Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Test_Graph_802.11ax20_Chain B_2437_MCS0_DTSBW Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Test Graph 802.11ax40 Chain B 2452 MCS0 DTSBW Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Report No.: AGC16253250101FR03 Page 65 of 169 # 9. Power Spectral Density Measurement ### 9.1 Provisions Applicable The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. #### 9.2 Measurement Procedure - 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD. - 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 3. Set the RBW = 20 kHz. - 4. Set the VBW ≥ [3 × RBW]. - 5. Set the Span ≥ [1.5 × DTS bandwidth]. - 6. Sweep time=Auto couple. - 7. Detector function=Peak. - 8. Trace Mode=Max hold. - 9. When the measurement bandwidth of the maximum PSD is 3 kHz, a constant factor of 10*log(3kHz/20kHz) = -8.23 dB is added to the measurement result. - 10. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. - 11. The indicated level is the peak output power, after any corrections for external attenuators and cables. For Average power spectral density test: - 1. The testing follows the ANSI C63.10 Section 11.10.5 Method AVPSD. - 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator. - 3. Set Span to at least 1.5 times the OBW. - 4. Set RBW to:3 kHz ≤ RBW ≤ 100 kHz. - 5. Set VBW≥[3×RBW]. - 6. Sweep Time=Auto couple. - 7. Detector function=RMS (i.e., power averaging). - 8. Trace average at least 100 traces in power averaging (rms) mode. - 9. When the measurement bandwidth of the maximum PSD is 3 kHz, a constant factor of 10*log(3kHz/20kHz) = -8.23 dB is added to the measurement result. - 10. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below. - 11. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%. - 12. Record the test results in the report. # 9.3 Measurement Setup (Block Diagram of Configuration) ### 9.4 Measurement Result | Test Data of Conducted Output Power Spectral Density-Chain A | | | | | | | |--|----------------------------|--|---|---------------------|--------------|--| | Test Mode | Test
Frequency
(MHz) | Power Spectral
density
(dBm/20kHz) | Power Spectral
density
(dBm/3kHz) | Limit
(dBm/3kHz) | Pass or Fail | | | 802.11b | 2412 | -0.916 | -9.155 | ≪8 | Pass | | | | 2437 | -1.329 | -9.568 | ≪8 | Pass | | | | 2462 | -1.519 | -9.758 | ≪8 | Pass | | | 802.11g | 2412 | -2.221 | -10.46 | ≪8 | Pass | | | | 2437 | -2.631 | -10.87 | ≪8 | Pass | | | | 2462 | -2.778 | -11.017 | ≤8 | Pass | | | 802.11n20 | 2412 | -2.337 | -10.576 | ≪8 | Pass | | | | 2437 | -2.596 | -10.835 | ≪8 | Pass | | | | 2462 | -3.080 | -11.319 | ≤8 | Pass | | | 802.11n40 | 2422 | -5.017 | -13.256 | ≤8 | Pass | | | | 2437 | -5.514 | -13.753 | ≪8 | Pass | | | | 2452 | -5.352 | -13.591 | ≤8 | Pass | | | 802.11ax20 | 2412 | -3.404 | -11.643 | ≤8 | Pass | | | | 2437 | -3.322 | -11.561 | ≪8 | Pass | | | | 2462 | -3.506 | -11.745 | ≤8 | Pass | | | 802.11ax40 | 2422 | -7.593 | -15.832 | ≤8 | Pass | | | | 2437 | -7.870 | -16.109 | ≤8 | Pass | | | | 2452 | -7.834 | -16.073 | ≤8 | Pass | | | Test Data of Conducted Output Power Spectral Density-Chain B | | | | | | | |--|----------------------------|--|---|---------------------|--------------|--| | Test Mode | Test
Frequency
(MHz) | Power Spectral
density
(dBm/20kHz) | Power Spectral
density
(dBm/3kHz) | Limit
(dBm/3kHz) | Pass or Fail | | | 802.11b | 2412 | -0.868 | -9.107 | ≤8 | Pass | | | | 2437 | -1.059 | -9.298 | ≤8 | Pass | | | | 2462 | -1.251 | -9.49 | ≤8 | Pass | | | | 2412 | -2.111 | -10.35 | ≤8 | Pass | | | 802.11g | 2437 | -2.651 | -10.89 | ≤8 | Pass | | | | 2462 | -2.392 | -10.631 | ≤8 | Pass | | | | 2412 | -2.100 | -10.339 | ≤8 | Pass | | | 802.11n20 | 2437 | -2.113 | -10.352 | ≤8 | Pass | | | | 2462 | -2.300 | -10.539 | ≤8 | Pass | | | | 2422 | -4.623 | -12.862 | ≤8 | Pass | | | 802.11n40 | 2437 | -5.226 | -13.465 | ≤8 | Pass | | | | 2452 | -4.774 | -13.013 | ≤8 | Pass | | | | 2412 | -2.674 | -10.913 | ≤8 | Pass | | | 802.11ax20 | 2437 | -2.994 | -11.233 | ≤8 | Pass | | | | 2462 | -3.009 | -11.248 | ≤8 | Pass | | | 802.11ax40 | 2422 | -7.134 | -15.373 | ≤8 | Pass | | | | 2437 | -7.430 | -15.669 | ≤8 | Pass | | | | 2452 | -7.299 | -15.538 | ≤8 | Pass | | | Test Data of Conducted Output Power Spectral Density-MIMO | | | | | | | | |---|----------------------------|--|---|---------------------|--------------|--|--| | Test Mode | Test
Frequency
(MHz) | Power Spectral
density
(dBm/20kHz) | Power Spectral
density
(dBm/3kHz) | Limit
(dBm/3kHz) | Pass or Fail | | | | 802.11n20 | 2412 | 0.793 | -7.446 | ≤7.66 | Pass | | | | | 2437 | 0.663 | -7.576 | ≤7.66 | Pass | | | | | 2462 | 0.338 | -7.901 | ≤7.66 | Pass | | | | 802.11n40 | 2422 | -1.805 | -10.044 | ≤7.66 | Pass | | | | | 2437 | -2.357 | -10.596 | ≤7.66 | Pass | | | | | 2452 | -2.043 | -10.282 | ≤7.66 | Pass | | | | 802.11ax20 | 2412 | -0.013 | -8.252 | ≤7.66 | Pass | | | | | 2437 | -0.145 | -8.384 | ≤7.66 | Pass | | | | | 2462 | -0.240 | -8.479 | ≤7.66 | Pass | | | | 802.11ax40 | 2422 | -4.347 | -12.586 | ≤7.66 | Pass | | | | | 2437 | -4.634 | -12.873 | ≤7.66 | Pass | | | | | 2452 | -4.548 | -12.787 | ≤7.66 | Pass | | | #### Note: ^{1.} The Total Power Spectral Density (dBm) = $10*log \{10^{(Chain A PSD/10)} + 10^{(Chain B PSD/10)}\}$. # **Test Graphs of Conducted Output Power Spectral Density** Freq Offset Scale Type Log Span 21.19 MHz Sweep 50.55 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11g_Chain A_2412_6Mbps_PSD #VBW 62 kHz Center 2.41200 GHz #Res BW 20 kHz Scale Type Log Span 20.60 MHz Sweep 49.15 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11g_Chain A_2462_6Mbps_PSD #VBW 62 kHz Center 2.46200 GHz #Res BW 20 kHz Freq Offset 0 Hz Scale Type Log Span 18.80 MHz Sweep 44.82 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11n20_Chain A_2437_MCS0_PSD #VBW 62 kHz Center 2.437000 GHz #Res BW 20 kHz 0 Hz Scale Type Log Span 52.62 MHz Sweep 125.5 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11n40_Chain A_2422_MCS0_PSD #VBW 62 kHz Center 2.42200 GHz #Res BW 20 kHz Freq Offset 0 Hz Scale Type Log Span 48.78 MHz Sweep 116.3 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11n40_Chain A_2452_MCS0_PSD #VBW 62 kHz Center 2.45200 GHz #Res BW 20 kHz Scale Type Log Span 23.25 MHz Sweep 55.48 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11ax20_Chain A_2437_MCS0_PSD #VBW 62 kHz Center 2.43700 GHz #Res BW 20 kHz 0 Hz Scale Type Log Span 48.87 MHz Sweep 116.5 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11ax40_Chain A_2422_MCS0_PSD #VBW 62 kHz Center 2.42200 GHz #Res BW 20 kHz Freq Offset 0 Hz Scale Type Log Span 52.45 MHz Sweep 125.1 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11ax40_Chain A_2452_MCS0_PSD #VBW 62 kHz Center 2.45200 GHz #Res BW 20 kHz Scale Type Log Span 15.14 MHz Sweep 36.10 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11b_Chain B_2437_1Mbps_PSD #VBW 62 kHz Center 2.437000 GHz #Res BW 20 kHz Freq Offset Scale Type Log Span 22.63 MHz Sweep 54.01 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11g_Chain B_2412_6Mbps_PSD #VBW 62 kHz Center 2.41200 GHz #Res BW 20 kHz Freq Offset Scale Type Log Span 20.78 MHz Sweep 49.55 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11g_Chain B_2462_6Mbps_PSD #VBW 62 kHz Center 2.46200 GHz #Res BW 20 kHz 0 Hz Scale Type Log Span 50.73 MHz Sweep 120.9 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11n40_Chain B_2422_MCS0_PSD #VBW 62 kHz Center 2.42200 GHz #Res BW 20 kHz Scale Type Log Span 50.80 MHz Sweep 121.1 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11n40_Chain B_2452_MCS0_PSD #VBW 62 kHz Center 2.45200 GHz #Res BW 20 kHz Stop Freq 2.447401000 GHz CF Step 2.080200 MHz Auto Man Freq Offset 0 Hz Center 2.43700 GHz #Res BW 20 kHz #VBW 62 kHz Sweep 49.62 ms (1000 pts) Test_Graph_802.11ax20_Chain B_2437_MCS0_PSD Test_Graph_802.11ax40_Chain B_2422_MCS0_PSD #VBW 62 kHz Span 46.94 MHz Sweep 112.0 ms (1000 pts) Log Center 2.42200 GHz #Res BW 20 kHz Test_Graph_802.11ax40_Chain B_2452_MCS0_PSD # 10. Conducted Band Edge and Out-of-Band Emissions ### 10.1 Provisions Applicable In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. #### 10.2 Measurement Procedure Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: - Step 1: Measurement Procedure In-Band Reference Level - 1. Set instrument center frequency to DTS channel center frequency. - 2. Set the span to ≥ 1.5 times the DTS bandwidth. - 3. Set the $\overrightarrow{RBW} = 100 \text{ kHz}$. - 4. Set the VBW \geq 3 x RBW. - 5. Detector = peak. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Use the peak marker function to determine the maximum PSD level. - 10. Note that the channel found to contain the maximum PSD level can be used to establish the reference level. - 11. For reference level values, please refer to DTS bandwidth test. - Step 2: Measurement Procedure Out of Band Emission - 1. Set RBW = 100 kHz. - 2. Set VBW ≥ 300 kHz. - Detector = peak. - 4. Sweep = auto couple. - 5. Trace Mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum amplitude level. Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. ## 10.3 Measurement Setup (Block Diagram of Configuration) #### 10.4 Measurement Result ### Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands Test_Graph_802.11b_Chain A_2412_1Mbps_Lower Band Emissions Scale Type Log Span 22.50 GHz Sweep 2.152 s (30000 pts) 04:29:31 PM Jan 14, 2025 TRACE 1 2 3 4 5 6 TYPE M P N N N N Center Freq 13.750000000 GHz PNO: Fast → IFGain:Low Avg Type: Log-Pwr Avg|Hold: 56/100 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.759 2 GHz -48.973 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.750000000 GHz Start Fred 2.500000000 GHz 25.000000000 GHz **CF Step** 2.250000000 GHz <u>Auto</u> Mar Freq Offset 0 Hz Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11b_Chain A_2462_1Mbps_Higher Band Emissions #VBW 300 kHz Center 13.75 GHz #Res BW 100 kHz 04:44:46 PM Jan 14, 2025 TRACE 1 2 3 4 5 6 TYPE M P N N N N Center Freq 13.741750000 GHz PNO: Fast IFGain:Low Avg Type: Log-Pwr Avg|Hold: 24/100 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.964 0 GHz -49.108 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.741750000 GHz Start Fred 2.483500000 GHz 25.000000000 GHz **CF Step** 2.251650000 GHz <u>Auto</u> Mar Freq Offset 0 Hz Scale Type Center 13.74 GHz #Res BW 100 kHz Span 22.52 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11n20_Chain A_2437_MCS0_Higher Band Emissions Test_Graph_802.11n20_Chain A_2462_MCS0_Higher Band Emissions 04:52:34 PM Jan 14, 2025 TRACE 1 2 3 4 5 6 TYPE M P N N N N Center Freq 13.741750000 GHz PNO: Fast PIGain:Low Avg Type: Log-Pwr Avg|Hold: 22/100 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.968 5 GHz -47.795 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.741750000 GHz Start Fred 2.483500000 GHz 25.000000000 GHz **CF Step** 2.251650000 GHz <u>Auto</u> Mar Freq Offset 0 Hz Scale Type Center 13.74 GHz #Res BW 100 kHz Span 22.52 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11n40_Chain A_2437_MCS0_Higher Band Emissions 04:54:36 PM Jan 14, 2025 TRACE 1 2 3 4 5 6 TYPE M P N N N N Center Freq 13.750000000 GHz PNO: Fast → IFGain:Low Avg Type: Log-Pwr Avg|Hold: 22/100 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.457 7 GHz -49.666 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.750000000 GHz Start Fred 2.500000000 GHz 25.000000000 GHz **CF Step** 2.250000000 GHz <u>Auto</u> Mar Freq Offset 0 Hz Scale Type Center 13.75 GHz #Res BW 100 kHz Span 22.50 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11n40_Chain A_2452_MCS0_Higher Band Emissions 07:11:35 PM Jan 14, 2025 TRACE 1 2 3 4 5 6 TYPE M P N N N N Center Freq 13.741750000 GHz PNO: Fast → IFGain:Low Avg Type: Log-Pwr Avg|Hold: 19/100 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.872 4 GHz -48.736 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.741750000 GHz Start Fred 2.483500000 GHz 25.000000000 GHz **CF Step** 2.251650000 GHz <u>Auto</u> Mar Freq Offset 0 Hz Scale Type Center 13.74 GHz #Res BW 100 kHz Span 22.52 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11b_Chain B_2437_1Mbps_Higher Band Emissions Test_Graph_802.11b_Chain B_2462_1Mbps_Higher Band Emissions 07:16:11 PM Jan 14, 2025 TRACE 1 2 3 4 5 6 TYPE M P N N N N Center Freq 13.741750000 GHz PNO: Fast → IFGain:Low Avg Type: Log-Pwr Avg|Hold: 18/100 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.996 2 GHz -48.744 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.741750000 GHz Start Fred 2.483500000 GHz -16.28 dl 25.000000000 GHz **CF Step** 2.251650000 GHz <u>Auto</u> Freq Offset 0 Hz Scale Type Center 13.74 GHz #Res BW 100 kHz Span 22.52 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11g_Chain B_2412_6Mbps_Higher Band Emissions 07:20:54 PM Jan 14, 2025 TRACE 1 2 3 4 5 6 TYPE M P N N N N Center Freq 13.750000000 GHz PNO: Fast → IFGain:Low Avg Type: Log-Pwr Avg|Hold: 19/100 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.956 5 GHz -49.306 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.750000000 GHz Start Fred 2.500000000 GHz 25.000000000 GHz **CF Step** 2.250000000 GHz <u>Auto</u> Freq Offset 0 Hz Scale Type Center 13.75 GHz #Res BW 100 kHz Span 22.50 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11g_Chain B_2462_6Mbps_Higher Band Emissions