

TEST REPORT

FCC ID: 2ADYY-T15RA-1

Product: Laptop Computer

W5CT

Model No.: T15RA

Trade Mark: TECNO

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

Issued Date: 12 October 2024

Issued for:

TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET **FOTAN NT HONGKONG**

W5CT

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan

Street, Bao'an District, Shenzhen City, Guangdong Province, China

TEL: +86-755-26996192

FAX: +86-755-86376605

W5 LT

WSCT

WSET"

WSET

W5 Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

深圳世标检测认证股份有限公司 World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd

Page 1 of 303

W5C1

WSCI

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

TABLE OF CONTENTS WSC 1 TEST CERTIFICATION 2 EUT DESCRIPTION 3 TEST DESCRIPTION MEASUREMENT UNCERTAINTY 5 3.2 6 TEST ENVIRONMENT AND MODE TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 3.3 CONFIGURATION OF SYSTEM UNDER TEST 3.45 3.5 **DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)** 9 4 SUMMARY OF TEST RESULTS 5 MEASUREMENT INSTRUMENTS 10 6 FACILITIES AND ACCREDITATIONS 11 **FACILITIES** 11 6.1 11 6.2 **ACCREDITATIONS** 7 TEST RESULTS AND MEASUREMENT DATA 12 CONDUCTED EMISSION MEASUREMENT 12 7.2 RADIATED EMISSION MEASUREMENT 16 38 7.3 **ANTENNA REQUIREMENT** 39 7.4 **EMISSION BANDWIDTH** 78 7.5 **AVERAGE POWER** POWER SPECTRAL DENSITY 149 7.6 WSE 15 C 1 7.7 FREQUENCY STABILITY 220 **BAND EDGE EMISSIONS** 7.8 256 **DYNAMIC FREQUENCY SELECTION (DFS)** 292 7.9 WS CI WS C

WS CI NS CI WS CI WSEI

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

W5C1

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

Test Certification

Product:

Laptop Computer

Model No.: T15RA

W5CT Trade Mark: TECNO

Applicant: TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN Address:

WSCT

MEI STREET FOTAN NT HONGKONG

Manufacturer: **TECNO MOBILE LIMITED**

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN Address:

MEI STREET FOTAN NT HONGKONG 1/5 [7]

Date of Test: 20 September 2024 to 12 October 2024

Applicable FCC CFR Title 47 FCC Part 15 Subpart E Standards:

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Checked By:

WSE

(Wang Xiang)

(Chen Xu)

Approved By: (Li Huaibi)

WSET

WSET

W5 CT

Page 3 /303

深圳世标检测认证股份有限公司

Norld Standardization Certification& Testing Group(Shenzhen) Co.,Ltd

W5CT

WS ET

NS ET

WS ET

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

EUT Description

	WSTT		
	Product:	Laptop Computer	
	Model No.:	T15RA	
	Trade Mark: 5 LT	TECNO ^{SET} WSET WSET	_
	\times	Band1:5150-5250MHz	
	Operation Frequency:	Band2:5250-5350MHz	
/	M34	Band3:5470-5725MHz	LI
	Madulation type	IEEE 802.11a/n/ac/ax: OFDM/OFDMA	
	Modulation type:	(BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)	
	Antenna Type:	Integral Antenna	7
	Antenna Gain	MAIN:2.86dBi ,AUX:2.24 dBi	X
	WS CT WS	Adapter1: FC498U	CT.
		Input: 100-240V~50/60Hz 1.5A Max Output: PD:5.V==3A 15.0W 9V==3A	
		12 V3A 15V3A	
	WSET	W5 C 20V===3.25A W5 CT W5 CT	
	Operating Voltage:	PPS: 3.3-11V===5A Max	
	\times	Rechargeable Li-ion Polymer Battery: 156	X
		Rated Voltage: 11.55V	
_	WSLT WS		CT
		Typical Capacity: 6160mAh/71.14Wh	
	X	Limited Charge Voltage: 13.2V	
	Remark:	N/A.	

Configuration differences

Model	Processor
T15RA	i5
T15RA	WSCT i7 WSCT

Note: The prototypes of both configurations have been tested, and the T15RA (i7) has the worst test result, which is the main test model reported

W5 C1

W5 CT W5 E

Page 4 /303

W5 CT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

3 TEST DESCRIPTION

3.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

WSE

	No.	Item	Uncertainty	
W5	1	Conducted Emission Test W5/	±3.2dB	W5CT°
	2	RF power, conducted	±0.16dB	
	3	Spurious emissions, conducted	±0.21dB	
WSET	4 W	All emissions, radiated(<1GHz)	±4.7dB 5 7 7	W5 CT
	5	All emissions, radiated(>1GHz)	±4.7dB	
	6	Temperature	±0.5°C	
W5	7	Humidity 5 77 W5/	±2% W577°	WSET
WSCT	W	SET WSET	WSCT	WSET
WS		WS CT WS L	$\langle \times \rangle$	WSET
WSCT		SET WSET	WSCT	WSET
WS		WS CT WS L		WSET
WSCT	W	SET WSET	WSET	WSCT
W5		WSET WSE		X
				WSET Strong Testing Group (Shenzip)

Page 5 /303

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

3.2 TEST ENVIRONMENT AND MODE

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure: W5.57	1010 mbar 15 [7] W5 [7]

700 4		
Test	OC	e:

Engineering mode:	Keep	the FUT in co	ontinuous t	ransmitting by
V5 [7]	coloct	channel and	Lmodulation	ns(The value of
				ns(The value of
	duty c	ycle is 98.46	%)	

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

	Test Mode	Description
	Mode 1	802.11a
	Mode 2	802.11n20
/	W5 Mode 3	W5LT 802.11n40 W5LT
	Mode 4	802.11ac20
	Mode 5	802.11ac40
	Mode 6 5 <i>[]</i>	W5ET 802.11ac80 W5ET
	Mode 7	802.11ax20
	Mode 8	802.11ax40
_/	W5/Mode 9	W5 ET 802.11ax80 W5 ET
	Mode 10	802.11ax160

15 E

15 C

- (1) The measurements are performed at the highest, lowest available channels.
- (2) The EUT use new battery.
- (3) Record the worst case of each test item in this report.

Page 6/303

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5 CT

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

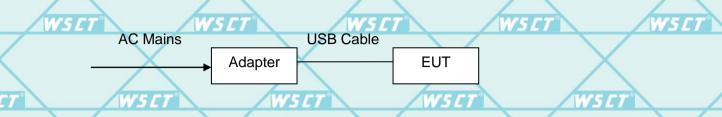
	W51	7°	W	SET		VS ET		W5LT		WSCT
	Test					DRTU				
Х	program									
EF		W/45	CT.	/-	re r-Test l	Frequency	(MHz)		WSIT	
JL	Mode	/ 11		/ "	NCB: 201			$\overline{}$		
	202 11 X	5180	5240	5260	5320	5500	5700	5745	5825	X
	802.11a	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
	000/44/17	5180	5240	5260	5320	5500	5700	5745	5825	August 1
	802.11n	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	W5 C7
	200.44	5180	5240	5260	5320	5500	5700	5745	5825	
X	802.11ac	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
	000 44	5180	5240	5260 /	5320	5500	5700	5745	5825	
5 F	802.11ax	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
		/			NCB: 4	0MHz		$\overline{}$		
	X	5190	5230	5270	5310	5510	5670	5755	5795	X
	802.11n	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
	WELL	5190	5230	5270	5310	5510	5670	5755	5795	WE CT
	802.11ac	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	W5C1
		5190	5230	5270	5310	5510	5670	5755	5795	
Х	802.11ax	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
		Aver		4	NCB: 8	30MHz	WEET		Augusta	
<u> 5 L</u>		5210	5290	5530	5610	5775	WELT		AWSET	
	802.11ac	MHz	MHz	MHz	MHz	MHz		\ /		
	X	5210	5290	X 5530	5610	5775		X		X
	802.11ax	MHz	MHz	MHz	MHz	MHz				
	W5 C	7°	W	ET	NCB: 1	60MHz		W5 CT		WSCI
	000 445	5250	5570							
X	802.11ax	MHz	MHz		X		X		X	
	During testing Changel and Dever Controlling Coffware provided by the systematy was used to control									

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

WSC1

WS CI

Page 7 /303


WS C

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT°1

3.4 CONFIGURATION OF SYSTEM UNDER TEST

(EUT: Laptop Computer)

3.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or

configuration during the tests.

ŀ	tem	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	1	Adapter	W 5 TECNO	FC498U	WSET	1
	2	Router	ASUS	GT-AXE11000	M6LAJF201230	

support units. The following support units or accessories were used to form a representative test

Note:

(1) The support equipment was authorized by Declaration of Confirmation.

- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength_</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
- (4) The adapter supply by the applicant.

WSET	WSET	WSLT	WSET	WSET
WSI				YSCT WSCT
WSET	WSET	WSCT	WSET	WSET
WSI				15 FT meations Testing T

DD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China L: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认还股份有限公司
World Standard Zation Certification& Testing Group(Shenzhen) Co.,Ltd.

VSCT

Page 8 /303

SET WSET

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

<i>(5 ET</i> °)	 W5CT

<i>C</i> 1		FCC Part15 Subpart C&E		
	Standard Section	Test Item	Judgment	Remark
	2.1049 15.403(i)	26dB & 99% Bandwidth	PASS	Complies
	15.407(e)	6dB Spectrum Bandwidth	PASS	Complies
X	15.407(a)	Maximum Conducted Output Power	PASS	Complies
E I	15.407(a)	Power Spectral Density	PASS	Complies
	15.407(b)	Unwanted Emissions	PASS	Complies
	15.207 <i>5 [T</i>	AC Conducted Emission WS LT	PASS W5	Complies
<	15.407(g)	Frequency Stability	PASS	Complies
C1	15.407(c) W5 C	Automatically Discontinue Transmission	PASS	Complies
	15.203 & 15.407(a)	Antenna Requirement	PASS	Complies
	15.407(h)	Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	PASS	Complies

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

W5 C1 WS ET WS CT W5 E1

Page 9 /303

W5CT

WS C1

W5 CT

W5 E1

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5CT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

5 MEASUREMENT INSTRUMENTS

J	WSTT	WSCT	WSCT		VS CT	WS	
7	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	
7	Test software	- /w	EZ-EMC	CON-03A	-/W.S	CT°	
	Test software	\ <u>-</u> /	MTS8310	-	\-	- \	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
_	W5 LISN	AFJ AFJ	LS165 CT	16010222119	11/05/2023	11/04/2024	Ľ
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	
	Universal Radio Communication Tester	R&S WS	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	/
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
/	Spectrum Analyzer	R&S	FSU ⁵ ET	100114	11/05/2023	11/04/2024	L
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	
	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	11/05/2023	11/04/2024	
	9*6*6 Anechoic	X	X		11/05/2023	11/04/2024	\langle
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	- /	11/05/2023	11/04/2024	C I
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	
7°	System-Controller	ccs	C7 N/A	W N/A	N.C.RW	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	/
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
7	RF cable	Murata	MXHQ87WA300 0		11/05/2023	11/04/2024	<u>E</u>
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
	Power sensor	Anritsu	MX248XD		11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	G

W5CT° W

WS CT

AWS CT

a. 深圳世标检测认证股份有限公司
World Standard Zation Certification& Testing Group(Shenzhen

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

117-15-

6 Facilities and Accreditations

6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.
Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2 ACCREDITATIONS

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB). Certification Number: AT-3951

	W5CT*	WSET	WS ET"	WSET	WSET
WSET	WSET	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			VSET /
	W5 ET	WSET	WSET	WSET	WSET
WSET	WSEI	$\langle \hspace{0.1cm} \rangle$		\times	VSCT /
	WSET	WSET	WSCT	WSCT	WSCT
WSET	WSEI	$\langle \hspace{0.1cm} \rangle$		<	YSET .
	WSCT	WSCT	WSET	WSET	X
X	X				WSET WSET

VSET WS

Page 11 /303

W5CT

WSET

W5 CI

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7 Test Results and Measurement Data

7.1 CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)		Standard	
Ż	FREQUENCT (MITZ)	Quasi-peak	Average	Quasi-peak	Average	Stariuaru	
	0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC	
	0.50 -5.0	73.00	60.00	56.00	46.00	FCC	
	W 5.0 -30.0	73.00	60.00	60.00	50.00	FCC	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

	Receiver Parameters		Setting	WELT
	Attenuation		10 dB	I P I T A
	Start Frequency	X	0.15 MHz	
1	Stop Frequency		30 MHz	
Ţ	IF Bandwidth	N5 ET	W5 C19 kHz W5 CT	

W.S	ET W.S	ET WS	ET W	SET	WSET
\times	\times	\times	\times	\times	
WSET	WSET	W5 CT	WSET	WSET	
				\checkmark	
, , , , , , , , , , , , , , , , , , ,	CT° WS	ET° WS	W	SET°	WSET
			"		
X	X	X	X	X	
WSET	W5 ET	W5 ET	W5 ET	WSET	

WSLI

SET WS

W5CT°

WSET Salvon Start Salvon Start

W5 CT

WS CT

WELT

AWS CT

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin FEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard Zation Certification & Testing Group(Shenzhen) Co.,Lit

lember of the WSCT Group (WSCT SA)

Page 12 /303

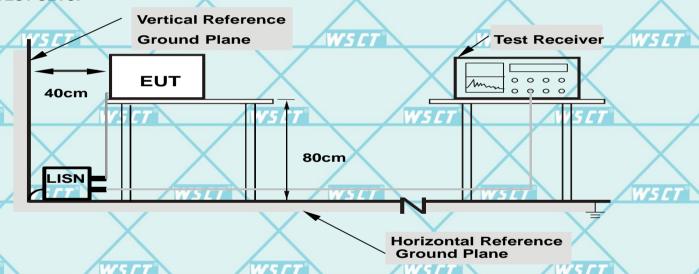
SET

CT WSCT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.1.1 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


W5CT

7.1.2 DEVIATION FROM TEST STANDARD

No deviation

WSET WSET WSET WSET

TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

WSCT WSCT WSCT WSCT

7.1.3 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin L: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard Zation Certification & Testing Group (Shenzhen) Co.,Lit

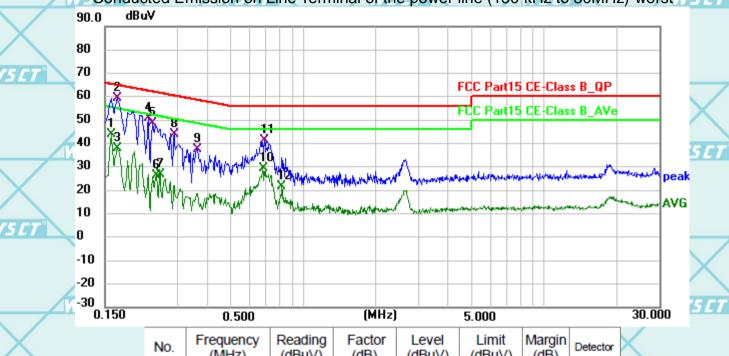
Member of the WSCT Group (WSCT SA)

Page 13 /303

WSCI

WS CT

WSCT


Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.1.4 TEST RESULTS(WORST CASE)

The worst mode is 11a

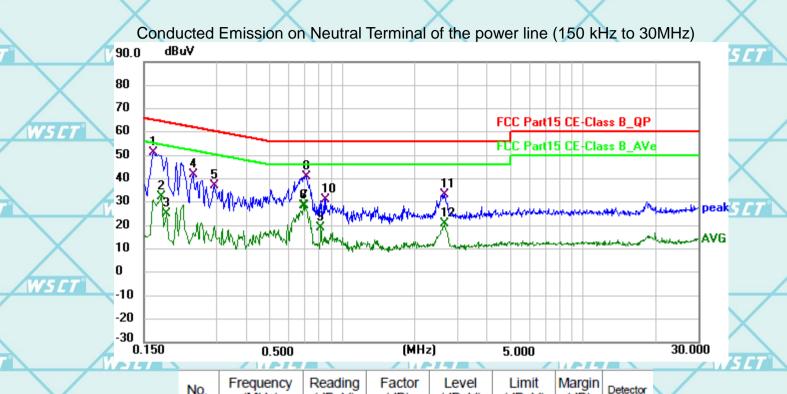
Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)-worst 1/5 [

WS CT

X	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	>
WSCT	1	0.1590	23.19	20.72	43.91	55.52	-11.61	AVG	3
	2 *	0.1680	38.59	20.72	59.31	65.06	-5.75	QP	
X	3	0.1680	17.15	20.72	37.87	55.06	-17.19	AVG	
	4	0.2265	30.19	20.67	50.86	62.58	-11.72	QP	
W5 LT	5	0.2355	28.10	20.67	48.77	62.25	-13.48	QP	_
	6	0.2445	5.71	20.66	26.37	51.94	-25.57	AVG	
	7	0.2535	6.11	20.66	26.77	51.64	-24.87	AVG	1
WSCT	8	0.2895	23.08	20.64	43.72	60.54	-16.82	QP	7
	9	0.3615	16.82	20.59	37.41	58.69	-21.28	QP	A
\times	10	0.6809	9.02	20.54	29.56	46.00	-16.44	AVG	
	11	0.6900	20.95	20.54	41.49	56.00	-14.51	QP	
WSCT	12	0.8160	0.87	20.59	21.46	46.00	-24.54	AVG	

Remark: All the modes have been investigated, and only worst mode is presented in this report.

W5C1


Page 14 /303

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

No. (dB) (MHz) (dBuV) (dB) (dBuV) (dBuV) QP 1 0.1635 30.47 20.72 51.19 65.28 -14.09AVG 2 0.1770 11.58 20.71 32.29 54.63 -22.343 0.1860 4.38 20.70 25.08 54.21 -29.13AVG 4 0.2400 21.08 20.67 41.75 62.10 -20.35QP 5 0.2940 16.25 20.63 36.88 60.41 -23.53QP 6 0.6900 8.15 20.54 28.69 46.00 -17.31AVG 7 7.76 -17.70AVG 0.699020.54 28.30 46.00 QP 8 0.7080 20.34 -15.1220.54 40.88 56.00 9 0.8160 -1.5720.59 19.02 46.00 -26.98 AVG 10 0.8520 10.61 20.61 31.22 56.00 -24.78 QP 2.6565 12.77 56.00 -22.63 QP 11 20.60 33.37 2.6565 20.74 -25.26 AVG 12 0.1420.60 46.00

Note1:

Freg. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG = average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

lding A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue FAX: 0086-755-86376605

Page 15 /303

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.2 RADIATED EMISSION MEASUREMENT

Radiated Emission Limits(Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

W5C1

	Frequencies	Field Strength	Measurement Distance	١
1	(MHz)	(micorvolts/meter)	(meters)	Z
	0.009~0.490	2400/F(KHz)	300	
	0.490~1.705	24000/F(KHz)	30	
V	/5 CT 1.705~30.0 W5 C	30 W5 ET	V30 - 7	
	30~88	100	3	-
	88~216	150	3	
_	216~960	W5 E 7200	W5 [T] 3 W5 [7
	Above 960	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Limit (dBuV/m) (at 3M) FREQUENCY (MHz) **PEAK AVERAGE** Above 1000 W5 [174 54

- Notes: (1) The limit for radiated test was performed according to FCC PART 15C.
 - (2) The tighter limit applies at the band edges.
 - (3) Emission level (dBuV/m)=20log Emission level (uV/m).

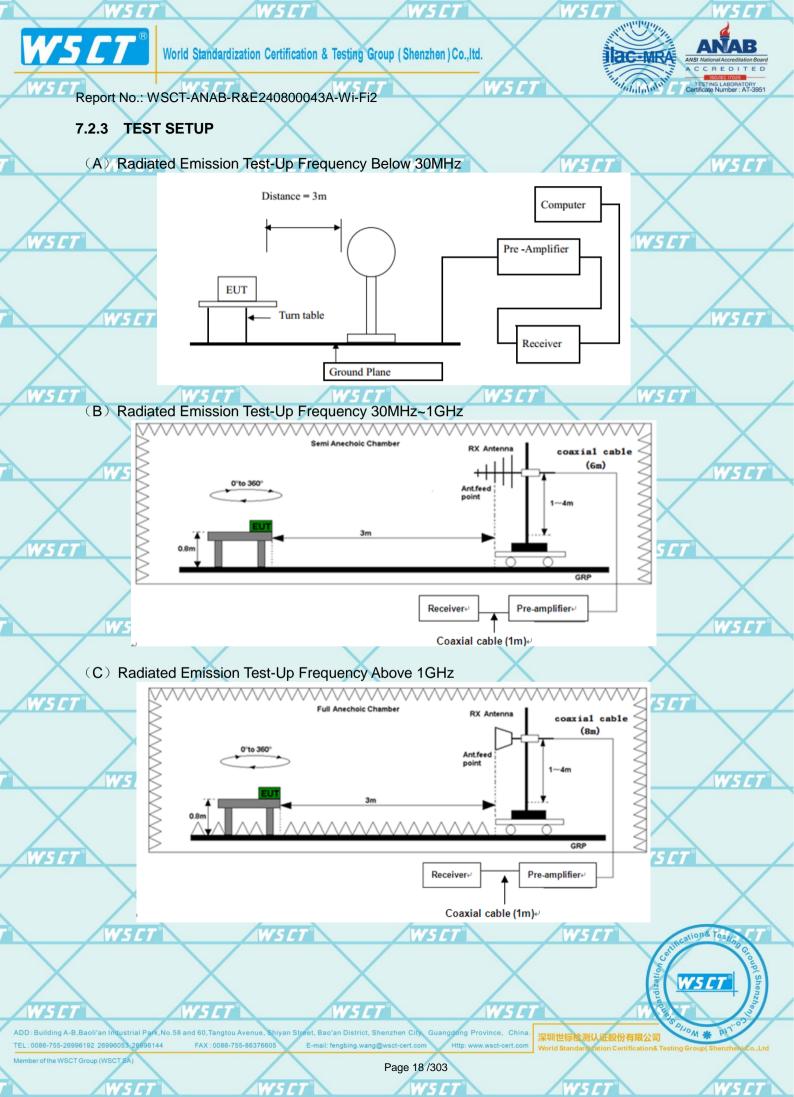
	Spectrum Parameter	Setting	
1	Attenuation	5 CT W5 C Auto W5 CT	
	Start Frequency	1000 MHz	
	Stop Frequency	10th carrier harmonic	X
1	RB / VB (emission in restricted	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average	5 C
	band)		

	Receiver Parameter	Setting		
	Attenuation	SET WS Auto		
	Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP		
	Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP		
_	W5 / Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP		

Page 16 /303

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.2.1 TEST PROCEDURE


a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three

orthogonal axis. The worst case emissions were reported	X
7.2.2 DEVIATION FROM TEST STANDARD W5.77 W5.77	WSCT
No deviation WSCT WSCT WSCT WSCT	
WSCT WSCT WSCT WSCT	WSET
WSCT WSCT WSCT WSC	
WSCT WSCT WSCT WSCT	WSCT
WSCT WSCT WSCT WSCT	
	ations Testing 7
	WSET

Page 17 /303

Note:

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

No result in this part for margin above 20dB.

7.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

W5CT

7.2.5 RESULTS (BELOW 30 MHZ)

	Freq.	Reading	Limit	Margin	State
/	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
	Walter		-	-	P
	X	Χ	X	X	Р

WSC	Limit line = specific lim	factor =20 log (specific lits(dBuV) + distance ext has been investigated, a	rapolation factor.	Tree of	
	WSET°	W5 ET	WSET	W5 ET	WSCT
WSE	WSG	WSCI	WSET	WSE	
	WSCT	WSET	WSET	WSET	WSCT
WSE	WSC	$(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	WSCI	WSC	
	WSCT	WSET	WSET	WSET	WSCT
WSI	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	$\langle \hspace{0.1cm} \rangle$	
	WSCT	WSET	WSET	X	X
				Cestiff Contract	ation® Testino G. O.

WELT

TEL: 0086-755-26996192 26996053 26996144

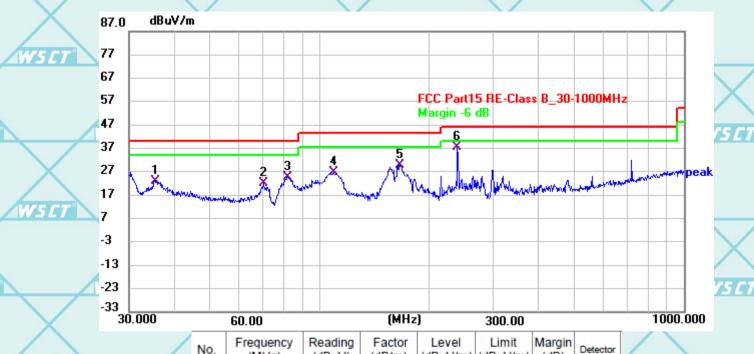
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

WSCT

Page 19 /303

WSET WSET

FAX: 0086-755-86376605


W5 CT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.2.6 TEST RESULTS (BETWEEN 30M - 1000 MHZ) (WORST CASE)

Please refer to following diagram for individual (The worst mode is 11a)

Below 1GHz Horizontal:

SET W	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	35.4837	42.37	-19.47	22.90	40.00	-17.10	QP
X	2	70.2132	44.28	-22.35	21.93	40.00	-18.07	QP
	3	82.1066	48.79	-24.08	24.71	40.00	-15.29	QP
W5CT"	4	109.5076	49.42	-22.61	26.81	43.50	-16.69	QP
	5	167.1635	50.10	-20.29	29.81	43.50	-13.69	QP
Y '	6 *	239.9873	60.12	-22.59	37.53	46.00	-8.47	QP

1	W5CT°	WSET	WS CT	WSCT	WSCT

W5 ET	W5 CT	W5 CT	W5CT°	W5CT*

W5CT°	WSCT	WSCT	W5 CT	METT

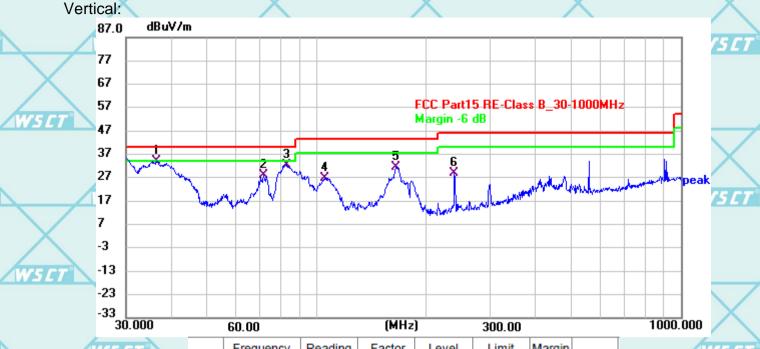
V \	/	

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

Page 20 /303

W5C1



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT

W5 ET	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1 *	36.4772	53.44	-19.42	34.02	40.00	-5.98	QP
	2	71.8320	50.80	-22.55	28.25	40.00	-11.75	QP
7° W	3	82.9021	56.23	-24.00	32.23	40.00	-7.77	QP
	4	105.5490	49.95	-23.04	26.91	43.50	-16.59	QP
	5	165.9225	51.71	-20.06	31.65	43.50	-11.85	QP
	6	239.8822	51.56	-22.59	28.97	46.00	-17.03	QP

WSCT WSCT WSCT WSCT WSCT

Note1:

NSE

Freq. = Emission frequency in MHz

Reading level (dBµV) = Receiver reading / 5 / 7

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) - Limits (dB μ V)

VS CT WS CT

ECT WEST

WSCT WSCT WSCT WSCT

WSET WSET WSET

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

ng@wsct-cert.com Http: www.wsct-cert.com Wo

深圳世标检测认证股份有限公司
World Standardization Certification & Testing Group (Shenzhen) Co.,Ltc

Page 21 /303

VSCT WSCT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2


7.2.7 TEST RESULTS (ABOVE 1GHZ)

Note: 1. The spurious above 18G is noise only, do not show on the report.

2. Report and only recorded the worst-case scenario 802.11a.

11a, 1 GHz to 18 GHz, Channel (5180 MHz), ANT H

W5CT

Susputed Data List Deg [°] Reading Factor Level Limit Margin Freq. NO. **Polarity** Verdict Trace [dB(uV)][dB(uV)] [MHz] [dB] [dB] [dB] 2371.8750 42.7 5 37.7 74 -31.3 -0.1 Horizontal PΚ Pass 2371.8750 34.01 5 29.01 54 -19.99 -0.1 Horizontal ΑV Pass 3743.7500 49.7 10.45 39.25 74 -24.3 210.1 Horizontal PK Pass 2 39.88 29.43 3743.7500 10.45 54 -14.12210.1 Horizontal ΑV Pass 3 5675.0000 57.06 20.86 36.2 74 -16.94 3.5 PK Pass Horizontal 3 5675.0000 47.61 20.86 26.75 54 -6.39 3.5 Horizontal ΑV Pass 4 11181.0000 45.04 39.34 5.7 74 -28.96 45 Horizontal PΚ Pass 4 45 11181.0000 37.18 -2.16 54 -16.82 ΑV Pass 39.34 Horizontal 5 13629.0000 48.49 40.54 7.95 74 -25.51 333.1 Horizontal PK Pass 5 13629.0000 40.54 54 41.24 0.7 -12.76 333.1 Horizontal ΑV Pass 6 17811.0000 53.52 45.23 8.29 74 -20.48 300.9 PK Pass Horizontal 6 17811.0000 45.24 45.23 0.01 54 -8.76 300.9 ΑV Horizontal Pass

	WSET	WSET	WSET	W5 CT°	WSET
				\checkmark	\bigvee
WSET	WS	W.5	TT W	SET	WS ET®

WSET WSET WSET

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

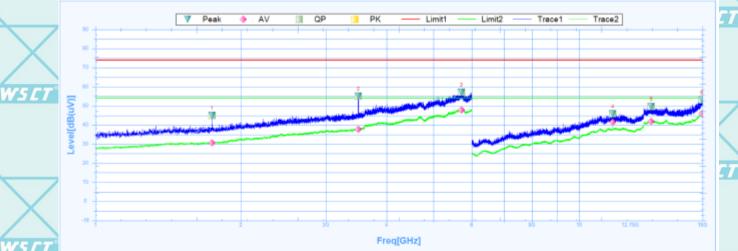
深圳世标检测认证股份有限公司
World Standard ration Certification & Testing Group(Shenzhen) Co.,Ltd.

ation& Test

TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT Group (WSCT SA)

Page 22 /303



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT

NS E1

W5 CT

	Suspu	ited Data Lis	st									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	1741.8750	44.92	0.47	44.45	74	-29.08	0.5	Vertical	PK	Pass	5
/	1	1741.8750	30.6	0.47	30.13	54	-23.4	0.5	Vertical	AV	Pass	
	2	3497.5000	55.23	9.67	45.56	74	-18.77	212	Vertical	PK	Pass	
	2	3497.5000	37.82	9.67	28.15	54	-16.18	212	Vertical	AV	Pass	
-	3	5711.8750	57.08	21.23	35.85	74	-16.92	348.1	Vertical	PK	Pass	
	3	5711.8750	47.92	21.23	26.69	54	-6.08	348.1	Vertical	AV	Pass	
	4	11745.0000	45.99	38.83	7.16	74	-28.01	0	Vertical	PK	Pass	/
	4	11745.0000	41.43	38.83	2.6	54	-12.57	0	Vertical	AV	Pass	
	5	14095.5000	49.7	41.38	8.32	74	-24.3	0	Vertical	PK	Pass	
	5	14095.5000	41.82	41.38	0.44	54	-12.18	0	Vertical	AV	Pass	5
/	6	17947.5000	53.21	46.15	7.06	74	-20.79	11.8	Vertical	PK	Pass	
	6	17947.5000	45.91	46.15	-0.24	54	-8.09	11.8	Vertical	AV	Pass	

WE	CT°\	WSCT°	WSCT	WSCT	W5CT

 W5 CT	W5 CT	WSET	W5CT"	W5CT"

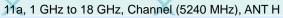
_					
	W5CT"	WSET	WSCT	WSET	W5 CT

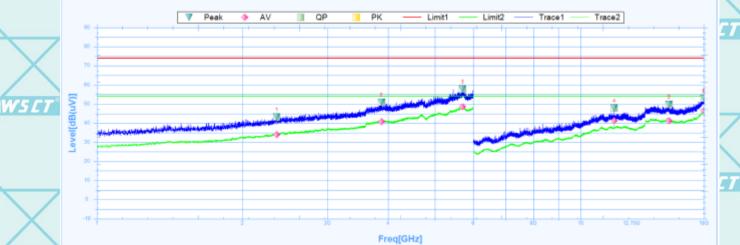
WELL	WSCT	WELT	WELL	

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

ion& Testin

Page 23 /303


W5ET



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5 [T] W5 [T]

W5 CT

W5 CT

	Suspu	ited Data Lis	st									I —
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2355.0000	43.15	4.89	38.26	74	-30.85	10.2	Horizontal	PK	Pass	
_	1	2355.0000	34.06	4.89	29.17	54	-19.94	10.2	Horizontal	AV	Pass	4
	2	3875.0000	50.88	11.12	39.76	74	-23.12	320.9	Horizontal	PK	Pass	
	2	3875.0000	40.92	11.12	29.8	54	-13.08	320.9	Horizontal	AV	Pass	
	3	5704.3750	57.81	21.15	36.66	74	-16.19	360	Horizontal	PK	Pass	
7	3	5704.3750	48.64	21.15	27.49	54	-5.36	360	Horizontal	AV	Pass	
	4	11745.0000	47.82	38.83	8.99	74	-26.18	243.6	Horizontal	PK	Pass	
	4	11745.0000	41.3	38.83	2.47	54	-12.7	243.6	Horizontal	AV	Pass	/
	5	15244.5000	49.8	39.44	10.36	74	-24.2	63	Horizontal	PK	Pass	
	5	15244.5000	41.29	39.44	1.85	54	-12.71	63	Horizontal	AV	Pass	
,	6	17982.0000	52.98	46.38	6.6	74	-21.02	144.3	Horizontal	PK	Pass	4
	6	17982.0000	46.49	46.38	0.11	54	-7.51	144.3	Horizontal	AV	Pass	

1	WSCT	WSET	WSET	WSI	7	WSET
	No. C.		VSET	WSET	WSCT	WSCT
	WSCI		7144	TIPLE TO THE TOTAL TO THE TOTAL TOTA	- WEIGH	

WSET WSET WSET WSET WSET

WSCT WSCT WSCT WSCT

ADD: Building A-B, Baoll'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China

深圳世标检测认证股份有限公司 World Standard Zation Certification& Testing Group(Shenzhen) Co., Ltd

W5 CT

Page 24 /303

VSCT WSCT

VSCT

WSET

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT

11a, 1 GHz to 18 GHz, Channel (5240 MHz), ANT V

W5 CT

Suspu	Susputed Data List												
NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict			
1	3130.6250	46.37	7.98	38.39	74	-27.63	323.3	Vertical	PK	Pass			
1	3130.6250	36.33	7.98	28.35	54	-17.67	323.3	Vertical	AV	Pass			
2	4486.2500	53.17	13.63	39.54	74	-20.83	237.3	Vertical	PK	Pass			
2	4486.2500	42.38	13.63	28.75	54	-11.62	237.3	Vertical	AV	Pass			
3	5750.6250	59.2	20.81	38.39	74	-14.8	6.2	Vertical	PK	Pass			
3	5750.6250	47.69	20.81	26.88	54	-6.31	6.2	Vertical	AV	Pass			
4	10536.0000	42.65	38.85	3.8	74	-31.35	359	Vertical	PK	Pass			
4	10536.0000	35.64	38.85	-3.21	54	-18.36	359	Vertical	AV	Pass			
5	14416.5000	50.41	40.96	9.45	74	-23.59	359.5	Vertical	PK	Pass			
5	14416.5000	41.46	40.96	0.5	54	-12.54	359.5	Vertical	AV	Pass			
6	17967.0000	53.01	46.28	6.73	74	-20.99	71.4	Vertical	PK	Pass			
6	17967.0000	46.09	46.28	-0.19	54	-7.91	71.4	Vertical	AV	Pass			

W5 E1 W5 CI

WS ET

W5 CT W5 CT W5 ET W5 C1

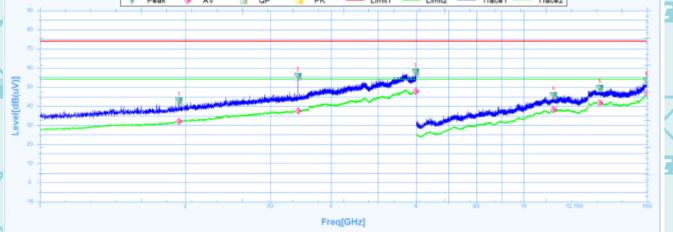
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

深圳世标检测认证股份有限公司

Page 25 /303

W5 CT

W5ET



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT°

W5 CT

WS E

W5 C7

	Suspu	ited Data Lis	SI.									
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	1939.3750	42.55	1.92	40.63	74	-31.45	307.7	Horizontal	PK	Pass	
_	1	1939.3750	32.05	1.92	30.13	54	-21.95	307.7	Horizontal	AV	Pass	4
	2	3418.7500	55.45	9.12	46.33	74	-18.55	207.3	Horizontal	PK	Pass	
	2	3418.7500	37.43	9.12	28.31	54	-16.57	207.3	Horizontal	AV	Pass]
	3	5987.5000	57.57	21.29	36.28	74	-16.43	286.2	Horizontal	PK	Pass	1
8	3	5987.5000	47.59	21.29	26.3	54	-6.41	286.2	Horizontal	AV	Pass	1
	4	11530.5000	45.46	39.02	6.44	74	-28.54	0	Horizontal	PK	Pass	
	4	11530.5000	38.19	39.02	-0.83	54	-15.81	0	Horizontal	AV	Pass	
	5	14383.5000	49.21	41	8.21	74	-24.79	73.8	Horizontal	PK	Pass	
	5	14383.5000	41.68	41	0.68	54	-12.32	73.8	Horizontal	AV	Pass	
,	6	17982.0000	53.06	46.38	6.68	74	-20.94	352.9	Horizontal	PK	Pass	4
	6	17982.0000	46.85	46.38	0.47	54	-7.15	352.9	Horizontal	AV	Pass	

WS ET W5 CI

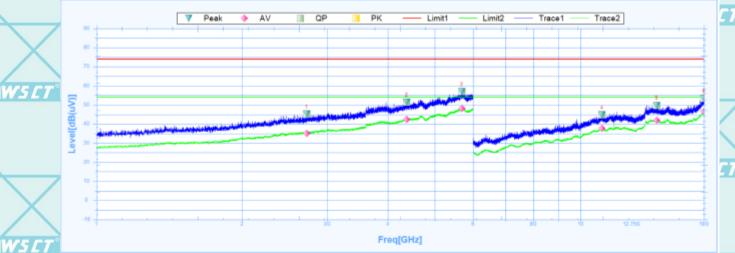
W5C1 WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

深圳世标检测认证股份有限公司

Page 26 /303

W5CT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT

11a, 1 GHz to 18 GHz, Channel (5260 MHz), ANT V

W5 C1

WS CT

	Suspu	ited Data Lis	st									1
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
_	1	2716.8750	45.17	6.39	38.78	74	-28.83	76.8	Vertical	PK	Pass	5
/	1	2716.8750	35.07	6.39	28.68	54	-18.93	76.8	Vertical	AV	Pass	
	2	4373.7500	51.41	13.41	38	74	-22.59	122.2	Vertical	PK	Pass	
	2	4373.7500	42.27	13.41	28.86	54	-11.73	122.2	Vertical	AV	Pass	
9	3	5684.3750	56.86	20.96	35.9	74	-17.14	93.6	Vertical	PK	Pass	
	3	5684.3750	48.16	20.96	27.2	54	-5.84	93.6	Vertical	AV	Pass	
	4	11077.5000	44.74	39.43	5.31	74	-29.26	275.8	Vertical	PK	Pass	/
	4	11077.5000	37.68	39.43	-1.75	54	-16.32	275.8	Vertical	AV	Pass	
	5	14367.0000	49.76	41.02	8.74	74	-24.24	358.8	Vertical	PK	Pass	
_	5	14367.0000	41.87	41.02	0.85	54	-12.13	358.8	Vertical	AV	Pass	4
	6	17997.0000	53.37	46.48	6.89	74	-20.63	0	Vertical	PK	Pass	
	6	17997.0000	46.67	46.48	0.19	54	-7.33	0	Vertical	AV	Pass	

	TARE CO	TARRET -	
	W5 CT		

W5 ET	W5 CT°	W5 CT	W5 CT°	WSET

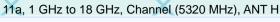
W5 CT W5 CT W5 ET W5 C1

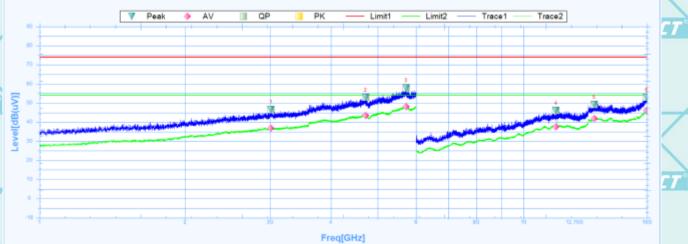
ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

深圳世标检测认证股份有限公司

Page 27 /303

W5 CT


W5ET



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5 CT

WS CI

W5 CT

W5CT

	Susputed Data List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	<
	1	3008.1250	46.67	8.04	38.63	74	-27.33	248	Horizontal	PK	Pass	
_	1	3008.1250	36.9	8.04	28.86	54	-17.1	248	Horizontal	AV	Pass	4
	2	4718.7500	52.93	14.81	38.12	74	-21.07	331.7	Horizontal	PK	Pass	
	2	4718.7500	43.58	14.81	28.77	54	-10.42	331.7	Horizontal	AV	Pass	
	3	5718.7500	57.93	21.16	36.77	74	-16.07	6.6	Horizontal	PK	Pass	
-0	3	5718.7500	48.2	21.16	27.04	54	-5.8	6.6	Horizontal	AV	Pass	
	4	11671.5000	46.06	38.9	7.16	74	-27.94	359.5	Horizontal	PK	Pass	
	4	11671.5000	37.46	38.9	-1.44	54	-16.54	359.5	Horizontal	AV	Pass	
	5	13998.0000	49.2	41.49	7.71	74	-24.8	29.6	Horizontal	PK	Pass	
	5	13998.0000	41.84	41.49	0.35	54	-12.16	29.6	Horizontal	AV	Pass	
,	6	17955.0000	53.05	46.2	6.85	74	-20.95	213.6	Horizontal	PK	Pass	4
	6	17955.0000	46.23	46.2	0.03	54	-7.77	213.6	Horizontal	AV	Pass	

WSET	WSET	WSE	7 W	SET	WSET
	X	\times		\times	X
	WSET	WSET	WSET	W5 ET	WSET
\times	\times	\times		\times	\times

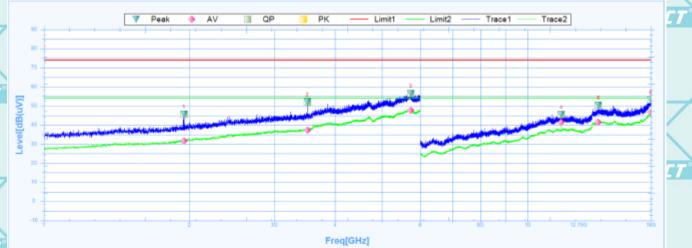
W5 ET WSET W5 ET W5 ET

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

W5 CT

Page 28 /303



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT"

11a, 1 GHz to 18 GHz, Channel (5320 MHz), ANT V

W5 ET

15 C

Member of the WSCT Group (WSCT SA)

Susputed Data List Reading Factor Level Limit Margin Deg Freq. NO. **Polarity** Verdict Trace [MHz] [dB(uV)] [dB] [dB(uV)] [dB] [dB] [°] 1947.5000 45.67 2.02 43.65 74 -28.33 68.6 Vertical PK Pass 1947.5000 2.02 29.81 -22.17 68.6 Vertical 31.83 54 ΑV Pass 2 3507.5000 52.14 9.72 42.42 74 -21.86 265.9 Vertical Pass PK 2 3507.5000 37.38 9.72 27.66 54 -16.62 265.9 ΑV Pass Vertical 3 5734.3750 56.59 21 35.59 74 -17.41 301.8 PK Pass Vertical 3 5734.3750 47.74 21 26.74 54 -6.26 301.8 Vertical ΑV Pass 4 11745.0000 45.5 38.83 6.67 74 -28.5 140.7 Vertical PK Pass 4 11745.0000 41.53 38.83 2.7 54 -12.47 140.7 Pass Vertical ΑV 5 14013.0000 50.35 41.48 8.87 74 -23.65 222 Vertical PK Pass 5 14013.0000 41.58 41.48 0.1 54 -12.42222 Vertical ΑV Pass в 17991.0000 53.2 46.44 6.76 74 -20.8 PK Pass 14 Vertical 6 17991.0000 -7.36 46.64 46.44 0.2 54 14 Vertical ΑV Pass

V5CT°	WSCT	WSET	W5CT°	WSET

W5 CT	W5 CT	W5 CT	W5 CT°	W5CT [®]

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

W5 C7 W5 C7

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China.

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chin TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com Http: www.wsct-cert.com

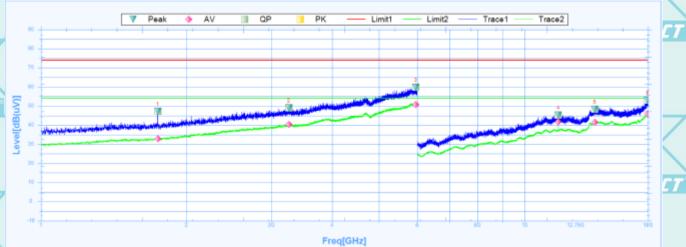
深圳世标检测认证股份有限公司
World Standardization Certification& Testing Group(Shenzhen) Co., Ltd

VSCT WSC

W5 CT

VSCT WSCT

Page 29 /303



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT"

11a, 1 GHz to 18 GHz, Channel (5500 MHz), ANT H

W5 CT

W5 CT

	Suspu	ited Data Lis	st									_
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	1744.3750	47.23	0.48	46.75	74	-26.77	72.2	Horizontal	PK	Pass	
_	1	1744.3750	32.92	0.48	32.44	54	-21.08	72.2	Horizontal	AV	Pass	4
	2	3256.2500	49.05	8.56	40.49	74	-24.95	1.5	Horizontal	PK	Pass	
	2	3256.2500	40.33	8.56	31.77	54	-13.67	1.5	Horizontal	AV	Pass	
/	3	5961.2500	59.87	20.96	38.91	74	-14.13	210.9	Horizontal	PK	Pass	1
7	3	5961.2500	50.75	20.96	29.79	54	-3.25	210.9	Horizontal	AV	Pass	
	4	11745.0000	45.26	38.83	6.43	74	-28.74	279.4	Horizontal	PK	Pass	
	4	11745.0000	41.66	38.83	2.83	54	-12.34	279.4	Horizontal	AV	Pass	/
	5	13969.5000	48.3	41.42	6.88	74	-25.7	230.4	Horizontal	PK	Pass	
	5	13969.5000	41.41	41.42	-0.01	54	-12.59	230.4	Horizontal	AV	Pass	
_	6	17967.0000	52.97	46.28	6.69	74	-21.03	193.3	Horizontal	PK	Pass	4
/	6	17967.0000	45.97	46 28	-0.31	54	-8.03	193.3	Horizontal	ΑV	Pass	

		17907.0000	40.87	40.20	-0.31	04	-0.03	183.3	Horizontal	AV	Fass	
/	VS CT	W	5 E T	,	WSET		WSE	7		WSET		
		VS ET		VS CT		WSET			VSET		W5	ET*
V	VSET		SET		WSET		WSE			WSET		,
		VS ET		WS ET		WSET			VSET			(T)
	X		$\overline{}$		\times		\times			Sation Control	ion& Testing	Group(Sh.

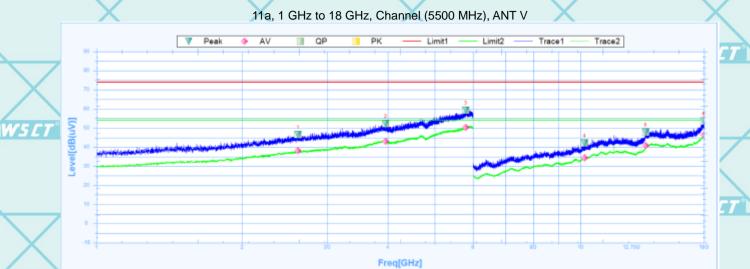
mber of the WSCT Group (WSCT SA)

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Page 30 /303

SCT WSCT

W5 CT


WSET

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5 CT°

WS CT	Susputed Data List
-------	--------------------

W5 C7

												-
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	<
	1	2609.3750	46.46	5.95	40.51	74	-27.54	359.5	Vertical	PK	Pass	
_	1	2609.3750	38.11	5.95	32.16	54	-15.89	359.5	Vertical	AV	Pass	4
	2	3959.3750	52.36	11.53	40.83	74	-21.64	-0.1	Vertical	PK	Pass	
	2	3959.3750	43.09	11.53	31.56	54	-10.91	-0.1	Vertical	AV	Pass	
	3	5795.0000	59.42	20.33	39.09	74	-14.58	237.6	Vertical	PK	Pass	
78	3	5795.0000	50.37	20.33	30.04	54	-3.63	237.6	Vertical	AV	Pass	
	4	10194.0000	42.06	38.37	3.69	74	-31.94	115.3	Vertical	PK	Pass	
	4	10194.0000	34.51	38.37	-3.86	54	-19.49	115.3	Vertical	AV	Pass	/
	5	13632.0000	47.87	40.54	7.33	74	-26.13	360	Vertical	PK	Pass	
	5	13632.0000	40.83	40.54	0.29	54	-13.17	360	Vertical	AV	Pass	
-	6	17985.0000	53.72	46.4	7.32	74	-20.28	299.3	Vertical	PK	Pass	4
	6	17985.0000	46.31	46.4	-0.09	54	-7.69	299.3	Vertical	AV	Pass	

W5C	W5	CT W.	SET W	SET I	WS CT
	WSET	W5CT°	W5 ET	W5 ET	W5 CT
X			X	X	X

WSCT WSCT WSCT WSCT WSCT

WSET WSET WSET WSET

ADD: Building A-B, Baoll'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group(Shenzhen) Co.,Ltr

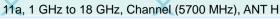
W5 CT

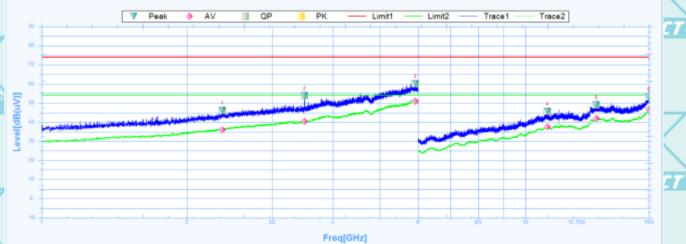
Member of the WSCT Group (WSCT SA)

Page 31 /303

SCT

WSCT





Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT

WS CT

NS CT

W5 CT

	Suspu	ited Data Lis	st									_
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	<
	1	2363.1250	46.08	4.94	41.14	74	-27.92	320.2	Horizontal	PK	Pass	
_	1	2363.1250	36.01	4.94	31.07	54	-17.99	320.2	Horizontal	AV	Pass	4
	2	3497.5000	53.93	9.67	44.26	74	-20.07	230.5	Horizontal	PK	Pass	
	2	3497.5000	40.28	9.67	30.61	54	-13.72	230.5	Horizontal	AV	Pass	
	3	5921.8750	60.14	20.59	39.55	74	-13.86	244.8	Horizontal	PK	Pass	
70	3	5921.8750	51.07	20.59	30.48	54	-2.93	244.8	Horizontal	AV	Pass	
	4	11098.5000	45.7	39.41	6.29	74	-28.3	268.2	Horizontal	PK	Pass	
	4	11098.5000	37.43	39.41	-1.98	54	-16.57	268.2	Horizontal	AV	Pass	
	5	14013.0000	48.98	41.48	7.5	74	-25.02	1.2	Horizontal	PK	Pass	
	5	14013.0000	41.84	41.48	0.36	54	-12.16	1.2	Horizontal	AV	Pass	
,	6	17992.5000	53.1	46.45	6.65	74	-20.9	124.8	Horizontal	PK	Pass	4
	6	17992.5000	46.46	46.45	0.01	54	-7.54	124.8	Horizontal	AV	Pass	

WSCT	WSET	WSET	WSET	WSET	
WAS	W5	CT W	TET W	SET WSCI	\ \
AMS CT	WSCT	WSCT	WSCT	WSCT	

 \times \times \times \times

WS CT

WSCT SELECTION OF THE PROPERTY OF THE PROPERTY

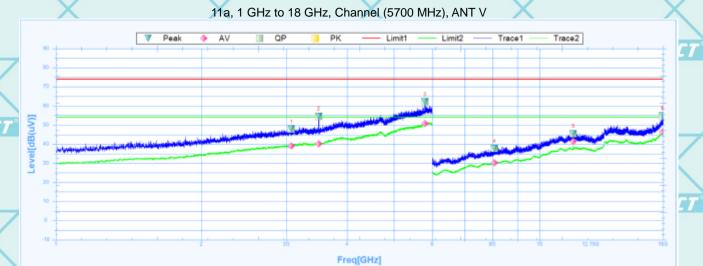
ADD: Building A-B,Baoll'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province. China FEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司 World Standard Zation Certification & Testing Group (Shenzhen) Co.,Ltd.

Page 32 /303

WSCT

WSCT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT

W5 ET

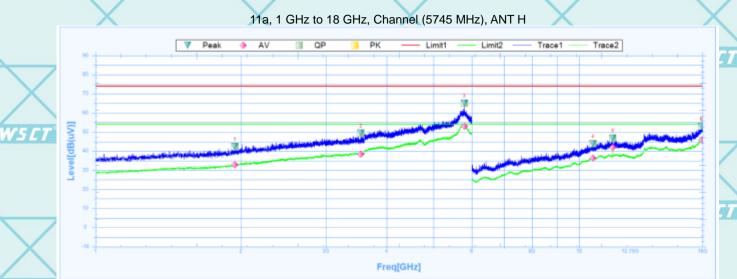
W5 ET

	Suspu	ited Data Lis	ST									ı —
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	(
	1	3070.0000	47.95	8.01	39.94	74	-26.05	134.8	Vertical	PK	Pass	
_	1	3070.0000	39.14	8.01	31.13	54	-14.86	134.8	Vertical	AV	Pass	7
	2	3496.2500	54.62	9.67	44.95	74	-19.38	0	Vertical	PK	Pass	
	2	3496.2500	40.06	9.67	30.39	54	-13.94	0	Vertical	AV	Pass	
	3	5797.5000	62.26	20.31	41.95	74	-11.74	349.8	Vertical	PK	Pass	
.00	3	5797.5000	50.83	20.31	30.52	54	-3.17	349.8	Vertical	AV	Pass	
	4	8070.0000	37.69	37.03	0.66	74	-36.31	328	Vertical	PK	Pass	
	4	8070.0000	30.23	37.03	-6.8	54	-23.77	328	Vertical	AV	Pass	
	5	11745.0000	45.56	38.83	6.73	74	-28.44	355.2	Vertical	PK	Pass	/
	5	11745.0000	41.46	38.83	2.63	54	-12.54	355.2	Vertical	AV	Pass	
,	6	17965.5000	54.89	46.27	8.62	74	-19.11	358.5	Vertical	PK	Pass	4
	6	17965.5000	46.29	46.27	0.02	54	-7.71	358.5	Vertical	AV	Pass	

	_	17000.0000	01.00	10.21	0.02		10.11	000.0	v er dom		1 433	
	6	17965.5000	46.29	46.27	0.02	54	-7.71	358.5	Vertical	AV	Pass	
WSET		M	YSET		WSET		WSL			WSET		
		\times		X		X			X			
	W	S C T		VS CT		WSET		M	15 CT		W5	ET°
WSET			/SET		WSET		WSI			WSET		
	W	SCT*		WS ET		WSET			VSET.	cati	on& Testio	CT ³
X			X		X		\rangle			ordizari Certificari	SET°	Group(Shenz/

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue,

Page 33 /303



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT

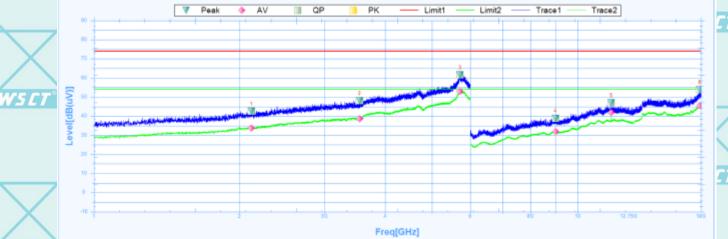
W5 ET

	Suspu	ileu Dala Es	5L									-
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	1941.2500	42.3	1.95	40.35	74	-31.7	45.2	Horizontal	PK	Pass	
_	1	1941.2500	32.76	1.95	30.81	54	-21.24	45.2	Horizontal	AV	Pass	4
	2	3540.0000	49.44	9.9	39.54	74	-24.56	0	Horizontal	PK	Pass	
	2	3540.0000	38.32	9.9	28.42	54	-15.68	0	Horizontal	AV	Pass	
	3	5791.8750	65.19	20.37	44.82	74	-8.81	156.4	Horizontal	PK	Pass	
, 6	3	5791.8750	52.93	20.37	32.56	54	-1.07	156.4	Horizontal	AV	Pass	
	4	10683.0000	43.9	39.06	4.84	74	-30.1	182.2	Horizontal	PK	Pass	
	4	10683.0000	36.31	39.06	-2.75	54	-17.69	182.2	Horizontal	AV	Pass	1
	5	11745.0000	46.78	38.83	7.95	74	-27.22	69.8	Horizontal	PK	Pass	
	5	11745.0000	41.92	38.83	3.09	54	-12.08	69.8	Horizontal	AV	Pass	
7	6	17901.0000	53	45.84	7.16	74	-21	261	Horizontal	PK	Pass	4
	6	17901.0000	45.84	45.84	0	54	-8.16	261	Horizontal	AV	Pass	

6	17901.0000	45.84	45.84	0	54	-8.16	261	Horizontal	AV	Pass	ļ
WSET	W	SET	,	WSET		WSE	7	,	W5ET		
	WSCT		V5 CT		WSCT		/	VS CT		WS	
WSET		SET*		WSET		WSE			WSET		
	WSET		WS ET		WSCT			VS CT			(T)
\times		\times		\times		\times			atios of the state	on& Testing	Moup(St

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

Page 34 /303



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT

W5 E1

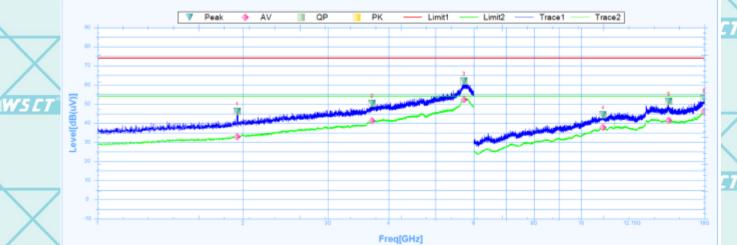
W5 CT

	Suspu	ited Data Lis	st									1-
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	<
	1	2116.2500	42.67	3.11	39.56	74	-31.33	-0.1	Vertical	PK	Pass]_
_	1	2116.2500	33.77	3.11	30.66	54	-20.23	-0.1	Vertical	AV	Pass	4
	2	3543.7500	48.16	9.91	38.25	74	-25.84	36.7	Vertical	PK	Pass]
	2	3543.7500	38.66	9.91	28.75	54	-15.34	36.7	Vertical	AV	Pass]
	3	5717.5000	61.48	21.18	40.3	74	-12.52	8.9	Vertical	PK	Pass	1
- 6	3	5717.5000	53.03	21.18	31.85	54	-0.97	8.9	Vertical	AV	Pass	1
	4	8997.0000	38.94	37.4	1.54	74	-35.06	0.5	Vertical	PK	Pass	1
	4	8997.0000	31.92	37.4	-5.48	54	-22.08	0.5	Vertical	AV	Pass	
	5	11745.0000	47.04	38.83	8.21	74	-26.96	333.9	Vertical	PK	Pass	
	5	11745.0000	41.9	38.83	3.07	54	-12.1	333.9	Vertical	AV	Pass	1_
,	6	17886.0000	53.84	45.74	8.1	74	-20.16	286.1	Vertical	PK	Pass	4
	R	17008 0000	45.40	45.74	0.28	5.4	0.52	208.1	Vertical	A\/	Page	1

		6	17886.0000	45.48	45.74	-0.26	54	-8.52	286.1	Vertical	AV	Pass	
/	W5 CT		M	SET		WSET		WSE	7		WSLT		
~			SET		VSCT		WSET		M	VS CT		W5	<i>[7</i>
	WSET			SET		WSET		WSI			WSET		,
		W	5.67		VSET		WSET			VS CT		on& Testio	(T)
	X			\times		X		\rightarrow			ottes W	5 C T	Group(She

ADD : Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue

Page 35 /303



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT°

W5 C1

Suspu	ted D	ata	LIST

	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
ſ	1	1945.0000	46.11	1.99	44.12	74	-27.89	316.6	Horizontal	PK	Pass	١.
-	1	1945.0000	32.78	1.99	30.79	54	-21.22	316.6	Horizontal	AV	Pass	4
	2	3700.0000	50.28	10.38	39.9	74	-23.72	347	Horizontal	PK	Pass	
	2	3700.0000	41.19	10.38	30.81	54	-12.81	347	Horizontal	AV	Pass	1
	3	5725.0000	61.99	21.09	40.9	74	-12.01	97.8	Horizontal	PK	Pass	1
.0	3	5725.0000	52.41	21.09	31.32	54	-1.59	97.8	Horizontal	AV	Pass	
	4	11103.0000	44.41	39.41	5	74	-29.59	102.2	Horizontal	PK	Pass	
	4	11103.0000	37.67	39.41	-1.74	54	-16.33	102.2	Horizontal	AV	Pass	
Ī	5	15178.5000	51.34	39.65	11.69	74	-22.66	77	Horizontal	PK	Pass	
Ī	5	15178.5000	41.49	39.65	1.84	54	-12.51	77	Horizontal	AV	Pass	
,	6	17965.5000	53.05	46.27	6.78	74	-20.95	230.1	Horizontal	PK	Pass	4
	6	17965.5000	46.19	46.27	-0.08	54	-7.81	230.1	Horizontal	AV	Pass	

W5 C

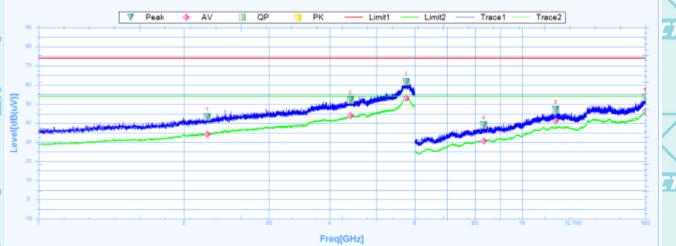
W5C1 WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue,

深圳世标检测认证股份有限公司

Page 36 /303

W5 CT



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

)43A-Wi-Fi2

WS CT

	Susputed Data List											
	NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict	
	1	2235.0000	43.18	3.99	39.19	74	-30.82	351.3	Vertical	PK	Pass	
_	1	2235.0000	34.14	3.99	30.15	54	-19.86	351.3	Vertical	AV	Pass	4
	2	4415.0000	52.08	13.55	38.53	74	-21.92	359.6	Vertical	PK	Pass	
	2	4415.0000	43.85	13.55	30.3	54	-10.15	359.6	Vertical	AV	Pass	
	3	5760.0000	61.69	20.72	40.97	74	-12.31	97.8	Vertical	PK	Pass	
. 6	3	5760.0000	53.05	20.72	32.33	54	-0.95	97.8	Vertical	AV	Pass	
	4	8331.0000	38.97	37.13	1.84	74	-35.03	1.2	Vertical	PK	Pass	
	4	8331.0000	30.63	37.13	-6.5	54	-23.37	1.2	Vertical	AV	Pass	
	5	11745.0000	47.22	38.83	8.39	74	-26.78	360.1	Vertical	PK	Pass	
	5	11745.0000	41.23	38.83	2.4	54	-12.77	360.1	Vertical	AV	Pass	_
,	6	17982.0000	53.52	46.38	7.14	74	-20.48	245.6	Vertical	PK	Pass	4
	6	17982.0000	46.04	46.38	-0.34	54	-7.96	245.6	Vertical	AV	Pass	

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+ Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. EUT has been tested in unfolded states, and the report only reflects data in the unfolded state (worst-case scenario)

WSCT WSCT WSCT WSCT

WS CT WS CT

SET WSE

WSET Shenzhou

WSET

WSCT

WELT

WSCT

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard Latin Certification & Testing Group (Shenzhen) Co.,Ltr

lember of the WSCT Group (WSCT SA)

Page 37 /303

W5 CT

SET WSET

W5CT®

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.3 ANTENNA REQUIREMENT

Standard requirement:

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and FCC part 15C section 15.407.

FCC part 15C section 15.203 and FCC part 15C section 15.407 requirements: Systems operating in the 5150~5850MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Wi-Fi antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is "MAIN:2.86dBi ,AUX:2.24 dBi".

VSET® WSE

W5CT

NS ET"

MAIN

AUX ANT2

WS CT

N5CT°

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(NANT/NSS=1) dB.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with

GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain GANT is set equal to the antenna having the highest gain, i.e.,

F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The directional gain "DG" is calculated as following table.

	<cdd modes=""></cdd>	Ant1	Ant2	DG for power	DG for PSD
		(dBi)	(dBi)	(dBi)	(dBi)
	5180~5825MHz	2.86	2.24	2.86	5.57

Power limit reduction = Composite gain – 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

W5CT°

VSCT WSC

W5CT

WSCT

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.co

深圳世标检测认证股份有限公司

Member of the WSCT Group (WSCT SA

Page 38 /303

WSE

--

WSET

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.4 EMISSION BANDWIDTH

7.4.1 TEST EQUIPMENT

Please refer to Section 5 this report.

WSET°

W5 CT

1W5 C1

7.4.2 TEST PROCEDURE

					/ \	
Acres	-26dB Bandwidth	and 99% Occupied Bandw	ridth:	(mark)	- A	
W5 C1	Test Method:	a)The transmitter was radia		analyzer in peak hold me	ode.	
		b)Measure the maximum w				
	X	emission Compare this with				X
		measurement as needed unt				
	Tost Equipment Sat	ting – 26dB Bandwidth:		uipment Setting – 99%% Ba		
						WSIT
	a)Attenuation: Auto			n: 1.5 times to 5.0 times the	e Obvv	
	b)Span Frequency:			/: 1 % to 5 % of the OBW		
X	d)VBW: VBW > RI	ately 1% of the emission bandwi		/: ≥ 3 x RBW	X	
	e)Detector: Peak	D W		ctor: Peak		
Aure	f)Trace: Max Hold			e: Max Hold	/222	
4W 5 L I	g)Sweep Time: Auto	Will	W5 CT	WSET	W5C	
	6 dB Bandwidth:				\ 	
	Test Method:	a)The transmitter was radia	tod to the enectrum	a analyzor in poak hold my	odo	
	rest Metriod.	b)Test was performed in ac				
		Unlicensed National Inform				
	W5CT°	Bandwidth.	auon inirastructure	(U-MI) Devices - Section	(C) Litilosion	W5CT°
		c)Multiple antenna system	was performed in a	ccordance with KDR6620	11 D01 v02r01	/
		Emissions	was periorifica in a	ccordance with NBB0023	11 DOT VOZIOT	
X		Testing of Transmitters with	Multiple Outputs i	n the Same Band	X	
		d)Measured the spectrum v			er.	
WELL	Test Equipment Set		WELT	WELT	WEL	
WELL	a)Attenuation: Auto		e)Detec	ctor: Peak		
	b)Span Frequency:			: Max Hold		
	c)RBW: 100kHz	X	g)Swee	p Time: Auto	X	X
	$d)VBW: \ge 3 \times RB^{3}$	w /				
	Maximum Condu	cted Output Power Measur	ement:	5/7	NSTT	WSCT
	Test Method:	a)The transmitter output (ar		onnected to the power met	ter.	/ 11/11/11
		b)Test was performed in ac	cordance with KDE	3789033 D02 v01 for Com	pliance Testing of	
X		Unlicensed National Inform	ation Infrastructure	(U-NII) Devices - section	(E) Maximum	
		conducted output power =>			=>b) Method PM-G	
Augus		(Measurement using a gate	d RF average pow	er meter).	THE CO.	
4W5 C1		c)Multiple antenna systems	was performed in	accordance with KDB6629	911 D01 v02r01	
		Emissions		./.		
	X	Testing of Transmitters with			X	X
		d)When measuring maximu			enna systems, add	
	T / F	every result of the values by	y mathematic formi	ıla.		
		ting: Detector - Average	/W		MSCT .	WSCT
	Power Spectral D			and a stant DE avoitable to the		
	Test Method:	a)The transmitter output (ar b)Test was performed in ac	ntenna port) was co	nnected RF switch to the	spectrum analyzer.	
		Unlicensed National Information	alion infrastructure	(U-MII) Devices - Section ((F) Maximum Power	
WSCI		Spectral Density (PSD). c)Multiple antenna systems	was performed in	accordance KDR662011 [201 v02r01 in Band	
		Power	was periorined in	accordance NDB002911 L	JOT VOZIOT III-Band	
		Spectral Density (PSD) Mea	acuramente (a) Ma	asure and sum the spectr	a across the	
	X	outputs.	acarcinents (a) Me	addre and dam the specific	a adiodo tilo	X
		d)When measuring first spe	ctral hin of output 1	is summed with that in the	e first spectral hip of	
	(VIII)	output 2 and that from the f				
	W5CT	obtain the value for		Tapar o and do on up to the	THE STATE OF THE S	ation& Testino
		the first frequency bin of the	e summed spectrur	n. The summed spectrum	value for each of	Gra

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard gation Certification& Testing Group(Shenzhen) Co., L

Member of the WSCT Group (WSCT SA

Page 39 /303

frequency bins is computed in the same way. e)For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW

WSC

W5CT[®]

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2 and the final result should ≤ 30 dBm. Test Equipment Setting: a)Attenuation: Auto e)Detector: RMS b) Span Frequency: Encompass the entire emissions bandwidth (EBW) of f)Trace: AVERAGE g)Sweep Time: Auto the signal c)RBW: 1000 kHz h)Trace Average: 100 times d)VBW: 3000 kHz Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement. Frequency Stability Measurement: Test Method: a) The transmitter output (antenna port) was connected to the spectrum analyzer. b)EUT have transmitted absence of modulation signal and fixed channelize. c)Set the spectrum analyzer span to view the entire absence of modulation emissions d)Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. e)fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 106 ppm and the limit is less than ±20ppm (IEEE 802.11nspecification). f)The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of nominal value g)Extreme temperature is 0°C~40°C Test Equipment Setting: a)Attenuation: Auto e)Sweep Time: Auto b)Span Frequency: Entire absence of modulation emissions bandwidth c)RBW: 10 kHz d)VBW: 10 kHz 7.4.3 CONFIGURATION OF THE EUT Same as section 3.4 of this report 7.4.4 EUT OPERATING CONDITION Same as section 3.5 of this report.

WSCT WSCT

FAX: 0086-755-86376605

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Page 40 /303

WSCT

WSCT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

, in the second	7.4.5 EIIVII I		
C	-26dB Bandwidth and 99% Occupied Bandwidth:		
	Limit: No restriction limits.	WELT	WELT
	-6 dB Bandwidth:		/ UPLA
	Limit: For digital modulation systems, the m	iinimum 6dB bandwidth shall be at least 500 kHz.	
X	Test Equipment Setting:	X	
	a)Attenuation: Auto	e)Detector: Peak	
W5C1	b)Span Frequency: > 6dB Bandwidth c)RBW: 100kHz	f)Trace: Max Hold g)Sweep Time: Auto	7°
ZUE!3	-/	g)Sweep Time: Auto	
	d)VBW: ≥ 3 x RBW		
	Maximum Conducted Output Power Measurement:		X
	∑5.15~5.	25 GHz	
	Limit of Outdoor access point:	☐Limit of Indoor access point:	
	The maximum conducted output power over the	The maximum conducted output power over the	WELT
	frequency band of operation shall not exceed 1 W	frequency band of operation shall not exceed 1 W	LIPIA
	(30dBm) provided the maximum antenna gain does not	(30dBm) provided the maximum antenna gain does	
	exceed 6 dBi. If transmitting antennas of directional gain	not	
	greater than 6 dBi are used, both the maximum	exceed 6 dBi. If transmitting antennas of directional	
Marie	conducted output power and the maximum power	gain greater than 6 dBi are used, both the maximum	
_W5 C1	spectral density shall be reduced by the amount in dB	conducted output power and the maximum power	
	that the directional gain of the antenna exceeds 6 dBi.	spectral density shall be reduced by the amount in	
	The maximum e.i.r.p. at any elevation angle above 30	dB	
	degrees as measured from the horizon must not exceed	that the directional gain of the antenna exceeds 6	
	125 mW (21 dBm).	dBi.	
	Limit of Fixed point-to-point access points:	Limit of Mobile and portable client devices:	Average
			/WSLI
	The maximum conducted output power over the	The maximum conducted output power over the	
	frequency band of operation shall not exceed 1 W	frequency band of operation shall not exceed 250	
X	(30dBm). Fixed point-to-point U-NII devices may employ	mW	
	antennas with directional gain up to 23 dBi without any	(24dBm) provided the maximum antenna gain does	
harry	corresponding reduction in the maximum conducted	not	
ZW5[]	output power or maximum power spectral density. For	exceed 6 dBi. If transmitting antennas of directional	
	fixed point-to-point transmitters that employ a directional	gain greater than 6 dBi are used, both the maximum	
	antenna gain greater than 23 dBi, a 1 dB reduction in	conducted output power and the maximum power	
	maximum conducted output power and maximum	spectral density shall be reduced by the amount in	X
	power spectral density is required for each 1 dB of	dB	
	antenna gain in excess of 23 dBi.	that the directional gain of the antenna exceeds 6	W5CT°
	57	dBi.	
	∑5.25-5.35 GHz & [
X	The maximum conducted output power over the frequence		
	mW (24dBm) or 11 dBm 10 log B, where B is the 26 dB e		
	antennas of directional gain greater than 6 dBi are used,	both the maximum conducted output power and the	
ZW5 []	maximum power spectral density shall be reduced by the	amount in dB that the directional gain of the antenna	
	exceeds 6 dBi.		
	∑5.725~5	5.85 GHz	
	The maximum conducted output power over the frequency		X
	transmitting antennas of directional gain greater than 6 dl		
			-
	power and the maximum power spectral density shall be in		W5 CT°
	the antenna exceeds 6 dBi. However, fixed point-to-point	. U-INIT devices operating in this band may employ	
	transmitting antennas with		
X	directional gain greater than 6 dBi without any correspond	aing reduction in transmitter conducted power.	
	Power Spectral Density		
/11.	⊠5.15~5.	25 GHz	
_W5C1	☐Limit of Outdoor access point: 17 dBm/MHz	25 GHz □Limit of Indoor access point: 17 dBm/MHz	
	Limit of Fixed point-to-point access points: 17	☑Limit of Mobile and portable client devices: 11	
	dBm/MHz	dBm/MHz	X
	□5.25-5.35 GHz	11 dBm/MHz	
	□5.470-5.725 GHz	11 dBm/MHz	
	⊠5.725~5.85 GHz	30 dBm/500kHz	ation& Testin
	Frequency Stability Measurement:	S.P.P.	300
		the band of operation under all conditions of normal	100
X			
	operation as specified in the user's m		WSCT S
		rance shall be ± 20 ppm maximum for the 5 GHz band	N N N N N N N N N N N N N N N N N N N
W5 []	(IEEE T WS FT	WSTT	3
		The state of the s	140: 000
	Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, She		NOM # PIT
TEL: 0086-755-2699	6192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@v	wsct-cert.com Http://www.wsct-cert.com World Standardization Certification& Testing	g Group(Shenzhen) Co.,Ltd

W5 E

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

W5CT"

802.11n specification).

7.4.6 TEST RESULT

T WS CI

IWS ET

W5 CT

-26dB Bandwidth and 99% Occupied Bandwidth

4	Product	: EUT-Sample	Test Mode	: See section 3.4	M2L
	Test Item	: -26dB Bandwidth/-6dB Bandwidth	Temperature	: 25 ℃	
	X	and 99% Occupied	X	. 20 0	
		Bandwidth			
	Test Voltage	: DC 11.55V	Humidity	: 56%RH	/
	W5F	/ W-7-/	W-5-1-1	AW5 []	
	Test Result	: PASS			
/			- N		

-26dB Bandwidth					
Average Average	Mode	Frequency (MHz)	-26 dB Bandwidth (MHz)	Verdict	THE CONTRACT OF THE CONTRACT O
WS ET WS	a	5180	23.97	Pass	W5CT°
	а	5240	19.40	Pass	
	а	5260	20.08	Pass	
	а	5320	19.43	Pass	
	а	5500	19.24	Pass	
WE CT.	a 🦯	5700	19.03	Pass	WEE CT.
W5 ET	n20	5180	20.55	Pass	W5 CT°
	n20	5240	19.88	Pass	
	n20	5260	20.86	Pass	
	n20	5320	20.47	Pass	
	n20	5500	20.50	Pass	
WSET WS	n20	5700	20.47	Pass	WSCT
WS CT WS		5190	39.39	Pass	MP 4
	n40	5230	39.69	Pass	
	n40	5270	39.86	Pass	
	n40	5310	40.14	Pass	
	n40	5510	39.35	Pass	
W5CT"	n40	5670	39.78	Pass	WE CT
MPL	ac20	5180	20.47	Pass	W5 CT
	ac20	5240	19.84	Pass	
	ac20	5260	20.33	Pass	
	ac20	5320	20.21	Pass	
	ac20	5500	20.64	Pass	
WSET WS	ac20	5700	20.48	Pass	WSCT
	W 414	5190	39.23	Pass	
	ac40 ac40	5230 5270	39.39 39.29	Pass Pass	
	ac40	5310	38.87	Pass	
	ac40	5510	39.11	Pass	
	ac40	5670	39.58	Pass	
WSCT	ac80	5210	78.55	Pass	WSCT
1617	ac80	5290	78.68	Pass	1614
	ac80	5530	78.50	Pass	
Y	ac80	5610	78.35	Pass	Y
	ax20	5180	21.97	Pass	
	ax20	5240	19.76	Pass	
WSET WS	ax20	5260 / 5 / 7	21.68	Pass	W5CT°
/ IFIG.	ax20	5320	21.69	Pass	ALFIG.
	ax20	5500	21.63	Pass	
×	ax20	5700	21.42	Pass	X
	ax40	5190	52.24	Pass	
	ax40	5230	39.35	Pass	
W5CT°	ax40	5270	/W5 F 7 39.20	Pass 7	tion& Tech
1	ax40	5310	44.35	Pass	Lincal
	ax40	5510	52.39	Pass	(S)
X	ax40	5670	55.29	Pass	8
	ax80	5210	83.09	Pass	WSCT Shen
	ax80	5290	79.76	Pass	WSCT WSCT

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

ax80

深圳世标检测认证股份有限公司
World Standard Lation Certification & Testing Group (Shenzhen) Co., L

Member of the WSCT Group (WSCT SA

Page 42 /303

WSE

V5 CT

-6dB Bandwidth

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

ax80	5610	79.83	Pass
ax160	5250	164.8	Pass
ax160	5570	165.3	Pass

-6 dB Bandwidth (MHz) Limit -6 dB Bandwidth (MHz) Verdict Mode Frequency (MHz) 5745 16.37 Pass 0.5 Pass 5825 16.32 а 0.5 n20 5745 17.58 0.5 **Pass** 5825 17.48 Pass 0.5 n20 n40 5755 35.08 0.5 Pass Pass n40 5795 35.03 0.5 ac20 5745 17.48 0.5 Pass Pass ac20 5825 16.93 0.5 Pass ac40 5755 34.99 0.5 ac40 5795 35.12 0.5 **Pass** Pass ac80 5775 75.08 0.5 ax20 5745 18.76 0.5 Pass 5825 Pass ax20 17.12 0.5 ax40 5755 35.81 0.5 Pass 35.59 0.5 Pass 5795 ax40 74.05 Pass ax80 5775 0.5 WSE. WS ET

W5CI

深圳世标检测认证股份有限公司

WS CI

ADD: Building A-B, Baoil'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. FAX: 0086-755-86376605

V5 C1

Page 43 /303

WS CI

W5 C

ation& Testi

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

Page 44 /303

E-mail: fengbing.wang@wsct-cert.com

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

FAX: 0086-755-86376605

WSCI

VSCT WSCT

深圳世标检测认证股份有限公司

MON #

TEL: 0086-755-26996192 26996053 26996144

CCREDITED

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

10M # 深圳世标检测认证股份有限公司

Page 45 /303

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

Malalaha **ac-MRA** Malalalal

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

10M # 深圳世标检测认证股份有限公司

Page 46 /303

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

WSCT WSCT WSCT WSCT WSCT Teeling Co

ADD: Building A-B, Baoil'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

Aug 31, 2024 2:34:08 PM

深圳世标检测认证股份有限公司
World Standard Zation Certification & Testing Group (Shenzhen) Co., Li

Page 47 /303

W5Ci

WSCT

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

10M # 深圳世标检测认证股份有限公司

Page 48 /303

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

Malalalal

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605

10M # 深圳世标检测认证股份有限公司

Page 49 /303