GFSK	iPA	78	14.69	29.444	14.500	14.54	28.445	14.500	17.63	57.889
2402	2.0	π/4-DQPSK	iPA	0	11.73	14.894	11.500	11.10	12.882	11.500	14.44	27.776
2441	2.0	π/4-DQPSK	iPA	39	12.45	17.579	11.500	11.56	14.322	11.500	15.04	31.901
2480	2.0	π/4-DQPSK	iPA	78	11.87	15.382	11.500	11.47	14.028	11.500	14.68	29.410
2402	3.0	8DPSK	iPA	0	11.83	15.241	11.500	11.38	13.740	11.500	14.62	28.981
2441	3.0	8DPSK	iPA	39	12.47	17.660	11.500	11.86	15.346	11.500	15.19	33.007
2480	3.0	8DPSK	iPA	78	12.00	15.849	11.500	11.48	14.060	11.500	14.76	29.909

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 65 of 107

Figure 10-7 **Bluetooth Antenna H Transmission Plot**

Equation 10-1 **Bluetooth Antenna H Duty Cycle Calculation**

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.88 \textit{ms}}{3.75 \textit{ms}} * 100\% = 76.8\%$$

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 66 of 107
		RFV 22 0

Figure 10-8 **Bluetooth Antenna J Transmission Plot**

Equation 10-2 Bluetooth Antenna J Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.88ms}{3.75ms} * 100\% = 76.8\%$$

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 67 of 107

Figure 10-9
Bluetooth MIMO Transmission Plot

Equation 10-3 Bluetooth MIMO Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.890 \textit{ms}}{3.750 \textit{ms}} * 100\% = 77.07\%$$

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 68 of 107

Figure 10-10 Power Measurement Setup

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 69 of 107

11 SYSTEM VERIFICATION

11.1 Tissue Verification

Table 11-1 Measured Head Tissue Properties

		uuu.	<u> </u>	<u>uu</u>		oper tie			
Calibrated for	T	Tissue Temp	Measured	Measured	Measured	TARGET	TARGET	0/	0/ -1
Tests Performed on:	Tissue Type	During Calibration	Frequency (MHz)	Conductivity, σ (S/m)	Dielectric Constant, ε	Conductivity, σ (S/m)	Dielectric Constant, ε	% dev σ	% dev ε
On.		(°C)					, .		
			12	0.746	52.543	0.750	55.000	-0.59%	-4.47%
11/25/2024	30 Head	19.5	13	0.746	52.700	0.750	55.000	-0.59%	-4.18%
			14	0.746	52.861	0.750	55.000	-0.59%	-3.89%
			680	0.845	42.943	0.888	42.305	-4.84%	1.51%
			695	0.850	42.892	0.889	42.227	-4.39%	1.57%
			700	0.852	42.877	0.889	42.201	-4.16%	1.60%
			710	0.855	42.851	0.890	42.149	-3.93%	1.67%
11/20/2024	750 Head	21.6	725	0.861	42.803	0.891	42.071	-3.37%	1.74%
11/20/2024	730 Head	21.0			101000				
			750	0.870	42.727	0.894	41.942	-2.68%	1.87%
			770	0.877	42.672	0.895	41.838	-2.01%	1.99%
			785	0.882	42.633	0.896	41.760	-1.56%	2.09%
			800	0.888	42.595	0.897	41.682	-1.00%	2.19%
			815	0.894	42.777	0.898	41.594	-0.45%	2.84%
11/06/2024	835 Head	20.4	820	0.896	42.764	0.899	41.578	-0.33%	2.85%
11/06/2024	835 Head	20.4	835	0.902	42.727	0.900	41.500	0.22%	2.96%
			850	0.907	42.689	0.916	41.500	-0.98%	2.87%
			815	0.892	42.894	0.898	41.594	-0.67%	3.13%
			820	0.894	42.881	0.899	41.578	-0.56%	3.13%
11/11/2024	835 Head	19.9	835	0.900	42.845	0.900	41.500	0.00%	3.24%
			850	0.906	42.800	0.916	41.500	-1.09%	3.13%
			815	0.903	41.590	0.898	41.594	0.56%	-0.01%
11/13/2024	835 Head	21.8	820	0.905	41.576	0.899	41.578	0.67%	0.00%
			835	0.910	41.536	0.900	41.500	1.11%	0.09%
			850	0.915	41.501	0.916	41.500	-0.11%	0.00%
			815	0.933	40.609	0.898	41.594	3.90%	-2.37%
44/40/222	005 / 1	00.0	820	0.934	40.602	0.899	41.578	3.89%	-2.35%
11/18/2024	835 Head	22.0	835	0.940	40.584	0.900	41.500	4.44%	-2.21%
		I	850	0.946	40.543	0.916	41.500	3.28%	-2.31%
			815	0.894	42.548	0.898	41.594	-0.45%	2.29%
		1	820	0.896	42.531	0.899	41.578	-0.43%	2.29%
11/20/2024	835 Head	21.6							
		I	835	0.901	42.479	0.900	41.500	0.11%	2.36%
		-	850	0.907	42.431	0.916	41.500	-0.98%	2.24%
			815	0.892	42.051	0.898	41.594	-0.67%	1.10%
11/23/2024	835 Head	20.8	820	0.893	42.039	0.899	41.578	-0.67%	1.11%
11/23/2024	000 1 1000	20.0	835	0.898	42.019	0.900	41.500	-0.22%	1.25%
			850	0.905	41.983	0.916	41.500	-1.20%	1.16%
			1700	1.277	39.744	1.343	40.145	-4.91%	-1.00%
			1705	1.280	39.741	1.345	40.141	-4.83%	-1.00%
			1710	1.283	39.737	1.348	40.136	-4.82%	-0.99%
			1720	1.290	39.730	1.354	40.126	-4.73%	-0.99%
11/11/2024	1750 Head	20.8							-0.96%
			1745	1.304	39.704	1.368	40.087	-4.68%	
			1750	1.307	39.697	1.371	40.079	-4.67%	-0.95%
			1770	1.319	39.667	1.383	40.047	-4.63%	-0.95%
			1790	1.330	39.636	1.394	40.016	-4.59%	-0.95%
			1700	1.285	41.376	1.343	40.145	-4.32%	3.07%
			1705	1.288	41.373	1.345	40.141	-4.24%	3.07%
			1710	1.290	41.371	1.348	40.136	-4.30%	3.08%
			1720	1.296	41.366	1.354	40.126	-4.28%	3.09%
11/19/2024	1750 Head	22.7	1745	1.310	41.349	1.368	40.087	-4.24%	3.15%
			1750	1.313	41.345	1.371	40.079	-4.23%	3.16%
				1.313	41.325				
			1770	1.340		1.383	40.047	-4.05%	3.19%
			1790		41.300	1.394	40.016	-3.87%	3.21%
			1700	1.281	39.207	1.343	40.145	-4.62%	-2.34%
			1705	1.284	39.201	1.345	40.141	-4.54%	-2.34%
			1710	1.287	39.196	1.348	40.136	-4.53%	-2.34%
11/20/2024	1750 Head	23.0	1720	1.292	39.186	1.354	40.126	-4.58%	-2.34%
11/20/2024	1750 Field	23.0	1745	1.306	39.160	1.368	40.087	-4.53%	-2.31%
		1	1750	1.309	39.154	1.371	40.079	-4.52%	-2.31%
		I	1770	1.320	39.130	1.383	40.047	-4.56%	-2.29%
		I	1790	1.331	39.108	1.394	40.016	-4.52%	-2.27%
			1850	1.397	39.847	1.400	40.000	-0.21%	-0.38%
		I							
		I	1860	1.403	39.833	1.400	40.000	0.21%	-0.42%
		I	1880	1.415	39.813	1.400	40.000	1.07%	-0.47%
11/06/2024	1900 Head	22.0	1900	1.427	39.795	1.400	40.000	1.93%	-0.51%
		I	1905	1.430	39.792	1.400	40.000	2.14%	-0.52%
		I	1910	1.433	39.788	1.400	40.000	2.36%	-0.53%
		I	1920	1.439	39.780	1.400	40.000	2.79%	-0.55%
			1850	1.359	39.330	1.400	40.000	-2.93%	-1.68%
		I	1860	1.364	39.328	1.400	40.000	-2.57%	-1.68%
		I	1880	1.376	39.319	1.400	40.000	-1.71%	-1.70%
11/11/2024	1900 Head	21.2	1900	1.387	39.299	1.400	40.000	-0.93%	-1.75%
2024	1000 I ROBU	-1.4	1905	1.390	39.293	1.400	40.000	-0.71%	-1.77%
		1	1905	1.390	39.293	1.400	40.000	-0.71%	-1.77%
		1							
			1920	1.399	39.276	1.400	40.000	-0.07% -1.71%	-1.81%
		1	1850	1.376	41.825	1.400			4.56%
		I	1860	1.382	41.805	1.400	40.000	-1.29%	4.51%
		I	1880	1.394	41.772	1.400	40.000	-0.43%	4.43%
11/13/2024	1900 Head	20.0	1900	1.406	41.749	1.400	40.000	0.43%	4.37%
		I	1905	1.409	41.744	1.400	40.000	0.64%	4.36%
		1	1910	1.412	41.739	1.400	40.000	0.86%	4.35%
		1	1920	1.418	41.728	1.400	40.000	1.29%	4.32%
			1850	1.377	41.189	1.400	40.000	-1.64%	2.97%
		1	1860	1.383	41.166	1.400	40.000	-1.21%	2.91%
		1							
			1880	1.395	41.121	1.400	40.000	-0.36%	2.80%
									2.71%
11/19/2024	1900 Head	22.7	1900	1.407	41.084	1.400	40.000	0.50%	
11/19/2024	1900 Head	22.7	1905	1.410	41.075	1.400	40.000	0.71%	2.69%
11/19/2024	1900 Head	22.7							

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager	
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 70 of 107	

Table 11-2 Measured Head Tissue Properties

O-liberate 14				ead 11SS			TARGET		
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev
			2300	1.710	38.494	1.670	39.500	2.40%	-2.55%
			2310	1.717	38.478	1.679	39.480	2.26%	-2.54%
			2320	1.725	38.459	1.687	39.460	2.25%	-2.54%
			2400 2450	1.787 1.825	38.319 38.225	1.756 1.800	39.289 39.200	1.77%	-2.479 -2.499
			2480	1.848	38.180	1.833	39.162	0.82%	-2.437
			2500	1.862	38.144	1.855	39.136	0.38%	-2.539
11/11/2024	2450 Head	20.9	2510	1.870	38.126	1.866	39.123	0.21%	-2.559
			2535	1.889	38.089	1.893	39.092	-0.21%	-2.579
			2550	1.901	38.070	1.909	39.073	-0.42%	-2.57%
			2560	1.909	38.058	1.920	39.060	-0.57%	-2.579
			2600	1.941	37.995	1.964	39.009	-1.17%	-2.609
			2650	1.982 2.007	37.910 37.858	2.018	38.945	-1.78% -2.15%	-2.669 -2.709
			2680 2700	2.007	37.858	2.051	38.907 38.882	-2.15%	-2.749
			2300	1.711	38.220	1.670	39.500	2.46%	-3.249
			2310	1.718	38.193	1.679	39.480	2.32%	-3.269
			2320	1.726	38.164	1.687	39.460	2.31%	-3.289
			2400	1.784	37.983	1.756	39.289	1.59%	-3.329
			2450	1.820	37.861	1.800	39.200	1.11%	-3.429
			2480	1.844	37.794	1.833	39.162	0.60%	-3.499
			2500	1.860	37.745	1.855	39.136	0.27%	-3.559
11/18/2024	2450 Head	20.1	2510	1.868	37.719	1.866	39.123	0.11%	-3.599
			2535 2550	1.885 1.898	37.663 37.637	1.893 1.909	39.092 39.073	-0.42% -0.58%	-3.669 -3.689
			2560	1.906	37.619	1.909	39.060	-0.73%	-3.699
			2600	1.936	37.523	1.964	39.009	-1.43%	-3.819
			2650	1.974	37.410	2.018	38.945	-2.18%	-3.949
			2680	1.998	37.338	2.051	38.907	-2.58%	-4.039
			2700	2.011	37.279	2.073	38.882	-2.99%	-4.129
			2300	1.735	38.218	1.670	39.500	3.89%	-3.259
			2310	1.742	38.197	1.679	39.480	3.75%	-3.259
			2320	1.750	38.175	1.687	39.460	3.73%	-3.269
			2400	1.813	38.039	1.756	39.289	3.25%	-3.189
			2450	1.853	37.945	1.800	39.200	2.94%	-3.209
			2480 2500	1.877 1.893	37.891 37.856	1.833 1.855	39.162 39.136	2.40%	-3.259 -3.279
11/22/2024	2450 Head	21.1	2510	1.900	37.837	1.866	39.123	1.82%	-3.299
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	210011000	2	2535	1.920	37.788	1.893	39.092	1.43%	-3.349
			2550	1.933	37.761	1.909	39.073	1.26%	-3.369
			2560	1.941	37.745	1.920	39.060	1.09%	-3.379
			2600	1.973	37.671	1.964	39.009	0.46%	-3.439
			2650	2.013	37.569	2.018	38.945	-0.25%	-3.539
			2680	2.038	37.512	2.051	38.907	-0.63%	-3.599
			2700	2.053	37.472	2.073	38.882	-0.96%	-3.639
			2300	1.695	39.196	1.670	39.500	1.50%	-0.779
			2310 2320	1.703 1.711	39.178 39.159	1.679 1.687	39.480 39.460	1.43% 1.42%	-0.769 -0.769
			2400	1.774	39.023	1.756	39.460	1.03%	-0.769
			2450	1.812	38.933	1.800	39.200	0.67%	-0.689
			2480	1.835	38.884	1.833	39.162	0.01%	-0.719
			2500	1.852	38.853	1.855	39.136	-0.16%	-0.729
11/25/2024	2450 Head	20.5	2510	1.860	38.837	1.866	39.123	-0.32%	-0.739
			2535	1.879	38.796	1.893	39.092	-0.74%	-0.769
			2550	1.891	38.777	1.909	39.073	-0.94%	-0.769
			2560	1.899	38.764	1.920	39.060	-1.09%	-0.769
			2600	1.930	38.698	1.964	39.009	-1.73%	-0.809
			2650 2680	1.970 1.994	38.615 38.572	2.018 2.051	38.945 38.907	-2.38% -2.78%	-0.859
			2700	2.010	38.534	2.073	38.882	-3.04%	-0.869 -0.909
			2300	1.668	37.712	1.670	39.500	-0.12%	-4.539
			2310	1.676	37.712	1.679	39.480	-0.12%	-4.53
			2320	1.684	37.669	1.687	39.460	-0.18%	-4.549
			2400	1.747	37.526	1.756	39.289	-0.51%	-4.499
			2450	1.785	37.420	1.800	39.200	-0.83%	-4.549
			2480	1.810	37.370	1.833	39.162	-1.25%	-4.58
			2500	1.827	37.335	1.855	39.136	-1.51%	-4.609
11/25/2024	2450 Head	19.8	2510	1.835	37.313	1.866	39.123	-1.66%	-4.63
			2535	1.853	37.269	1.893	39.092	-2.11%	-4.66
			2550	1.864	37.250	1.909	39.073	-2.36%	-4.67
			2560 2600	1.872 1.904	37.237 37.165	1.920 1.964	39.060 39.009	-2.50% -3.05%	-4.679 -4.739
			2650	1.941	37.103	2.018	38.945	-3.82%	-4.737
			2680	1.966	37.028	2.051	38.907	-4.14%	-4.839
		1	2700	1.981	36.983	2.073	38.882	-4.44%	-4.889

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 71 of 107

Table 11-3 Measured Head Tissue Properties

Calibrated for		IVICASI	ai ca i i	Juu 113	sue Fio				
		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET		
Tests Performed	Tissue Type	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% devε
on:		(°C)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε		
			5150	4.537	35.703	4.608	36.050	-1.54%	-0.96%
				4.548				-1.52%	
			5160		35.689	4.618	36.040		-0.97%
			5170	4.556	35.676	4.629	36.030	-1.58%	-0.98%
			5180	4.565	35.658	4.635	36.009	-1.51%	-0.97%
			5190	4.576	35.632	4.645	35.998	-1.49%	-1.02%
			5200	4.588	35.608	4.655	35.986	-1.44%	-1.05%
			5210	4.602	35.589	4.666	35.975	-1.37%	-1.07%
			5220	4.617	35.569	4.676	35.963	-1.26%	-1.10%
			5240	4.642	35.527	4.696	35.940	-1.15%	-1.15%
			5250	4.652	35.517	4.706	35.929	-1.15%	-1.15%
			5260	4.662	35.506	4.717	35.917	-1.17%	-1.14%
			5270	4.674	35.489	4.727		-1.12%	-1.16%
							35.906		
			5280	4.684	35.467	4.737	35.894	-1.12%	-1.19%
			5290	4.695	35.446	4.748	35.883	-1.12%	-1.22%
			5300	4.707	35.429	4.758	35.871	-1.07%	-1.23%
			5310	4.719	35.410	4.768	35.860	-1.03%	-1.25%
			5320	4.732	35.388	4.778	35.849	-0.96%	-1.29%
			5500	4.923	35.068	4.963	35.643	-0.81%	-1.61%
			5510	4.937	35.038	4.973	35.632	-0.72%	-1.67%
			5520	4.948	35.011	4.983	35.620	-0.70%	-1.71%
			5530	4.960	34.997	4.994	35.609	-0.68%	-1.72%
			5540	4.974	34.984	5.004	35.597	-0.60%	-1.72%
			5550	4.987	34.973	5.014	35.586	-0.54%	-1.72%
		ĺ	5560	4.998	34.958	5.024	35.574	-0.52%	-1.73%
	1	l	5580	5.019	34.907	5.045	35.551	-0.52%	-1.81%
		1	5600	5.044	34.847	5.065	35.529	-0.41%	-1.92%
		1							
		1	5610	5.056	34.818	5.076	35.518	-0.39%	-1.97%
		1	5620	5.070	34.796	5.086	35.506	-0.31%	-2.00%
			5640	5.102	34.766	5.106	35.483	-0.08%	-2.02%
11/18/2024	5200-5800 Head	19.7	5660	5.129	34.742	5.127	35.460	0.04%	-2.02%
		ĺ							-2.05%
			5670	5.139	34.724	5.137	35.449	0.04%	
			5680	5.150	34.705	5.147	35.437	0.06%	-2.07%
			5690	5.160	34.683	5.158	35.426	0.04%	-2.10%
			5700	5.174	34.657	5.168	35.414	0.12%	-2.14%
			5710	5.188	34.638	5.178	35.403	0.19%	-2.16%
				5.205					
			5720		34.625	5.188	35.391	0.33%	-2.16%
			5745	5.238	34.615	5.214	35.363	0.46%	-2.12%
			5750	5.242	34.612	5.219	35.357	0.44%	-2.11%
			5755	5.247	34.609	5.224	35.351	0.44%	-2.10%
			5765	5.255	34.594	5.234	35.340	0.40%	-2.11%
			5775	5.264	34.569	5.245	35.329	0.36%	-2.15%
			5785	5.274	34.546	5.255	35.317	0.36%	-2.18%
			5795	5.285	34.531	5.265	35.305	0.38%	-2.19%
			5800	5.292	34.523	5.270	35.300	0.42%	-2.20%
			5800	5.292	34.523	5.270	35.300	0.42%	-2.20%
			5805	5.299	34.520	5.275	35.294	0.45%	-2.19%
			5825	5.332	34.511	5.296	35.271	0.68%	-2.15%
			5835	5.347	34.503	5.305	35.230	0.79%	-2.06%
			5845	5.359	34.492	5.315	35.210	0.83%	-2.04%
			5850	5.362	34,486	5.320	35.200	0.79%	-2.03%
			5855	5.363	34.475	5.325	35.197	0.71%	-2.05%
			5865	5.367	34.455	5.336	35.190	0.58%	-2.09%
			5865	5.367	34.455	5.336	35.190	0.58%	-2.09%
			5865	5.367	34.455	5.336	35.190	0.58%	-2.09%
			5865	5.367	34.455	5.336	35.190	0.58%	-2.09%
		ĺ							
		ĺ	5875	5.374	34.431	5.347	35.183	0.50%	-2.14%
		1	5885	5.382	34.406	5.357	35.177	0.47%	-2.19%
			5905	5.406	34.358	5.379	35.163	0.50%	-2.29%
	1		5935	5.511	34.814	5.411	35.143	1.85%	-0.94%
		ĺ	5970	5.536	34.677	5.448	35.120	1.62%	-1.26%
		1	5985	5.567	34.612	5.464	35.110	1.89%	-1.42%
		ĺ							
		ĺ	6000	5.608	34.687	5.480	35.100	2.34%	-1.18%
		1	6025	5.615	34.673	5.510	35.070	1.91%	-1.13%
		ĺ	6065	5.691	34.533	5.557	35.022	2.41%	-1.40%
l		ĺ	6075	5.714	34.513	5.569	35.010	2.60%	-1.42%
1	1	I	6085	5.737	34.490	5.580	34.998	2.81%	-1.45%
	1								
			6185	5.858	34.317	5.698	34.878	2.81%	-1.61%
							34,770	2.50%	-1.88%
			6275	5.950	34.118	5.805			
				5.950 5.965	34.118 34.129	5.805 5.816	34.778	2.56%	-1.81%
			6275						-1.81% -1.69%
			6275 6285 6305	5.965 5.981	34.129 34.148	5.816 5.840	34.758 34.734	2.56% 2.41%	-1.69%
			6275 6285 6305 6345	5.965 5.981 6.014	34.129 34.148 33.958	5.816 5.840 5.887	34.758 34.734 34.686	2.56% 2.41% 2.16%	-1.69% -2.10%
			6275 6285 6305 6345 6475	5.965 5.981 6.014 6.194	34.129 34.148 33.958 33.726	5.816 5.840 5.887 6.041	34.758 34.734 34.686 34.530	2.56% 2.41% 2.16% 2.53%	-1.69% -2.10% -2.33%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485	5.965 5.981 6.014 6.194 6.199	34.129 34.148 33.958 33.726 33.733	5.816 5.840 5.887 6.041 6.052	34.758 34.734 34.686 34.530 34.518	2.56% 2.41% 2.16% 2.53% 2.43%	-1.69% -2.10% -2.33% -2.27%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475	5.965 5.981 6.014 6.194	34.129 34.148 33.958 33.726	5.816 5.840 5.887 6.041	34.758 34.734 34.686 34.530	2.56% 2.41% 2.16% 2.53%	-1.69% -2.10% -2.33%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500	5.965 5.981 6.014 6.194 6.199	34.129 34.148 33.958 33.726 33.733 33.767	5.816 5.840 5.887 6.041 6.052	34.758 34.734 34.686 34.530 34.518	2.56% 2.41% 2.16% 2.53% 2.43%	-1.69% -2.10% -2.33% -2.27%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505	5.965 5.981 6.014 6.194 6.199 6.204 6.211	34.129 34.148 33.958 33.726 33.733 33.767 33.765	5.816 5.840 5.887 6.041 6.052 6.070 6.076	34.758 34.734 34.686 34.530 34.518 34.500 34.494	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545	5.965 5.981 6.014 6.194 6.199 6.204 6.211 6.261	34.129 34.148 33.958 33.726 33.733 33.767 33.765 33.581	5.816 5.840 5.887 6.041 6.052 6.070 6.076 6.122	34.758 34.734 34.686 34.530 34.518 34.500 34.494 34.446	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545 6665	5.965 5.981 6.014 6.194 6.199 6.204 6.211 6.261 6.441	34.129 34.148 33.958 33.726 33.733 33.767 33.765 33.581 33.405	5.816 5.840 5.887 6.041 6.052 6.070 6.076 6.122 6.265	34.758 34.734 34.686 34.530 34.518 34.500 34.494 34.446 34.302	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27% 2.81%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51% -2.62%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545	5.965 5.981 6.014 6.194 6.199 6.204 6.211 6.261	34.129 34.148 33.958 33.726 33.733 33.767 33.765 33.581	5.816 5.840 5.887 6.041 6.052 6.070 6.076 6.122	34.758 34.734 34.686 34.530 34.518 34.500 34.494 34.446	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545 6665	5.965 5.981 6.014 6.194 6.199 6.204 6.211 6.261 6.441	34.129 34.148 33.958 33.726 33.733 33.767 33.765 33.581 33.405	5.816 5.840 5.887 6.041 6.052 6.070 6.076 6.122 6.265	34.758 34.734 34.686 34.530 34.518 34.500 34.494 34.446 34.302	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27% 2.81%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51% -2.62%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545 6665 6675	5.965 5.981 6.014 6.194 6.199 6.204 6.211 6.261 6.441 6.446 6.448	34.129 34.148 33.958 33.726 33.733 33.767 33.765 33.581 33.405 33.416 33.462	5.816 5.840 5.887 6.041 6.052 6.070 6.076 6.122 6.265 6.273 6.285	34.758 34.734 34.686 34.530 34.518 34.500 34.494 34.446 34.302 34.290 34.278	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27% 2.81% 2.76% 2.59%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51% -2.62% -2.55% -2.38%
11/18/2024	6000 Head	20.6	6275 6285 6305 6305 6345 6475 6485 6500 6505 6545 6665 6675 6685 6715	5.965 5.981 6.014 6.194 6.199 6.204 6.211 6.261 6.441 6.444 6.448 6.471	34.129 34.148 33.958 33.726 33.733 33.765 33.765 33.581 33.405 33.416 33.442 33.374	5.816 5.840 5.887 6.041 6.052 6.070 6.122 6.265 6.273 6.285 6.319	34.758 34.734 34.686 34.530 34.518 34.500 34.494 34.446 34.302 34.290 34.278 34.242	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27% 2.81% 2.76% 2.59% 2.41%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51% -2.62% -2.55% -2.38% -2.53%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545 6665 6675 6685 6715 6785	5.965 5.981 6.014 6.199 6.204 6.211 6.261 6.441 6.446 6.448 6.471 6.565	34,129 34,148 33,958 33,726 33,733 33,767 33,765 33,581 33,405 33,416 33,462 33,374 33,293	5.816 5.840 5.887 6.041 6.052 6.070 6.076 6.122 6.265 6.273 6.285 6.319 6.400	34.758 34.734 34.686 34.530 34.518 34.500 34.494 34.494 34.302 34.290 34.278 34.223 34.242	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27% 2.81% 2.76% 2.59% 2.41%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51% -2.62% -2.62% -2.38% -2.53% -2.53%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6546 6665 6675 6685 6715 6785 6825	5.965 5.981 6.014 6.194 6.199 6.204 6.201 6.261 6.441 6.446 6.448 6.471 6.665 6.569	34.129 34.148 33.958 33.726 33.733 33.767 33.765 33.581 33.405 33.446 33.462 33.374 33.293 33.083	5.816 5.840 5.887 6.041 6.052 6.070 6.122 6.265 6.273 6.285 6.319 6.400 6.447	34.758 34.734 34.886 34.530 34.518 34.500 34.494 34.446 34.302 34.220 34.228 34.228 34.110	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27% 2.81% 2.76% 2.59% 2.41% 2.58% 1.89%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.62% -2.62% -2.55% -2.38% -2.53% -2.53% -3.01%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545 6665 6675 6685 6715 6785	5.965 5.981 6.014 6.199 6.204 6.211 6.261 6.441 6.446 6.448 6.471 6.565	34,129 34,148 33,958 33,726 33,733 33,767 33,765 33,581 33,405 33,416 33,462 33,374 33,293	5.816 5.840 5.887 6.041 6.052 6.070 6.076 6.122 6.265 6.273 6.285 6.319 6.400	34.758 34.734 34.686 34.530 34.518 34.500 34.494 34.494 34.302 34.290 34.278 34.223 34.242	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27% 2.81% 2.76% 2.59% 2.41%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51% -2.62% -2.62% -2.38% -2.53% -2.53%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6546 6665 6675 6685 6715 6785 6825	5.965 5.981 6.014 6.194 6.199 6.204 6.201 6.261 6.441 6.446 6.448 6.471 6.665 6.569	34.129 34.148 33.958 33.726 33.733 33.767 33.765 33.405 33.405 33.446 33.374 33.374 33.293 33.083	5.816 5.840 5.887 6.041 6.052 6.070 6.122 6.265 6.273 6.285 6.319 6.447	34.758 34.734 34.886 34.530 34.518 34.500 34.494 34.446 34.302 34.220 34.228 34.228 34.110	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27% 2.81% 2.76% 2.59% 2.41% 2.58% 1.89%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.62% -2.62% -2.55% -2.38% -2.53% -2.53% -3.01%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545 6665 6675 6685 6715 6785 6825 6985	5.965 5.981 6.014 6.194 6.199 6.204 6.211 6.261 6.441 6.446 6.448 6.471 6.565 6.569 6.782 6.782	34.129 34.148 33.958 33.726 33.733 33.767 33.765 33.581 33.416 33.462 33.374 33.293 33.083 32.282	5.816 5.840 5.887 6.041 6.052 6.070 6.122 6.265 6.273 6.285 6.319 6.400 6.447 6.633 6.644	34.758 34.734 34.886 34.530 34.518 34.500 34.494 34.446 34.302 34.278 34.278 34.278 34.110 33.3906	2.56% 2.41% 2.16% 2.53% 2.43% 2.21% 2.22% 2.27% 2.81% 2.76% 2.59% 2.41% 2.58% 1.89% 2.25%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51% -2.62% -2.55% -2.38% -2.53% -2.53% -3.01% -3.19% -3.26%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545 6665 6675 6685 6715 6785 6825 6986	5.965 5.981 6.014 6.194 6.204 6.211 6.261 6.441 6.446 6.447 6.565 6.565 6.782 6.789	34, 129 34, 148 33, 958 33, 726 33, 726 33, 767 33, 765 33, 861 33, 416 33, 446 33, 374 33, 293 33, 374 33, 293 32, 835 32, 802 32, 779	5.816 5.840 5.887 6.041 6.052 6.070 6.076 6.122 6.265 6.273 6.285 6.319 6.400 6.633 6.644 6.650	34.758 34.734 34.686 34.530 34.518 34.500 34.494 34.302 34.290 34.278 34.223 34.158 34.110 33.918 33.906 33.900	2.56% 2.41% 2.16% 2.53% 2.21% 2.221% 2.227% 2.81% 2.76% 2.59% 2.59% 1.89% 2.25	-1.69% -2.10% -2.37% -2.27% -2.11% -2.51% -2.51% -2.52% -2.53% -2.53% -2.53% -3.01% -3.26% -3.31%
11/18/2024	6000 Head	20.6	6275 6285 6305 6345 6475 6485 6500 6505 6545 6665 6675 6685 6775 6785 6825 6995	5.965 5.981 6.014 6.194 6.199 6.204 6.211 6.261 6.441 6.446 6.448 6.471 6.565 6.569 6.782 6.782	34.129 34.148 33.958 33.726 33.733 33.767 33.765 33.581 33.416 33.462 33.374 33.293 33.083 32.282	5.816 5.840 5.887 6.041 6.052 6.070 6.122 6.265 6.273 6.285 6.319 6.400 6.447 6.633 6.644	34.758 34.734 34.886 34.530 34.518 34.500 34.494 34.446 34.302 34.278 34.278 34.278 34.110 33.3906	2.56% 2.41% 2.16% 2.53% 2.21% 2.22% 2.27% 2.81% 2.76% 2.59% 2.41% 2.58% 1.89% 2.255% 2.18%	-1.69% -2.10% -2.33% -2.27% -2.12% -2.11% -2.51% -2.62% -2.55% -2.38% -2.53% -2.53% -3.01% -3.19% -3.26%

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager	
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 72 of 107	

Table 11-4
Measured Head Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			5935	5.253	35.509	5.411	35.143	-2.92%	1.04%
			5970	5.279	35.416	5.448	35.120	-3.10%	0.84%
			5985	5.301	35.379	5.464	35.110	-2.98%	0.77%
			6000	5.314	35.338	5.480	35.100	-3.03%	0.68%
			6025	5.331	35.268	5.510	35.070	-3.25%	0.56%
			6065	5.413	35.124	5.557	35.022	-2.59%	0.29%
			6075	5.438	35.122	5.569	35.010	-2.35%	0.32%
			6085	5.456	35.144	5.580	34.998	-2.22%	0.42%
			6185	5.562	34.975	5.698	34.878	-2.39%	0.28%
			6275	5.664	34.839	5.805	34.770	-2.43%	0.20%
			6285	5.680	34.837	5.816	34.758	-2.34%	0.23%
			6305	5.701	34.838	5.840	34.734	-2.38%	0.30%
			6345	5.738	34.706	5.887	34.686	-2.53%	0.06%
			6475	5.893	34.489	6.041	34.530	-2.45%	-0.12%
	6000 Head 2		6485	5.904	34.491	6.052	34.518	-2.45%	-0.08%
11/20/2024	C000 Head	21.0	6500	5.916	34.481	6.070	34.500	-2.54%	-0.06%
11/20/2024	6000 Head	21.0	6505	5.921	34.472	6.076	34.494	-2.55%	-0.06%
			6545	5.978	34.318	6.122	34.446	-2.35%	-0.37%
			6665	6.153	34.169	6.265	34.302	-1.79%	-0.39%
			6675	6.167	34.200	6.273	34.290	-1.69%	-0.26%
			6685	6.172	34.220	6.285	34.278	-1.80%	-0.17%
			6715	6.184	34.141	6.319	34.242	-2.14%	-0.29%
			6785	6.263	34.072	6.400	34.158	-2.14%	-0.25%
			6825	6.279	33.908	6.447	34.110	-2.61%	-0.59%
			6985	6.468	33.600	6.633	33.918	-2.49%	-0.94%
			6995	6.471	33.569	6.644	33.906	-2.60%	-0.99%
			7000	6.471	33.549	6.650	33.900	-2.69%	-1.04%
			7005	6.472	33.524	6.656	33.894	-2.76%	-1.09%
			7025	6.491	33.449	6.680	33.870	-2.83%	-1.24%
			7500	7.014	32.664	7.240	33.300	-3.12%	-1.91%
			7980	7.639	32.053	7.816	32.724	-2.26%	-2.05%
			8000	7.641	31.872	7.840	32.700	-2.54%	-2.53%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2. The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 73 of 107
	•	REV 22.0

11.2 SAR Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in SAR System Validation Appendix.

Table 11-5
System Verification Results

												0		· · · · · · · · · · · · · · · · · · ·							
												System Verif TARGET & ME									
SAR System	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp. (C)	Liquid Temp. (C)	Input Power (W)	Source SN	Probe SN	DAE	Measured SAR 1g (W/kg)	1W Target SAR 1g (W/kg)	1W Normalized SAR 1g (W/kg)	Deviation 1g (%)	Measured SAR 10g (W/kg)	1W Target SAR 10g (W/kg)	1W Normalized SAR 10g (W/kg)	Deviation 10g (%)	Measured 4cm2 APD (W/m2)	1W Target 4cm2 APD (W/m2)	1W Normalized 4cm2 APD (W/m2)	Deviation 4cm2 APD (%)
G	13	HEAD	11/25/2024	24.5	21.5	1.00	1002	7713	1530	0.51	0.52	0.51	-2.69%	0.31	0.33	0.31	-4.00%	N/A	N/A	0.01	N/A
К3	750	HEAD	11/20/2024	22.2	21.6	0.20	1046	7558	1364	1.62	8.75	8.10	-7.43%	1.07	5.69	5.35	-5.98%	N/A	N/A	N/A	N/A
К6	835	HEAD	11/06/2024	21.4	20.4	0.20	4d119	7402	1502	1.92	9.96	9.60	-3.61%	1.26	6.48	6.30	-2.78%	N/A	N/A	N/A	N/A
К6	835	HEAD	11/11/2024	22.7	19.9	0.20	4d119	7402	1502	1.90	9.96	9.50	-4.62%	1.25	6.48	6.25	-3.55%	N/A	N/A	N/A	N/A
К6	835	HEAD	11/13/2024	22.5	21.8	0.20	4d119	7402	1502	1.91	9.96	9.55	-4.12%	1.25	6.48	6.25	-3.55%	N/A	N/A	N/A	N/A
K3	835	HEAD	11/18/2024	21.7	22.0	0.20	4d119	7558	1364	2.02	9.96	10.10	1.41%	1.33	6.48	6.65	2.62%	N/A	N/A	N/A	N/A
K3	835	HEAD	11/20/2024	22.2	21.6	0.20	4d119	7558	1364	1.97	9.96	9.85	-1.10%	1.29	6.48	6.45	-0.46%	N/A	N/A	N/A	N/A
К3	835	HEAD	11/23/2024	21.6	20.8	0.20	4d119	7558	1364	2.05	9.96	10.25	2.91%	1.34	6.48	6.70	3.40%	N/A	N/A	N/A	N/A
P	1750	HEAD	11/11/2024	22.6	21.0	0.10	1148	7718	665	3.73	37.20	37.30	0.27%	2.01	19.40	20.10	3.61%	N/A	N/A	N/A	N/A
0	1750	HEAD	11/19/2024	22.5	21.8	0.10	1150	3914	728	3.58	36.40	35.80	-1.65%	1.93	19.40	19.30	-0.52%	N/A	N/A	N/A	N/A
P	1750	HEAD	11/20/2024	20.9	21.9	0.10	1148	7718	665	3.62	37.20	36.20	-2.69%	1.96	19.40	19.60	1.03%	N/A	N/A	N/A	N/A
K4	1900	HEAD	11/06/2024	22.0	22.0	0.10	5d141	7565	1466	4.00	40.30	40.00	-0.74%	2.06	21.00	20.60	-1.90%	N/A	N/A	N/A	N/A
К3	1900	HEAD	11/11/2024	21.9	21.2	0.10	5d141	7558	1364	3.92	40.30	39.20	-2.73%	2.04	21.00	20.40	-2.86%	N/A	N/A	N/A	N/A
P	1900	HEAD	11/13/2024	20.7	20.0	0.10	5d080	7718	665	4.20	39.60	42.00	6.06%	2.23	20.70	22.30	7.73%	N/A	N/A	N/A	N/A
0	1900	HEAD	11/19/2024	22.5	21.8	0.10	5d148	3914	728	4.21	40.10	42.10	4.99%	2.20	21.00	22.00	4.76%	N/A	N/A	N/A	N/A
K4	2450	HEAD	11/22/2024	21.9	21.1	0.10	882	7565	1466	5.24	53.00	52.40	-1.13%	2.44	24.90	24.40	-2.01%	N/A	N/A	N/A	N/A
К6	2450	HEAD	11/25/2024	20.5	20.5	0.10	882	7402	1502	4.90	53.00	49.00	-7.55%	2.29	24.90	22.90	-8.03%	N/A	N/A	N/A	N/A
K4	2450	HEAD	11/25/2024	20.1	19.8	0.10	882	7565	1466	5.26	53.00	52.60	-0.75%	2.44	24.90	24.40	-2.01%	N/A	N/A	N/A	N/A
K2	2600	HEAD	11/11/2024	21.2	20.9	0.10	1009	7640	1645	5.38	56.60	53.80	-4.95%	2.43	25.50	24.30	-4.71%	N/A	N/A	N/A	N/A
K4	2600	HEAD	11/18/2024	21.0	20.1	0.10	1126	7565	1466	5.60	55.30	56.00	1.27%	2.51	24.80	25.10	1.21%	N/A	N/A	N/A	N/A
K6	2600	HEAD	11/25/2024	20.5	20.5	0.10	1126	7402	1502	5.22	55.30	52.20	-5.61%	2.37	24.80	23.70	-4.44%	N/A	N/A	N/A	N/A
К6	5250	HEAD	11/18/2024	20.3	19.7	0.05	1237	7402	1502	3.90	80.10	78.00	-2.62%	1.13	22.90	22.60	-1.31%	N/A	N/A	N/A	N/A
К6	5600	HEAD	11/18/2024	20.3	19.7	0.05	1237	7402	1502	4.03	82.00	80.60	-1.71%	1.15	23.30	23.00	-1.29%	N/A	N/A	N/A	N/A
К6	5750	HEAD	11/18/2024	20.3	19.7	0.05	1237	7402	1502	3.96	79.20	79.20	0.00%	1.14	22.50	22.80	1.33%	N/A	N/A	N/A	N/A
К6	5850	HEAD	11/18/2024	20.3	19.7	0.05	1237	7402	1502	4.18	80.40	83.60	3.98%	1.20	22.80	24.00	5.26%	N/A	N/A	N/A	N/A
С	6500	HEAD	11/18/2024	21.8	20.6	0.03	1111	7659	1407	7.13	291.00	285.20	-1.99%	1.35	53.50	54.00	0.93%	32.60	1300.00	1304.00	0.31%
R	8000	HEAD	11/20/2024	21.6	21.0	0.03	1007	7527	1272	6.75	269.00	270.00	0.37%	1.12	45.30	44.80	-1.10%	27.00	1110.00	1080.00	-2.70%

Figure 11-1 System Verification Setup Diagram

Figure 11-2
System Verification Setup Photo

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 74 of 107

11.3 Power Density Test System Verification

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check.

The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

Figure 11-3 **System Verification Setup Photo**

Table 11-6 10 GHz Verifications

	System	Frequency	Date	Source	Probe	Prad	Normal psPD (W	/m² over 4 cm²)	Deviation (dB)	Total psPD (W	//m² over 4 cm²)	Deviation (dB)
	3 y stein	(GHz)	Date	S/N	S/N	(mW)	Measured	Measured Target		Measured	Target	Deviation (ub)
Ī	Q	10	11/19/2024	1002	9622	93.3	62.50	54.60	0.66	62.90	54.90	0.59
	Q	10	11/24/2024	1002	9622	93.3	58.00	54.60	0.32	58.30	54.90	0.26

Note: A 10 mm distance spacing was used from the reference horn antenna aperture to the probe element.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 75 of 107

SAR DATA SUMMARY

12.1 GSM 850 Standalone SAR

Table 12-1

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]		Max Allowed Power [dBm]		Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]		Exposure Ratio (1g SAR)	Plot #	Plimit	Overall Plimit [dBm]	EFS Plimit [dBm]
Head	GSM 850	GSM	A	1428M	1:8.3	0.07	836.60	190	33.5	31.77	Right Cheek	0	0.036	1.489	0.054	0.549	0.343		37.0		
Head	GSM 850	GSM	A	1428M	1:8.3	0.05	836.60	190	33.5	31.77	Right Tilt	0	0.023	1.489	0.034	0.351	0.219		38.9	36.6	34.4
Head	GSM 850	GSM	A	1428M	1:8.3	0.17	836.60	190	33.5	31.77	Left Cheek	0	0.039	1.489	0.058	0.594	0.371		36.6	30.0	34.4
Head	GSM 850	GSM	A	1428M	1:8.3	-0.04	836.60	190	33.5	31.77	Left Tilt	0	0.021	1.489	0.031	0.320	0.200		39.3		
				EE C95.1 1992 - S Spatial Peak ed Exposure/Ger	ı	on								Head 1.6 W/kg (m averaged over							

Table 12-2

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]		Channel #	Max Allowed Power [dBm]	Power [dBm]		Spacing [mm]	SAR [W/kg]		Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Ratio (1g SAR)	Plot#		Overall Plimit [dBm]	Plimit
Head	GSM 850	GSM	E	1432M	1:8.3	0.02	848.80	251	30.5	29.41	Right Cheek	0	0.498	1.285	0.640	0.640	0.400		23.2		
Head	GSM 850	GSM	E	1432M	1:8.3	-0.02	848.80	251	30.5	29.41	Right Tilt	0	0.402	1.285	0.517	0.517	0.323		24.1	Ī	
Head	GSM 850	GSM	E	1432M	1:8.3	0.02	824.20	128	30.5	29.05	Left Cheek	0	0.560	1.396	0.782	0.782	0.489		22.3	21.7	20.3
Head	GSM 850	GSM	Е	1432M	1:8.3	0.04	836.60	190	30.5	29.08	Left Cheek	0	0.604	1.387	0.838	0.838	0.524		22.0	21.7	20.5
Head	GSM 850	GSM	Е	1432M	1:8.3	0.01	848.80	251	30.5	29.41	Left Cheek	0	0.699	1.285	0.898	0.898	0.561	A1	21.7	1	
Head	GSM 850	GSM	E	1432M	1:8.3	0.01	848.80	251	30.5	29.41	Left Tilt	0	0.579	1.285	0.744	0.744	0.465		22.5		
			ANSI/IE	EE C95.1 1992 - 9	AFETY LIMIT									Head							
			Uncontrolle	Spatial Peal ed Exposure/Ge		tion								1.6 W/kg (m averaged over							

Table 12-3

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Max Allowed Power [dBm]	Power [dBm]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	SAN [W/NS]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Body-worn/Hotspot	GPRS 850	GPRS 3 Tx Slots	A	1428M	1:2.76	-0.08	836.60	190	30.5	28.68	Back	10	0.117	1.521	0.178	0.389	0.243		33.5		
Hotspot	GPRS 850	GPRS 3 Tx Slots	A	1428M	1:2.76	-0.03	836.60	190	30.5	28.68	Front	10	0.071	1.521	0.108	0.236	0.148		35.7		
Hotspot	GPRS 850	GPRS 3 Tx Slots	A	1428M	1:2.76	-0.11	836.60	190	30.5	28.68	Bottom	10	0.036	1.521	0.055	0.120	0.075		38.6	33.5	29.5
Hotspot	GPRS 850	GPRS 3 Tx Slots	A	1428M	1:2.76	0.01	836.60	190	30.5	28.68	Right	10	0.067	1.521	0.102	0.223	0.139		35.9		
Hotspot	GPRS 850	GPRS 3 Tx Slots	A	1428M	1:2.76	0.08	836.60	190	30.5	28.68	Left	10	0.058	1.521	0.088	0.193	0.121		36.6		
	OFFICE OFFI													Body							
				Spatial Peak										1.6 W/kg (m	W/g)						
			Uncontroll	ed Exposure/Ger	eral Populat	ion								averaged over	1 gram						

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Body-worn/Hotspot	GPRS 850	GPRS 3 Tx Slots	E	1432M	1:2.76	0.04	848.80	251	30.5	29.29	Back	10	0.440	1.321	0.581	0.653	0.408	A2	28.4		
Hotspot	GPRS 850	GPRS 3 Tx Slots	E	1432M	1:2.76	-0.03	848.80	251	30.5	29.29	Front	10	0.560	1.321	0.740	0.830	0.519		27.3		
Hotspot	GPRS 850	GPRS 3 Tx Slots	E	1432M	1:2.76	0.04	824.20	128	30.5	28.62	Тор	10	0.466	1.542	0.719	0.806	0.504		27.5	26.9	26.6
Hotspot	GPRS 850	GPRS 3 Tx Slots	E	1432M	1:2.76	0.02	836.60	190	30.5	28.92	Top	10	0.541	1.439	0.778	0.873	0.546		27.1	20.3	20.0
Hotspot	GPRS 850	GPRS 3 Tx Slots	E	1432M	1:2.76	0.05	848.80	251	30.5	29.29	Тор	10	0.621	1.321	0.820	0.921	0.576	A3	26.9		
Hotspot	GPRS 850	GPRS 3 Tx Slots	E	1432M	1:2.76	0.01	848.80	251	30.5	29.29	Right	10	0.402	1.321	0.531	0.596	0.373		28.8		
			ANSI/IE	EE C95.1 1992 - S	AFETY LIMIT									Body							
				Spatial Peak										1.6 W/kg (m	W/g)						
			Uncontrolle	ed Exposure/Ger	eral Populat	ion								averaged over	1 gram						
			Uncontrolle	ed Exposure/Ger	eral Populat	ion								averaged over	1 gram						

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 76 of 107

12.2 GSM 1900 Standalone SAR

Table 12-5

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Max Allowed Power [dBm]		Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Head	GSM 1900	GSM	A	1432M	1:8.3	0.04	1850.20	512	30.5	29.85	Right Cheek	0	0.028	1.161	0.033	0.728	0.455	A4	36.1		
Head	GSM 1900	GSM	A	1432M	1:8.3	-0.20	1850.20	512	30.5	29.85	Right Tilt	0	0.024	1.161	0.028	0.624	0.390		36.8	36.1	34.8
Head	GSM 1900	GSM	A	1432M	1:8.3	-0.02	1850.20	512	30.5	29.85	Left Cheek	0	0.023	1.161	0.027	0.598	0.374		37.0	30.1	34.0
Head	GSM 1900	GSM	A	1432M	1:8.3	-0.08	1850.20	512	30.5	29.85	Left Tilt	0	0.022	1.161	0.026	0.572	0.358		37.2		
				EEE C95.1 1992 - : Spatial Peal led Exposure/Ge	ı									Head 1.6 W/kg (m averaged over							

Table 12-6

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number		(,,	()			Conducted Power [dBm]				Power Scaling Factor	SAR [W/kg]	SAR [W/kg]	(1g SAR)			Overall Plimit [dBm]	EFS Plimit [dBm]
Body-worn/Hotspot	GPRS 1900	GPRS 4 Tx Slots	A	1432M	1:2.076	-0.02	1909.80	810	23.0	21.88	Back	10	0.289	1.294	0.374	0.374	0.234	A5	24.0		
Hotspot	GPRS 1900	GPRS 4 Tx Slots	A	1432M	1:2.076	-0.03	1909.80	810	23.0	21.88	Front	10	0.255	1.294	0.330	0.330	0.206		24.6		
Hotspot	GPRS 1900	GPRS 4 Tx Slots	A	1432M	1:2.076	-0.05	1850.20	512	23.0	21.75	Bottom	10	0.425	1.334	0.567	0.567	0.354		22.2		
Hotspot	GPRS 1900	GPRS 4 Tx Slots	A	1432M	1:2.076	-0.01	1880.00	661	23.0	21.85	Bottom	10	0.470	1.303	0.612	0.612	0.383		21.9	20.0	18.8
Hotspot	GPRS 1900	GPRS 4 Tx Slots	A	1432M	1:2.076	-0.11	1909.80	810	23.0	21.88	Bottom	10	0.732	1.294	0.947	0.947	0.592	A6	20.0		
Hotspot	GPRS 1900	GPRS 4 Tx Slots	A	1432M	1:2.076	-0.14	1909.80	810	23.0	21.88	Right	10	0.017	1.294	0.022	0.022	0.014		36.3		
Hotspot	GPRS 1900	GPRS 4 Tx Slots	A	1432M	1:2.076	0.04	1909.80	810	23.0	21.88	Left	10	0.029	1.294	0.038	0.038	0.024		34.0		
	ANS//EEC GS.1.192- SAFETY LIMIT Spatial Peak Uncontrolled Expoure/General Population													Body 1.6 W/kg (m averaged over							

12.3 UMTS 850 Standalone SAR

Table 12-7

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Max Allowed Power [dBm]		Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Head	UMTS 850	RMC	A	1428M	1:1	-0.04	836.60	4183	25.0	23.99	Right Cheek	0	0	0.081	1.262	0.102	0.562	0.351		34.9		
Head	UMTS 850	RMC	A	1428M	1:1	0.09	836.60	4183	25.0	23.99	Right Tilt	0	0	0.052	1.262	0.066	0.361	0.226		36.8	34.6	32.4
Head	UMTS 850	RMC	A	1428M	1:1	-0.07	836.60	4183	25.0	23.99	Left Cheek	0	0	0.086	1.262	0.109	0.596	0.373		34.6	34.0	32.4
Head	UMTS 850	RMC	A	1428M	1:1	0.07	836.60	4183	25.0	23.99	Left Tilt	0	0	0.044	1.262	0.056	0.305	0.191		37.5		
				EE C95.1 1992 - S Spatial Peak											Head W/kg (mW/g)							
			Uncontroll	ed Exposure/Ger	eral Populat	ion								aver	ged over 1 gram	1						

Table 12-8

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Max Allowed Power [dBm]	Power [dBm]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Factor	Reported 1g SAR [W/kg]	SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	[dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Head	UMTS 850	RMC RMC	E	1428M	1:1	-0.01	826.40	4132	21.5	20.35	Right Cheek	0	0.637	1.303	0.830	0.830	0.519		22.3		
Head	UMTS 850	1428M	1:1	0.00	836.60	4183	21.5	20.51	Right Cheek	0	0.664	1.256	0.834	0.834	0.521		22.2				
Head	UMTS 850	1428M	1:1	0.01	846.60	4233	21.5	20.49	Right Cheek	0	0.663	1.262	0.837	0.837	0.523		22.2				
Head	UMTS 850	1428M	1:1	-0.01	836.60	4183	21.5	20.51	Right Tilt	0	0.538	1.256	0.676	0.676	0.423		23.2				
Head	UMTS 850	RMC	E	1428M	1:1	0.02	826.40	4132	21.5	20.35	Left Cheek	0	0.777	1.303	1.012	1.012	0.633		21.4	21.4	20.5
Head	UMTS 850	RMC	E	1428M	1:1	-0.06	836.60	4183	21.5	20.51	Left Cheek	0	0.813	1.256	1.021	1.021	0.638	A7	21.4	21.4	20.5
Head	UMTS 850	RMC	E	1428M	1:1	0.01	846.60	4233	21.5	20.49	Left Cheek	0	0.769	1.262	0.970	0.970	0.606		21.6		
Head	UMTS 850	RMC	E	1428M	1:1	-0.02	826.40	4132	21.5	20.35	Left Tilt	0	0.635	1.303	0.827	0.827	0.517		22.3		
Head	UMTS 850	1428M	1:1	0.09	836.60	4183	21.5	20.51	Left Tilt	0	0.735	1.256	0.923	0.923	0.577		21.8				
Head									21.5	20.49	Left Tilt	0	0.671	1.262	0.847	0.847	0.529		22.2		
	ANSI/IEE C 95. 1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/Ceneral Population													Head 1.6 W/kg (m averaged over							

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Durty Cycle	Power Drift [dB]	Frequency [MHz]		Max Allowed Power [dBm]		Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#	Plimit [dBm]		EFS Plimit [dBm]
Body-worn/Hotspot	UMTS 850	RMC	A	1428M	1:1	0.01	836.60	4183	25.0	23.99	Back	10	0	0.210	1.262	0.265	0.392	0.245		30.7		
Hotspot	UMTS 850	RMC	A	1428M	1:1	-0.03	836.60	4183	25.0	23.99	Front	10	0	0.122	1.262	0.154	0.228	0.143		33.1		1
Hotspot	UMTS 850	RMC	A	1428M	1:1	0.00	836.60	4183	25.0	23.99	Bottom	10	0	0.061	1.262	0.077	0.114	0.071		36.1	30.7	26.7
Hotspot	UMTS 850	RMC	A	1428M	1:1	-0.02	836.60	4183	25.0	23.99	Right	10	1	0.103	1.262	0.130	0.192	0.120		33.8		1
Hotspot	UMTS 850	RMC	A	1428M	1:1	-0.01	836.60	4183	25.0	23.99	Left	10	1	0.096	1.262	0.121	0.179	0.112		34.1		1 1
	ANS/IEEC 05.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Epopury/General Population														Body W/kg (mW/g) aged over 1 gran	1						

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 77 of 107

Table 12-10

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]		Max Allowed Power [dBm]		Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit	Overall Plimit [dBm]	EFS Plimit [dBm]
Body-worn/Hotspot	UMTS 850	RMC	E	1428M	1:1	0.01	836.60	4183	25.0	23.99	Back	10	0.363	1.262	0.458	0.647	0.404	A8	28.3		
Hotspot	UMTS 850	RMC	E	1428M	1:1	-0.01	836.60	4183	25.0	23.99	Front	10	0.493	1.262	0.622	0.879	0.549		27.0	26.5	26.5
Hotspot	UMTS 850	RMC	E	1428M	1:1	0.00	836.60	4183	25.0	23.99	Тор	10	0.561	1.262	0.708	1.000	0.625	A9	26.5	20.5	20.5
Hotspot	UMTS 850	RMC	E	1428M	1:1	0.01	836.60	4183	25.0	23.99	Right	10	0.364	1.262	0.459	0.649	0.406		28.3		í l
			ANSI/II	EEE C95.1 1992 - :	SAFETY LIMIT									Body							
	Spatial Peak													1.6 W/kg (m	W/g)						
	Uncontrolled Exposure/General Population													averaged over	1 gram						

12.4 LTE Band 12 Standalone SAR

Table 12-11

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)		RB Size	RB Offset	Test Position	Spacing (mm)	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit (dBm)
Head	LTE Band 12	10	QPSK	A	1431M	1:1	0.10	707.50	23095	0.0	25.0	23.28	1	49	Right Cheek	0	137	0.089	1.486	0.132	0.678	0.424		33.7		
Head	LTE Band 12	10	QPSK	A	1431M	1:1	0.00	707.50	23095	1.0	24.0	22.27	25	25	Right Cheek	0	137	0.076	1.489	0.113	0.731	0.457		33.4		r l
Head	LTE Band 12	10	QPSK	A	1431M	1:1	-0.18	707.50	23095	0.0	25.0	23.28	1	49	Right Tilt	0	137	0.050	1.486	0.074	0.381	0.238		36.2		r l
Head	LTE Band 12	10	QPSK	A	1431M	1:1	-0.07	707.50	23095	1.0	24.0	22.27	25	25	Right Tilt	0	137	0.043	1.489	0.064	0.413	0.258		35.9	33.4	32.1
Head	LTE Band 12	10	QPSK	A	1431M	1:1	0.19	707.50	23095	0.0	25.0	23.28	1	49	Left Cheek	0	137	0.079	1.486	0.117	0.602	0.376		34.3	33.4	32.1
Head	LTE Band 12	10	QPSK	A	1431M	1:1	0.01	707.50	23095	1.0	24.0	22.27	25	25	Left Cheek	0	137	0.060	1.489	0.089	0.577	0.361		34.4		
Head	LTE Band 12	10	QPSK	A	1431M	1:1	0.17	707.50	23095	0.0	25.0	23.28	1	49	Left Tilt	0	137	0.039	1.486	0.058	0.297	0.186		37.3		r l
Head	LTE Band 12	10	QPSK	A	1431M	1:1	-0.15	707.50	23095	1.0	24.0	22.27	25	25	Left Tilt	0	137	0.029	1.489	0.043	0.279	0.174		37.6		
	LTC Earl OL 22 20 UPA A NEXT NO. 12-15 (07-50 2-2075) LO ACU 22.27 25 ANS/RECE ESCS. 1992 - SAFFT LIMIT Spatial Pools Uncontrolled Expound General Population																	1.6 W/kg averaged o	(mW/g)							

Table 12-12

Exposure	Band / Mode	Bandwidth (MHz)	Service / Modulation	Ant.	Serial Number	Duty Cycle	(dB)	Frequency [MHz]			Max Allowed Power (dBm)	Power (dBm)			Test Position	Spacing (mm)	SAR (W/kg)	Power Scaling Factor	SAR (W/kg)	SAR [W/kg]	(1g SAR)	Plot#	[dBm]	Overall Plimit (dBm)	EFS Plimit (dBm)
Head	LTE Band 12	10	QPSK	E	1431M	1:1	0.17	707.50	23095	0.0	22.5	21.82	1	49	Right Cheek	0	0.544	1.169	0.636	0.636	0.398		24.4		
Head	LTE Band 12	10	QPSK	E	1431M	1:1	0.05	707.50	23095	0.0	22.5	21.81	25	12	Right Cheek	0	0.518	1.172	0.607	0.607	0.379		24.6		
Head	LTE Band 12	10	QPSK	E	1431M	1:1	-0.01	707.50	23095	0.0	22.5	21.82	1	49	Right Tilt	0	0.484	1.169	0.566	0.566	0.354		24.9		
Head	LTE Band 12	10	QPSK	E	1431M	1:1	-0.02	707.50	23095	0.0	22.5	21.81	25	12	Right Tilt	0	0.446	1.172	0.523	0.523	0.327		25.3		
Head	LTE Band 12	10	QPSK	E	1431M	1:1	-0.01	707.50	23095	0.0	22.5	21.82	1	49	Left Cheek	0	0.854	1.169	0.998	0.998	0.624		22.5	22.4	21.5
Head	LTE Band 12	10	QPSK	E	1431M	1:1	0.00	707.50	23095	0.0	22.5	21.81	25	12	Left Cheek	0	0.865	1.172	1.014	1.014	0.634	A10	22.4	22.4	21.5
Head	LTE Band 12	10	QPSK	E	1431M	1:1	0.05	707.50	23095	0.0	22.5	21.80	50	0	Left Cheek	0	0.858	1.175	1.008	1.008	0.630		22.4		
Head	LTE Band 12	10	QPSK	E	1431M	1:1	0.02	707.50	23095	0.0	22.5	21.82	1	49	Left Tilt	0	0.740	1.169	0.865	0.865	0.541		23.1		
Head	LTE Band 12	10	QPSK	E	1431M	1:1	0.02	707.50	23095	0.0	22.5	21.81	25	12	Left Tilt	0	0.703	1.172	0.824	0.824	0.515		23.3		
Head	LTE Band 12	10	QPSK	E	1431M	1:1	0.02	707.50	23095	0.0	22.5	21.80	50	0	Left Tilt	0	0.711	1.175	0.835	0.835	0.522		23.2		
					SI/IEEE C95.1 199 Spatial strolled Exposure	Peak												Head 6 W/kg (mW/g) raged over 1 gran							

Table 12-13

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	MPR (dB)	Max Allowed Power (dBm)		RB Size	RB Offset	Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Body-worn/Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	0.06	707.50	23095	0.0	25.0	23.28	1	49	Back	10	27	0.154	1.486	0.229	0.354	0.221		31.4		
Body-worn/Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	-0.02	707.50	23095	1.0	24.0	22.27	25	25	Back	10	137	0.119	1.489	0.177	0.346	0.216		31.5		
Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	0.09	707.50	23095	0.0	25.0	23.28	1	49	Front	10	27	0.118	1.486	0.175	0.272	0.170		32.5		1
Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	0.00	707.50	23095	1.0	24.0	22.27	25	25	Front	10	137	0.094	1.489	0.140	0.273	0.171		32.5		1
Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	-0.01	707.50	23095	0.0	25.0	23.28	1	49	Bottom	10	27	0.031	1.486	0.046	0.071	0.044		38.3	31.4	26.9
Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	-0.12	707.50	23095	1.0	24.0	22.27	25	25	Bottom	10	137	0.025	1.489	0.037	0.073	0.046		38.2	31.4	20.9
Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	-0.12	707.50	23095	0.0	25.0	23.28	1	49	Right	10	137	0.134	1.486	0.199	0.308	0.193		32.0		
Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	0.00	707.50	23095	1.0	24.0	22.27	25	25	Right	10	137	0.112	1.489	0.167	0.325	0.203		31.7		1
Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	-0.02	707.50	23095	0.0	25.0	23.28	1	49	Left	10	137	0.126	1.486	0.187	0.290	0.181		32.2		
Hotspot	LTE Band 12	10	QPSK	A	1431M	1:1	+0.05	707.50	23095	1.0	24.0	22.27	25	25	Left	10	137	0.102	1.489	0.152	0.296	0.185		32.1		
	ANS//EEC 6%3.1992 - SAFTY LIMIT SAFTY LIMIT SECURITY OF A SAFTY LIMIT Uncontrolled Exposury (General Pugulation																Bo 1.6 W/kg averaged o	(mW/g)								

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)			MPR (dB)	Max Allowed Power [dBm]	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing (mm)	Measured 1g SAR (W/kg)	Power Scaling Factor		Adjusted 1g SAR [W/kg]		Plot#		Overall Plimit (dBm)	EFS Plimit (dBm)
Body-worn/Hotspot	LTE Band 12	10	QPSK	E	1431M	1:1	0.01	707.50	23095	0.0	25.0	23.64	1	25	Back	10	0.246	1.368	0.337	0.433	0.271	A11	29.7		
Body-worn/Hotspot	LTE Band 12	10	QPSK	E	1431M	1:1	0.01	707.50	23095	1.0	24.0	22.61	25	25	Back	10	0.197	1.377	0.271	0.440	0.275		29.6		
Hotspot	LTE Band 12	10	QPSK	E	1431M	1:1	0.19	707.50	23095	0.0	25.0	23.64	1	25	Front	10	0.285	1.368	0.390	0.502	0.314		29.0		
Hotspot	LTE Band 12	10	QPSK	E	1431M	1:1	+0.02	707.50	23095	1.0	24.0	22.61	25	25	Front	10	0.223	1.377	0.307	0.498	0.311		29.1	28.1	26.1
Hotspot	LTE Band 12	10	QPSK	E	1431M	1:1	0.00	707.50	23095	0.0	25.0	23.64	1	25	Тор	10	0.307	1.368	0.420	0.541	0.338		28.7	20.1	20.1
Hotspot	LTE Band 12	10	QPSK	E	1431M	1:1	0.03	707.50	23095	1.0	24.0	22.61	25	25	Top	10	0.250	1.377	0.344	0.559	0.349		28.6		
Hotspot	LTE Band 12	10	QPSK	E	1431M	1:1	+0.15	707.50	23095	0.0	25.0	23.64	1	25	Right	10	0.354	1.368	0.484	0.624	0.390	A12	28.1		1 1
Hotspot	LTE Band 12	10	QPSK	E	1431M	1:1	0.01	707.50	23095	1.0	24.0	22.61	25	25	Right	10	0.267	1.377	0.368	0.596	0.373		28.3		
	ANS/NEE (SS. 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population																	Body 6 W/kg (mW/g) raged over 1 gran	n						

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 78 of 107

12.5 LTE Band 13 Standalone SAR

Table 12-15

Exposure	Band / Mode	Bandwidth (MHz)	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)	Frequency [MHz]	Channel #	MPR [dB]	Max Allowed Power (dBm)	Conducted Power (dBm)	RB Size	RB Offset	Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Head	LTE Band 13	10	QPSK	A	1428M	1:1	-0.10	782.00	23230	0.0	25.0	23.64	1	0	Right Cheek	0	0	0.081	1.368	0.111	0.518	0.324		34.5		
Head	LTE Band 13	10	QPSK	A	1428M	1:1	-0.03	782.00	23230	1.0	24.0	22.54	25	0	Right Cheek	0	0	0.061	1.400	0.085	0.503	0.314		34.6		
Head	LTE Band 13	10	QPSK	A	1428M	1:1	0.01	782.00	23230	0.0	25.0	23.64	1	0	Right Tilt	0	0	0.049	1.368	0.067	0.313	0.196		36.7		
Head	LTE Band 13	10	QPSK	A	1428M	1:1	-0.01	782.00	23230	1.0	24.0	22.54	25	0	Right Tilt	0	0	0.038	1.400	0.053	0.313	0.196		36.7	33.9	31.7
Head	LTE Band 13	10	QPSK	A	1428M	1:1	-0.01	782.00	23230	0.0	25.0	23.64	1	0	Left Cheek	0	0	0.094	1.368	0.129	0.601	0.376		33.9	33.9	31.7
Head	LTE Band 13	10	QPSK	A	1428M	1:1	-0.03	782.00	23230	1.0	24.0	22.54	25	0	Left Cheek	0	0	0.069	1.400	0.097	0.569	0.356		34.1		
Head	LTE Band 13	10	QPSK	A	1428M	1:1	0.04	782.00	23230	0.0	25.0	23.64	1	0	Left Tilt	0	0	0.047	1.368	0.064	0.301	0.188		36.9		
Head	LTE Band 13	10	QPSK	A	1428M	1:1	+0.01	782.00	23230	1.0	24.0	22.54	25	0	Left Tilt	0	0	0.035	1.400	0.049	0.288	0.180		37.0		
	ANSI/REE C 55. 1 1992 - SAFETY LIMIT Spatial Peak Uncontrolle Expoure/General Population																	1.6 W/kg	ead g (mW/g) over 1 gram							

Table 12-16

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)	Frequency [MHz]	Channel #	MPR (dB)	Max Allowed Power (dBm)		RB Size	RB Offset	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]		Exposure Ratio (1g SAR)	Plot#	Plimit [dBm]	Overall Plimit (dBm)	EFS Plimit (dBm)
Head	LTE Band 13	10	QPSK	E	1431M	1:1	0.01	782.00	23230	0.0	22.5	22.09	1	0	Right Cheek	0	0.734	1.099	0.807	0.807	0.504		23.4		
Head	LTE Band 13	10	QPSK	E	1431M	1:1	-0.01	782.00	23230	0.0	22.5	22.08	25	0	Right Cheek	0	0.728	1.102	0.802	0.802	0.501		23.4		1 1
Head	LTE Band 13	10	QPSK	E	1431M	1:1	-0.01	782.00	23230	0.0	22.5	22.04	50	0	Right Cheek	0	0.699	1.112	0.777	0.777	0.486		23.5		1 1
Head	LTE Band 13	10	QPSK	E	1431M	1:1	-0.11	782.00	23230	0.0	22.5	22.09	1	0	Right Tilt	0	0.632	1.099	0.695	0.695	0.434		24.0		1 1
Head	LTE Band 13	10	QPSK	E	1431M	1:1	0.00	782.00	23230	0.0	22.5	22.08	25	0	Right Tilt	0	0.625	1.102	0.689	0.689	0.431		24.1		1 1
Head	LTE Band 13	10	QPSK	E	1431M	1:1	0.03	782.00	23230	0.0	22.5	22.09	1	0	Left Cheek	0	1.020	1.099	1.121	1.121	0.701	A13	22.0	22.0	21.5
Head	LTE Band 13	10	QPSK	E	1431M	1:1	+0.06	782.00	23230	0.0	22.5	22.09	1	0	Left Cheek	0	1.000	1.099	1.099	1.099	0.687		22.0	22.0	21.5
Head	LTE Band 13	10	QPSK	E	1431M	1:1	0.01	782.00	23230	0.0	22.5	22.08	25	0	Left Cheek	0	0.993	1.102	1.094	1.094	0.684		22.1		1
Head	LTE Band 13	10	QPSK	E	1431M	1:1	0.00	782.00	23230	0.0	22.5	22.04	50	0	Left Cheek	0	0.950	1.112	1.056	1.056	0.660		22.2		1 1
Head	LTE Band 13	10	QPSK	E	1431M	1:1	-0.06	782.00	23230	0.0	22.5	22.09	1	0	Left Tilt	0	0.926	1.099	1.018	1.018	0.636		22.4		1
Head	LTE Band 13	10	QPSK	E	1431M	1:1	0.03	782.00	23230	0.0	22.5	22.08	25	0	Left Tilt	0	0.914	1.102	1.007	1.007	0.629		22.4		1 1
Head	LTE Band 13	10	QPSK	E	1431M	1:1	0.01	782.00	23230	0.0	22.5	22.04	50	0	Left Tilt	0	0.907	1.112	1.009	1.009	0.631		22.4		1
					SI/IEEE C95.1 199 Spatial strolled Exposure	Peak												Head W/kg (mW/g) aged over 1 gran							
Note: Blue entry represer	nts variability measurement																								

Table 12-17

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)	Frequency [MHz]	Channel #	MPR [dB]	Max Allowed Power (dBm)		RB Size	RB Offset	Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit (dBm)
Body-worn/Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	0.04	782.00	23230	0.0	25.0	23.64	1	0	Back	10	0	0.226	1.368	0.309	0.708	0.443		30.0	$\overline{}$	
Body-worn/Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	0.01	782.00	23230	1.0	24.0	22.54	25	0	Back	10	0	0.182	1.400	0.255	0.735	0.459		29.9	1	
Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	-0.01	782.00	23230	0.0	25.0	23.64	1	0	Front	10	0	0.147	1.368	0.201	0.461	0.288		31.9	Ĭ	
Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	0.03	782.00	23230	1.0	24.0	22.54	25	0	Front	10	0	0.115	1.400	0.161	0.464	0.290		31.9	Ĭ	
Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	0.02	782.00	23230	0.0	25.0	23.64	1	0	Bottom	10	0	0.062	1.368	0.085	0.194	0.121		35.7	29.9	28.6
Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	0.02	782.00	23230	1.0	24.0	22.54	25	0	Bottom	10	0	0.049	1.400	0.069	0.198	0.124		35.6	1 29.9	20.0
Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	-0.03	782.00	23230	0.0	25.0	23.64	1	0	Right	10	0	0.115	1.368	0.157	0.360	0.225		33.0	1	
Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	0.02	782.00	23230	1.0	24.0	22.54	25	0	Right	10	0	0.082	1.400	0.115	0.331	0.207		33.4	Ĭ	
Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	-0.02	782.00	23230	0.0	25.0	23.64	1	0	Left	10	0	0.143	1.368	0.196	0.448	0.280		32.0	Ĭ	
Hotspot	LTE Band 13	10	QPSK	A	1428M	1:1	0.04	782.00	23230	1.0	24.0	22.54	25	0	Left	10	0	0.117	1.400	0.164	0.472	0.295		31.8	Ĭ	
					SI/IEEE C95.1 199 Spatial strolled Exposure	Peak												1.6 W/kg averaged c								

Table 12-18

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency (MHz)	Channel #		Max Allowed Power [dBm]		RB Size	RB Offset	Test Position	Spacing (mm)	Measured 1g SAR (W/kg)	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#	Plimit		EFS Plimit (dBm)
Body-worn/Hotspot	LTE Band 13	10	QPSK	E	1431M	1:1	-0.01	782.00	23230	0.0	25.0	23.95	1	0	Back	10	0.380	1.274	0.484	0.749	0.468	A14	28.1		
Body-worn/Hotspot	LTE Band 13	10	QPSK	E	1431M	1:1	0.01	782.00	23230	1.0	24.0	22.87	25	0	Back	10	0.296	1.297	0.384	0.749	0.468		28.1	1	i I
Hotspot	LTE Band 13	10	QPSK	E	1431M	1:1	0.13	782.00	23230	0.0	25.0	23.95	1	0	Front	10	0.423	1.274	0.539	0.834	0.521		27.6		i I
Hotspot	LTE Band 13	10	QPSK	E	1431M	1:1	-0.02	782.00	23230	1.0	24.0	22.87	25	0	Front	10	0.332	1.297	0.431	0.840	0.525		27.6	26.9	26.9
Hotspot	LTE Band 13	10	QPSK	E	1431M	1:1	+0.02	782.00	23230	0.0	25.0	23.95	1	0	Тор	10	0.497	1.274	0.633	0.980	0.613	A15	26.9	20.9	20.9
Hotspot	LTE Band 13	10	QPSK	E	1431M	1:1	-0.01	782.00	23230	1.0	24.0	22.87	25	0	Top	10	0.385	1.297	0.499	0.974	0.609		27.0	1	
Hotspot	LTE Band 13	10	QPSK	E	1431M	1:1	0.01	782.00	23230	0.0	25.0	23.95	1	0	Right	10	0.452	1.274	0.576	0.891	0.557		27.3		
Hotspot	LTE Band 13	10	QPSK	E	1431M	1:1	0.00	782.00	23230	1.0	24.0	22.87	25	0	Right	10	0.357	1.297	0.463	0.903	0.564		27.3	1	
					SI/IEEE C95.1 199 Spatial I ntrolled Exposure,	Peak												Body 5 W/kg (mW/g) aged over 1 gran							

12.6 LTE Band 5 (Cell) Standalone SAR

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	MPR [dB]	Max Allowed Power (dBm)	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit (dBm)
Head	LTE Band 5	10	QPSK	A	1431M	1:1	-0.21	836.50	20525	0.0	25.0	24.35	1	49	Right Cheek	0	1	0.075	1.161	0.087	0.513	0.321		35.5		
Head	LTE Band 5	10	QPSK	A	1431M	1:1	+0.05	836.50	20525	1.0	24.0	23.27	25	25	Right Cheek	0	1	0.065	1.183	0.077	0.570	0.356		35.1		
Head	LTE Band 5	10	QPSK	A	1431M	1:1	0.06	836.50	20525	0.0	25.0	24.35	1	49	Right Tilt	0	1	0.063	1.161	0.073	0.431	0.269		36.3		
Head	LTE Band 5	10	QPSK	A	1431M	1:1	+0.04	836.50	20525	1.0	24.0	23.27	25	25	Right Tilt	0	1	0.052	1.183	0.062	0.456	0.285		36.1	34.9	32.7
Head	LTE Band 5	10	QPSK	A	1431M	1:1	0.04	836.50	20525	0.0	25.0	24.35	1	49	Left Cheek	0	0	0.088	1.161	0.102	0.602	0.376		34.9	34.9	32.7
Head	LTE Band 5	10	QPSK	A	1431M	1:1	+0.03	836.50	20525	1.0	24.0	23.27	25	25	Left Cheek	0	1	0.060	1.183	0.071	0.526	0.329		35.4		
Head	LTE Band 5	10	QPSK	A	1431M	1:1	0.05	836.50	20525	0.0	25.0	24.35	1	49	Left Tilt	0	1	0.059	1.161	0.068	0.404	0.253		36.6		
Head	LTE Band 5	10	QPSK	A	1431M	1:1	0.03	836.50	20525	1.0	24.0	23.27	25	25	Left Tilt	0	1	0.049	1.183	0.058	0.430	0.269		36.3		
					SI/IEEE C95.1 19 Spatial ntrolled Exposure	Peak													ad g (mW/g) over 1 gram							

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 79 of 107

Table 12-20

Exposure	Band / Mode	Bandwidth (MHz)	Service / Modulation	Ant.	Serial Number	Duty Cycle	(as)	(MHz)	Channel #		Power (usin)	Power (dBm)	RB Size			Spacing [mm]	SAR [W/kg]	Factor	SAR [W/kg]	SAR [W/kg]		Plot#	(dBm)	Overall Plimit (dBm)	EFS Plimit (dBm)
Head	LTE Band 5	10	QPSK	E	1431M	1:1	0.02	836.50	20525	0.0	22.0	21.37	1	25	Right Cheek	0	0.673	1.156	0.778	0.778	0.486		23.0	i I	
Head	LTE Band 5	10	QPSK	E	1431M	1:1	0.02	836.50	20525	0.0	22.0	21.37	25	0	Right Cheek	0	0.681	1.156	0.787	0.787	0.492		23.0	i l	1 1
Head	LTE Band 5	10	QPSK	E	1431M	1:1	0.04	836.50	20525	0.0	22.0	21.37	1	25	Right Tilt	0	0.560	1.156	0.647	0.647	0.404		23.8	i l	
Head	LTE Band 5	10	QPSK	E	1431M	1:1	0.02	836.50	20525	0.0	22.0	21.37	25	0	Right Tilt	0	0.549	1.156	0.635	0.635	0.397		23.9	i i	
Head	LTE Band 5	10	QPSK	E	1431M	1:1	-0.14	836.50	20525	0.0	22.0	21.37	1	25	Left Cheek	0	0.973	1.156	1.125	1.125	0.703	A16	21.4	21.4	21.0
Head	LTE Band 5	10	QPSK	E	1431M	1:1	0.01	836.50	20525	0.0	22.0	21.37	25	0	Left Cheek	0	0.937	1.156	1.083	1.083	0.677		21.6	21.4	21.0
Head	LTE Band 5	10	QPSK	E	1431M	1:1	0.02	836.50	20525	0.0	22.0	21.32	50	0	Left Cheek	0	0.943	1.169	1.102	1.102	0.689		21.5	i l	1 1
Head	LTE Band 5	10	QPSK	E	1431M	1:1	0.01	836.50	20525	0.0	22.0	21.37	1	25	Left Tilt	0	0.849	1.156	0.981	0.981	0.613		22.0	i l	
Head	LTE Band 5	10	QPSK	E	1431M	1:1	0.00	836.50	20525	0.0	22.0	21.37	25	0	Left Tilt	0	0.849	1.156	0.981	0.981	0.613		22.0	i l	1 1
Head	LTE Band 5	10	QPSK	E	1431M	1:1	0.00	836.50	20525	0.0	22.0	21.32	50	0	Left Tilt	0	0.869	1.169	1.016	1.016	0.635		21.9	i l	
					SI/IEEE C95.1 19 Spatial strolled Exposure	Peak									•			Head 5 W/kg (mW/g) aged over 1 gran	n						

Table 12-21

Exposure	Band / Mode	Bandwidth (MHz)	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)	Frequency [MHz]	Channel #	MPR (dB)		Conducted Power (dBm)	RB Size	RB Offset	Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#	Plimit [dBm]		
Body-worn/Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	0.06	836.50	20525	0.0	25.0	24.35	1	49	Back	10	1	0.277	1.161	0.322	0.534	0.334		29.9		
Body-worn/Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	-0.01	836.50	20525	1.0	24.0	23.27	25	25	Back	10	1	0.224	1.183	0.265	0.554	0.346		29.7		
Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	0.04	836.50	20525	0.0	25.0	24.35	1	49	Front	10	1	0.144	1.161	0.167	0.278	0.174		32.7		1 1
Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	0.04	836.50	20525	1.0	24.0	23.27	25	25	Front	10	1	0.113	1.183	0.134	0.279	0.174		32.7		
Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	0.05	836.50	20525	0.0	25.0	24.35	1	49	Bottom	10	1	0.064	1.161	0.074	0.123	0.077		36.2	29.7	27.2
Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	+0.05	836.50	20525	1.0	24.0	23.27	25	25	Bottom	10	1	0.053	1.183	0.063	0.131	0.082		36.0	29.7	27.2
Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	0.06	836.50	20525	0.0	25.0	24.35	1	49	Right	10	1	0.073	1.161	0.085	0.141	0.088		35.7		
Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	-0.03	836.50	20525	1.0	24.0	23.27	25	25	Right	10	1	0.056	1.183	0.066	0.138	0.086		35.7		1 1
Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	0.07	836.50	20525	0.0	25.0	24.35	1	49	Left	10	1	0.096	1.161	0.111	0.185	0.116		34.5		
Hotspot	LTE Band 5	10	QPSK	A	1431M	1:1	0.16	836.50	20525	1.0	24.0	23.27	25	25	Left	10	1	0.077	1.183	0.091	0.190	0.119		34.4		
					SI/IEEE C95.1 199 Spatial trolled Exposure	Peak												Bo 1.6 W/kg averaged o	(mW/g)							

Table 12-22

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)	Frequency [MHz]	Channel #	MPR [dB]	Max Allowed Power (dBm)	Conducted Power (dBm)	RB Size	RB Offset	Test Position	Spacing (mm)	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#	Plimit [dBm]	Overall Plimit (dBm)	EFS Plimit (dBm)
Body-worn/Hotspot	LTE Band 5	10	QPSK	E	1431M	1:1	+0.03	836.50	20525	0.0	25.0	24.75	1	49	Back	10	0.517	1.059	0.548	0.773	0.483	A17	27.6		
Body-worn/Hotspot	LTE Band 5	10	QPSK	E	1431M	1:1	-0.01	836.50	20525	1.0	24.0	23.73	25	0	Back	10	0.359	1.064	0.382	0.679	0.424		28.1		
Hotspot	LTE Band 5	10	QPSK	E	1431M	1:1	0.16	836.50	20525	0.0	25.0	24.75	1	49	Front	10	0.570	1.059	0.604	0.853	0.533		27.1		
Hotspot	LTE Band 5	10	QPSK	E	1431M	1:1	0.00	836.50	20525	1.0	24.0	23.73	25	0	Front	10	0.408	1.064	0.434	0.772	0.483		27.6	26.5	26.5
Hotspot	LTE Band 5	10	QPSK	E	1431M	1:1	0.01	836.50	20525	0.0	25.0	24.75	1	49	Тор	10	0.654	1.059	0.693	0.978	0.611	A18	26.5	20.5	20.5
Hotspot	LTE Band 5	10	QPSK	E	1431M	1:1	-0.01	836.50	20525	1.0	24.0	23.73	25	0	Top	10	0.455	1.064	0.484	0.861	0.538		27.1		
Hotspot	LTE Band 5	10	QPSK	E	1431M	1:1	-0.19	836.50	20525	0.0	25.0	24.75	1	49	Right	10	0.369	1.059	0.391	0.552	0.345		29.0		
Hotspot	LTE Band 5	10	QPSK	E	1431M	1:1	0.01	836.50	20525	1.0	24.0	23.73	25	0	Right	10	0.288	1.064	0.306	0.545	0.341		29.1	1	
					SI/IEEE C95.1 19 Spatial strolled Exposure	Peak												Body W/kg (mW/g) aged over 1 gran							

12.7 LTE Band 66 (AWS) Standalone SAR

Table 12-23

											unio															
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)	Frequency [MHz]	Channel #	MPR [dB]	Max Allowed Power (dBm)	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing (mm)	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit (dBm)	Overall Plimit (dBm)	EFS Plimit [dBm]
Head	LTE Band 66	20	QPSK	A	0455M	1:1	0.21	1770.00	132572	0.0	24.5	23.61	1	99	Right Cheek	0	99	0.151	1.227	0.185	0.995	0.622	A19	31.8	-	-
Head	LTE Band 66	20	QPSK	A	0455M	1:1	0.05	1770.00	132572	1.0	23.5	22.51	50	50	Right Cheek	0	100	0.112	1.256	0.141	0.951	0.594		32.0	1 1	
Head	LTE Band 66	20	QPSK	A	0455M	1:1	0.01	1770.00	132572	0.0	24.5	23.61	1	99	Right Tilt	0	101	0.042	1.227	0.052	0.277	0.173		37.3	į l	1
Head	LTE Band 66	20	QPSK	A	0455M	1:1	-0.09	1770.00	132572	1.0	23.5	22.51	50	50	Right Tilt	0	100	0.038	1.256	0.048	0.323	0.202		36.7	31.8	31.8
Head	LTE Band 66	20	QPSK	A	0455M	1:1	0.07	1770.00	132572	0.0	24.5	23.61	1	99	Left Cheek	0	99	0.062	1.227	0.076	0.409	0.256		35.6	31.0	31.0
Head	LTE Band 66	20	QPSK	A	0455M	1:1	0.19	1770.00	132572	1.0	23.5	22.51	50	50	Left Cheek	0	99	0.044	1.256	0.055	0.374	0.234		36.0	1 1	
Head	LTE Band 66	20	QPSK	A	0455M	1:1	0.01	1770.00	132572	0.0	24.5	23.61	1	99	Left Tilt	0	100	0.056	1.227	0.069	0.369	0.231		36.1	1 1	
Head	LTE Band 66	20	QPSK	A	0455M	1:1	-0.05	1770.00	132572	1.0	23.5	22.51	50	50	Left Tilt	0	100	0.049	1.256	0.062	0.416	0.260		35.6	į 1	
	LTE Band 66 20																	1.6 W/kg averaged o	g (mW/g)							

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)	Frequency [MHz]	Channel #	MPR (dB)	Max Allowed Power [dBm]	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit (dBm)	EFS Plimit (dBm)
Body-worn/Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	-0.03	1720.00	132072	0.0	20.0	19.66	1	50	Back	10	107	0.444	1.081	0.480	0.480	0.300		23.1	ĺ	
Body-worn/Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	-0.02	1720.00	132072	0.0	20.0	19.46	50	50	Back	10	107	0.454	1.132	0.514	0.514	0.321	A20	22.8	ĺ	
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	0.05	1720.00	132072	0.0	20.0	19.66	1	50	Front	10	106	0.325	1.081	0.351	0.351	0.219		24.5	i	
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	0.05	1720.00	132072	0.0	20.0	19.46	50	50	Front	10	107	0.328	1.132	0.371	0.371	0.232		24.3	i	
Hotspot	LTE Band 66 20 QPSK A 0455M 1:1 -0.09 1720.00 132072 0.0 20.0 19.66 1 50 Bettom 10 107 0.845 1.081 0.913 0.913 0.571 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.															i										
Hotspot	pot LTE Band 66 20 QPSX A 0455M 1:1 -0.05 1745.00 132322 0.0 20.0 19.40 1 99 Bottom 10 107 0.888 1.148 1.019 1.019 0.637 A21 19.														19.9	i										
Hotspot	ort ITEM-046 20 07% A 0555M 11 0.05 175.00 12322 0.0 20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.														20.3	i										
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	-0.01	1770.00	132572	0.0	20.0	19.55	1	99	Bottom	10	107	0.883	1.109	0.979	0.979	0.612		20.0	19.8	19.0
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	-0.01	1720.00	132072	0.0	20.0	19.46	50	50	Bottom	10	107	0.863	1.132	0.977	0.977	0.611		20.0	1 2000	13.0
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	0.00	1745.00	132322	0.0	20.0	19.25	50	50	Bottom	10	107	0.869	1.189	1.033	1.033	0.646		19.8	ĺ	
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	0.00	1770.00	132572	0.0	20.0	19.38	50	50	Bottom	10	105	0.844	1.153	0.973	0.973	0.608		20.1	i	
Hotspot	LTE Band 66	20	QPSK	A	1429M	1:1	0.04	1770.00	132572	0.0	20.0	19.31	100	0	Bottom	10	105	0.866	1.172	1.015	1.015	0.634		19.9	i	
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	0.04	1720.00	132072	0.0	20.0	19.66	1	50	Right	10	107	0.076	1.081	0.082	0.082	0.051		30.8	i	
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	-0.03	1720.00	132072	0.0	20.0	19.46	50	50	Right	10	107	0.075	1.132	0.085	0.085	0.053		30.7	i	
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	0.14	1720.00	132072	0.0	20.0	19.66	1	50	Left	10	106	0.030	1.081	0.032	0.032	0.020		34.8	ĺ	
Hotspot	LTE Band 66	20	QPSK	A	0455M	1:1	+0.15	1720.00	132072	0.0	20.0	19.46	50	50	Left	10	27	0.030	1.132	0.034	0.034	0.021		34.6		
Note: Blue entry renresen	its variability measurement				SI/IEEE C95.1 199 Spatial strolled Exposure	Peak												1.6 W/kg	ody g (mW/g) over 1 gram							

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 80 of 107

12.8 LTE Band 2 (PCS) Standalone SAR

Table 12-25

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)	Frequency [MHz]	Channel #		Max Allowed Power (dBm)		RB Size	RB Offset	Test Position	Spacing (mm)	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit (dBm)	EFS Plimit [dBm]
Head	LTE Band 2	20	QPSK	A	0455M	1:1	0.03	1860.00	18700	0.0	24.5	23.54	1	99	Right Cheek	0	100	0.076	1.247	0.095	0.585	0.366	A22	34.7		
Head	LTE Band 2	20	QPSK	A	0455M	1:1	0.08	1860.00	18700	1.0	23.5	22.52	50	0	Right Cheek	0	100	0.069	1.253	0.086	0.671	0.419		34.1		
Head	LTE Band 2	20	QPSK	A	0455M	1:1	0.00	1860.00	18700	0.0	24.5	23.54	1	99	Right Tilt	0	100	0.054	1.247	0.067	0.415	0.259		36.2		
Head	LTE Band 2	20	QPSK	A	0455M	1:1	0.18	1860.00	18700	1.0	23.5	22.52	50	0	Right Tilt	0	100	0.047	1.253	0.059	0.457	0.286		35.7	34.1	32.4
Head	LTE Band 2	20	QPSK	A	0455M	1:1	0.01	1860.00	18700	0.0	24.5	23.54	1	99	Left Cheek	0	100	0.070	1.247	0.087	0.538	0.336		35.0	34.1	32.4
Head	LTE Band 2	20	QPSK	A	0455M	1:1	0.09	1860.00	18700	1.0	23.5	22.52	50	0	Left Cheek	0	100	0.061	1.253	0.076	0.593	0.371		34.6		
Head	LTE Band 2	20	QPSK	A	0455M	1:1	-0.10	1860.00	18700	0.0	24.5	23.54	1	99	Left Tilt	0	100	0.067	1.247	0.084	0.515	0.322		35.2		1
Head	LTE Band 2	20	QPSK	A	0455M	1:1	0.03	1860.00	18700	1.0	23.5	22.52	50	0	Left Tilt	0	100	0.045	1.253	0.056	0.438	0.274		35.9		
	ANSI/REC (%1.19% 5-SAETY LIMIT Spatial Peak Uncontrolled Exposure/General Population																	1.6 W/kj averaged o								

Table 12-26

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	MPR (dB)	Max Allowed Power (dBm)		RB Size	RB Offset	Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	(1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit (dBm)
Body-worn/Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	0.03	1860.00	18700	0.0	19.0	18.47	1	99	Back	10	100	0.419	1.130	0.473	0.473	0.296		22.2	1	
Body-worn/Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	0.02	1860.00	18700	0.0	19.0	18.37	50	25	Back	10	100	0.434	1.156	0.502	0.502	0.314	A23	21.9	ĺ	
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	-0.03	1860.00	18700	0.0	19.0	18.47	1 50	99	Front	10	100	0.340	1.130	0.384	0.384	0.240		23.1	i	
Hotspot	LTE Band 2 20 QPSK A 0455M 1:1 0.02 1860.00 18700 0.0 19.0													25	Front	10	99	0.228	1.156	0.264	0.264	0.165		24.7	i	
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	0.04	1860.00	18700	0.0	19.0	18.47	1	99	Bottom	10	100	0.735	1.130	0.831	0.831	0.519		19.8	i	
Hotspot	LTE Band 2	20	QPSK	Α	0455M	1:1	-0.12	1880.00	18900	0.0	19.0	18.45	1	50	Bottom	10	100	0.777	1.135	0.882	0.882	0.551		19.5	i	
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	0.02	1900.00	19100	0.0	19.0	18.40	1	50	Bottom	10	100	0.811	1.148	0.931	0.931	0.582	A24	19.3	i	
Hotspot	LTE Band 2	20	QPSK	A	1429M	1:1	0.02	1900.00	19100	0.0	19.0	18.40	1	50	Bottom	10	100	0.766	1.148	0.879	0.879	0.549		19.5	19.0	18.0
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	0.00	1860.00	18700	0.0	19.0	18.37	50	25	Bottom	10	103	0.750	1.156	0.867	0.867	0.542		19.6	1	20.0
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	0.00	1880.00	18900	0.0	19.0	18.24	50	0	Bottom	10	100	0.797	1.191	0.949	0.949	0.593		19.2	ĺ	
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	-0.01	1900.00	19100	0.0	19.0	18.04	50	25	Bottom	10	100	0.795	1.247	0.991	0.991	0.619		19.0	i	
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	0.00	1860.00	18700	0.0	19.0	18.30	100	0	Bottom	10	100	0.734	1.175	0.862	0.862	0.539		19.6	i	
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	-0.12	1860.00	18700	0.0	19.0	18.47	1	99	Right	10	99	0.040	1.130	0.045	0.045	0.028		32.4	i	
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	0.03	1860.00	18700	0.0	19.0	18.37	50	25	Right	10	99	0.046	1.156	0.053	0.053	0.033		31.7	i	
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	-0.19	1860.00	18700	0.0	19.0	18.47	1	99	Left	10	99	0.049	1.130	0.055	0.055	0.034		31.5	ĺ	
Hotspot	LTE Band 2	20	QPSK	A	0455M	1:1	-0.10	1860.00	18700	0.0	19.0	18.37	50	25	Left	10	99	0.046	1.156	0.053	0.053	0.033		31.7	ĺ	
Note: Blue entry represen	UTE Band 2 20 OPSK A A MONUTE CES 1.25 1.2 1.2 0.10 1.500,00 1.50700 0.0 130.0 18.37 50 25 A MONUTE CES 1.2 NATITY LIMIT Spatial Peak Uncontrolled Epopure (financi Pepulation																		ody g (mW/g) over 1 gram							

12.9 LTE Band 41 Standalone SAR

Table 12-27

											u															
Exposure	Band / Mode	Bandwidth (MHz)	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	MPR [dB]	Max Allowed Power [dBm]	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing (mm)	AddTInfo	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #		Overall Plimit [dBm]	EFS Plimit [dBm]
Head	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.06	2680.00	41490	0.0	25.0	23.97	1	99	Right Cheek	0	N/A	0.038	1.268	0.048	0.665	0.416		36.1		
Head	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.03	2680.00	41490	0.0	25.0	23.74	1	0	Right Cheek	0	N/A	0.046	1.337	0.062	0.849	0.531		35.1		
Head	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.02	2680.00	41490	1.0	24.0	23.15	50	25	Right Cheek	0	N/A	0.032	1.216	0.039	0.676	0.423		36.1		
Head	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.09	2680.00	41490	0.0	25.0	23.97	1	99	Right Tilt	0	N/A	0.016	1.268	0.020	0.280	0.175		39.9		
Head	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.15	2680.00	41490	1.0	24.0	23.15	50	25	Right Tift	0	N/A	0.011	1.216	0.013	0.232	0.145		40.7		
Head	LTE Band 41	20	QPSK	В	1432M	1:1.58	-0.10	2680.00	41490	0.0	25.0	23.97	1	99	Left Cheek	0	N/A	0.015	1.268	0.019	0.262	0.164		40.2	34.4	34.4
Head	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.04	2680.00	41490	1.0	24.0	23.15	50	25	Left Cheek	0	N/A	0.020	1.216	0.024	0.423	0.264		38.1		
Head	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.07	2680.00	41490	0.0	25.0	23.97	1	99	Left Tilt	0	N/A	0.022	1.268	0.028	0.385	0.241		38.5		
Head	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.03	2680.00	41490	1.0	24.0	23.15	50	25	Left Tilt	0	N/A	0.014	1.216	0.017	0.296	0.185		39.7		
Head	LTE Band 41	20	OPSK		1432M	1:1.58	-0.03	2680.00	41490	0.0	25.0	23.20	1	0	Right Cheek	0	ULCA 41C	0.048	1.514	0.073	1.003	0.627		34.4		
- nead	ETE BAND 41	20	Q/SK					2660.20	41292	3.0	25.0	13.20	1	99	regin Cheek	,	OLCA 41C			0.073	1.303	0.027		34.4		
				AN	SI/IEEE C95.1 199		IMIT								•	•		Hear			•	•				
					Spatial									I				1.6 W/kg (l		
				Uncor	strolled Exposure,	/General Pop	oulation											averaged ov	er 1 gram							

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	MPR [dB]	Max Allowed Power (dBm)		RB Size	RB Offset	Test Position	Spacing (mm)	AddTinfo	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit (dBm)
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.02	2506.00	39750	0.0	19.0	18.35	1	99	Right Cheek	0	N/A	0.719	1.161	0.835	0.835	0.522		17.7		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.01	2549.50	40185	0.0	19.0	18.28	1	99	Right Cheek	0	N/A	0.603	1.180	0.712	0.712	0.445		18.4		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.07	2593.00	40620	0.0	19.0	18.01	1	99	Right Cheek	0	N/A	0.502	1.256	0.631	0.631	0.394		19.0		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.03	2636.50	41055	0.0	19.0	17.99	- 1	0	Right Cheek	0	N/A	0.435	1.262	0.549	0.549	0.343		19.6		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.07	2680.00	41490	0.0	19.0	18.04	1	0	Right Cheek	0	N/A	0.450	1.247	0.561	0.561	0.351		19.5		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.03	2506.00	39750	0.0	19.0	18.52	50	50	Right Cheek	0	N/A	0.759	1.117	0.848	0.848	0.530		17.7		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.04	2549.50	40185	0.0	19.0	18.28	50	50	Right Cheek	0	N/A	0.618	1.180	0.729	0.729	0.456		18.3		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.00	2593.00	40620	0.0	19.0	18.05	50	0	Right Cheek	0	N/A	0.554	1.245	0.690	0.690	0.431		18.6		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.04	2636.50	41055	0.0	19.0	18.05	50	0.339		19.6										
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.05	2680.00	41490	0.0	19.0	18.09	50	0.364		19.3										
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.01	2506.00	39750	0.0	19.0	18.24	100	0.561		17.4										
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.03	2506.00	39750	0.0	19.0	18.35	1	0.536		17.6										
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.08	2549.50	40185	0.0	19.0	18.28	1	0.373		19.2										
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.11	2593.00	40620	0.0	19.0	18.01	1	0.328		19.8	17.4	16.0								
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.04	2636.50	41055	0.0	19.0	17.99	1	0.308		20.0	17.4	16.0								
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.03	2680.00	41490	0.0	19.0	18.04	1	0.325		19.8										
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.01	2506.00	39750	0.0	19.0	18.52	50	0.541		17.6										
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.05	2549.50	40185	0.0	19.0	18.28	50	0.459		18.3										
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.16	2593.00	40620	0.0	19.0	18.05	50	0.359		19.4										
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.02	2636.50	41055	0.0	19.0	18.05	50	0	Right Tilt	0	N/A	0.443	1.245	0.552	0.552	0.345		19.6		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.03	2680.00	41490	0.0	19.0	18.09	50	0	Right Tilt	0	N/A	0.517	1.233	0.637	0.637	0.398		18.9		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.11	2506.00	39750	0.0	19.0	18.24	100	0	Right Tilt	0	N/A	0.701	1.191	0.835	0.835	0.522		17.7		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.01	2506.00	39750	0.0	19.0	18.35	1	99	Left Cheek	0	N/A	0.326	1.161	0.378	0.378	0.236		21.2		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.01	2506.00	39750	0.0	19.0	18.52	50	50	Left Cheek	0	N/A	0.361	1.117	0.403	0.403	0.252		20.9		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.08	2506.00	39750	0.0	19.0	18.35	1	99	Left Tilt	0	N/A	0.351	1.161	0.408	0.408	0.255		20.9		
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.04	2506.00	39750	0.0	19.0	18.52														
Head	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.07	2506.00 2525.80	39750 39948	0.0	19.0	18.45 50 50 Right Tilt 0 ULCA 41C 0.776 1.135 0.881 0.881 0.55														
					SI/IEEE C95.1 199 Spatial strolled Exposure	Peak												Head 1.6 W/kg (i averaged over	mW/g)							

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 81 of 107
		REV 22.0

Table 12-29

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number		[dB]			мик (ав)		Power [dBm]	RB Size		Test Position	Spacing [mm]						Exposure Ratio (1g SAR)	Plot #		Overall Plimit [dBm]	EFS Plimit (dBm)
Body-worn/Hotspot	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.12	2593.00	40620	0.0	23.0	22.23	1	50	Back	10	N/A	0.360	1.194	0.430	0.430	0.269		24.6		
Body-worn/Hotspot	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.06	2593.00	40620	0.0	23.0	22.32	50	25	Back	10	N/A	0.363	1.169	0.424	0.424	0.265	A26	24.7		1 1
Hotspot	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.06	2593.00	40620	0.0	23.0	22.23	1	50	Front	10	N/A	0.213	1.194	0.254	0.254	0.159		26.9		1 1
Hotspot	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.06	2593.00	40620	0.0	23.0	22.32	50	25	Front	10	N/A	0.216	1.169	0.253	0.253	0.158		26.9		
Hotspot	LTE Band 41	Base44 20 GPK 8 M32M 1153 GG6 2933.00 4650 0.0 23.0 272.3 1 50 Frost 10 N/A 0.213 1194 0.254 0.253 0.253 0.158 Base44 20 GPK 8 M32M 1153 0.06 2933.00 4650 0.0 23.0 272.3 5 Frost 10 N/A 0.216 1199 0.253 0.253 0.158 Base44 20 GPK 8 M32M 1153 0.06 2933.00 4650 0.0 23.0 272.3 5 Frost 10 N/A 0.216 1199 0.253 0.253 0.158 Base44 20 GPK 8 M32M 1153 0.05 2933.00 4650 0.0 23.0 22.3 1 50 Section 10 N/A 0.415 1154 0.466 0.466 0.466 0.310															24.0									
Hotspot	LTE Band 41	20	QPSK	В	1432M	1:1.58	-0.02	2593.00	40620	0.0	23.0	22.06	1	99	Bottom	10	N/A	0.426	1.242	0.529	0.529	0.331		23.7	23.7	20.0
Hotspot	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.00	2593.00	40620	0.0	23.0	22.32	50	25	Bottom	10	N/A	0.412	1.169	0.482	0.482	0.301		24.1		
Hotspot	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.01	2593.00	40620	0.0	23.0	22.23	1	50	Right	10	N/A	0.337	1.194	0.402	0.402	0.251		24.9		
Hotspot	LTE Band 41	20	QPSK	В	1432M	1:1.58	0.01	2593.00	40620	0.0	23.0	22.32	50	25	Right	10	N/A	0.337	1.169	0.394	0.394	0.246		25.0		
Hotspot	LTC Decid 44	20	220		443384	4-1-50	0.01	2593.00	40620	0.0	22.0	22.72	1	99	Bottom	10	ULCA 41C	0.415	1.067	0.443	0.443	0.277		24.5		
Hotspot	LTE Band 41 20 QPSK B 1432M 1:1.58 -0.01 2593.00 40620 0.0 23.0 22.72												1	0	BOLLOIII	10	ULCA 41C	0.415	1.007	0.443	0.443	0.277		24.5		
					SI/IEEE C95.1 199 Spatial ntrolled Exposure	Peak												Bod 1.6 W/kg (averaged ov	mW/g)							

Table 12-30

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	MPR [dB]	Max Allowed Power [dBm]	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing [mm]	AddTinfo	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit (dBm)
Body-worn/Hotspot	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.02	2506.00	39750	0.0	22.5	21.95	1	99	Back	10	N/A	0.184	1.135	0.209	0.209	0.131		27.3		
Body-worn/Hotspot	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.02	2506.00	39750	0.0	22.5	22.02	50	50	Back	10	N/A	0.197	1.117	0.220	0.220	0.138		27.0		1
Hotspot	LTE Band 41 20 QPSK F 1432M 1:158 -0.06 2506.00 39750 0.0 22.5 21.95 1 99 Front 10 N/A 0.177 1:135 0.201 0.201 0.126														27.4		1									
Hotspot	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.02	2506.00	39750	0.0	22.5	22.02	50	50	Front	10	N/A	0.225	1.117	0.251	0.251	0.157		26.5		1
Hotspot	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.01	2506.00	39750	0.0	22.5	21.95	1	99	Тор	10	N/A	0.520	1.135	0.590	0.590	0.369		22.8	22.6	19.5
Hotspot	LTE Band 41	20	QPSK	F	1432M	1:1.58	-0.01	2506.00	39750	0.0	22.5	22.02	50	50	Top	10	N/A	0.530	1.117	0.592	0.592	0.370		22.7	22.0	19.5
Hotspot	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.20	2506.00	39750	0.0	22.5	21.95	1	99	Left	10	N/A	0.048	1.135	0.054	0.054	0.034		33.1		1
Hotspot	LTE Band 41	20	QPSK	F	1432M	1:1.58	0.05	2506.00	39750	0.0	22.5	22.02	50	50	Left	10	N/A	0.050	1.117	0.056	0.056	0.035		33.0		1
Hotspot	LTE Band 41	20	QPSK		1432M	1:1.58	0.04	2506.00	39750	0.0	22.5	21.97	50	50	Тор	10	ULCA 41C	0.542	1.13	0.612	0.612	0.383	A27	22.6		1
поляют	ETE BAIRD 41	20	Q) Jik					2525.80	39948	0.0	12.3	11.51	50	0	тор	10	0104410	- ' '		0.022	0.011	0.303	~.,	22.0		1
					SI/IEEE C95.1 199 Spatial trolled Exposure	Peak												Body 1.6 W/kg (i averaged over	mW/g)							

12.10 NR Band n5 Standalone SAR

Table 12-31

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number			Frequency [MHz]			MPR [dB]			RB Size			Spacing [mm]	Tune state		Power Scaling Factor				Plot #		Overall Plimit [dBm]	FS Plimit [dBm]
Head	NR Band n5	20	QPSK	A	1428M	1:1	-0.01	836.50	167300	DFT-s-OFDM	0.0	25.0	23.72	1	53	Right Cheek	0	1	0.073	1.343	0.098	0.459	0.287		35.0		
Head	NR Band n5	20	QPSK	A	1428M	1:1	-0.19	836.50	167300	DFT-s-OFDM	0.0	25.0	23.78	50	28	Right Cheek	0	1	0.072	1.324	0.095	0.446	0.279		35.2	- 1	
Head	NR Band n5	20	QPSK	A	1428M	1:1	-0.02	836.50		DFT-s-OFDM	0.0	25.0	23.72	1	53	Right Tilt	0	1	0.061	1.343	0.082	0.383	0.239		35.8	- 1	
Head	NR Band n5	20	QPSK	A	1428M	1:1	-0.01	836.50	167300	DFT-s-OFDM	0.0	25.0	23.78	50	28	Right Tilt	0	1	0.061	1.324	0.081	0.378	0.236		35.9	- 1	
Head	NR Band n5	20	QPSK	A	1428M	1:1	0.04	836.50	167300	DFT-s-OFDM	0.0	25.0	23.72	1	53	Left Cheek	0	0	0.095	1.343	0.128	0.597	0.373		33.9	33.9	31.7
Head	NR Band n5	20	QPSK	A	1428M	1:1	-0.02	836.50	167300	DFT-s-OFDM	0.0	25.0	23.78	50	28	Left Cheek	0	0	0.096	1.324	0.127	0.595	0.372		33.9	- 1	
Head	NR Band n5	20	QPSK	A	1428M	1:1	0.01	836.50	167300	CP-OFDM	1.5	23.5	22.31	1	1	Left Cheek	0	0	0.062	1.315	0.082	0.539	0.337		34.3	- 1	
Head	NR Band n5	20	QPSK	A	1428M	1:1	0.06	836.50	167300	DFT-s-OFDM	0.0	25.0	23.72	1	53	Left Tilt	0	0	0.066	1.343	0.089	0.415	0.259		35.5	- 1	
Head	NR Band nS	20	QPSK	A	1428M	1:1	0.03	836.50	167300	DFT-s-OFDM	0.0	25.0	23.78	50	28	Left Tilt	0	0	0.067	1.324	0.089	0.415	0.259		35.5		
						Spatial Peak exposure/Gen		on											1.6 W/kg averaged o	g (mW/g)							

Table 12-32

Exposure	Band / Mode	Bandwidth (MHz)	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Waveform	MPR (dB)	Max Allowed Power [dBm]		RB Size	RB Offset	Test Position	Spacing (mm)	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR (W/kg)		Exposure Ratio (1g SAR)		(dn=1	Overall Plimit [dBm]	Plimit
Head	NR Band nS	20	QPSK	E	1431M	1:1	-0.11	836.50	167300	DFT-s-OFDM	0.0	22.0	21.46	1	53	Right Cheek	0	0.663	1.132	0.751	0.751	0.469		23.2		
Head	NR Band n5 20 QPSK E 1431M 1:1 0.00 836.50 167300 DFT-S-OFDM 0.0 22.0													50	28	Right Cheek	0	0.654	1.135	0.742	0.742	0.464		23.2		i l
Head	NR Band nS 20 QPSK E 1431M 1:1 0.00 836.50 167300 DFT-s-OFDM 0.0 22.0 21. NR Band nS 20 QPSK E 1431M 1:1 -0.10 836.50 167300 DFT-s-OFDM 0.0 22.0 21.														53	Right Tilt	0	0.613	1.132	0.694	0.694	0.434		23.5		i l
Head	NR Band nS	20	QPSK	E	1431M	1:1	-0.02	836.50	167300	DFT-s-OFDM	0.0	22.0	21.45	50	28	Right Tilt	0	0.619	1.135	0.703	0.703	0.439		23.5		i l
Head	NR Band n5	20	QPSK	E	1431M	1:1	0.03	836.50	167300	DFT-s-OFDM	0.0	22.0	21.46	1	53	Left Cheek	0	1.030	1.132	1.166	1.166	0.729		21.3		i
Head	NR Band nS	20	QPSK	E	1431M	1:1	0.01	836.50	167300	DFT-s-OFDM	0.0	22.0	21.45	50	28	Left Cheek	0	1.050	1.135	1.192	1.192	0.745	A28	21.2	21.2	21.0
Head	NR Band nS	20	QPSK	Ε	1431M	1:1	0.01	836.50	167300	DFT:s:OFDM	0.0	22.0	21.45	50	28	Left Cheek	0	1.020	1.135	1.158	1.158	0.724		21.3	21.2	21.0
Head	NR Band nS	20	QPSK	E	1431M	1:1	-0.09	836.50	167300	DFT-s-OFDM	0.0	22.0	21.39	100	0	Left Cheek	0	0.989	1.151	1.138	1.138	0.711		21.4		i l
Head	NR Band n5	20	QPSK	E	1431M	1:1	0.05	836.50	167300	CP-OFDM	0.0	22.0	21.35	1	1	Left Cheek	0	0.973	1.161	1.130	1.130	0.706		21.4		i
Head	NR Band nS	20	QPSK	E	1431M	1:1	0.02	836.50	167300	DFT-s-OFDM	0.0	22.0	21.46	1	53	Left Tilt	0	0.886	1.132	1.003	1.003	0.627		21.9		i l
Head	NR Band nS	20	QPSK	E	1431M	1:1	0.08	836.50	167300	DFT-s-OFDM	0.0	22.0	21.45	50	28	Left Tilt	0	0.883	1.135	1.002	1.002	0.626		21.9		i I
Head	NR Band nS	20	QPSK	E	1431M	1:1	0.06	836.50	167300	DFT-s-OFDM	0.0	22.0	21.39	100	0	Left Tilt	0	0.885	1.151	1.019	1.019	0.637		21.9		i I
No. of the last of	sents variability measurement					Spatial Pea													Head W/kg (mW/g) aged over 1 gran	n						

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Waveform	MPR [dB]	Max Allowed Power [d8m]	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing [mm]	Tune state	Measured 1g SAR [W/kg]	Power Scaling Factor		Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #		Overall Plimit [dBm]	
Body-worn/Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	0.05	836.50	167300	DFT-s-OFDM	0.0	25.0	23.72	1	53	Back	10	0	0.247	1.343	0.332	0.417	0.261		29.7		
Body-worn/Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	0.03	836.50	167300	DFT-s-OFDM	0.0	25.0	23.78	50	28	Back	10	٥	0.253	1.324	0.335	0.422	0.264		29.7		i l
Body-worn/Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	0.02	836.50	167300	CP-OFDM	1.5	23.5	22.31	1	1	Back	10	1	0.170	1.315	0.224	0.398	0.249		30.0		i l
Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	0.04	836.50	167300	DFT-s-OFDM	0.0	25.0	23.72	1	53	Front	10	0	0.157	1.343	0.211	0.265	0.166		31.7		i l
Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	0.00	836.50	167300	DFT-s-OFDM	0.0	25.0	23.78	50	28	Front	10	0	0.157	1.324	0.208	0.262	0.164		31.8		í l
Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	0.01	836.50	167300	DFT-s-OFDM	0.0	25.0	23.72	1	53	Bottom	10	2	0.058	1.343	0.078	0.098	0.061		36.0	29.7	26.0
Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	0.05	836.50	167300	DFT-s-OFDM	0.0	25.0	23.78	50	28	Bottom	10	1	0.059	1.324	0.078	0.098	0.061		36.0		i l
Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	-0.02	836.50	167300	DFT-s-OFDM	0.0	25.0	23.72	1	53	Right	10	٥	0.072	1.343	0.097	0.122	0.076		35.1		i l
Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	0.13	836.50	167300	DFT-s-OFDM	0.0	25.0	23.78	50	28	Right	10	٥	0.072	1.324	0.095	0.120	0.075		35.2		i l
Hotspot	NR Band n5	20	QPSK	A	1428M	1:1	-0.01	836.50	167300	DFT-s-OFDM	0.0	25.0	23.72	1	53	Left	10	٥	0.096	1.343	0.129	0.162	0.101		33.8		i l
Hotspot	NR Band nS	20	QPSK	A	1428M	1:1	-0.02	836.50	167300	DFT-s-OFDM	0.0	25.0	23.78	50	28	Left	10	0	0.096	1.324	0.127	0.160	0.100		33.9		
						Spatial Peak		on											1.6 W/kg averaged o	(mW/g)							

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 82 of 107

Table 12-34

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Waveform	MPR (dB)	Max Allowed Power [dBm]	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit (dBm)
Body-worn/Hotspot	NR Band n5	20	QPSK	E	1431M	1:1	0.02	836.50	167300	DFT-s-OFDM	0.0	25.0	23.85	1	53	Back	10	0.448	1.303	0.584	0.718	0.449		27.3		
Body-worn/Hotspot	NR Band n5	20	QPSK	E	1431M	1:1	0.02	836.50	167300	DFT-s-OFDM	0.0	25.0	23.99	50	28	Back	10	0.450	1.262	0.568	0.698	0.436	A29	27.4		
Hotspot	NR Band n5	20	QPSK	E	1431M	1:1	0.00	836.50	167300	DFT-s-OFDM	0.0	25.0	23.85	1	53	Front	10	0.446	1.303	0.581	0.715	0.447		27.3		
Hotspot	NR Band n5	20	QPSK	E	1431M	1:1	-0.02	836.50	167300	DFT-s-OFDM	0.0	25.0	23.99	50	28	Front	10	0.445	1.262	0.562	0.691	0.432		27.5		
Hotspot	NR Band n5	20	QPSK	E	1431M	1:1	0.09	836.50		DFT-s-OFDM	0.0	25.0	23.85	1	53	Тор	10	0.612	1.303	0.797	0.981	0.613		25.9	25.9	25.9
Hotspot	NR Band n5	20	QPSK	E	1431M	1:1	-0.09	836.50	167300	DFT-s-OFDM	0.0	25.0	23.99	50	28	Тор	10	0.630	1.262	0.795	0.978	0.611	A30	25.9		
Hotspot	NR Band n5	20	QPSK	E	1431M	1:1	0.00	836.50	167300	CP-OFDM	1.5	23.5	22.50	1	1	Top	10	0.379	1.259	0.477	0.829	0.518		26.7		
Hotspot	NR Band n5	20	QPSK	E	1431M	1:1	-0.03	836.50	167300	DFT-s-OFDM	0.0	25.0	23.85	1	53	Right	10	0.359	1.303	0.468	0.575	0.359		28.2		
Hotspot														50	28	Right	10	0.360	1.262	0.454	0.559	0.349		28.4		
					ANSI/IEEE O	Spatial Peak													Body 6 W/kg (mW/g) raged over 1 gran	n						

12.11 NR Band n66 Standalone SAR

Table 12-35

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number		[dB]			Waveform	MPR [dB]			RB Size	RB Offset		Spacing [mm]		SAK[W/kg]		SAK [W/kg]	SAR [W/kg]	(1g SAK)	Plot #	[d8m]	Overall Plimit [dBm]	FS Plimit [dBm]
Head	NR Band n66	45	QPSK	A	1429M	1:1	-0.16	1745.00		DFT-s-OFDM	0.0	24.5	22.92	1	1	Right Cheek	0	106	0.116	1.439	0.167	0.836	0.523		32.2		
Head	NR Band n66	45	QPSK	A	1429M	1:1	-0.08	1745.00	349000	DFT-s-OFDM	0.0	24.5	22.78	120	61	Right Cheek	0	106	0.120	1.486	0.178	0.894	0.559		31.9	- 1	
Head	NR Band n66	45	QPSK	A	1429M	1:1	0.02	1745.00	349000	CP-OFDM	1.5	23.0	21.22	1	1	Right Cheek	0	100	0.093	1.507	0.140	0.992	0.620		31.5		
Head	NR Band n66	45	QPSK	A	1429M	1:1	0.09	1745.00	349000	DFT-s-OFDM	0.0	24.5	22.92	1	1	Right Tilt	0	106	0.054	1.439	0.078	0.389	0.243		35.5	- 1	
Head	NR Band n66	45	QPSK	A	1429M	1:1	-0.11	1745.00	349000	DFT-s-OFDM	0.0	24.5	22.78	120	61	Right Tilt	0	106	0.064	1.486	0.095	0.477	0.298		34.7	31.5	31.5
Head	NR Band n66	45	QPSK	A	1429M	1:1	-0.01	1745.00	349000	DFT-s-OFDM	0.0	24.5	22.92	1	1	Left Cheek	0	106	0.061	1.439	0.088	0.440	0.275		35.0		
Head	NR Band n66	45	QPSK	A	0455M	1:1	-0.03	1745.00	349000	DFT-s-OFDM	0.0	24.5	22.78	120	61	Left Cheek	0	106	0.068	1.486	0.101	0.506	0.316		34.4	- 1	
Head	NR Band n66	45	QPSK	A	0455M	1:1	-0.05	1745.00	349000	DFT-s-OFDM	0.0	24.5	22.92	1	1	Left Tilt	0	106	0.074	1.439	0.106	0.534	0.334		34.2	- 1	
Head	NR Band n66	45	QPSK	A	0455M	1:1	-0.12	1745.00	349000	DFT-s-OFDM	0.0	24.5	22.78	120	61	Left Tilt	0	106	0.068	1.486	0.101	0.506	0.316		34.4	- 1	
						Spatial Peak xposure/Ger		on											1.6 W/kg	rad g (mW/g) over 1 gram							

Table 12-36

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift (dB)	Frequency [MHz]	Channel #	Waveform	MPR (dB)	Max Allowed Power [dBm]	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #		Overall Plimit [dBm]	EFS Plimit (dBm)
Head	NR Band n66	45	QPSK	F	1429M	1:1	-0.21	1745.00	349000	DFT-s-OFDM	0.0	19.5	18.37	1	121	Right Cheek	0	0.571	1.297	0.741	0.741	0.463		20.8		
Head	NR Band n66	45	QPSK	F	1429M	1:1	-0.05	1745.00	349000	DFT-s-OFDM	0.0	19.5	18.36	120	61	Right Cheek	0	0.565	1.300	0.735	0.735	0.459		20.8	1	1 1
Head	NR Band n66	45	QPSK	F	1429M	1:1	0.01	1745.00	349000	DFT-s-OFDM	0.0	19.5	18.37	1	121	Right Tilt	0	0.797	1.297	1.034	1.034	0.646		19.3	1	
Head	NR Band n66	45	QPSK	F	1429M	1:1	-0.04	1745.00	349000	DFT-s-OFDM	0.0	19.5	18.36	120	61	Right Tilt	0	0.787	1.300	1.023	1.023	0.639		19.4	1	1 1
Head	NR Band n66	45	QPSK	F	1429M	1:1	-0.01	1745.00	349000	DFT-s-OFDM	0.0	19.5	18.34	240	0	Right Tilt	0	0.790	1.306	1.032	1.032	0.645		19.3	18.8	18.5
Head	NR Band n66	45	QPSK	F	1429M	1:1	-0.01	1745.00	349000	CP-OFDM	0.0	19.5	18.10	1	1	Right Tilt	0	0.849	1.380	1.172	1.172	0.733	A31	18.8	10.0	10.5
Head	NR Band n66	45	QPSK	F	1429M	1:1	0.06	1745.00	349000	DFT-s-OFDM	0.0	19.5	18.37	1	121	Left Cheek	0	0.560	1.297	0.726	0.726	0.454		20.8	J	1 1
Head	NR Band n66	45	QPSK	F	1429M	1:1	0.05	1745.00	349000	DFT-s-OFDM	0.0	19.5	18.36	120	61	Left Cheek	0	0.545	1.300	0.709	0.709	0.443		20.9	1	1 1
Head	NR Band n66	45	QPSK	F	1429M	1:1	-0.01	1745.00	349000	DFT-s-OFDM	0.0	19.5	18.37	1	121	Left Tilt	0	0.606	1.297	0.786	0.786	0.491		20.5	1	1 1
Head	NR Band n66	45	QPSK	F	1429M	1:1	-0.18	1745.00	349000	DFT-s-OFDM	0.0	19.5	18.36	120	61	Left Tilt	0	0.614	1.300	0.798	0.798	0.499		20.4	1	1 1
						Spatial Peak													Head 5 W/kg (mW/g) aged over 1 gran	n						

Table 12-37

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Waveform	MPR (dB)	Max Allowed Power [dBm]	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#		Overall Plimit (dBm)	EFS Plimit [dBm]
Body-worn/Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	-0.04	1745.00	349000	DFT-s-OFDM	0.0	21.5	20.32	1	240	Back	10	0.282	1.312	0.370	0.370	0.231		25.8		
Body-worn/Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	0.04	1745.00	349000	DFT-s-OFDM	0.0	21.5	20.26	120	61	Back	10	0.238	1.330	0.317	0.317	0.198		26.4		
Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	0.05	1745.00	349000	DFT-s-OFDM	0.0	21.5	20.32	1	240	Front	10	0.195	1.312	0.256	0.256	0.160		27.4		
Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	0.04	1745.00	349000	DFT-s-OFDM	0.0	21.5	20.26	120	61	Front	10	0.200	1.330	0.266	0.266	0.166		27.2		
Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	-0.04	1745.00	349000	DFT-s-OFDM	0.0	21.5	20.32	1	240	Тор	10	0.669	1.312	0.878	0.878	0.549		22.0	21.8	20.5
Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	0.01	1745.00	349000	DFT-s-OFDM	0.0	21.5	20.26	120	61	Top	10	0.610	1.330	0.811	0.811	0.507		22.4	21.0	20.5
Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	0.00	1745.00	349000	DFT-s-OFDM	0.0	21.5	20.19	240	0	Top	10	0.613	1.352	0.829	0.829	0.518		22.3		
Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	0.11	1745.00	349000	CP-OFDM	0.0	21.5	20.16	1	1	Top	10	0.682	1.361	0.928	0.928	0.580		21.8		
Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	-0.18	1745.00	349000	DFT-s-OFDM	0.0	21.5	20.32	1	240	Left	10	0.099	1.312	0.130	0.130	0.081		30.3		
Hotspot	NR Band n66	45	QPSK	F	1429M	1:1	0.04	1745.00	349000	DFT-s-OFDM	0.0	21.5	20.26	120	61	Left	10	0.097	1.330	0.129	0.129	0.081		30.3		
						Spatial Peak													Body 5 W/kg (mW/g) aged over 1 gran	1						

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 83 of 107

12.12 NR Band n41 Standalone SAR

Table 12-39

Table 12-40

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Waveform	MPR (dB)	Max Allowed Power (dBm)	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]		Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit (dBm)
Head	NR Band n41	100	QPSK	В	1428M	1:1	0.12	2592.99	518598	DFT-s-OFDM	0.0	22.0	21.34	1	1	Right Cheek	0	0.075	1.164	0.087	0.087	0.054		32.5		_
Head	NR Band n41	100	QPSK	В	1428M	1:1	-0.01	2592.99	518598	DFT-s-OFDM	0.0	22.0	21.14	135	0	Right Cheek	0	0.064	1.219	0.078	0.078	0.049		33.0		
Head	NR Band n41	100	QPSK	В	1428M	1:1	-0.03	2592.99	518598	CP-OFDM	0.0	22.0	20.71	1	1	Right Cheek	0	0.074	1.346	0.100	0.100	0.063		32.0		1
Head	NR Band n41	100	QPSK	В	1428M	1:1	0.13	2592.99	518598	DFT-s-OFDM	0.0	22.0	21.34	1	1	Right Tilt	0	0.038	1.164	0.044	0.044	0.028		35.5		1
Head	NR Band n41	100	QPSK	В	1428M	1:1	-0.15	2592.99		DFT-s-OFDM	0.0	22.0	21.14	135	0	Right Tilt	0	0.034	1.219	0.041	0.041	0.026		35.8	32.0	21.0
Head	NR Band n41	100	QPSK	В	1428M	1:1	0.00	2592.99		DFT-s-OFDM	0.0	22.0	21.34	1	1	Left Cheek	0	0.034	1.164	0.040	0.040	0.025		36.0		
Head	NR Band n41	100	QPSK	В	1428M	1:1	0.06	2592.99	518598	DFT-s-OFDM	0.0	22.0	21.14	135	0	Left Cheek	0	0.029	1.219	0.035	0.035	0.022		36.5		
Head	NR Band n41	100	QPSK	В	1428M	1:1	0.03	2592.99	518598	DFT-s-OFDM	0.0	22.0	21.34	1	1	Left Tilt	0	0.047	1.164	0.055	0.055	0.034		34.6		1
Head	NR Band n41	100	QPSK	В	1428M	1:1	-0.01	2592.99	518598	DFT-s-OFDM	0.0	22.0	21.14	135	0	Left Tilt	0	0.035	1.219	0.043	0.043	0.027		35.6		
						95.1 1992 - S Spatial Peak xposure/Ger		on											Head W/kg (mW/g) aged over 1 gran	n						

Table 12-41

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Path	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Waveform	MPR [dB]	Max Allowed Power [dBm]		RB Size	RB Offset	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [d8m]	FS Plimit [dBm]
Body-worn/Hotspot	NR Band n41	100	QPSK	F	1	1431M	1:1	-0.01	2592.99	518598	DFT-s-OFDM	0.0	20.5	19.68	1	271	Back	10	0.172	1.208	0.208	0.208	0.130		27.3		
Body-worn/Hotspot	NR Band n41	100	QPSK	F	1	1431M	1:1	-0.07	2592.99	518598	DFT-s-OFDM	0.0	20.5	19.64	135	138	Back	10	0.178	1.219	0.217	0.217	0.136		27.1		
Hotspot	NR Band n41	100	QPSK	F	1	1431M	1:1	-0.02	2592.99	518598	DFT-s-OFDM	0.0	20.5	19.68	1	271	Front	10	0.181	1.208	0.219	0.219	0.137		27.1	- 1	
Hotspot	NR Band n41	100	QPSK	F	1	1431M	1:1	0.08	2592.99	518598	DFT-s-OFDM		20.5	19.64	135	138	Front	10	0.183	1.219	0.223	0.223	0.139		27.0		
Hotspot	NR Band n41	100	QPSK	F	1	1431M	1:1	-0.02	2592.99	518598	DFT-s-OFDM	0.0	20.5	19.68	1	271	Тор	10	0.436	1.208	0.527	0.527	0.329		23.2	23.1	19.5
Hotspot	NR Band n41	100	QPSK	F	1	1431M	1:1	0.02	2592.99	518598	DFT-s-OFDM	0.0	20.5	19.64	135	138	Тор	10	0.442	1.219	0.539	0.539	0.337		23.1		
Hotspot	NR Band n41	100	QPSK	F	1	1431M	1:1	-0.01	2592.99	518598	CP-OFDM	0.0	20.5	19.53	1	1	Тор	10	0.430	1.250	0.538	0.538	0.336		23.1		
Hotspot	NR Band n41	100	QPSK	F	1	1431M	1:1	0.04	2592.99	518598	DFT-s-OFDM	0.0	20.5	19.68	1	271	Left	10	0.043	1.208	0.052	0.052	0.033		33.3		
Hotspot	NR Band n41	100	QPSK	F	1	1431M	1:1	0.08	2592.99	518598	DFT-s-OFDM	0.0	20.5	19.64	135	138	Left	10	0.047	1.219	0.057	0.057	0.036		32.9		
					Unci	Spatia ontrolled Exposur	1 al Peak re/General P	opulation												Body 6 W/kg (mW/g) raged over 1 gran	n						

Table 12-42

														_													
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Path	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Waveform	MPR [dB]	Max Allowed Power (dBm)	Conducted Power [dBm]	RB Size	RB Offset	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor		Adjusted 1g SAR [W/kg]	Exposure Rati (1g SAR)	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Body-worn/Hotspot	NR Band n41	100	QPSK	В	2	1428M	1:1	-0.03	2592.99	518598	DFT-s-OFDM	0.0	21.0	20.51	1	1	Back	10	0.370	1.119	0.414	0.414	0.259	A35	24.8		
Body-worn/Hotspot	NR Band n41	100	QPSK	В	2	1428M	1:1	0.03	2592.99	518598	DFT-s-OFDM	0.0	21.0	20.44	135	0	Back	10	0.335	1.138	0.381	0.381	0.238		25.1		
Hotspot	NR Band n41	100	QPSK	В	2	1428M	1:1	0.06	2592.99	518598	DFT-s-OFDM	0.0	21.0	20.51	1	1	Front	10	0.273	1.119	0.305	0.305	0.191		26.1	1	
Hotspot	NR Band n41	100	QPSK	В	2	1428M	1:1	0.03	2592.99	518598	DFT-s-OFDM	0.0	21.0	20.44	135	0	Front	10	0.256	1.138	0.291	0.291	0.182		26.3	1	
Hotspot	NR Band n41	100	QPSK	В	2	1428M	1:1	0.01	2592.99	518598	DFT-s-OFDM	0.0	21.0	20.51	1	1	Bottom	10	0.433	1.119	0.485	0.485	0.303		24.1	24.0	20.0
Hotspot	NR Band n41	100	QPSK	В	2	1428M	1:1	0.01	2592.99	518598	DFT-s-OFDM	0.0	21.0	20.44	135	0	Bottom	10	0.431	1.138	0.490	0.490	0.306		24.0		
Hotspot	NR Band n41	100	QPSK	В	2	1428M	1:1	0.02	2592.99	518598	CP-OFDM	0.0	21.0	20.69	1	1	Bottom	10	0.448	1.074	0.481	0.481	0.301	A36	24.1	1	
Hotspot	NR Band n41	100	QPSK	В	2	1428M	1:1	0.01	2592.99	518598	DFT-s-OFDM	0.0	21.0	20.51	1	1	Right	10	0.432	1.119	0.483	0.483	0.302		24.1		1
Hotspot	NR Band n41	100	QPSK	В	2	1428M	1:1	-0.01	2592.99	518598	DFT-s-OFDM	0.0	21.0	20.44	135	0	Right	10	0.392	1.138	0.446	0.446	0.279		24.5		
						NSI/IEEE C95.1 1 Spati ontrolled Exposu	l Peak													Body .6 W/kg (mW/g) raged over 1 gran	n						

12.13 2.4 GHz WIFI SISO Standalone SAR

Table 12-43

2.4 GHz WIFI Antenna H Head Spot-check Verification for Data Referencing

Table 12-44

2.4 GHz WIFI Antenna H Body-worn/Hotspot Spot-check Verification for Data Referencing

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency (MHz)	Channel #		Max Allowed Power (dBm)		Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor			Exposure Ratio	Plot#	Plimit (dBm)	Overall Plimit [dBm]	FS Plimit [dBm]	Reported 1g SAR for Reference model [W/kg]
Body-worn/Hotspot	2.4 GHz WIFI / IEEE 802.11b	22	DSSS	Н	0629M	98.74	0.02	2462.00	11	1	20.0	19.85	Back	10	0.265	1.035	1.013	0.278	0.326	0.204	A38	25.5	20.7	20.7	0.394
Hotspot	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	н	0629M	98.74	0.00	2462.00	11	1	20.0	19.85	Left	10	0.797	1.035	1.013	0.836	0.982	0.614	A39	20.7	20.7	20.7	0.795
				ANSI/IEEE	C95.1 1992 - SA	FETY LIMIT											Body								(
					Spatial Peak											1.6	W/kg (mW/g)								i
				Uncontrolled	Exposure/Gene	ral Populatio	n									avera	ged over 1 gram								i

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 84 of 107

Table 12-45

2.4 GHz WIFI Antenna J Head Spot-check Verification for Data Referencing

xposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift (dB)	Frequency [MHz]	Channel#	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position		Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#		Plimit F [dBm] [Plimit dBm]	Reported 1g SAR for Reference model [W/kg]
Head	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	J	0629M	97.51	0.01	2412.00	1	1	17.0	16.70	Left Cheek	0	0.242	1.072	1.026	0.266	0.266	0.166		22.7	22.7	16.0	0.431
					E C95.1 1992 - SA Spatial Peak I Exposure/Geni		on									1.6 V	Head V/kg (mW/g) ed over 1 gram								

Table 12-46

2.4 GHz WIFI Antenna J Body-worn/Hotspot Spot-check Verification for Data Referencing

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel#		Max Allowed Power (dBm)		Test Position	Spacing [mm]	Measured 1g SAR (W/kg)		Duty Cycle Scaling Factor				Plot#	Plimit [dBm]	Overall Plimit [dBm]	Plimit	Reported 1g SAR for Reference model [W/kg]
Body-worn/Hotspot	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	J	0629M	97.51	-0.05	2412.00	1	1	20.0	19.78	Back	10	0.050	1.052	1.026	0.054	0.578	0.361		32.6	20.2	20.2	0.071
Hotspot	2.4 GHz WIFI/ IEEE 802.11b	22	DSSS	J	0629M	97.51	-0.02	2412.00	1	1	20.0	19.78	Front	10	0.086	1.052	1.026	0.093	0.995	0.622		30.3	30.3	30.3	0.079
				ANSI/IEEI	E C95.1 1992 - SA												Body								
					Spatial Peak											1.6	W/kg (mW/g)								
			U	ncontrolled	Exposure/Gen	eral Populati	on									avera	ged over 1 gram								

12.14 2.4 GHz WIFI MIMO Standalone SAR

Table 12-47

2.4 GHz WIFI MIMO Head Spot-check Verification for Data Referencing

Table 12-48

2.4 GHz WIFI MIMO Body-worn/Hotspot Spot-check Verification for Data Referencing

Exposure	Band / Mode		Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Danier (2nd	Conducted Power (2nd ant) [dBm]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor		Adjusted 1g SAR [W/kg]		Plot #	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit [dBm]	Reported 1g SAR for Reference model [W/kg]
Body-worn/Hotspot	2.4 GHz WIFI/ IEEE 802.11g	20	OFDM	MMO	0629M	97.64	-0.02	2412.00	1	1	18.0	17.27	18.0	17.17	Back	10	0.147	1.211	1.024	0.182	0.355	0.222		25.3	20.9	20.9	0.271
Hotspot	2.4 GHz WIFI/ IEEE 802.11g	20	OFDM	MMO	0629M	97.64		2412.00	1	1	18.0	17.27	18.0	17.17	Left	10	0.407	1.211	1.024	0.505	0.984	0.615		20.9	20.9	20.9	0.467
					ANSI/IEE	E C95.1 1992	- SAFETY LIM	IIT								Body											
						Spatial Pe																					
					Uncontrolled													avera	ged over 1 gram								
Note: To achieve the 21	dBm maximum allowed MIMO	power shown i	n the document	ation, each	antenna transm	its at a maxi	mum allowed	d power of 18 di	3m.																		

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 85 of 107
		REV 22.0

12.15 5 GHz WIFI SISO Standalone SAR

Table 12-49

5 GHz WIFI Antenna H Head Spot-check Verification for Data Referencing

Table 12-50

5 GHz WIFI Antenna H Body-worn/Hotspot Spot-check Verification for Data Referencing

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Drift [dB]	Frequency [MHz]		U-NII band	[Mbps]	Max Allowed Power (dBm)	Power [dBm]	Test Position	Spacing [mm]	SAR [W/kg]	Factor	Duty Cycle Scaling Factor	SAR [W/kg]	nacio (1g 5Ail)	Plot#	Plimit [dBm]		Plimit	Reported 1g SAR for Reference model [W/kg]
Body-worn	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	Н	0629M	91.35	0.20	5610.00	122	U-NII-2C	29.3	16.0	14.96	Back	10	0.212	1.271	1.095	0.295	0.184		21.3	10.2	15.0	0.232
Hotspot	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	н	0629M	91.35	-0.04	5775.00	155	U-NII-3	29.3	16.0	14.80	Left	10	0.405	1.318	1.095	0.585	0.366	A42	18.3	18.3	13.0	0.401
					NSI/IEEE C95.1 1 Spati ntrolled Exposu	al Peak											Body 1.6 W/kg (m averaged ove								

Table 12-51

5 GHz WIFI Antenna H Phablet Spot-check Verification for Data Referencing

Table 12-52

5 GHz WIFI Antenna E Head Spot-check Verification for Data Referencing

Table 12-53

5 GHz WIFI Antenna E Body-worn/Hotspot Spot-check Verification for Data Referencing

Table 12-54

5 GHz WIFI Antenna E Phablet Spot-check Verification for Data Referencing

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel#	U-NII band		Max Allowed Power (dBm)		Test Position		Measured 10g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 10g SAR [W/kg]	Exposure Ratio (10g SAR)	Plot#	Plimit (dBm)	Overall Plimit F [dBm] [EFS Rej limit fe Bm] m	eported 1g SAR for Reference model [W/kg]
Phablet	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	E	0629M	96.96	-0.10	5855.00	171	U-NII-4	29.3	16.0	15.32	Back	0	0.435	1.169	1.031	0.524	0.131		22.7	22.7	15.0	0.383
					NSI/IEEE C95.1 1 Spati ntrolled Exposu	al Peak											Phable 4.0 W/kg (m averaged over	nW/g)							

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 86 of 107

12.16 5 GHz WIFI MIMO Standalone SAR

Table 12-55

5 GHz WIFI MIMO Head Spot-check Verification for Data Referencing

Exposure	Band / Mode		Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift (dB)	Frequency [MHz]	Channel #		Data Rate [Mbps]	Max Allowed Power (dBm)	Conducted Power [dBm]	Max Allowed Power (2nd ant) [dBm]	Conducted Power (2nd ant) [dBm]	Test Position	Spacing (mm)	Measured 1g SAR (W/kg)	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit [dBm]	Reported 1g SAR for Reference model [W/kg]
Head	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	MMO	0629M	92.29	0.13	5690.00	138	U-NII-2C	58.5	16.0	15.42	16.0	15.58	Right Cheek	0	0.650	1.143	1.084	0.805	0.503		16.9	16.9	15.0	0.969
					ΑΑ	NSI/IEEE C95	1 1992 - SAF	ETY LIMIT											Head	•							
						Sp	atial Peak												1.6 W/kg (m	W/g)							
					Unco	ntrolled Exp	osure/Gener	al Population								1			averaged over	1 gram				l			
Note: To achieve the 19	9 dBm maximum allowed MIMO	power shown i	n the document	ation, each	antenna transm	its at a maxir	num allowed	power of 16 dB	3m.																		

Table 12-56

5 GHz WIFI MIMO Body-worn/Hotspot Spot-check Verification for Data Referencing

	_						,																3	,			
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift (dB)	Frequency [MHz]	Channel #	U-NII band		Max Allowed Power (dBm)	Conducted	Max Allowed Power (2nd ant) [dBm]		Test Position	Spacing (mm)	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit [dBm]	Reported 1g SAR for Reference model (W/kg)
Body-worn	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	MMO	0629M	92.29	0.06	5855.00	171	U-NII-4	58.5	16.0	15.02	16.0	15.60	Back	10	0.333	1.253	1.084	0.452	0.283		19.4	19.4	15.0	0.496
Body-worn/Hotspot	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	MMO	0629M	92.29	0.06	5775.00	155	U-NII-3	58.5	16.0	15.14	16.0	15.40	Back	10	0.309	1.219	1.084	0.408	0.255		19.8	19.4	15.0	0.410
					Unco	ntrolled Expo	atial Peak osure/Gener	al Population											Body 1.6 W/kg (m averaged ove								
Note: To achieve the 19	OMIM bewells maximum allowed MIMO	nower shown i	n the document.	ation each	antenna transm	its at a maxin	num allower	nower of 16 da	Rm .																		

Table 12-57

5 GHz WIFI MIMO Phablet Spot-check Verification for Data Referencing

Exposure	Band / Mode		Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	U-NII band	Data Rate [Mbps]	Max Allowed Power (dBm)	Conducted Power [dBm]	Max Allowed Power (2nd ant) [dBm]	Conducted Power (2nd ant) [dBm]	Test Position	Spacing (mm)	Measured 10g SAR [W/kg]	Power Scaling Factor		Reported 10g SAR [W/kg]	Exposure Ratio (10g SAR)	Plot #	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit [dBm]	Reported 1g SAR for Reference model [W/kg]
Phablet	5 GHz WIFI/ IEEE 802.11ac	80	OFDM	MMO	0629M	92.29	0.03	5610.00	122	U-NII-2C	58.5	16.0	15.33	16.0	15.50	Left	0	1.690	1.167	1.084	2.138	0.535		16.6	16.6	15.0	1.836
					Unco	ntrolled Exp	iatial Peak osure/Gener	al Population											Phable 4.0 W/kg (m averaged over	nW/g)							
Note: To achieve the 19	9 dBm maximum allowed MIMO	power shown i	in the document	ation, each	antenna transm	its at a maxin	num allowed	power of 16 dB	Bm.																		

12.17 6 GHz WIFI SISO Standalone SAR and APD

Table 12-58

6 GHz WIFI Antenna H Head Spot-check Verification for Data Referencing

										-	• • • • • •				• • • •				•						
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel#		Max Allowed Power [dBm]		Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor		Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#		Plimit	Plimit	Reported 1g SAR for Reference model [W/kg]
Head	6 GHz WIFI/ IEEE 802.11ax	40	OFDM	Н	0584M	99.67	-0.01	6285.00	67	16.3	17.0	16.81	Right Cheek	0	0.670	1.045	1.003	0.702	0.992	0.620	A44	18.5	18.5	18.5	0.623
								Head																	
					Spatial Peak											1.6 \	N/kg (mW/g)								
			L	Incontrolled	Exposure/Geni	eral Populatio	on									averag	ed over 1 gram								
	i																								
Exposure	Band/ Mode	Bandwidth [MHz]	Service/ Modulation	Ant.	Serial Number	[%]	Power Drift [dB]	Frequency [MHz]	Channel#		Max Allowed Power (dBm)	Power [dBm]	Test Position	Spacing [mm]	Measured APD [W/m² (4cm²)]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported APD [W/m² (4cm²)]		APD Exposure Ratio			(ubiii)	Plimit (dBm)	Reporte APD for Reference model [W/kg]
Head	6 GHz WIFI/ IEEE 802.11ax	40	OFDM	Н	0584M	99.67	-0.01	6285.00	67	16.3	17.0	16.81	Right Cheek	0	3.980	1.045	1.003	4.172	5.892	0.295	A44	22.8	22.8	18.5	4.116

Table 12-59

6 GHz WIFI Antenna H Body-worn Spot-check Verification for Data Referencing

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift (dB)	Frequency [MHz]	Channel #		Max Allowed Power (dBm)		Test Position	Spacing [mm]	Measured 1g SAR [W/kg]		Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit (dBm)	Overall Plimit (dBm)	EFS Plimit (dBm)	Reported 1g SAR for Reference model [W/kg]
Body-worn	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	Н	0584M	99.67	0.06	6985.00	207	68.1	9.0	8.35	Back	10	0.000	1.161	1.003	0.000	0.000	0.000		48.3	48.3	8.0	0.004
					C95.1 1992 - SA Spatial Peak Exposure/Gene		n										Body N/kg (mW/g) ted over 1 gram								
Exposure	Band/ Mode	Bandwidth [MHz]	Service/ Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)		Test Position	Spacing [mm]	Measured APD [W/m² (4cm²)]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported APD [W/m² (4cm²)]	Adjusted APD [W/m² (4cm²)]	APD Exposure Ratio	Plot #	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit (dBm)	Reporte APD for Reference model [W/kg]
Body-worn	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	Н	0584M	99.67	0.06	6985.00	207	68.1	9.0	8.35	Back	10	0.000	1.161	1.003	0.000	0.000	0.000		61.3	61.3	8.0	0.057

Table 12-60

6 GHz WIFI Antenna H Phablet Spot-check Verification for Data Referencing

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)	Conducted Power [dBm]	Test Position		Measured 10g SAR [W/kg]			Reported 10g SAR [W/kg]		Exposure Ratio (10g SAR)	Plot#	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit (dBm)	Reported 1g SAR for Reference model [W/kg]
Phablet	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	Н	0584M	99.67	-0.01	6505.00	111	68.1	9.0	8.43	Left	0	0.313	1.140	1.003	0.358	0.358	0.090	A46	17.4	17.4	8.0	0.377
					C95.1 1992 - SA Spatial Peak I Exposure/Gene		n										Phablet W/kg (mW/g) ed over 10 gram								
Exposure	Band/ Mode	Bandwidth [MHz]	Service/ Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)		Test Position	Spacing [mm]	Measured APD [W/m² (4cm²)]		Duty Cycle Scaling Factor	Reported APD [W/m² (4cm²)]	Adjusted APD [W/m² (4cm²)]	APD Exposure Ratio	Plot #	Plimit [dBm]	Overall Plimit (dBm)	EFS Plimit [dBm]	Reporte APD for Reference model [W/kg]
Phablet	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	Н	0584M	99.67	-0.01	6505.00	111	68.1	9.0	8.43	Left	0	7.390	1.140	1.003	8.450	8.450	0.423	A46	12.7	12.7	8.0	8.939

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 87 of 107

Table 12-61 6 GHz WIFI Antenna E Head Spot-check Verification for Data Referencing

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Numbe	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel#		Max Allowed Power [dBm]		Test Position	Spacing [mm]	Measured 1g SAR (W/kg)	Power Scaling Factor	Duty Cycle Scaling Factor			Exposure Ratio (1g SAR)	Plot#	Plimit [dBm]	Overall Plimit (dBm)	EFS Plimit [dBm]	Reported 1g SAR for Reference model [W/kg]
Head	6 GHz WIFI/ IEEE 802.11ax	40	OFDM	E	0584M	99.67	0.03	6685.00	147	16.3	17.0	16.89	Right Cheek	0	0.145	1.026	1.003	0.149	0.580	0.363		25.2	25.2	22.9	0.256
				ANSI/IEE	E C95.1 1992 - S	AFETY LIMIT											Head								
					Spatial Peak											1.6	W/kg (mW/g)								
				Incontrolled	Spatial Peak Exposure/Ger		ion										W/kg (mW/g) ged over 1 gram								
	1		·	Incontrolled			ion							i											
Exposure	Band/ Mode	Bandwidth [MHz]	Service/ Modulation	Ant.	Exposure/Ger	Ports Code		Frequency [MHz]	Channel#		Max Allowed Power [dBm]		Test Position	Spacing [mm]	Measured APD [W/m² (4cm²)]	avera		Reported APD	Adjusted APD [W/m² (4cm²)]	APD Exposure Ratio	Plot #	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit (dBm)	Reporte APD for Reference model [W/kg]

Table 12-62

6 GHz WIFI Antenna E Body-worn Spot-check Verification for Data Referencing

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift (dB)	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing (mm)	Measured 1g SAR [W/kg]		Duty Cycle Scaling Factor			Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]		EFS Plimit (dBm)	Reported 1g SAR for Reference model [W/kg]
Body-worn	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	E	0584M	99.67	0.09	6025.00	15	68.1	9.0	8.56	Back	10	0.067	1.107	1.003	0.074	0.074	0.046	A45	20.2	20.2	8.0	0.064
					E C95.1 1992 - SA Spatial Peak d Exposure/Gene		ņ										Body W/kg (mW/g) ged over 1 gram								
Exposure	Band/ Mode	Bandwidth [MHz]	Service/ Modulation	Ant.	Senal Number	[%]	[dB]	Frequency [MHz]	Channel #	[Mbps]	Max Allowed Power (dBm)	Power (dBm)	Test Position	Spacing [mm]	[W/m* (4cm*)]	Factor	Scaling Factor	[W/m² (4cm²)]	[W/m² (4cm²)]	Ratio	Plot#	Plimit (dBm)	Plimit [dBm]	EFS Plimit (dBm)	Reporte APD for Reference model [W/kg]
Body-worn	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	E	0584M	99.67	0.09	6025.00	15	68.1	9.0	8.56	Back	10	0.521	1.107	1.003	0.578	0.578	0.029	A45	24.3	24.3	0.8	0.517

Table 12-63

6 GHz WIFI Antenna E Phablet Spot-check Verification for Data Referencing

	Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)	Conducted Power [dBm]	Test Position		Measured 10g SAR [W/kg]			Reported 10g SAR [W/kg]		Exposure Ratio (10g SAR)	Plot #	(dDm)	Overall Plimit [dBm]	EFS Plimit (dBm)	Reported 1g SAR for Reference model [W/kg]
	Phablet	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	E	0584M	99.67	-0.07	6025.00	15	68.1	9.0	8.56	Back	0	0.103	1.107	1.003	0.114	0.114	0.029		22.3	22.3	8.0	0.096
						E C95.1 1992 - SA Spatial Peak d Exposure/Gene		n									4.0 \	Phablet W/kg (mW/g) ed over 10 grams								
	Exposure	Band/ Mode	Bandwidth [MHz]	Service/ Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)	Conducted Power [dBm]	Test Position	Spacing [mm]	Measured APD [W/m² (4cm²)]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported APD [W/m² (4cm²)]	Adjusted APD [W/m² (4cm²)]	APD Exposure Ratio	Plot#	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit [dBm]	Reporte APD for Reference model [W/kg]
Г	Phablet	6 GHz WIFI/ IEEE 802.11ax	160	OFDM	E	0584M	99.67	-0.07	6025.00	15	68.1	9.0	8.56	Back	0	2.380	1.107	1.003	2.643	2.643	0.132		17.7	17.7	8.0	2.232

12.18 6 GHz WIFI MIMO Standalone SAR and APD

Table 12-64

6 GHz WIFI MIMO Head Spot-check Verification for Data Referencing

									-												•						
Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)			Conducted Power (2nd ant) [dBm]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor			Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit [dBm]	[dism]	Plimit [dBm]	Reported 1g SAR for Reference model [W/kg]
Head	6 GHz WIFI / IEEE 802.11ax	40	OFDM	MMO	0584M	99.67	-0.01	6285.00	67	32.5	17.0	16.93	17.0	16.15	Right Cheek	0	0.579	1.216	1.003	0.706	0.998	0.624		18.5	18.5	18.5	0.806
					ANSI/IEE	E C95.1 1992 -		IT											Head								
						Spatial Pe													W/kg (mW/g)								
					Uncontrolled													avera	ged over 1 gram								
Note: To achieve the 20	dBm maximum allowed MIMO	power shown i	n the document	ation, each a	antenna transm	its at a maxin	num allowed	d power of 17 dB	im.																		
Exposure	Band/ Mode	Bandwidth [MHz]	Service/ Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)			Conducted Power (2nd ant) [dBm]	Test Position	Spacing [mm]	Measured APD [W/m² (4cm²)]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported APD [W/m² (4cm²)]	Adjusted APD (W/m² (4cm²))	APD Exposure Ratio	Plot #	Plimit [dBm]	Overall Plimit [dBm]	Plimit	Reporte APD for Reference model [W/kg]
Head	6 GHz WIFI / IEEE 802.11ax		OFDM		0584M	99.67	-0.01	6285.00										1.216	1.003	4.293	6.066	0.303		22.7	22.7	18.5	4.958

Table 12-65

6 GHz WIFI MIMO Body-worn Spot-check Verification for Data Referencing

Exposure	Band / Mode	Bandwidth [MHz]	Service / Modulation	Ant.	Serial Number		Power Drift (dB)	Frequency (MHz)	Channel #		Max Allowed Power [dBm]	Conducted Power (dBm)	Power (2nd	Conducted Power (2nd ant) [dBm]	Test Position	Spacing (mm)	Measured 1g SAR [W/kg]	Power Scaling Factor				Exposure Ratio (1g SAR)	Plot #	Plimit (dBm)		Plimit	Reported 1g SAR for Reference model [W/kg]
Body-worn	6 GHz WIFI / IEEE 802.11ax	160	OFDM	MMO	0584M	99.67	0.02	6025.00	15	136.1	9.0	8.23	9.0	8.50	Back	10	0.057	1.194	1.003	0.068	0.068	0.043		20.6	20.6	8.0	0.063
					ANSI/IEE	E C95.1 1992	- SAFETY LIM	IT											Body								
						Spatial Pr	ak											1.6 \	N/kg (mW/g)					ı			1
					Uncontrolled	Exposure/6	ieneral Popu	lation										averag	ed over 1 gram					ı			1
Note: To achieve the 12	dBm maximum allowed MIMO	power shown i	n the document	ation, each	antenna transm	its at a maxi	mum allowed	power of 9 dBr	n.																		
Exposure	Band/ Mode	Bandwidth [MHz]	Service/ Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift (dB)	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted Power [dBm]	Danier (2nd		Test Position	Spacing (mm)	Measured APD [W/m ² (4cm ²)]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported APD [W/m² (4cm²)]	Adjusted APD [W/m² (4cm²)]	APD Exposure Ratio	Plot #		[dbm]	Plimit [dBm]	Reporte APD for Reference model [W/kg]
Body-worn	6 GHz WIFI / IEEE 802.11ax	160	OFDM	MMO	0584M	99.67	0.02	6025.00	15	136.1	9.0	8.23	9.0	8.50	Back	10	0.446	1.194	1.003	0.534	0.534	0.027		24.7	24.7	8.0	0.513
	dBm maximum allowed MIMO																										

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 88 of 107

Table 12-66

6 GHz WIFI MIMO Phablet Spot-check Verification for Data Referencing

														•													
Exposure	Band / Mode	Bandwidth (MHz)	Service / Modulation	Ant.	Serial Numbe	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power (dBm)	Conducted Power (dBm)	Max Allowed Power (2nd ant) [dBm]	Conducted Power (2nd ant) [dBm]	Test Position		Measured 10g SAR (W/kg)	Power Scaling Factor		Reported 10g SAR [W/kg]		Exposure Ratio (10g SAR)	Plot#	Plimit [dBm]	Overall Plimit [dBm]	Plimit	Reported 1g SAR for Reference model [W/kg]
Phablet	6 GHz WIFI / IEEE 802.11ax	160	OFDM	MMO	0584M	99.67	0.07	6505.00	111	136.1	9.0	8.42	9.0	8.39	Left	0	0.249	1.151	1.003	0.287	0.287	0.072		18.3	18.3	8.0	0.346
					ANSI/IEE	E C95.1 1992		IIT											Phablet								
						Spatial Pe												4.0 \	N/kg (mW/g)								
					Uncontrolle														ed over 10 gram	s							
Note: To achieve the 12	2 dBm maximum allowed MIMO	power shown i	in the document	tation, each					m.																		
Note: To achieve the 12	2 dBm maximum allowed MIMO	power shown i	in the document	tation, each					m.											5							
Note: To achieve the 12 Exposure	Z dBm maximum allowed MIMC Band/Mode	Bandwidth	Service/ Modulation		antenna transm	Duty Cycle	mum allowes	d power of 9 dB			Max Allowed Power (dBm)	Conducted Power (dBm)	Max Allowed Power (2nd ant) [dBm]	Conducted Power (2nd ant) [dBm]	Test Position	Spacing (mm)	Measured APD [W/m² (4cm²)]	average Power Scaling	Duty Cycle		Adjusted APD [W/m² (4cm²)]	APD Exposure Ratio	Plot #	Plimit (dBm)		Plimit	Reporte APD for Reference model [W/kg]
		Bandwidth	Service/		antenna transm	Duty Cycle	num allower Power	d power of 9 dB					Power (2nd	Power (2nd	Test Position	Spacing (mm)	APD [W/m²	average Power Scaling	Duty Cycle	Reported APD	Adjusted APD [W/m ² (4cm ²)] 6.742	APD Exposure Ratio	Plot #	Plimit [dBm]	Plimit	Plimit	Reference

12.19 2.4 GHz Bluetooth SISO Standalone SAR

Table 12-67

2.4 GHz Bluetooth Antenna H Head SAR

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #	Data Rate [Mbps]	Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]	Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Head	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	-0.04	2402.00	0	1	19.5	17.84	Right Cheek	0	0.623	1.466	1.016	0.928	0.928	0.580		18.7		
Head	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	0.02	2441.00	39	1	19.5	18.69	Right Cheek	0	0.805	1.205	1.016	0.986	0.986	0.616	A47	18.4		
Head	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	-0.01	2441.00	39	1	19.5	18.69	Right Cheek	0	0.752	1.205	1.016	0.921	0.921	0.576		18.7		
Head	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	-0.01	2480.00	78	1	19.5	17.98	Right Cheek	0	0.642	1.419	1.016	0.926	0.926	0.579		18.7	18.4	18.4
Head	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	0.02	2441.00	39	1	19.5	18.69	Right Tilt	0	0.459	1.205	1.016	0.562	0.562	0.351		20.9		
Head	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	0.01	2441.00	39	1	19.5	18.69	Left Cheek	0	0.231	1.205	1.016	0.283	0.283	0.177		23.9		
Head	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	0.02	2441.00	39	1	19.5	18.69	Left Tilt	0	0.137	1.205	1.016	0.168	0.168	0.105		26.1		
			A	NSI/IEEE C95.1 1	.992 - SAFET	LIMIT										Head							
					al Peak											W/kg (mW/g)							
			Unco	ntrolled Exposu	re/General I	Population									averag	ged over 1 gram							
Note: Blue entry repres	sents variability measurement																						

Table 12-68

2.4 GHz Bluetooth Antenna H Body-worn/Hotspot SAR

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]		Test Position		Measured 1g SAR [W/kg]				Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot #	Plimit	Overall Plimit [dBm]	Plimit
Body-worn/Hotspot	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	0.02	2441.00	39	1	19.5	18.69	Back	10	0.138	1.205	1.016	0.169	0.244	0.153	A48	26.1		
Hotspot	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	0.01	2441.00	39	1	19.5	18.69	Front	10	0.177	1.205	1.016	0.217	0.313	0.196		25.0	21.2	20.0
Hotspot	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	0.07	2441.00	39	1	19.5	18.69	Тор	10	0.106	1.205	1.016	0.130	0.188	0.118		27.2	21.2	20.0
Hotspot	2.4 GHz Bluetooth	FHSS	Н	0629M	76.80	-0.02	2441.00	39	1	19.5	18.69	Left	10	0.430	1.205	1.016	0.526	0.761	0.476	A49	21.2		
			A	NSI/IEEE C95.1	1992 - SAFETY	LIMIT							•	•	•	Body	•	•					
				Spati	ial Peak										1.6 \	N/kg (mW/g)							
			Unco	ntrolled Exposu	ire/General F	Population									averag	ed over 1 gram							

Table 12-69

2.4 GHz Bluetooth Antenna J Head SAR

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted Power [dBm]	Test Position	Spacing [mm]	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor		Adjusted 1g SAR [W/kg]	Exposure Ratio (1g SAR)	Plot#	Plimit [dBm]	Overall Plimit [dBm]	EFS Plimit [dBm]
Head	2.4 GHz Bluetooth	FHSS	J	0629M	76.80	0.02	2441.00	39	1	19.5	18.59	Right Cheek	0	0.253	1.233	1.016	0.317	0.577	0.361		23.4		
Head	2.4 GHz Bluetooth	FHSS	J	0629M	76.80	0.08	2441.00	39	1	19.5	18.59	Right Tilt	0	0.039	1.233	1.016	0.049	0.089	0.056		31.5	21.0	21.0
Head	2.4 GHz Bluetooth	FHSS	J	0629M	76.80	-0.01	2441.00	39	1	19.5	18.59	Left Cheek	0	0.437	1.233	1.016	0.547	0.996	0.623		21.0	21.0	21.0
Head	2.4 GHz Bluetooth	FHSS	J	0629M	76.80	0.02	2441.00	39	1	19.5	18.59	Left Tilt	0	0.062	1.233	1.016	0.078	0.141	0.088		29.5		1
			A	NSI/IEEE C95.1 1	1992 - SAFETY	LIMIT										Head							
				Spati	al Peak										1.6 \	N/kg (mW/g)							
			Unco	ntrolled Exposu	re/General F	Population									averag	ed over 1 gram							

Table 12-70

2.4 GHz Bluetooth Antenna J Body-worn/Hotspot SAR

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]		Test Position	Spacing [mm]	Measured 1g SAR [W/kg]			Reported 1g SAR [W/kg]			Plot #		Overall Plimit [dBm]	EFS Plimit [dBm]
Body-worn/Hotspot	2.4 GHz Bluetooth	FHSS	J	0629M	76.80	0.05	2441.00	39	1	19.5	18.59	Back	10	0.060	1.233	1.016	0.075	0.368	0.230		29.6		
Hotspot	2.4 GHz Bluetooth	FHSS	J	0629M	76.80	0.00	2441.00	39	1	19.5	18.59	Front	10	0.096	1.233	1.016	0.120	0.589	0.368		27.6	27.6	25.3
Hotspot	2.4 GHz Bluetooth	FHSS	J	0629M	76.80	0.03	2441.00	39	1	19.5	18.59	Тор	10	0.004	1.233	1.016	0.005	0.025	0.016		41.4	27.0	25.3
Hotspot	2.4 GHz Bluetooth	FHSS	_	0629M	76.80	0.02	2441.00	39	1	19.5	18.59	Right	10	0.025	1.233	1.016	0.031	0.153	0.096		33.4		
			A	NSI/IEEE C95.1 1		LIMIT										Body							
				Spati	al Peak										1.6 \	N/kg (mW/g)							
			Unco	ntrolled Exposu	re/General F	opulation									averag	ed over 1 gram							

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 89 of 107

12.20 2.4 GHz Bluetooth MIMO Standalone SAR

Table 12-71

2.4 GHz Bluetooth MIMO Head SAR

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power (dBm)	Conducted Power [dBm]	Max Allowed Power (2nd ant) [dBm]	Conducted Power (2nd ant) [dBm]	Test Position	Spacing (mm)	Measured 1g SAR [W/kg]	Power Scaling Factor	Duty Cycle Scaling Factor	Reported 1g SAR [W/kg]			Plot#	Plimit (dBm)	Overall Plimit [dBm]	EFS Plimit [dBm]
Head	2.4 GHz Bluetooth	FHSS	MIMO	0629M	77.07	0.01	2441.00	39	1	15.5	15.30	15.5	14.74	Right Cheek	0	0.355	1.191	1.025	0.433	0.993	0.621		18.1		
Head	2.4 GHz Bluetooth	FHSS	MIMO	0629M	77.07	0.00	2441.00	39	1	15.5	15.30	15.5	14.74	Right Tilt	0	0.176	1.191	1.025	0.215	0.492	0.308		21.1	18.1	18.1
Head	2.4 GHz Bluetooth	FHSS	MIMO	0629M	77.07	0.03	2441.00	39	1	15.5	15.30	15.5	14.74	Left Cheek	0	0.157	1.191	1.025	0.192	0.439	0.274		21.6	10.1	10.1
Head	2.4 GHz Bluetooth	FHSS	MIMO	0629M	77.07	0.05	2441.00	39	1	15.5	15.30	15.5	14.74	Left Tilt	0	0.069	1.191	1.025	0.084	0.193	0.121		25.2		
				Α.	NSI/IEEE C95	.1 1992 - SAF	ETY LIMIT											Head							
						atial Peak											1.61	N/kg (mW/g)							
				Unco	ntrolled Exp	osure/Gener	al Population										avera	ed over 1 gram							

Table 12-72

2.4 GHz Bluetooth MIMO Body-worn/Hotspot SAR

Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle [%]	Power Drift [dB]	Frequency [MHz]	Channel #		Max Allowed Power [dBm]	Conducted			Test Position	Spacing (mm)	Measured 1g SAR [W/kg]			Reported 1g SAR [W/kg]			Plimit	Overall Plimit [dBm]	EFS Plimit [dBm]
Body-worn/Hotspot	2.4 GHz Bluetooth	FHSS	MIMO	0629M	77.07	-0.02	2441.00	39	1	15.5	15.30	15.5	14.74	Back	10	0.067	1.191	1.025	0.082	0.277	0.173	25.3		
Hotspot	2.4 GHz Bluetooth	FHSS	MIMO	0629M	77.07	0.03	2441.00	39	1	15.5	15.30	15.5	14.74	Front	10	0.092	1.191	1.025	0.112	0.381	0.238	23.9		
Hotspot	2.4 GHz Bluetooth	FHSS	MIMO	0629M	77.07	0.00	2441.00	39	1	15.5	15.30	15.5	14.74	Top	10	0.044	1.191	1.025	0.054	0.182	0.114	27.1	20.8	19.8
Hotspot	2.4 GHz Bluetooth	FHSS	MIMO	0629M	77.07	0.04	2441.00	39	1	15.5	15.30	15.5	14.74	Right	10	0.016	1.191	1.025	0.020	0.066	0.041	31.5		
Hotspot	2.4 GHz Bluetooth	FHSS	MIMO	0629M	77.07	0.00	2441.00	39	1	15.5	15.30	15.5	14.74	Left	10	0.190	1.191	1.025	0.232	0.786	0.491	20.8		
				A	NSI/IEEE C9	.1 1992 - SAF	ETY LIMIT											Body						
						atial Peak											1.6	V/kg (mW/g)						
				Unco	ntrolled Exp	osure/Gener	al Population										averag	ed over 1 gram						
Note: To achieve the 18	3.5 dBm maximum allowed MIN	AO power shown	in the docu	mentation, ead	h antenna tr	ansmits at a r	naximum allow	ed power of 15.	5 dBm.															

12.21 UWB Standalone SAR

	UWB Antenna 1 Phablet SAR and APD														
Exposure	Band / Mode	Service / Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Test Position	Spacing [mm]	Measured 10g SAR [W/kg]	Exposure Ratio (10g SAR)	Plot#		
Phablet	UWB	CW	1	0501M	1:1	0.03	6489.60	5	Back	0	0.000	0.000			
Phablet	UWB	CW	1	0501M	1:1	0.02	7987.20	9	Back	0	0.000	0.000			
Phablet	UWB	CW	1	0501M	1:1	0.09	6489.60	5	Front	0	0.000	0.000			
Phablet	UWB	CW	1	0501M	1:1	0.08	7987.20	9	Front	0	0.001	0.000	A50		
Phablet	UWB	CW	1	0501M	1:1	0.03	6489.60	5	Тор	0	0.000	0.000	Į.		
Phablet	UWB	CW	1	0501M	1:1	0.03	7987.20	9	Тор	0	0.000	0.000	į		
Phablet	UWB	CW	1	0501M	1:1	0.09	6489.60	5	Left	0	0.000	0.000	į		
Phablet	UWB	CW	1	0501M	1:1	0.14	7987.20	9	Left	0	0.000	0.000	į.		
		ANSI/IEEE C	95.1 1992 - 9	SAFETY LIMIT							Phablet				
			Spatial Peal						4.0 W/kg (mW/g)						
		Uncontrolled E	xposure/Ge	neral Population					averaged over 10 grams						
Exposure	Band/ Mode	Service/ Modulation	Ant.	Serial Number	Duty Cycle	Power Drift [dB]	Frequency [MHz]	Channel #	Test Position	Spacing [mm]	Measured APD [W/m² (4cm²)]	APD Exposure Ratio	Plot#		
Phablet	UWB	CW	1	0501M	1:1	0.03	6489.60	5	Back	0	0.001	0.000	į		
Phablet	UWB	CW	1	0501M	1:1	0.02	7987.20	9	Back	0	0.015	0.001			
Phablet	UWB	CW	1	0501M	1:1	0.09	6489.60	5	Front	0	0.006	0.000			
Phablet	UWB	CW	1	0501M	1:1	0.08	7987.20	9	Front	0	0.024	0.001	A50		
Phablet	UWB	CW	1	0501M	1:1	0.03	6489.60	5	Тор	0	0.012	0.001			
Phablet	UWB	CW	1	0501M	1:1	0.03	7987.20	9	Тор	0	0.007	0.000			
Phablet	UWB	CW	1	0501M	1:1	0.09	6489.60	5	Left	0	0.011	0.001			
Phablet	UWB	CW	1	0501M	1:1	0.14	7987.20	9	Left	0	0.008	0.000			

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 90 of 107

12.22 NFC Standalone SAR

Table 12-74 NFC Phablet SAR

Exposure Band / Mode Signal Type Ant. Serial Number Power Drift Frequency [dB] Test Position Spacing [mm] Measured 10g SAR [W/kg] Flot # (10g SAR) Plot # (1					141 0 1 114	2.01						
Phablet NFC B NFC 1442M 0.01 13.60 Front 0 0.000 0.000 Phablet NFC B NFC 1442M 0.06 13.60 Top 0 0.000 0.000 Phablet NFC B NFC 1442M 0.02 13.60 Left 0 0.000 0.000 ANSI/IEEE C95.1 1992 - SAFETY LIMIT Phablet Spatial Peak 4.0 W/kg (mW/g)	Exposure	Band / Mode	Signal Type	Ant.	Serial Number			Test Position	Spacing [mm]	•		Plot#
Phablet NFC B NFC 1442M 0.06 13.60 Top 0 0.000 0.000 Phablet NFC B NFC 1442M 0.02 13.60 Left 0 0.000 0.000 ANSI/IEEE C95.1 1992 - SAFETY LIMIT Phablet Spatial Peak 4.0 W/kg (mW/g)	Phablet	NFC	В	NFC	1442M	-0.03	13.60	Back	0	0.014	0.004	A51
Phablet NFC B NFC 1442M 0.02 13.60 Left 0 0.000 0.000 ANSI/IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Phablet 4.0 W/kg (mW/g)	Phablet	NFC	В	NFC	1442M	0.01	13.60	Front	0	0.000	0.000	
ANSI/IEEE C95.1 1992 - SAFETY LIMIT Phablet Spatial Peak 4.0 W/kg (mW/g)	Phablet	NFC	В	NFC	1442M	0.06	13.60	Тор	0	0.000	0.000	
Spatial Peak 4.0 W/kg (mW/g)	Phablet	NFC	В	NFC	1442M	0.02	13.60	Left	0	0.000	0.000	
		ANSI/IEEE	Phablet									
Uncontrolled Exposure/General Population averaged over 10 grams			Spatial Peak		4.0 W/kg (mW/g)							
		Uncontrolled		average	ed over 10 grams	i						

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 91 of 107

SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D01v06r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 14 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 7.7 for more details).
- 10. Per FCC KDB Publication 648474 D01v06r03, this device is considered a "phablet" since the display diagonal dimension is > 150 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.
- 11. This device supports dynamic antenna tuning for some bands. Per FCC Guidance, SAR was measured according to the normally required SAR measurement configurations with tuner active. The auto-tune state determined by the device was verified before and after each SAR measurement and is listed in tables above. Please see Section 15 for supplemental data.
- 12. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the 1g thresholds for the equivalent test cases.
- 13. This device uses Qualcomm Smart Transmit for WWAN/WLAN/BT operations to control and manage transmitting power in real time to ensure RF Exposure compliance. Per FCC Guidance, compliance for was assessed at the minimum of the time averaged power and the maximum output power for each band/mode/exposure condition (DSI).
- 14. Per October 2020 TCB Workshop notes, absorbed power density (APD) using a 4cm2 averaging area is reported based on SAR measurements.

GSM Test Notes:

- 1. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s).

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 92 of 107

UMTS Notes:

- UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s).

LTE Notes:

- LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 9.5.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- A-MPR was disabled for all SAR tests by setting NS=01 and MCC=001 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported 1g SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for LTE B41, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

NR Notes:

- 1. NR implementation supports SA and NSA mode. In EN-DC mode, NR operates with the LTE Bands shown in the NR FR1 checklist acting as anchor bands. Per FCC guidance, SAR tests for NR Bands and LTE Anchors Bands were performed separately due to limitations in SAR probe calibration factors.
- 2. Due to test setup limitations, SAR testing for NR TDD was performed using test mode software to establish the connection.
- 3. Simultaneous transmission analysis for EN-DC operations is addressed in the Part 2 Test Report (Serial Number can be found in the bibliography).
- 4. This device additionally supports some EN-DC conditions where additional LTE carriers are added on the downlink only.
- 5. Per FCC Guidance, NR modulations and RB Sizes/Offsets were selected for testing such that configurations with the highest output power were evaluated for SAR tests.
- 6. Per FCC KDB Publication 447498 D01v06, when the reported NR Band n41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations and > 1.5 W/kg for 10g evaluation, testing at the other channels was required for such test configurations.
- 7. For final implementation, NR Band n41 slot configuration is synchronized using maximum duty cycle of 100%. SAR testing was performed using FTM mode with a 100% duty cycle applied to match final duty cycle.
- 8. This device uses two transmit pathways for n41 operations (Path 1 and Path 2). For each exposure condition, the pathway with the highest target power was fully evaluated. The worst case for each antenna and exposure condition was additionally evaluated using the other path.

WLAN Notes:

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 93 of 107
		REV 22.0

- 1. For held-to-ear, hotspot, and phablet operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n/ax) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 9.6.5 for more information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 9.6.6 for more information.
- 4. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by either evaluating the sum of the 1g SAR values of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Multi-TX and Antenna SAR Considerations Appendix for complete analysis.
- 5. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 6. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 7. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.
- 8. Per FCC guidance, SAR was performed using 6.5 GHz SAR probe calibration factor for WIFI 6E. Per October 2020 TCB Workshop notes, 5 channels were tested for WIFI 6E.

Bluetooth Notes

- 1. Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 79% transmission duty factor for Bluetooth and 87% transmission duty factor for Bluetooth LE to determine compliance. See RF Conducted Power Section for the time domain plot and calculation for the duty factor of the device.
- 2. Head and Hotspot Bluetooth SAR were evaluated for BT BDR tethering applications.

UWB Notes:

- 1. UWB was evaluated for phablet based on expected usage conditions.
- 2. Per FCC guidance, SAR was performed using 6.5 GHz/8GHz probe calibration factor for UWB.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 94 of 107
		REV/ 22.0

13 POWER DENSITY DATA SUMMARY

13.1 6 GHz WIFI Power Density Results

Table 13-1

	I adie 1. Measurement resu																									
Frequency (MHz)	Channel	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power (Ant H)	Maximum Allowed Power (Ant E)	Conducted Power (Ant E)	Power Drift (dB)	Spacing (mm)	Antenna Config.	Peak	DUT Serial	Data Rate (Mbps)	Side	Duty Cycle (%)	Grid Step	iPD (W/m²)	Scaling Factor for Measurement Uncertainty per	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Normal psPD (W/m²)	Scaled Normal psPD	Total psPD (W/m²)	Scaled Total psPD (Wim²)	Plot#
					(Ant H) [dBm]	[dBm]	[dBm]	[dBm]					Number						IEC 62479				(W/m²)			
6345.00	79 67	802.11ax	OFDM	160	9.00	8.70		•	0.13	2	н	1 .	1433M	MCS0	Back	99.67	0.125		1.554	1.072	1.003	1.770	2.967	1.990	3.325 6.352	
6285.00	79	802.11ax 802.11ax	OFDM	40	17.00	8.70			0.00	2	н	1	1433M 1433M	MCS0 MCS0	Front	99.67	0.125		1.554	1.045	1.003	3.520 1.380	2.306	3.900 1.450	2.423	
6025.00	15	802.11ax	OFDM	160	9.00	8.32			-0.15	2	н		143300	MCS0	Left	99.67	0.125		1554	1.169	1.003	2.060	3.753	3.380	6.159	
6345.00	79	802.11ax	OFDM	160	9.00	8.70			-0.16	2	н	1	1433M	MCS0	Left	99.67	0.125		1.554	1.072	1.003	2.260	3.776	4.270	7.136	
6505.00	111	802.11ax	OFDM	160	9.00	8.43			0.02	2	н	1	1433M	MCS0	Left	99.67	0.125		1.554	1.140	1.003	2.400	4.264	3.710	6.592	
6825.00	175	802.11ax	OFDM	160	9.00	8.24			0.10	2	н	1	1433M	MCS0	Left	99.67	0.125	0.424	1.554	1.191	1.003	0.954	1.771	1.620	3.007	
6985.00	207	802.11ax	OFDM	160	9.00	8.35			-0.01	2	н	1	1433M	MCS0	Left	99.67	0.125		1.554	1.161	1.003	0.862	1.560	1.310	2.371	
6825.00	175	802.11ax	OFDM	160	9.00	8.24			0.14	8.78	н	1	1433M	MCS0	Left	99.67	0.125	0.454	1.554	1.191	1.003	0.385	0.715	0.482	0.896	
6025.00	025:00 15 802:11ax OFDM 160 9.00 8.56 0.13 2 E 1								1	1433M	MCS0	Back	99.67	0.125		1.554	1.107	1.003	2.300	3.969	2.560	4.417				
5965.00	98600 3 802.11ax OFDM 40 · · 17.00 16.21 0.12 2 E 1									1	1433M	MCS0	Front	99.67	0.125		1.554	1.199	1.003	2.500	4.672	2.960	5.513			
6285.00	6285.00 67 802.11ax OFDM 40									1	1433M	MCS0	Front	99.67	0.125		1.554	1.057	1.003	1.750	2.883	2.760	4.547			
6685.00	147	802.11ax	OFDM	40			17.00	16.89	-0.12	2	E	1	1433M	MCS0	Front	99.67	0.125		1.554	1.026	1.003	2.200	3.518	2.650	4.238	
6465.00	103	802.11ax	OFDM	80			16.00	15.97	-0.03	2	E	1	1433M	MCS0	Front	99.67	0.125		1.554	1.007	1.003	2.220	3.484	3.190	5.007	
7025.00	215	802.11ax	OFDM	80			15.50	15.44	0.07	2	E	1	1433M	MCS0	Front	99.67	0.125		1.554	1.014	1.003	2.620	4.141	3.110	4.915	
6025.00	15	802.11ax	OFDM	160			9.00	8.56	0.12	2	E	1	1433M	MCS0	Тор	99.67	0.125		1.554	1.107	1.003	1.390	2.398	1.450	2.502	
6025.00	15	802.11ax	OFDM	160	-		9.00	8.56	0.16	2	E	1	1433M	MCS0	Right	99.67	0.125		1.554	1.107	1.003	0.900	1.553	1.000	1.725	
6825.00	175	802.11ax	OFDM	160	9.00	8.26	9.00	8.99	-0.14	2	ммо	1	1433M	MCS0	Back	99.67	0.125	٠	1.554	1.186	1.003	1.560	2.884	1.810	3.346	
6825.00	175	802.11ax	OFDM	160	9.00	8.26	9.00	8.99	0.12	2	ММО	2	1433M	MCS0	Back	99.67	0.125		1.554	1.186	1.003	1.210	2.237	1.460	2.699	
5965.00	3	802.11ax	OFDM	40	17.00	16.99	17.00	16.41	0.19	2	MMO	1	1433M	MCS0	Front	99.67	0.125		1.554	1.146	1.003	3.310	5.912	3.750	6.698	
5965.00	3	802.11ax	OFDM	40	17.00	16.99	17.00	16.41	4.18	2	MMO	2	1433M	MCS0	Front	99.67	0.125		1.554	1.146	1.003	3.620	6.466	4.060	7.234	
6285.00	67	802.11ax	OFDM	40	17.00	16.93	17.00	16.45	0.17	2	MMO	1	1433M	MCS0	Front	99.67	0.125		1.554	1.135	1.003	3.320	5.873	3.830	6.776	
6285.00	67	802.11ax	OFDM	40	17.00	16.93	17.00	16.45	2.46	2	ММО	2	1433M	MCS0	Front	99.67	0.125	٠	1.554	1.135	1.003	3.790	6.705	4.090	7.236	
6465.00	103	802.11ax	OFDM	80	16.00	15.80	16.00	15.99	0.14	2	MMO	1	1433M	MCS0	Front	99.67	0.125		1.554	1.047	1.003	3.070	5.010	3.190	5.206	
6465.00	103	802.11ax	OFDM	80	16.00	15.80	16.00	15.99	0.19	2	MMO	2	1433M	MCS0	Front	99.67	0.125	•	1.554	1.047	1.003	2.160	3.525	2.820	4.602	
6465.00	147	802.11ax	OFDM	40	17.00	16.98	17.00	16.70	-0.12	2	MMO	1	1433M	MCS0	Front	99.67	0.125		1.554	1.072	1.003	2.340	3.910	2.820	4.712	A52
6685.00	147	802.11ax 802.11ax	OFDM	40 80	17.00	16.98	17.00	16.70	0.19	2	MMO	2	1433M 1433M	MCS0 MCS0	Front	99.67 99.67	0.125		1.554	1.072	1.003	3.910	6.533 2.918	4.280 2.090	7.151	A52
7025.00	215	802.11ax	OFDM	80	15.50	15.22	15.50	15.18	0.18	2	MMO	2	1433M 1433M	MCS0	Front	99.67	0.125		1.554	1.076	1.003	0.943	1.582	1.040	1.744	
7025.00	175	802.11ax	OFDM	160	9.00	8.26	9.00	8.99	0.10	2	MMO	1	1433M	MCSO	Top	99.67	0.125		1.554	1.186	1.003	0.627	1.159	0.647	1.196	
6825.00	175	802.11ax	OFDM	160	9.00	8.26	9.00	8.99	0.03	2	MMO	1	1433M	MCS0	Left	99.67	0.125		1.554	1.186	1.003	2.230	4.122	2.740	5.065	
6825.00	175	802.11ax	OFDM	160	9.00	8.26	9.00	8.99	0.00	2	MMO	1	1433M	MCS0	Right	99.67	0.125		1.554	1.186	1.003	0.572	1.057	0.640	1.183	
	48 CFR 51:3190-SAFETYLMRT Spatial Average Uncontrolled Exposure Vidensal Population								Powr Density 10 Wile*																	
			-		Uncontrolle	= exposure / Gene	rai ropulation			-		_	10 Win? averaged over 4 cm131													

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 95 of 107

13.2 UWB Power Density Results

Table 13-2

							MEASU	REMENT RES	JLTS							
Frequency (MHz)	Channel	Mode	Power Drift (dB)	Spacing (mm)	Antenna Config.	DUT Serial Number	Side	Grid Step (λ)	iPD (W/m²)	Scaling Factor for Measurement Uncertainty per IEC 62479	Normal psPD (W/m²)	Scaled Normal psPD (W/m²)	Total psPD (W/m²)	Scaled Total psPD (W/m²)	Plot #	
6489.60	5	cw	0.12	2	1	0501M	Back	0.125	-	1.554	1.230	1.911	1.290	2.005	A53	
6489.60	5	cw	0.10	2	1	0501M	Front	0.125	-	1.554	0.762	1.184	0.785	1.220		
6489.60	5	cw	0.11	2	1	0501M	Тор	0.125	-	1.554	0.903	1.403	0.937	1.456		
6489.60	5	cw	0.16	9.24	1	0501M	Left	0.125	0.435	1.554	0.246	0.382	0.254	0.395		
6489.60	5	cw	0.16	2	1	0501M	Left	0.125	0.465	1.554	0.203	0.315	0.224	0.348		
7987.20	9	cw	0.18	2	1	0501M	Back	0.125	-	1.554	1.040	1.616	1.080	1.678		
7987.20	9	cw	0.17	2	1	0501M	Front	0.125	-	1.554	0.460	0.715	0.492	0.765		
7987.20	7987.20 9 CW 0.12 2 1						Тор	0.125	-	1.554	0.778	1.209	0.813	1.263		
7987.20	87.20 9 CW 0.17 2 1						Left	0.125	-	1.554	0.278	0.432	0.287	0.446		
	47 CFR §1.1310 - SAFETY LIMIT Spatial Average Uncontrolled Exposure / General Population						Power Density 10 W/m² averaged over 4 cm²									

Power Density General Notes

- 1. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 2. Batteries are fully charged at the beginning of the measurements. The DUT was connected to a wall charger for some measurements due to the test duration. It was confirmed that the charger plugged into this DUT did not impact the near-field PD test results.
- 3. Power density was calculated by repeated E-field measurements on two measurement planes separated by $\lambda/4$.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools.
- 5. Per FCC guidance and equipment manufacturer guidance, power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.68 dB (85.4%) was used to determine the psPD measurement scaling factor.
- 6. Per equipment manufacturer guidance, power density was measured at d=2mm and d= λ /5mm using the same grid size and grid step size for some frequencies and surfaces. The integrated radiated power (iPD - incident power density) was calculated based on these measurements. Since iPD ratio between the two distances is ≥ -1dB, the grid step was sufficient for determining compliance at d=2mm.
- 7. psPD for MIMO was evaluated by making a measurement with both antennas transmitting simultaneously.
- 8. PTP-PR algorithm was used during psPD measurement and calculations.
- 9. PD results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D04.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 96 of 107

14 SAR MEASUREMENT VARIABILITY

Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1a SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 14-1 Head SAR Measurement Variability Results

	HEAD VARIABILITY RESULTS													
Band	FREQU	JENCY	Mode Service				Antenna Config	Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.						(W/kg)	(W/kg)		(W/kg)		(W/kg)	
750	782.00	23230	LTE Band 13, 10 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	Left	Cheek	Е	1.020	1.000	1.02	N/A	N/A	N/A	N/A
835	836.50	167300	NR Band n5, 20 MHz Bandwidth	DFT-s-OFDM, QPSK, 50 RB, 28 RB Offset	Left	Cheek	Е	1.050	1.020	1.03	N/A	N/A	N/A	N/A
2450	2441.00	39	2.4 GHz Bluetooth	FHSS	Right	Cheek	Н	0.805	0.752	1.07	N/A	N/A	N/A	N/A
2600	2592.99	518598	NR Band n41, 100 MHz Bandwidth	CP-OFDM, 1 RB, 1 RB Offset	Right	Tilt	F	0.866	0.865	1.00	N/A	N/A	N/A	N/A
			ANSI / IEEE C95.1 1992 - SAFETY	Head										
	Spatial Peak Uncontrolled Exposure/General Population							á	1.6 W/kg averaged ov		m			

Table 14-2 Body SAR Measurement Variability Results

	body OAR Medsurement variability Results													
	BODY VARIABILITY RESULTS													
Band	FREQUENCY		Mode	Service Si	Side	Side Spacing	Antenna Config	Measured SAR (1g)	Repeated	Ratio	2nd Repeated SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz	Ch.						(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1745.00	132322	LTE Band 66, 20 MHz Bandwidth	QPSK, 1 RB, 99 RB Offset	Bottom	10	Α	0.888	0.804	1.10	N/A	N/A	N/A	N/A
1900	1900.00	19100	LTE Band 2, 20 MHz Bandwidth	QPSK, 1 RB, 50 RB Offset	Bottom	10	Α	0.811	0.766	1.06	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Body								
	Spatial Peak								1.6 V	V/kg (m\	N/g)			
			Uncontrolled Exposure/General	ral Population					average	ed over '	l gram			

14.2 **Measurement Uncertainty**

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 97 of 107

REV/ 22.0

15 ADDITIONAL TESTING PER FCC GUIDANCE

Tuner Testing 15.1

Per April 2019 TCB Workshop Notes, the following test procedures were followed to demonstrate that the SAR results in Section 11 represented the appropriate SAR test conditions. For bands with dynamic tuning implemented, SAR was measured according to the required FCC SAR test procedures with the dynamic tuner active to allow the device to automatically tune to the antenna state for the respective RF exposure test configurations. Additional single point SAR time-sweep measurements were evaluated for other tuner states to determine that the other tuner configurations would result in equivalent or lower SAR values. The additional tuner hardware has no influence on the antenna characteristics, other than impedance matching.

To evaluate all the tuner states, the 96 tuner states were divided among the aggregate band, mode and exposure combinations. Single point time-sweep measurements were performed at the peak SAR location determined by the zoom scan of the configuration with the highest measured SAR for each combination. The tuner state was able to be established remotely so that the device was not moved for the entire series of single point SAR for the tuner states in each combination. The SAR probe remained stationary at the same position throughout the entire series of single point measurements for each combination. When the single point SAR or 1g SAR was > 1.2 W/kg for a particular band/mode/exposure condition, point SAR measurements were made for all 96 states.

The operational description contains more information about the design and implementation of the dynamic antenna tuning.

Table 15-1 UMTS Supplemental Head SAR Data

- cappionional frodu er at						
UMT	UMTS B5					
RN	ИС					
Test Position	Left Cheek					
Frequency (MHz)	836.60					
Channel	4183					
Measured 1g SAR (W/kg)	0.086					
Average Value of T	īme Sweep (W/kg)					
Auto-tune (State 0)	0.094					
Default (State 0)	0.097					
State 0	0.097					
State 37	0.072					
State 69	0.068					
State 70	0.059					
State 107	0.024					
State 108	0.023					

Table 15-2 LTE Supplemental Head SAR Data

	ETE dappiemental fieda OAN Bata									
LTE	B12	LTE B13 LTE B5		B5	LTE B66		LTE B2			
QPSK, 10 MHz Band	dwidth, 1 RB, 49 RB	QPSK, 10 MHz Ban	dwidth, 1 RB, 0 RB	QPSK, 10 MHz Bandwidth, 1 RB, 49 RB		QPSK, 20 MHz Bandwidth, 1 RB, 99 RB		QPSK, 20 MHz Bandwidth, 1 RB, 99 RB		
Off	set	Off	set	Offset		Off	set	Off	set	
Test Position	Right Cheek	Test Position	Left Cheek	Test Position	Left Cheek	Test Position	Right Cheek	Test Position	Right Cheek	
Frequency (MHz)	707.50	Frequency (MHz)	782.00	Frequency (MHz)	836.50	Frequency (MHz)	1770.00	Frequency (MHz)	1860.00	
Channel	23095	Channel	23230	Channel	20525	Channel	132572	Channel	18700	
Measured 1g SAR	0.089	Measured 1g SAR	0.094	Measured 1g SAR	0.088	Measured 1g SAR	0.151	Measured 1g SAR	0.076	
(W/kg)		(W/kg)		(W/kg)		(W/kg)		(W/kg)		
Average Value of T	ime Sweep (W/kg)	Average Value of T	erage Value of Time Sweep (W/kg)		Average Value of Time Sweep (W/kg)		Average Value of T	ime Sweep (W/kg)		
Auto-tune (State 137)	0.088	Auto-tune (State 0)	0.096	Auto-tune (State 0)	0.092	Auto-tune (State 99)	0.198	Auto-tune (State 100)	0.095	
Default (State 0)	0.069	Default (State 0)	0.099	Default (State 0)	0.091	Default (State 99)	0.172	Default (State 113)	0.072	
State 7	0.025	State 0	0.099	State 0	0.091	State 14	0.138	State 17	0.056	
State 30	0.068	State 8	0.044	State 11	0.054	State 23	0.017	State 20	0.011	
State 62	0.054	State 29	0.082	State 26	0.045	State 55	0.036	State 52	0.068	
State 77	0.033	State 61	0.044	State 58	0.068	State 84	0.153	State 87	0.072	
State 100	0.066	State 78	0.037	State 81	0.033	State 93	0.026	State 90	0.015	
State 115	0.012	State 99	0.065	State 96	0.068	State 99	0.172	State 100	0.086	
State 137	0.086	State 116	0.005	State 119	0.067	State 122	0.156	State 125	0.009	

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 98 of 107

Table 15-3 NR Supplemental Head SAR Data

		I I I I OGG OT TITE DE					
Supplemental Head SAR Data							
NR Ba	and n5	NR Band n66					
DFT-s-OFDM QPSK	, 20 MHz Bandwidth,	DFT-s-OFDM QPSK	,45 MHz Bandwidth,				
50 RB, 28	RB Offset	120 RB, 61	RB Offset				
Test Position	Left Cheek	Test Position	Right Cheek				
Frequency (MHz)	836.50	Frequency (MHz)	1745.00				
Channel	167300	Channel	349000				
Measured 1g SAR	0.096	Measured 1g SAR	0.120				
(W/kg)	0.090	(W/kg)	0.120				
Average Value of T	īme Sweep (W/kg)	Average Value of Time Sweep (W/kg)					
Auto-tune (State 0)	0.091	Auto-tune (State 106)	0.122				
Default (State 0)	0.100	Default (State 99)	0.130				
State 0	0.100	State 13	0.101				
State 15	0.052	State 24	0.014				
State 22	0.076	State 45	0.099				
State 47	0.570	State 83	0.104				
State 85	0.069	State 94	0.024				
State 92	0.074	State 106	0.129				
State 130	0.099	State 132	0.025				

Table 15-4
UMTS Supplemental Body SAR Data

UMT	S B5					
RMC						
Test Position	Back					
Spacing	10 mm					
Frequency (MHz)	836.60					
Channel	4183					
Measured 1g SAR (W/kg)	0.210					
Average Value of T	īme Sweep (W/kg)					
Auto-tune (State 0)	0.234					
Default (State 0)	0.230					
State 0	0.230					
State 10	0.136					
State 27	0.168					
State 42	0.089					
State 80	0.055					
State 97	0.143					
State 135	0.074					

Table 15-5 LTE Supplemental Body SAR Data

				аррісінсіі					
LTE	B12	LTE	LTE B13 LTE B5		B5	LTE E	366	LTE B2	
QPSK, 10 MHz Ban	dwidth, 1 RB, 49 RB	QPSK, 10 MHz Bandwidth, 1 RB, 0 RB QPSK, 10 MH		QPSK, 10 MHz Ban	dwidth, 1 RB, 49 RB	QPSK, 20 MHz Bandwidth, 1 RB, 99 RB		QPSK, 20 MHz Bandwidth, 1 RB, 50 RB	
Off	set	Off	set	Off	set	Offs	et	Offs	et
Test Position	Back	Test Position	Back	Test Position	Back	Test Position	Bottom	Test Position	Bottom
Spacing	10 mm	Spacing	10 mm	Spacing	10 mm	Spacing	10 mm	Spacing	10 mm
Frequency (MHz)	707.50	Frequency (MHz)	782.00	Frequency (MHz)	836.50	Frequency (MHz)	1745.00	Frequency (MHz)	1900.00
Channel	23095	Channel	23230	Channel	20525	Channel	132322	Channel	19100
Measured 1g SAR (W/kg)	0.154	Measured 1g SAR (W/kg)	0.226	Measured 1g SAR (W/kg)	0.277	Measured 1g SAR (W/kg)	0.888	Measured 1g SAR (W/kg)	0.811
Average Value of T	ime Sweep (W/kg)	Average Value of T	îme Sweep (W/kg)	Average Value of Time Sweep (W/kg)		Average Value of Time Sweep (W/kg)		Average Value of Time Sweep (W/kg)	
Auto-tune (State 27)	0.173	Auto-tune (State 0)	0.250	Auto-tune (State 1)	0.304	Auto-tune (State 107)	0.989	Auto-tune (State 100)	0.952
Default (State 0)	0.151	Default (State 0)	0.255	Default (State 0)	0.316	Default (State 99)	0.218	Default (State 113)	0.701
State 0	0.151	State 0	0.255	State 0	0.316	State 3	0.659	State 6	0.581
State 3	0.100	State 2	0.226	State 1	0.310	State 28	0.930	State 25	0.098
State 27	0.168	State 34	0.125	State 31	0.241	State 41	0.160	State 44	0.106
State 34	0.098	State 35	0.098	State 38	0.232	State 66	0.833	State 63	0.776
State 35	0.076	State 72	0.229	State 69	0.241	State 107	0.943	State 100	0.946
State 73	0.109	State 105	0.112	State 108	0.088	State 111	0.77	State 114	0.708
State 104	0.108	State 142	0.080	State 139	0.270	State 136	0.265	State 133	0.795

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 99 of 107
		REV 22.0

Table 15-6 NR Supplemental Body SAR Data

Nik Supplemental Body SAR Bata							
	Supplemental Body SAR Data						
NR Ba	and n5	NR Ba	nd n66				
DFT-s-OFDM QPSK	, 20 MHz Bandwidth,	DFT-s-OFDM QPSK	, 45 MHz Bandwidth,				
50 RB, 28	RB Offset	120 RB, 0	RB Offset				
Test Position	Back	Test Position	Bottom				
Spacing	10 mm	Spacing	10 mm				
Frequency (MHz)	836.50	Frequency (MHz)	1745.00				
Channel	167300	Channel	349000				
Measured 1g SAR	0.253	Measured 1g SAR	0.895				
(W/kg)	0.253	(W/kg)	0.095				
Average Value of T	īme Sweep (W/kg)	Average Value of Time Sweep (W/kg)					
Auto-tune (State 0)	0.275	Auto-tune (State 107)	0.965				
Default (State 0)	0.266	Default (State 99)	0.801				
State 0	0.266	State 13	0.584				
State 11	0.155	State 18	0.180				
State 20	0.213	State 51	0.543				
State 49	0.185	State 56	0.244				
State 58	0.196	State 107	0.845				
State 119	0.197	State 121	0.126				
State 128	0.146	State 126	0.570				

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 100 of 107

16 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4404B	Spectrum Analyzer	N/A	N/A	N/A	MY45113242
Agilent Agilent	E4438C E4438C	ESG Vector Signal Generator ESG Vector Signal Generator	3/25/2024 5/19/2024	Annual Annual	3/25/2025 5/19/2025	MY47270002 US41460739
Agient	N5182A	MXG Vector Signal Generator	3/7/2024	Annual	3/7/2025	MY47420603
Agilent	N9020A	MXG Vector Signal Generator	7/8/2024	Annual	7/8/2025	MY48010233
Agilent	8753ES	S-Parameter Vector Network Analyzer	1/10/2024	Annual	1/10/2025	MY40001472
Agilent Agilent	E5515C E5515C	Wireless Communications Test Set Wireless Communications Test Set	CBT	N/A N/A	CBT	GB46310798 US41140256
Agilent	E5515C	Wireless Communications Test Set	1/10/2024	Annual	1/10/2025	MY50262130
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB46170464
Amplifier Research Amplifier Research	15S1G6 15S1G6	Amplifier Amplifier	CBT	N/A N/A	CBT	433973 433974
Amplifier Research	150A100C	Amplifier	CBT	N/A	CBT	350132
Amplifier Research	15S1G6M3	Amplifier	7/10/2024	Annual	7/10/2025	390882
Anritsu Anritsu	MN8110B ML2496A	I/O Adaptor Power Meter	CBT 6/24/2024	N/A Annual	CBT 6/24/2025	6261747881 1840005
Anritsu	ML2495A	Power Meter	7/8/2024	Annual	7/8/2025	1039008
Anritsu	MA2411B	Pulse Power Sensor	7/1/2024	Annual	7/1/2025	1911105
Anritsu	MA2411B	Pulse Power Sensor	10/21/2024	Annual	10/21/2025	1027293
Anritsu Anritsu	MA24408A MT8821C	Microwace Peak Power Sensor Radio Communication Analyzer MT8821C	4/8/2024 12/15/2023	Annual Annual	4/8/2025 12/15/2024	11679 6200901190
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	5/15/2024	Annual	5/15/2025	6262150047
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	5/30/2024	Annual	5/30/2025	6262044715
Anritsu Anritsu	MT8000A MT8000A	Radio Communication Test Station Radio Communication Test Station	4/10/2024 5/2/2024	Annual Annual	4/10/2025 5/2/2025	6261987983 6272337436
Anritsu	MA24106A	USB Power Sensor	12/4/2023	Annual	12/4/2024	1520501
Anritsu	MA24106A	USB Power Sensor	4/15/2024	Annual	4/15/2025	1827528
Anritsu	MA24106A	USB Power Sensor	7/9/2024	Annual	7/9/2025	1244512
Anritsu Mini-Circuits	MA24106A PWR-4GHS	USB Power Sensor USB Power Sensor	1/10/2024 6/12/2024	Annual Annual	1/10/2025 6/12/2025	1344557 12001070013
Control Company	4052	Long Stem Thermometer	2/27/2024	Biennial	2/27/2026	240174346
Control Company	4052	Long Stem Thermometer	2/27/2024	Biennial	2/27/2026	240171096
Control Company Control Company	4052 4352	Long Stem Thermometer Ultra Long Stem Thermometer	2/27/2024 1/15/2024	Biennial Annual	2/27/2026 1/15/2025	240171059 160508097
Control Company Control Company	4040	Therm./ Clock/ Humidity Monitor	4/15/2024	Biennial	4/15/2025	240310280
Control Company	4040	Therm./ Clock/ Humidity Monitor	4/15/2024	Biennial	4/15/2026	240310282
Control Company	\$66279	Therm./ Clock/ Humidity Monitor	2/16/2024	Biennial	2/16/2026	240140051
Testo Testo	608-H1 608-H1	ALARM-HYGROMETER ALARM-HYGROMETER	4/11/2024 4/11/2024	Annual Annual	4/11/2025 4/11/2025	83316971 83316952
Testo	608-H1	ALARM-HYGROMETER	4/11/2024	Annual	4/11/2025	83316953
Mitutoyo	500-196-30	CD-6"ASX 6Inch Digital Caliper	2/16/2022	Triennial	2/16/2025	A20238413
Keysight Technologies Agilent	N9020A N9020A	MXA Signal Analyzer	4/11/2024 6/14/2024	Annual Annual	4/11/2025 6/14/2025	MY54500644 MY56470202
Keysight Technologies	N9020A N9020A	MXA Signal Analyzer MXA Signal Analyzer	7/8/2024	Annual	7/8/2025	MY48010233
MCL	BW-N10W5+	10dB Attenuator	7/9/2024	Annual	7/9/2025	1507
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
Mini-Circuits Mini-Circuits	VLF-6000+ VLF-6000+	Low Pass Filter DC to 6000 MHz Low Pass Filter DC to 6000 MHz	7/10/2024	N/A Annual	CBT 7/10/2025	N/A 31634
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	7/10/2023 CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	7/10/2024	Annual	7/10/2025	UU13301538
Mini-Circuits Mini-Circuits	NLP-2950+ NLP-2950+	Low Pass Filter DC to 2700 MHz Low Pass Filter DC to 2700 MHz	7/10/2024 CBT	Annual N/A	7/10/2025 CBT	UU19201507 N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Mini-Circuits	ZUDC10-83-S+	Directional Coupler	CBT	N/A	CBT	2050
Mini-Circuits Narda	ZUDC10-83-S+ 4772-3	Directional Coupler Attenuator (3dB)	7/9/2024 CBT	Annual N/A	7/9/2025 CBT	2111 9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
MCL	BW-N3WS+	Attenuator (3dB)	7/9/2024	Annual	7/9/2025	1608
Keysight Technologies Seekonk	8710-1765 NC-100	Torque Wrench Torque Wrench	4/2/2024 4/2/2024	Biennial Biennial	4/2/2026 4/2/2026	821000633 1262
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	1/10/2024	Annual	1/10/2025	131454
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	7/8/2024	Annual	7/8/2025	166818
Rohde & Schwarz Rohde & Schwarz	CMW500 CMW500	Wideband Radio Communication Tester Wideband Radio Communication Tester	1/10/2024	Annual Annual	1/10/2025	150117 171075
SPEAG	DAK-3.5	Dielectric Assessment Kit	10/15/2024	Annual	10/15/2025	1091
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	7/8/2024	Annual	7/8/2025	1039
SPEAG	MAIA	Modulation and Audio Interference Analyzer	N/A	N/A	N/A	1237
SPEAG SPEAG	MAIA MAIA	Modulation and Audio Interference Analyzer Modulation and Audio Interference Analyzer	N/A N/A	N/A N/A	N/A N/A	1331 1390
SPEAG	DAK-12	Dielectric Assessment Kit (4MHz - 3GHz)	3/11/2024	Annual	3/11/2025	1102
SPEAG	CLA-13	Confined Loop Antenna	9/4/2024	Annual	9/4/2025	1002
SPEAG SPEAG	D750V3 D835V2	750 MHz SAR Dipole 835 MHz SAR Dipole	2/7/2024 4/8/2024	Annual Annual	2/7/2025 4/8/2025	1046 4d119
SPEAG	D1750V2	1750 MHz SAR Dipole	11/7/2024	Annual	11/7/2025	1150
SPEAG	D1750V2	1750 MHz SAR Dipole	1/8/2022	Triennial	1/8/2025	1148
SPEAG	D1900V2	1900 MHz SAR Dipole	2/21/2022	Triennial Triennial	2/21/2025	5d148
SPEAG SPEAG	D1900V2 D1900V2	1900 MHz SAR Dipole 1900 MHz SAR Dipole	8/8/2022 4/12/2024	Triennial Annual	8/8/2025 4/12/2025	5d080 5d141
SPEAG	D2450V2	2450 MHz SAR Dipole	2/8/2024	Annual	2/8/2025	882
SPEAG	D2600V2	2600 MHz SAR Dipole	8/7/2024	Annual	8/7/2025	1126
SPEAG SPEAG	D2600V2 D5GHzV2	2600 MHz SAR Dipole 5 GHz SAR Dipole	6/14/2024 4/9/2024	Annual Annual	6/14/2025 4/9/2025	1009 1237
SPEAG	D6.5GHzV2	6.5 GHz SAR Dipole	2/22/2024	Annual	2/22/2025	1111
SPEAG	D8GHzV2	8GHz SAR Dipole	3/4/2024	Annual	3/4/2025	1007
SPEAG SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	9/10/2024 1/16/2024	Annual Annual	9/10/2025 1/16/2025	1364 1466
SPEAG	DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	4/18/2024	Annual	4/18/2025	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2024	Annual	2/9/2025	1645
SPEAG SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics	5/8/2024 3/12/2024	Annual Annual	5/8/2025 3/12/2025	1502 1272
SPEAG SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/12/2024	Annual Annual	3/12/2025 3/1/2025	1272 665
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2024	Annual	5/8/2025	728
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/16/2024	Annual	1/16/2025	1530
SPEAG SPEAG	DAE4 FX3DV4	Dasy Data Acquisition Electronics	9/10/2024	Annual	9/10/2025	1449 7558
SPEAG SPEAG	EX3DV4 EX3DV4	SAR Probe	9/11/2024	Annual	9/11/2025	7558 7565
SPEAG	EX3DV4	SAR Probe	2/9/2024	Annual	2/9/2025	7640
SPEAG	EX3DV4	SAR Probe	5/10/2024	Annual	5/10/2025	7402
SPEAG SPEAG	EX3DV4 FX3DV4	SAR Probe	3/8/2024	Annual	3/8/2025 4/17/2025	7527 7718
		SAR Probe	4/17/2024	Annual	4/17/2025	7659
SPEAG	EX3DV4					
SPEAG	EX3DV4	SAR Probe	5/10/2024	Annual	5/10/2025	3914
						3914 7713

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

Note: All equipment was used solely within its respective calibration period.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 101 of 107
		RFV 22 0

03/30/2022

MEASUREMENT UNCERTAINTIES

Applicable for SAR measurements < 6GHz:

e for SAR measurements < 6GHz:									
а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	vi
						_	(± %)	(± %)	
Measurement System									
Probe Calibration	E2.1	7	N	1	1	1	7.0	7.0	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	0.7	0.7	0.9	0.9	8
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	8
Linearity	E2.4	0.3	N	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.73	1	1	0.1	0.1	∞
Modulation Response	E.2.5	4.8	R	1.73	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	N	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E2.8	2.6	R	1.73	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E6.1	3	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	3	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.73	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.73	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.73	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.73	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	E3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E3.4	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E3.4	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1)					l	12.2	12.0	191	
Expanded Uncertainty k=2						24.4	24.0		
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 102 of 107

Applicable for SAR measurements > 6GHz:

Applicable for SAR measurements > 6GHz:				•				,	
а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
	IEEE	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	9.3	N	1	1	1	9.3	9.3	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	0.7	0.7	0.9	0.9	∞
Boundary Effect	E.2.3	2	R	1.73	1	1	1.2	1.2	∞
Linearity	E.2.4	0.3	Ν	1	1	1	0.3	0.3	∞
System Detection Limits	E.2.4	0.25	R	1.73	1	1	0.1	0.1	∞
Modulation Response	E.2.5	4.8	R	1.73	1	1	2.8	2.8	∞
Readout Electronics	E.2.6	0.3	Ν	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	3	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	3	R	1.73	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.8	R	1.73	1	1	0.5	0.5	∞
Probe Positioning w/ respect to Phantom	E.6.3	6.7	R	1.73	1	1	3.9	3.9	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	4	R	1.73	1	1	2.3	2.3	∞
Test Sample Related									
Test Sample Positioning	E.4.2	3.12	N	1	1	1	3.1	3.1	35
Device Holder Uncertainty	E.4.1	1.67	N	1	1	1	1.7	1.7	5
Output Power Variation - SAR drift measurement	E.2.9	5	R	1.73	1	1	2.9	2.9	∞
SAR Scaling	E.6.5	0	R	1.73	1	1	0.0	0.0	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Snape & Thickness tolerances)	E3.1	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	E.3.3	4.3	N	1	0.78	0.71	3.3	3.0	76
Liquid Permittivity - measurement uncertainty	E.3.3	4.2	N	1	0.23	0.26	1.0	1.1	75
Liquid Conductivity - Temperature Uncertainty	E3.4	3.4	R	1.73	0.78	0.71	1.5	1.4	∞
Liquid Permittivity - Temperature Unceritainty	E.3.4	0.6	R	1.73	0.23	0.26	0.1	0.1	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Combined Standard Uncertainty (k=1) RSS						13.8	13.6	191	
Expanded Uncertainty k=2						27.6	27.1		
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2013

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 103 of 107

Applicable for Power Density Measurements:

а	b	С	d	е	f =	g
					c x f/e	
	Unc.	Prob.			u _i	
Uncertainty Component	(± dB)	Dist.	Div.	C _i	(± dB)	V _i
Measurement System						
Calibration	0.49	N	1	1	0.49	∞
Probe Correction	0.00	R	1.73	1	0.00	∞
Frequency Response	0.20	R	1.73	1	0.12	∞
Sensor Cross Coupling	0.00	R	1.73	1	0.00	∞
Isotropy	0.50	R	1.73	1	0.29	∞
Linearity	0.20	R	1.73	1	0.12	∞
Probe Scattering	0.00	R	1.73	1	0.00	∞
Probe Positioning offset	0.30	R	1.73	1	0.17	∞
Probe Positioning Repeatability	0.04	R	1.73	1	0.02	∞
Sensor Mechanical Offset	0.00	R	1.73	1	0.00	∞
Probe Spatial Resolution	0.00	R	1.73	1	0.00	∞
Field Impedence Dependance	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Drift	0.00	R	1.73	1	0.00	∞
Amplitude and Phase Noise	0.04	R	1.73	1	0.02	8
Measurement Area Truncation	0.00	R	1.73	1	0.00	8
Data Acquisition	0.03	N	1	1	0.03	∞
Sampling	0.00	R	1.73	1	0.00	∞
Field Reconstruction	2.00	R	1.73	1	1.15	∞
Forward Transformation	0.00	R	1.73	1	0.00	∞
Power Density Scaling	0.00	R	1.73	1	0.00	∞
Spatial Averaging	0.10	R	1.73	1	0.06	∞
System Detection Limit	0.04	R	1.73	1	0.02	∞
Test Sample Related	·					
Probe Coupling with DUT	0.00	R	1.73	1	0.00	∞
Modulation Response	0.40	R	1.73	1	0.23	∞
Integration Time	0.00	R	1.73	1	0.00	∞
Response Time	0.00	R	1.73	1	0.00	8
Device Holder Influence	0.10	R	1.73	1	0.06	80
DUT alignment	0.00	R	1.73	1	0.00	80
RF Ambient Conditions	0.04	R	1.73	1	0.02	8
Ambient Reflections	0.04	R	1.73	1	0.02	8
Immunity/Secondary Reception	0.00	R	1.73	1	0.00	80
Drift of DUT	0.21	R	1.73	1	0.12	8
Combined Standard Uncertainty (k=1) RSS					1.34	8
Expanded Uncertainty k=2					2.68	
(95% CONFIDENCE LEVEL)						

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 104 of 107

18 CONCLUSION

Measurement Conclusion 18.1

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 105 of 107

19 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1-124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 106 of 107

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D04
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSMS938JPN	RF EXPOSURE PART 1 TEST REPORT	Approved by: Technical Manager
Document S/N: 1M2408260070-01.A3L	DUT Type: Portable Handset	Page 107 of 107