

Page 1 of 36

FCC Test Report

Report No.	:	1812C40197812501
Applicant	:	Shenzhen Pinwei Technology Co.,Ltd
Address	:	3rd Floor, Building 2, Longfeng Industrial Park, No.3 Tianxi Road, Fucheng Street, Longhua District, Shenzhen City, Guangdong Province, China
Product Name	:	HDMI Wireless extender
Report Date	:	Feb. 21, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Contents

1. General Information	6
1.1. Client Information1.2. Description of Device (EUT)1.3. Auxiliary Equipment Used During Test	6
1.4. Operation channel list	
1.5. Description of Test Modes	7
1.6. Measurement Uncertainty	
1.7. Test Summary 1.8. Description of Test Facility	
1.9. Disclaimer	
1.10. Test Equipment List	
2. Conducted Emission at AC power line	13
2.1. EUT Operation	
2.2. Test Setup	
2.3. Test Data	
3. Duty Cycle	
3.1. EUT Operation	
3.2. Test Setup 3.3. Test Data	
4. Emission bandwidth and occupied bandwidth	
4.1. EUT Operation	
4.2. Test Setup	
4.3. Test Data	
5. Maximum conducted output power	19
5.1. EUT Operation	19
5.2. Test Setup	
5.3. Test Data6. Power spectral density	
6.1. EUT Operation 6.2. Test Setup	
6.3. Test Data	
7. Band edge emissions (Conducted)	21
7.1. EUT Operation	
7.2. Test Setup	
7.3. Test Data	22
8. Band edge emissions (Radiated)	
8.1. EUT Operation	
8.2. Test Setup 8.3. Test Data	
9. Undesirable emission limits (below 1GHz)	
9.1. EUT Operation	
9.1. EOT Operation	
9.3. Test Data	

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

10. Undesirable emission limits (above 1GHz)	32
10.1. EUT Operation	
10.2. Test Setup	
10.3. Test Data	
APPENDIX I TEST SETUP PHOTOGRAPH	36
APPENDIX II EXTERNAL PHOTOGRAPH	36
APPENDIX III INTERNAL PHOTOGRAPH	36

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

TEST REPORT

Test Standard(s)	:	47 CFR Part 15E ANSI C63.10-2020 KDB 789033 D02 General UNII Test Procedures New Rules v02r01
Rating(s)	:	Input: 5V–1A
Trade Mark	:	N/A
Model No.	:	W3201, W3202, W3203, W3204, W3205, W3201-B, W3202-B, W3203-B, W3204-B, W3205-B, W3201-C, W3202-C, W3203-C, W3204-C, W3205-C, W3402, W3402-B, W3402-C, W32A01-AH, W32A01-BH
Product Name	:	HDMI Wireless extender
Manufacturer	:	Shenzhen Hongshi Industrial Co.,Ltd
Applicant	:	Shenzhen Pinwei Technology Co.,Ltd

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Date of Test:

Prepared By:

Dec. 30, 2024 to Jan. 13, 2025

Dec. 26, 2024

(Haidi Huang)

(Hugo Chen)

Approved & Authorized Signer:

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email:service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	Feb. 21, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

1. General Information

1.1. Client Information

Applicant	:	Shenzhen Pinwei Technology Co.,Ltd	
Address	:	3rd Floor, Building 2, Longfeng Industrial Park, No.3 Tianxi Road, Fucheng Street, Longhua District, Shenzhen City, Guangdong Province, China	
Manufacturer	:	Shenzhen Hongshi Industrial Co.,Ltd	
Address	:	3rd Floor, Building 2, Longfeng Industrial Park, No.3 Tianxi Road, Fucheng Street, Longhua District, Shenzhen City, Guangdong Province, China	
Factory	:	Shenzhen Hongshi Industrial Co.,Ltd	
Address	:	3rd Floor, Building 2, Longfeng Industrial Park, No.3 Tianxi Road, Fucheng Street, Longhua District, Shenzhen City, Guangdong Province, China	

1.2. Description of Device (EUT)

	1			
Product Name	:	HDMI Wireless extender		
Model No.	 W3201, W3202, W3203, W3204, W3205, W3201-B, W3202-B, W3 W3204-B, W3205-B, W3201-C, W3202-C, W3203-C, W3204-C, W W3402, W3402-B, W3402-C, W32A01-AH, W32A01-BH (Note: All samples are the same except the model name and apper colour, so we prepare "W3201" for test only.) 			
Trade Mark	:	N/A		
Test Power Supply	:	DC 5V from adapter input AC 120V/60Hz		
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)		
Adapter	:	N/A		
RF Specification	RF Specification			
Operation Frequency	:	802.11a/n(HT20): 5180MHz to 5240MHz;		
Number of Channel	:	802.11a/n(HT20): 4;		
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);		
Device Type	:	Client Devices		
DFS Type	:	Slave without radar detection		
Antenna Type	:	Shrapnel Antenna		
TPC Function	:	Without TPC		
Antenna Gain(Peak)	eak) : 1.27dBi			
Remark: (1) All of the RF specification are provided by customer.				

(1) All of the RF specification are provided by customer.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz
Channel	Frequency (MHz)
36	5180
40	5200
44	5220
48	5240

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Dwell Time	2%
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Duty Cycle	2%
Power Spectral Density	0.76dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 4.46dB; Vertical: 5.04dB
The measurement uncertainty and decision risk e	evaluated according to AB/WI-RF-F-032.

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2	Р
Duty Cycle	Mode1,2	Р
Emission bandwidth and occupied bandwidth	Mode1,2	Р
Maximum conducted output power	Mode1,2	Р
Power spectral density	Mode1,2	Р
Band edge emissions (Conducted)	Mode1,2	Р
Band edge emissions (Radiated)	Mode1,2	Р
Undesirable emission limits (below 1GHz)	Mode1,2	Р
Undesirable emission limits (above 1GHz)	Mode1,2	Р
Note: P: Pass N: N/A, not applicable		·

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Cond	Conducted Emission at AC power line					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	1
4	EMI Test Receiver(CE2#)	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08

Emis: Maxir	Cycle sion bandwidth and mum conducted outp r spectral density	occupied bandwidth out power				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Page	11	of	36
i aye		UI.	30

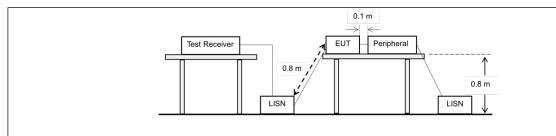
	Band edge emissions (Conducted) Band edge emissions (Radiated)					
	sirable emission limi		1			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/
5	Horn Antenna	A-INFO	LB-180400- KF	J2110606 28	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Г

Report No.:1812C40197812501 FCC ID: 2BH3E-W3201-R

Unde	Jndesirable emission limits (below 1GHz)					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
5	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	2555	2022-10-16	2025-10-15
6	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
7	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	1
8	MXA Spectrum Analysis	Agilent	N9020A	MY511700 37	2024-09-09	2025-09-08
9	MXG RF Vector Signal Generator	Agilent	N5182A	MY481806 56	2024-02-04	2025-02-03
10	DC Power Supply	LW	TPR-6420D	374470	2024-10-17	2025-10-16
11	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
12	Wideband Radio Communication Tester	Rohde & Schwarz	CMW 500	167336	2024-02-04	2025-02-03
13	High-Pass Filter	CDKMV	ZHPF- BM1100- 4730	B2015094 550	2024-10-17	2025-10-16
14	High-Pass Filter	CDKMV	ZHPF-M3.5- 18G-3834	13070065 23	2024-10-17	2025-10-16

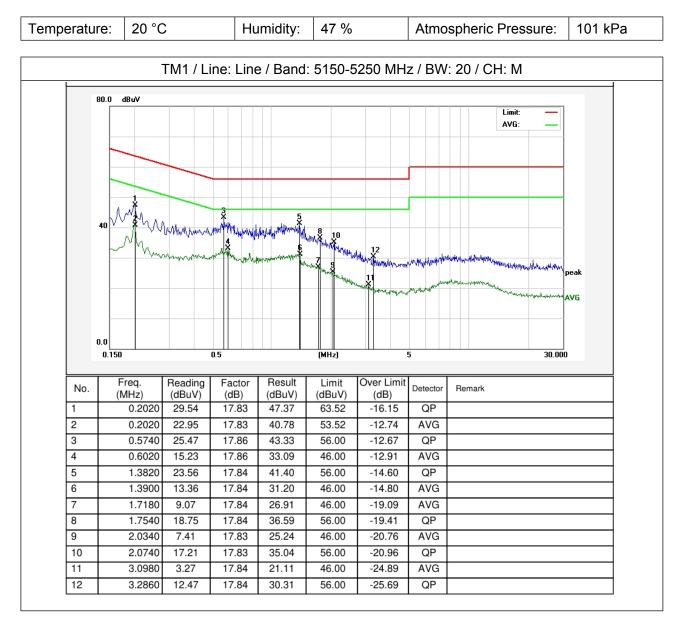
Anbotek Product Safety

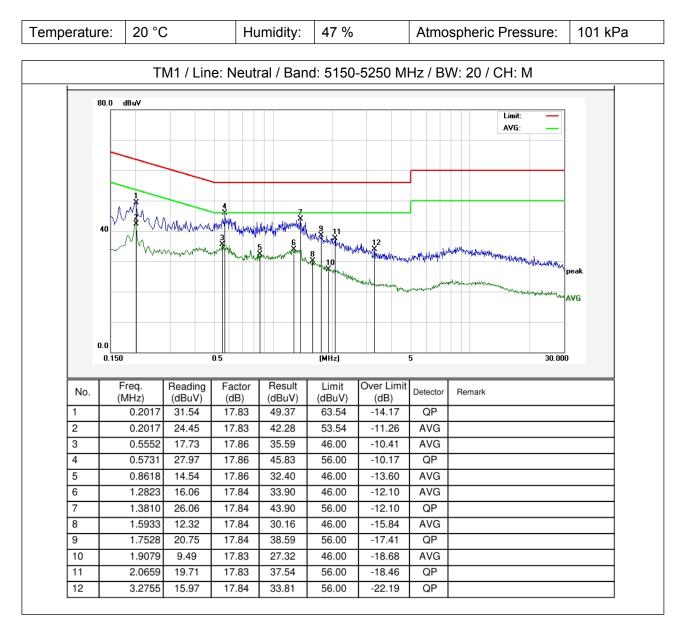

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)		
	Frequency of emission (MHz)	Conducted limit (dBµ\	/)
Test Limit:		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of	the frequency.	
Test Method:	ANSI C63.10-2020 section 6.2		

2.1. EUT Operation

Operating Envi	Operating Environment:				
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 				


2.2. Test Setup



2.3. Test Data

Note:Only record the worst data in the report.

3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Envi	Operating Environment:				
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 				

3.2. Test Setup

EUT	Spectrum Analyzer	

3.3. Test Data

Temperature: 24 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa
--------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

4. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5
	ANSI C63.10-2020, section 6.9 & 12.5 Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be
	used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are
	recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of
	the total is reached; that frequency is recorded as the lower frequency. The process is repeated
	until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled.
Tabular data may
be reported in addition to the plot(s).

4.1. EUT Operation

Operating Envi	ronment:
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

EUT Spectrum Analyzer	

4.3. Test Data

Temperature:	24 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

5. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.1. EUT Operation

Operating Envir	ronment:
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

|--|

5.3. Test Data

Temperature: 24 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa
--------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

6. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

6.1. EUT Operation

Operating Envi	ronment:
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

6.2. Test Setup

EUT	Spectrum Analyzer	

6.3. Test Data

Temperature: 24 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa
--------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

-hen And

7. Band edge emissions (Conducted)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)					
	For transmitters opera of the 5.15-5.35 GHz t					
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
Test Limit:	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
	12.57675-12.57725	322-335.4	3600-4400	(²)		
	13.36-13.41					
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6					
Test Method:	ANSI C63.10-2020, se	ection 12.7.4, 12.7.6				
Procedure:	 ANSI C63.10-2020, section 12.7.4, 12.7.6 Using the following spectrum analyzer setting: Set the RBW = 1MHz. Set the VBW = 3MHz. Sweep time = auto couple. Detector function = peak. Trace mode = max hold. Allow trace to fully stabilize. 					

7.1. EUT Operation

Operating Environment:					
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 				

7.2. Test Setup

EUT	Spectrum Analyzer	

7.3. Test Data

Temperature: 24 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa	
--------------------	-----------	------	-----------------------	---------	--

Please Refer to Appendix for Details.

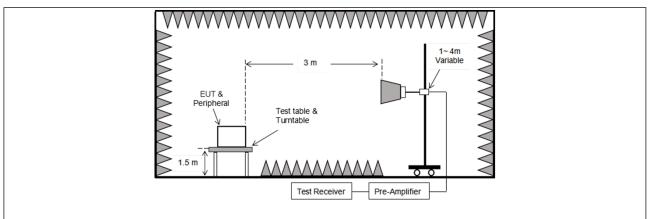
8. Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)					
	For transmitters opera of the 5.15-5.35 GHz					
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
	12.57675-12.57725	322-335.4	3600-4400	(2)		
Test Limit:	13.36-13.41					
				0.540 MUL		
	¹ Until February 1, 199 ² Above 38.6 The field strength of e not exceed the limits s 1000 MHz, complianc using measurement in detector. Above 1000 15.209shall be demon emissions. The provis	missions appearing weating weating weating the shown in § 15.209. At the limits in § for the with the limits in § for the strumentation emploor MHz, compliance with the strated based on the strated based bas	vithin these frequencies equencies equencies equencies equencies equencies equencies equencies and the emission ling a CISPR quencies average value of the emission ling average value of the equencies equenc	uency bands sha ual to or less tha emonstrated uasi-peak mits in § of the measured		
	² Above 38.6 The field strength of e not exceed the limits s 1000 MHz, complianc using measurement in detector. Above 1000 15.209shall be demor	missions appearing v shown in § 15.209. As e with the limits in § 7 istrumentation emplo MHz, compliance wit istrated based on the ions in § 15.35apply sewhere in this subpa	vithin these frequencies equ 15.209shall be do ying a CISPR qu h the emission li average value of to these measur art, the emission d strength levels	uency bands sha ual to or less tha emonstrated asi-peak mits in § of the measured ements. s from an s specified in the Measurement distance		
	 ² Above 38.6 The field strength of e not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demore emissions. The provise Except as provided else intentional radiator shafollowing table: Frequency (MHz) 	missions appearing weating weating the shown in § 15.209. At e with the limits in § for the strumentation emploor MHz, compliance with strated based on the ions in § 15.35apply sewhere in this subparts all not exceed the fiel field strength (microvolts/measure)	vithin these frequencies equ 15.209shall be do ying a CISPR qu h the emission li average value of to these measur art, the emission d strength levels	uency bands sha ual to or less tha emonstrated uasi-peak mits in § of the measured ements. s from an s specified in the Measurement distance (meters)		
	 ² Above 38.6 The field strength of e not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demore emissions. The provise Except as provided else intentional radiator shafollowing table: Frequency (MHz) 0.009-0.490 	missions appearing v shown in § 15.209. At e with the limits in § 7 istrumentation emplo MHz, compliance wit istrated based on the ions in § 15.35apply sewhere in this subpa all not exceed the fiel Field strength (microvolts/me 2400/F(kHz)	vithin these frequencies equ 15.209shall be do ying a CISPR qu h the emission li average value of to these measur art, the emission d strength levels	uency bands sha ual to or less tha emonstrated iasi-peak mits in § of the measured ements. s from an s specified in the Measurement distance (meters) 300		
	 ² Above 38.6 The field strength of enot exceed the limits sand the limits sand the limits are surrement in detector. Above 1000 15.209shall be demore emissions. The provise Except as provided element intentional radiator shafollowing table: Frequency (MHz) 0.009-0.490 0.490-1.705 	missions appearing v shown in § 15.209. At e with the limits in § 7 istrumentation emplo MHz, compliance wit istrated based on the ions in § 15.35apply sewhere in this subpa all not exceed the fiel Field strength (microvolts/me 2400/F(kHz) 24000/F(kHz)	vithin these frequencies equ 15.209shall be do ying a CISPR qu h the emission li average value of to these measur art, the emission d strength levels	uency bands sha ual to or less tha emonstrated iasi-peak mits in § of the measured ements. s from an s specified in the Measurement distance (meters) 300 30		
	 ² Above 38.6 The field strength of e not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demore emissions. The provise Except as provided else intentional radiator shafollowing table: Frequency (MHz) 0.009-0.490 	missions appearing v shown in § 15.209. At e with the limits in § 7 istrumentation emplo MHz, compliance wit istrated based on the ions in § 15.35apply sewhere in this subpa all not exceed the fiel Field strength (microvolts/me 2400/F(kHz)	vithin these frequencies equ 15.209shall be do ying a CISPR qu h the emission li average value of to these measur art, the emission d strength levels	uency bands sha ual to or less tha emonstrated iasi-peak mits in § of the measured ements. s from an s specified in the Measurement distance (meters) 300		

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

	216-960	200 **	3			
	Above 960	500	3			
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.6, 12.7.7				
Procedure:	meters above the ground a was rotated 360 degrees to b. The EUT was set 3 meter which was mounted on the c. The antenna height is var ground to determine the mar and vertical polarizations of d. For each suspected emise and then the antenna was to test frequency of below 300 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum H f. If the emission level of the limit specified, then testing would be reported. Otherwit would be re-tested one by a and then reported in a data g. Test the EUT in the lower channel. h. The radiation measurem Transmitting mode, and four case. i. Repeat above procedures Remark: 1. Level= Read Level+ Cata 2. Scan from 18GHz to 400 The points marked on above when testing, so only above spurious emissions from th below the limit need not be 3. As shown in this section, limits are based on average emission shall not exceed to above by more than 20 dB	e EUT in peak mode was 10dB could be stopped and the peak ise the emissions that did not ha one using peak or average meth sheet. est channel, the middle channel ents are performed in X, Y, Z a und the X axis positioning which s until all frequencies measured ble Loss+ Antenna Factor- Prea GHz, the disturbance above 180 ve plots are the highest emissio e points had been displayed. The radiator which are attenuated	a ber. The table highest radiation. receiving antenna, a tower. ters above the gth. Both horizontal he measurement. b ts worst case b 4 meters (for the heights 1 meter) degrees to find the on and Specified lower than the t values of the EUT ave 10dB margin hod as specified , the Highest xis positioning for h it is the worst d was complete. Imp Factor GHz was very low. ns could be found he amplitude of more than 20dB he field strength d strength of any e limits specified ion. For the			



measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had been displayed.

8.1. EUT Operation

Operating Environment:					
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 				

8.2. Test Setup

8.3. Test Data

Temperature:	24 °C	Humidity:	50 %	Atmospheric Pressure:	101 kPa

TM1 / Band: 5150-5250 MHz / BW: 20 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.94	15.99	52.93	68.20	-15.27	Н	Peak
5150.00	39.01	15.99	55.00	68.20	-13.20	V	Peak
5150.00	26.89	15.99	42.88	54.00	-11.12	Н	AVG
5150.00	28.93	15.99	44.92	54.00	-9.08	V	AVG
		TM1 / B	and: 5150-52	250 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.40	16.43	53.83	68.20	-14.37	Н	Peak
5250.00	40.33	16.43	56.76	68.20	-11.44	V	Peak
5250.00	28.71	16.43	45.14	54.00	-8.86	Н	AVG
5250.00	29.62	16.43	46.05	54.00	-7.95	V	AVG

Remark: 1. Result=Reading + Factor

TM2 / Band: 5150-5250 MHz / BW: 20 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.90	15.99	51.89	68.20	-16.31	Н	Peak
5150.00	37.29	15.99	53.28	68.20	-14.92	V	Peak
5150.00	26.62	15.99	42.61	54.00	-11.39	Н	AVG
5150.00	27.62	15.99	43.61	54.00	-10.39	V	AVG
		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.72	16.43	54.15	68.20	-14.05	Н	Peak
5250.00	38.76	16.43	55.19	68.20	-13.01	V	Peak
5250.00	27.75	16.43	44.18	54.00	-9.82	Н	AVG
5250.00	29.19	16.43	45.62	54.00	-8.38	V	AVG

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Hotline

www.anbotek.com

400-003-0500

9. Undesirable emission limits (below 1GHz)

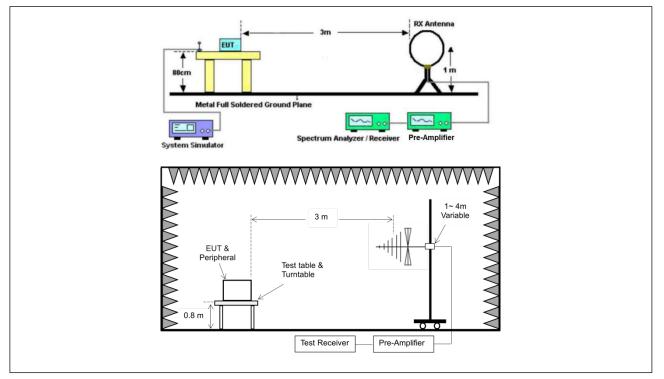
Test Requirement:	47 CFR Part 15.407(b)(9)				
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.				
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:				
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
Test Limit:	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.				
Test Method:	ANSI C63.10-2020, secti	on 12.7.4, 12.7.5			
Procedure:	 ANSI C63.10-2020, section 12.7.4, 12.7.5 Below 1GHz: a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be reported. Otherwise the emissions that did not have 10dB margin would be reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest 				

channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
case. i. Repeat above procedures until all frequencies measured was complete.
 Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table
 was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the
ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the
maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
i. Repeat above procedures until all frequencies measured was complete. Remark:
 Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB
below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength
limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak

Shenzhen Anbotek Compliance Laboratory Limited

 \mathbf{O}

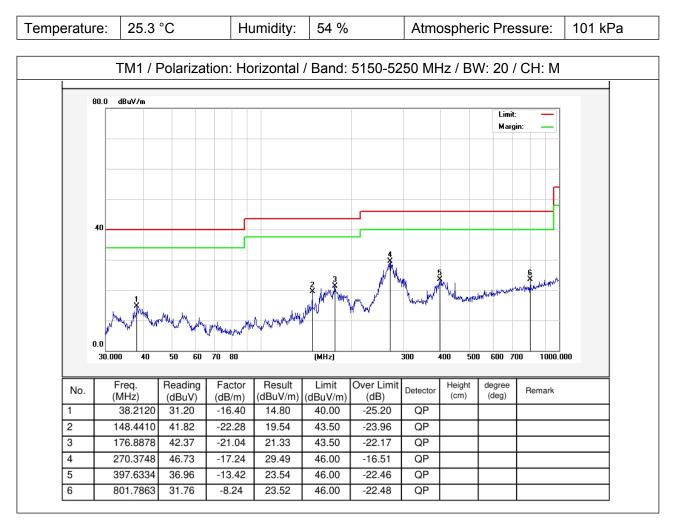
Product Safety

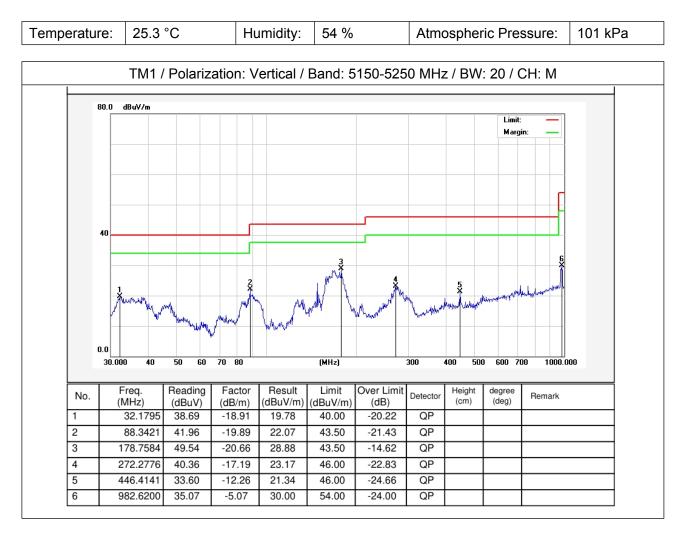


measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had
been displayed.

9.1. EUT Operation

Operating Environment:				
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 			


9.2. Test Setup


9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Note:Only record the worst data in the report.

3

10. Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b 47 CFR Part 15.407(b					
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.					
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775			9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
Test Limit:	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(2)		
	 ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements. Except as provided elsewhere in this subpart, the emissions from an 					
	intentional radiator shall not exceed the field strength levels specified following table: Frequency (MHz) Field strength			specified in the Measurement		
			(microvolts/meter)			
	0.009-0.490		2400/F(kHz)			
	0.490-1.705		24000/F(kHz)			
	1.705-30.0	30		30		
			100 **			
	30-88 88-216	100 **		3		

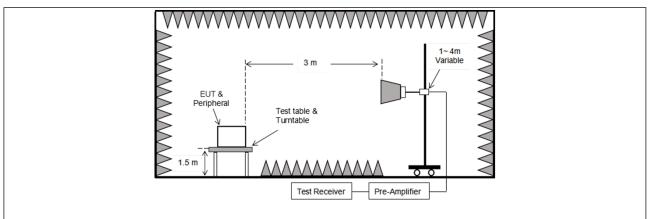
Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

50

1

	216-960	200 **	3		
	Above 960	500	3		
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 				
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.6, 12.7.7			
Procedure:	Above 1GHz: a. For above 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 meters which was mounted on the c. The antenna height is var ground to determine the mar- and vertical polarizations or d. For each suspected emis- and then the antenna was fit test frequency of below 301 and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum H f. If the emission level of the limit specified, then testing would be reported. Otherwite would be reported one by or and then reported in a data g. Test the EUT in the lower channel. h. The radiation measurem Transmitting mode, and four case. i. Repeat above procedures Remark: 1. Level= Read Level+ Cab 2. Scan from 18GHz to 400 The points marked on above when testing, so only above spurious emissions from the below the limit need not be 3. As shown in this section, limits are based on average emission shall not exceed to above by more than 20 dB emissions whose peak level	t a 3 meter fully-anechoid o determine the position of ers away from the interfer top of a variable-height a ried from one meter to for aximum value of the field f the antenna are set to n ssion, the EUT was arran tuned to heights from 1 m MHz, the antenna was tur turned from 0 degrees to hwas set to Peak Detect Hold Mode. e EUT in peak mode was could be stopped and the se the emissions that did one using peak or average sheet. est channel, the middle ch ents are performed in X, and the X axis positioning s until all frequencies me of Loss+ Antenna Factor GHz, the disturbance abo ye plots are the highest e e points had been display e radiator which are atter reported. for frequencies above 1 e limits. However, the pea- the maximum permitted a under any condition of m	c chamber. The table of the highest radiation. rence-receiving antenna, antenna tower. our meters above the strength. Both horizontal make the measurement. nged to its worst case neter to 4 meters (for the ned to heights 1 meter) o 360 degrees to find the Function and Specified s 10dB lower than the e peak values of the EUT d not have 10dB margin ge method as specified hannel, the Highest Y, Z axis positioning for g which it is the worst easured was complete. r- Preamp Factor ove 18GHz was very low. emissions could be found yed. The amplitude of nuated more than 20dB GHz, the field strength ak field strength of any average limits specified nodulation. For the		



measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had
been displayed.

10.1. EUT Operation

Operating Environment:				
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 			

10.2. Test Setup

10.3. Test Data

Temperature	e: 24.1 °C	Hu	midity: 50	%	Atmospheric F	Pressure:	101 kPa
		TM1 / Ban	d: 5150-525	0 MHz / BW	: 20 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10360.00	31.57	23.81	55.38	68.20	-12.82	V	Peak
15540.00	32.98	28.68	61.66	68.20	-6.54	V	Peak
10360.00	32.07	23.81	55.88	68.20	-12.32	Н	Peak
15540.00	33.02	28.68	61.70	68.20	-6.50	Н	Peak
10360.00	21.028	23.81	44.84	54.00	-9.16	V	AVG
15540.00	22.186	28.68	50.87	54.00	-3.13	V	AVG
10360.00	21.262	23.81	45.07	54.00	-8.93	Н	AVG
15540.00	21.670	28.68	50.35	54.00	-3.65	Н	AVG
		TM1 / Ban	d: 5150-5250) MHz / BW	: 20 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10400.00	30.93	23.81	54.74	68.20	-13.46	V	Peak
15600.00	32.51	29.13	61.64	68.20	-6.56	V	Peak
10400.00	31.56	23.81	55.37	68.20	-12.83	Н	Peak
15600.00	32.54	29.13	61.67	68.20	-6.53	Н	Peak
10400.00	21.298	23.81	45.11	54.00	-8.89	V	AVG
15600.00	22.306	29.13	51.44	54.00	-2.56	V	AVG
10400.00	21.252	23.81	45.06	54.00	-8.94	Н	AVG
15600.00	21.750	29.13	50.88	54.00	-3.12	Н	AVG
		TM1 / Ban	d: 5150-5250	0 MHz / BW	: 20 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10480.00	30.50	23.80	54.30	68.20	-13.90	V	Peak
15720.00	31.99	30.03	62.02	68.20	-6.18	V	Peak
10480.00	31.20	23.80	55.00	68.20	-13.20	Н	Peak
15720.00	31.45	30.03	61.48	68.20	-6.72	Н	Peak
10480.00	19.97	23.80	43.77	54.00	-10.23	V	AVG
15720.00	21.07	30.03	51.10	54.00	-2.90	V	AVG
10480.00	20.46	23.80	44.26	54.00	-9.74	Н	AVG
15720.00	20.54	30.03	50.57	54.00	-3.43	Н	AVG

Remark:

1.Result =Reading + Factor

2.Only the worst case (802.11a(HT20)) is recorded in the report.

3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated

more than 20 dB below the limits are not reported.

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report ------

