

Report No: JYTSZB-R12-2100521

FCC REPORT (Bluetooth)

Applicant:	SKY PHONE LLC
Address of Applicant:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Equipment Under Test (E	EUT)
Product Name:	TABLET
Model No.:	Elite T8
Trade mark:	SKY DEVICES
FCC ID:	2ABOSSKYELIT8
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	09 Apr., 2021
Date of Test:	10 Apr., to 25 Apr., 2021
Date of report issued:	26 Apr., 2021
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	26 Apr., 2021	Original

Cavey Chen Test Engineer

Date: 26 Apr., 2021

Tested by:

Winner Mang

Reviewed by:

Project Engineer

Date: 26 Apr., 2021

Project No.: JYTSZE2104032

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	-
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY.	
5.8 LABORATORY LOCATION	-
5.9 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH 6.5 CARRIER FREQUENCIES SEPARATION	-
6.5 CARRIER FREQUENCIES SEPARATION	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6.9 Band Edge	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	7 (a)(1) Appendix A – BT	
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass
Conducted Band Edge	45 005 8 45 000	Appendix A – BT	Pass
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass
Conducted Spurious Emission		Appendix A – BT	Pass
Radiated Spurious Emission	15.247(d)	See Section 6.10.2	Pass
Remark:			-

Pass: The EUT complies with the essential requirements in the standard. 1.

2. N/A: Not Applicable.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by З. the customer).

Test Method:	ANSI C63.10-2013
rest method:	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	SKY PHONE LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

Product Name:	TABLET
Model No.:	Elite T8
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.65 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 3500mAh
AC adapter:	Model: Elite T8
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 2.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19 2421MHz 39 2441MHz 59 2461MHz								
Remark: Channel 0, 39 &78 selected for GFSK, π /4-DQPSK and 8DPSK.								

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark	GFSK (1 Mbps) is the worst case mode.			
Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane				

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	V	/ersion: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021
Cable	HP	10503A	N/A	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	N N	Version: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohil 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this inas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is an the antenna is 1.65 dBi.	Internal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions


Test Requirement:	FCC Part 15 C Section 15.	207				
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
Limit:	Frequency range (MHz) Limit (dBuV)					
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 * Decreases with the logari	60 thm of the frequency	50			
Test setup:	Reference Pl					
	AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Networ Test table height=0.8m					
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipmen 	tion network (L.I.S.N.). Th npedance for the measuri	his provides a ng equipment. main power through a lance with 500hm the test setup and m conducted sion, the relative ables must be changed			
Test Instruments:	Refer to section 5.9 for det	ails				
Test mode:	Hopping mode					
Test results:	Pass					

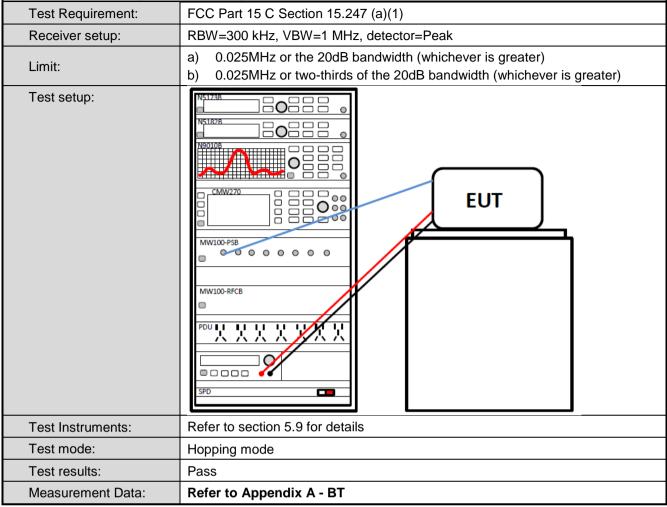
Measurement Data:

Product name:	TABLET		Product m	nodel:	Elite T8			
Гest by:	Carey	Carey		e:	BT Tx mode			
Test frequency:	150 kHz ~ 30 MHz		Phase:		Line			
Fest voltage:	AC 120 V/60	Hz	Environm	ent:	Temp: 22.5 ℃	Huni: 55%		
80 Level (dBuV) 70 60 12 50 40 30 20	WMMAN AN				FCC PART 1	5.207 QP 15.207 AV M M M M M M M M M		
10 0.15 .2 Trace: 13	.5	1 Free	2 quency (MHz)	5	10	20 30		
0.15 .2 Trace: 13	Read Freq Level	Free	quency (MHz)	Limit Line	10 Over Limit Remark 	20 30		

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

0.5 Conducted Out	
Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

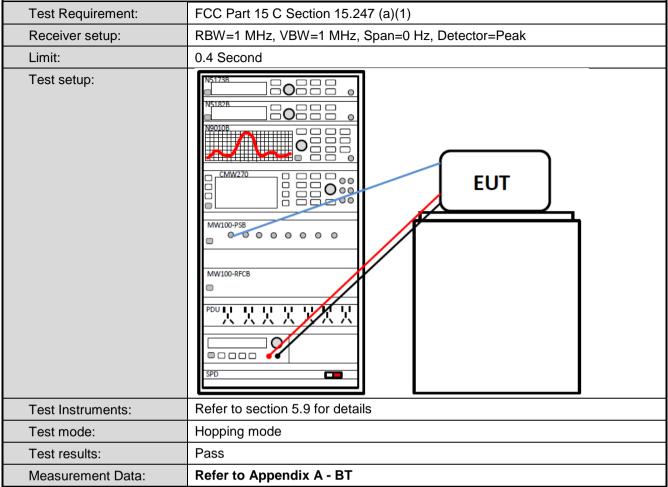
6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.5 Carrier Frequencies Separation



6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz, Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.7 Dwell Time

6.8 Pseudorandom Frequency Hopping Sequence

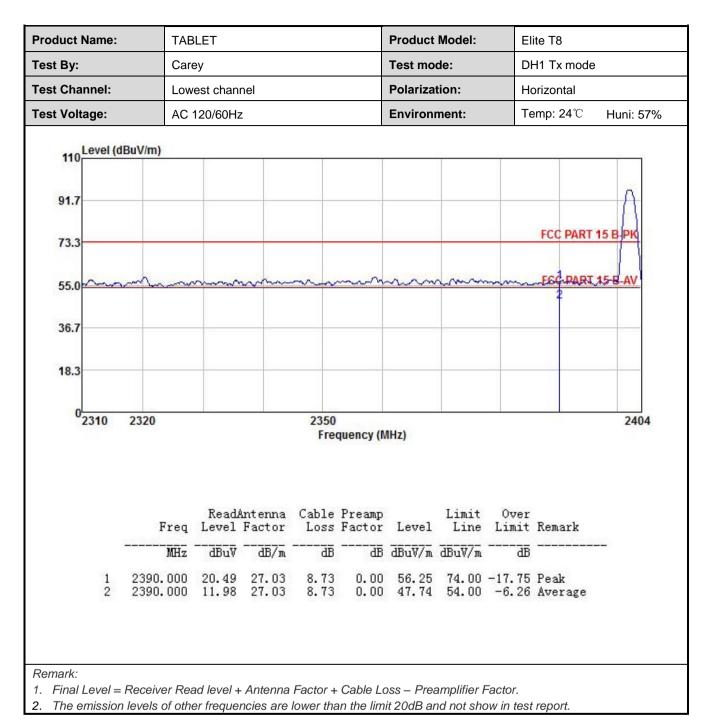
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1) requirement:
	shall have hopping channel carrier frequencies separated by a minimum of the hopping channel, whichever is greater.
channel carrier frequencies the hopping channel, whichever than 125 mW. The system share from a Pseudorandom o on the average by each trans	ping systems operating in the 2400-2483.5 MHz band may have hopping hat are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the is greater, provided the systems operate with an output power no greater hall hop to channel frequencies that are selected at the system hopping rdered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the of their corresponding transmitters and shall shift frequencies in smitted signals.
EUT Pseudorandom Freque	ency Hopping Sequence
outputs are added in a modu	equence: 2 ⁹ -1 = 511 bits
Linear Feedback Sh	ift Register for Generation of the PRBS sequence
-	m Frequency Hopping Sequence as follow:
	62 64 78 1 73 75 77
The system receivers have in	on the average by each transmitter. Input bandwidths that match the hopping channel bandwidths of their nd shift frequencies in synchronization with the transmitted signals.

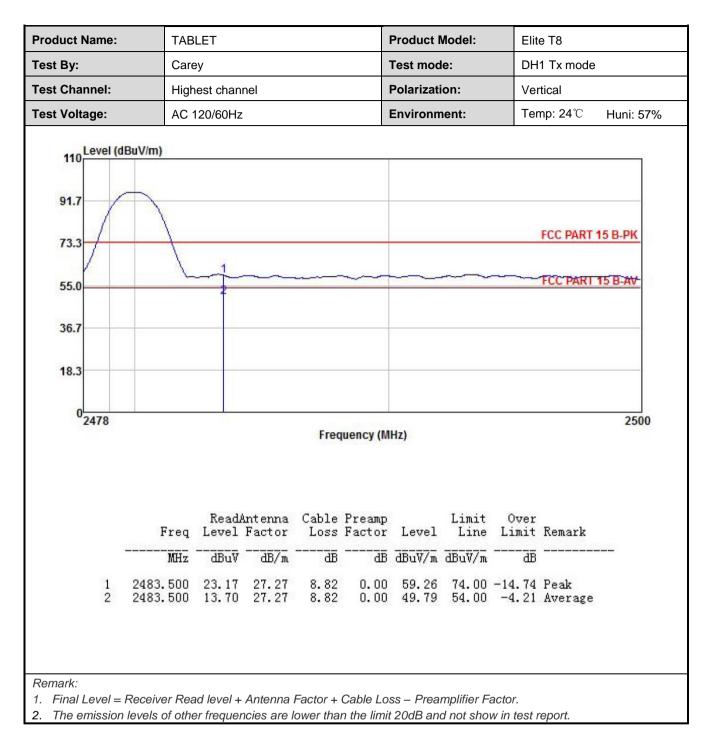
6.9 Band Edge

6.9.1 Conducted Emission Method

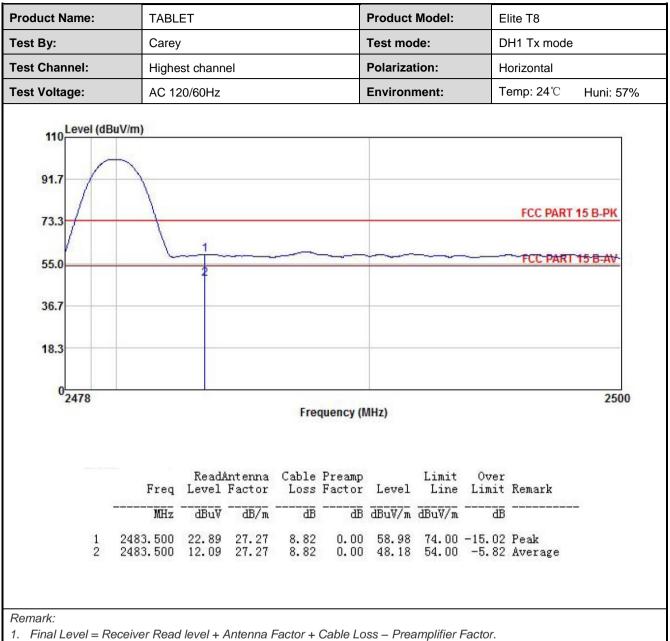
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

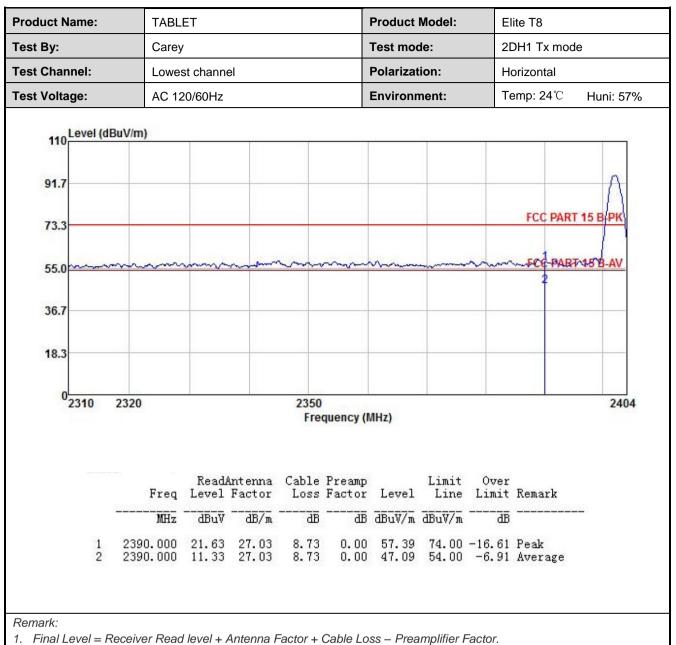
6.9.2 Radiated Emission Method

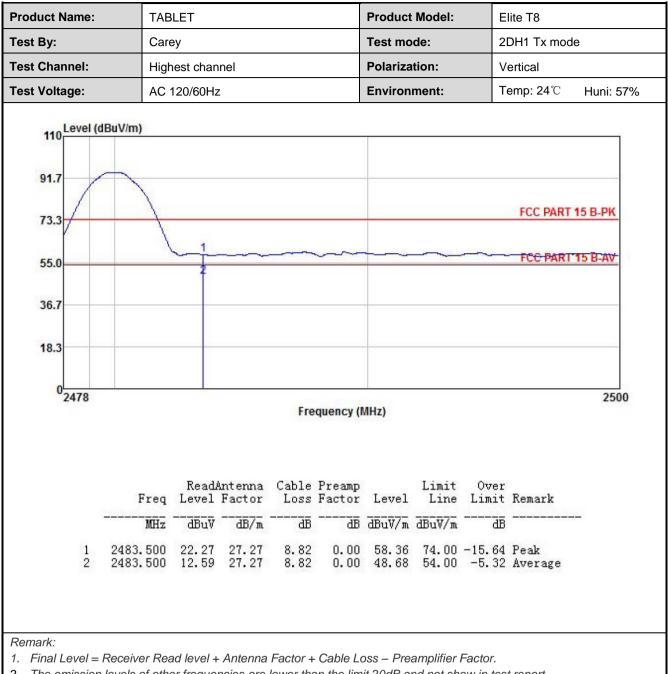

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Frequency Range:	2310 MHz to 23	90 MHz and	d 248	83.5 MHz to 2	500 M	lHz		
Test Distance:	3m							
Receiver setup:	Frequency	Detector	tor RBW		VBW Remark			
	Above 1GHz	Peak		1MHz	31	MHz	Peak Value	
	Above IGHZ	RMS		1MHz	31	MHz	Average Value	
Limit:	Frequenc	су	Lim	it (dBuV/m @3	3m)		Remark	
	Above 1G	Hz		54.00		verage Value		
	7.000010			74.00		F	Peak Value	
Test setup:	AE unitst	EUT table) Grour Test Receiver	3m A Reference A		enna Towe			
Test Procedure:	 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremen 4. For each sus and then the the rota table maximum rea 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would b margin would 	B meter camb e position of s set 3 mete ch was mou height is va termine the r d vertical po t. spected emis antenna wa was turned ading. eiver system ith Maximum on level of th d, then testin e reported. (d	ber. the ers a intec intec max blariz ssior is tur fror was n Ho ne El or or the co Othe ed or	The table was highest radiati way from the in d on the top of from one mete imum value of zations of the a h, the EUT was ned to heights n 0 degrees to s set to Peak E old Mode. JT in peak mo build be stoppe	rotat ion. nterfe a vari er to fe the fi antenr s arrai from 0 360 0 Detect de wa d and ssions g pea	ed 360 or rence-re able-he our meta eld strein ha are s nged to 1 meter degrees Function as 10dB I the pea s that dia k, quasi	degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or	
Test Instruments:	Refer to section							
Test mode:	Non-hopping m	ode						
Test results:	Passed							


GFSK Mode:

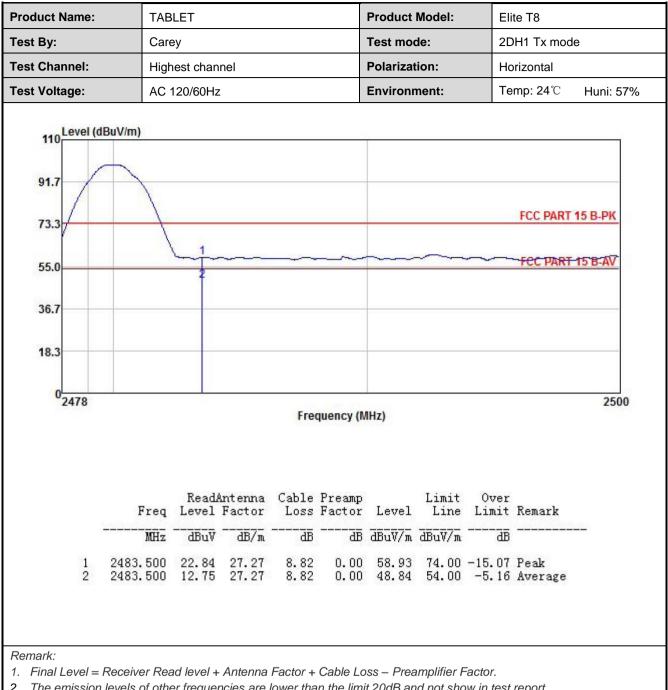
roduct Name:	TAB	TABLET			Product Model:			Elite T8		
est By:	Care	ey -			Test mode:			DH1 Tx mode		
est Channel:	Lowe	Lowest channel			Polariza	tion:	V	'ertical		
est Voltage:	AC 1	20/60Hz			Environ	ment:	Т	emp: 24℃	Huni: 57%	
Laval (d	Dulling)									
110 Level (d	Buv/III)									
									0	
91.7									Λ	
73.3								FCC PART	15 B-PK	
55.0	man	mm	mm	mon	mm	m	m	-FCC-BABI	F-15/8-AV	
Statute-								Î		
36.7										
18.3										
10.5										
02310	2320		235	0					2404	
2010	2020			equency (MHz)				2404	
	Ener	ReadAntenna Level Factor	Cable	Preamp Factor	T	Limit	Over	Remark		
	MHz				dBuV/m		dB			
1 2	2390.000 2390.000	21.02 27.03 11.35 27.03		0.00 0.00	47.11	74.00 54.00	-17.22	Peak Average		

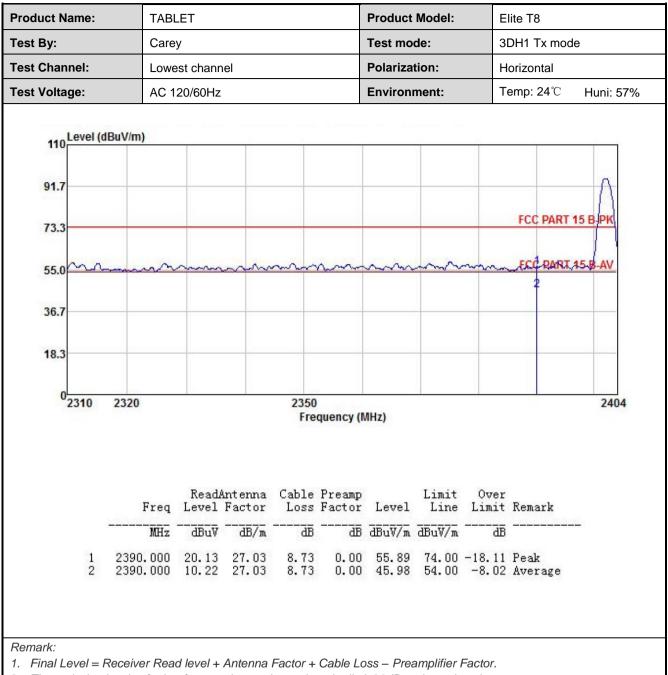


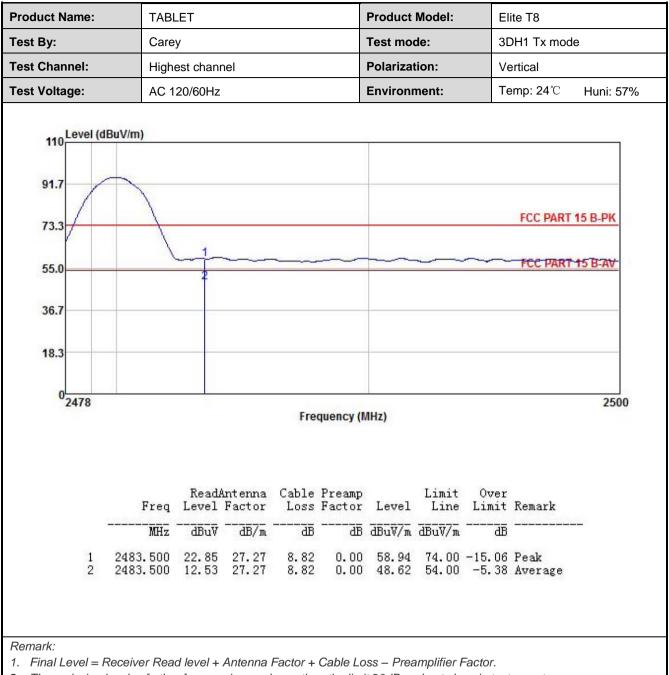



$\pi/4$ -DQPSK mode

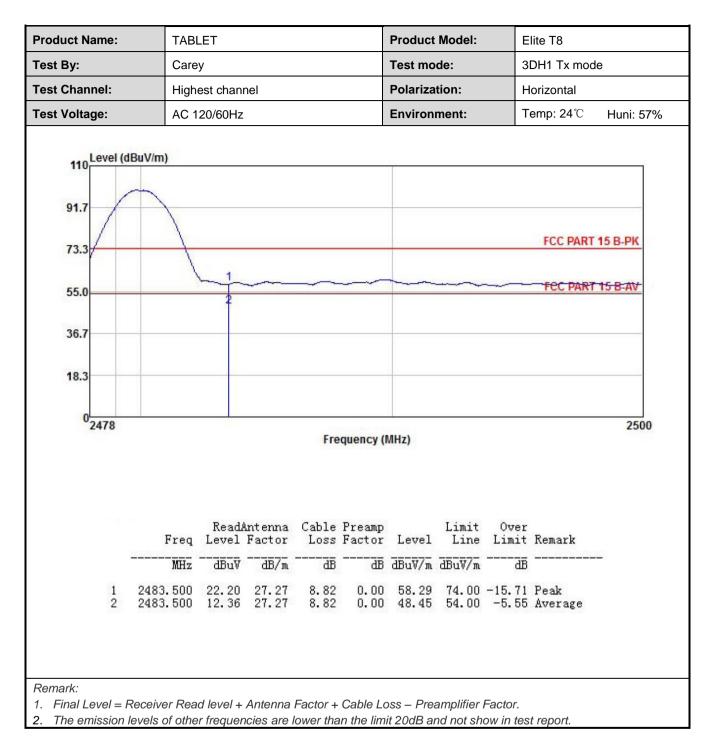
roduct Name:	TAB	TABLET		Product Model: Test mode:			Elite T8 2DH1 Tx mode			
ſest By:	Car	Carey Lowest channel								
Test Channel:	Low					Polariza	tion:	V	Vertical	
Test Voltage:	AC	120/60Hz				Environ	ment:	Т	emp: 24 ℃	Huni: 57%
110 Level (d	BuV/m)									
91.7						-				Λ
73.3	_								FCC PART	<u>15 В-РК</u>
55.0 <u>~~~</u>	<u></u>	<u></u>	m	<u>~~~~</u>	m		m	~~~~	VECT PART	15 B-AV
36.7			-							
18.3						1				
0 2310	2320			2350 Fre) equency (MHz)				2404
	Freq	Read/ Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	 dBuV	 	<u>a</u> B		dBuV/m		dB		
1	2390.000 2390.000	21.14 11.70	27.03 27.03	8.73 8.73	0.00 0.00			-17.10 -6.54	Peak Average	






8DPSK mode

roduct Name:	TABL	LET				Product Model:			Elite T8		
est By:	Care	y			Test mode:			3	3DH1 Tx mode		
est Channel:	Lowe	st chann	el			Polarization:			/ertical		
est Voltage:	AC 1	20/60Hz				Environ	ment:	Т	emp: 24℃	Huni: 57%	
Lovel (df	SuV/m)										
110 Level (dE											
91.7										Δ	
										\square	
73.3									FCC PART	15 B/PK	
55.0		m	mm		n	m				15-B-AV	
55.0									2		
36.7			_								
10.5											
18.3											
02310	2320			2350						2404	
2310	2320				quency (I	MHz)				2404	
	Freq	Read# Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line		Remark		
	MHz	 dBuV	<u></u>		<u>d</u> B	dBuV/m	dBuV/m			<u>-</u> 0	
1	2390.000	20.46	27.03	8.73	0.00	56.22	74.00	-17.78	Peak		
2	2390.000	10.65	27.03	8.73	0.00	40.41	04.00	-1.09	Average		
Remark:			Antenna								



6.10 Spurious Emission

6.10.1 Conducted Emission Method

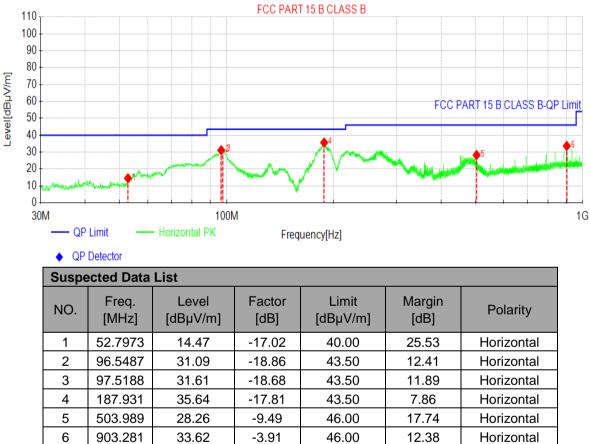
Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement						
Test setup:							
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						
Measurement Data:	Refer to Appendix A - BT						

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.2	209					
Test Frequency Range:	9 kHz to 25 GHz							
Test Distance:	3m							
Receiver setup:	Frequency	cy Detector		RBW	VBW	1	Remark	
	30MHz-1GHz	Quasi-pe	ak	120kHz	300k⊢	lz (Quasi-peak Value	
		Peak		1MHz	3MHz	z	Peak Value	
	Above 1GHz	RMS	6 1MHz 3M		3MHz	Hz Average Value		
Limit:	Frequency Limit (dBuV/m @3m)					Limit (dBuV/m @3m) Remark		
	30MHz-88N	/Hz		40.0		Qu	asi-peak Value	
	88MHz-216	MHz		43.5		Qu	asi-peak Value	
	216MHz-960	MHz		46.0		Qu	asi-peak Value	
	960MHz-10	GHz		54.0		Qu	asi-peak Value	
				54.0		A	verage Value	
	Above 1G	HZ		74.0			Peak Value	
Test Duese luna	Above 1GHz	d Plane	4m 1m 1m 1m 1m 1m 1m 1m 1m 1m 1	3m Ground Reference Plane acceiver	Pre-	- Se Ar RF Test Receiver		
Test Procedure:	 The EUT was /1.5m(above) was rotated 3 radiation. The EUT was antenna, which 	1GHz) abo 60 degrees set 3 mete	ve th s to d ers av	e ground at determine th way from the	a 3 mete e positio e interfer	er char n of the ence-r	nber. The table e highest eceiving	

Project No.: JYTSZE2104032

	tower.3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.				
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.				
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.				
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Non-hopping mode				
Test results:	Pass				
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report. 				

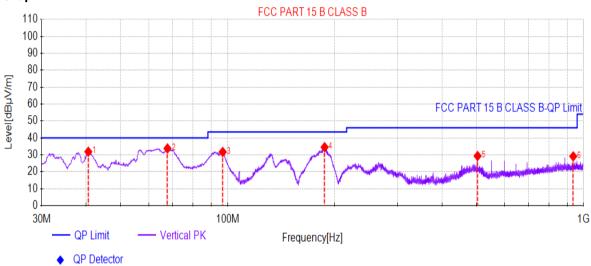

Measurement Data (worst case):

Below 1GHz:

Test Report									
Project Information									
Customer:		EUT:	TABLET						
Model:	Elite T8	SN:							
Mode:	BT	Voltage:	AC 120V/60Hz						
Environment:	Temp: 23.3℃; Humi:53%	Engineer:	HZK						
Remark:									
Test Standard:									

Start of Test: 2021-04-16 17:36:36

Test Graph



Test Report								
Project Information								
Customer:		EUT:	TABLET					
Model:	Elite T8	SN:						
Mode:	BT	Voltage:	AC 120V/60Hz					
Environment:	Temp: 23.3℃; Humi:53%	Engineer:	HZK					
Remark:								
Test Standard:								

Start of Test: 2021-04-16 17:37:50

Test Graph

Suspected Data List								
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity		
1	40.5741	31.86	-16.87	40.00	8.14	Vertical		
2	67.7368	33.77	-18.47	40.00	6.23	Vertical		
3	96.8397	31.70	-18.80	43.50	11.80	Vertical		
4	187.252	34.54	-17.89	43.50	8.96	Vertical		
5	503.989	29.32	-9.49	46.00	16.68	Vertical		
6	936.070	29.11	-3.75	46.00	16.89	Vertical		

Above 1GHz:

			Т		el: Lowest cl				
	I	I		Detecto	or: Peak Valu	Je			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	48.05	30.78	6.80	2.44	41.81	46.26	74.00	-27.74	Vertical
4804.00	43.95	30.78	6.80	2.44	41.81	42.16	74.00	-31.84	Horizontal
	r	1		Detector:	Average Va	alue		r	1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.07	30.78	6.80	2.44	41.81	44.28	54.00	-9.72	Vertical
4804.00	39.97	30.78	6.80	2.44	41.81	38.18	54.00	-15.82	Horizontal
			Т	est chann	el: Middle ch	nannel			
				Detecto	or: Peak Val	re			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	47.67	30.96	6.86	2.47	41.84	46.12	74.00	-27.88	Vertical
4882.00	43.49	30.96	6.86	2.47	41.84	41.94	74.00	-32.06	Horizontal
				Detector:	Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	46.40	30.96	6.86	2.47	41.84	44.85	54.00	-9.15	Vertical
4882.00	39.70	30.96	6.86	2.47	41.84	38.15	54.00	-15.85	Horizontal
			Te		el: Highest c pr: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.19	31.11	6.91	2.49	41.87	45.83	74.00	-28.17	Vertical
4960.00	43.66	31.11	6.91	2.49	41.87	42.30	74.00	-31.70	Horizontal
	-			Detector:	Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.83	31.11	6.91	2.49	41.87	45.47	54.00	-8.53	Vertical
4960.00	39.34	31.11	6.91	2.49	41.87	37.98	54.00	-16.02	Horizontal
						+ Aux Factor			

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366