



# RADIO TEST REPORT FCC ID: 2BFTW-SPCF1

Product: TV-BOX
Trade Mark: STATIONPC

Model No.: Station F1 Family Model: N/A Report No.: S24052901205001 Issue Date: Jun 18, 2024

## **Prepared for**

StationPC Technology Co., LTD Card 2102D, Block 1, Hongyu Building, 57 Zhongshan 4th Road, East District, Zhongshan City, China

## Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn





I

## TABLE OF CONTENTS

| 1 TE                                                                          | ST RESULT CERTIFICATION                                                                                                                                                                                                                                                                                         | 3                                                              |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| 2 SU                                                                          | 2 SUMMARY OF TEST RESULTS                                                                                                                                                                                                                                                                                       |                                                                |  |  |
| 3 FA                                                                          | CILITIES AND ACCREDITATIONS                                                                                                                                                                                                                                                                                     | 5                                                              |  |  |
| 3.1<br>3.2<br>3.3                                                             | FACILITIES<br>LABORATORY ACCREDITATIONS AND LISTINGS<br>MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                 | 5                                                              |  |  |
| 4 GE                                                                          | NERAL DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                        | 6                                                              |  |  |
| 5 DE                                                                          | SCRIPTION OF TEST MODES                                                                                                                                                                                                                                                                                         | 8                                                              |  |  |
| 6 SE                                                                          | FUP OF EQUIPMENT UNDER TEST                                                                                                                                                                                                                                                                                     | 9                                                              |  |  |
| 6.1<br>6.2<br>6.3                                                             | BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM<br>SUPPORT EQUIPMENT<br>EQUIPMENTS LIST FOR ALL TEST ITEMS                                                                                                                                                                                                           | 9<br>10                                                        |  |  |
| 7 TE                                                                          | ST REQUIREMENTS                                                                                                                                                                                                                                                                                                 | 13                                                             |  |  |
| 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8<br>7.9<br>7.10<br>7.11 F | CONDUCTED EMISSIONS TEST<br>RADIATED SPURIOUS EMISSION<br>NUMBER OF HOPPING CHANNEL<br>HOPPING CHANNEL SEPARATION MEASUREMENT<br>AVERAGE TIME OF OCCUPANCY (DWELL TIME)<br>20DB BANDWIDTH TEST<br>PEAK OUTPUT POWER<br>CONDUCTED BAND EDGE MEASUREMENT<br>SPURIOUS RF CONDUCTED EMISSION<br>ANTENNA APPLICATION | 13<br>16<br>25<br>26<br>27<br>29<br>30<br>31<br>32<br>33<br>34 |  |  |
| 8 TE                                                                          | ST RESULTS                                                                                                                                                                                                                                                                                                      |                                                                |  |  |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>8.8<br>8.9                   | DWELL TIME<br>MAXIMUM CONDUCTED OUTPUT POWER                                                                                                                                                                                                                                                                    | 45<br>51<br>63<br>69<br>72<br>79                               |  |  |

# NTEK 北测<sup>®</sup>



## 1 TEST RESULT CERTIFICATION

| Applicant's name:            | StationPC Technology Co., LTD                                                                        |
|------------------------------|------------------------------------------------------------------------------------------------------|
| Address:                     | Card 2102D, Block 1, Hongyu Building, 57 Zhongshan 4th Road, East<br>District, Zhongshan City, China |
| Manufacturer's Name:         | StationPC Technology Co., LTD                                                                        |
| Address:                     | Card 2102D, Block 1, Hongyu Building, 57 Zhongshan 4th Road, East<br>District, Zhongshan City, China |
| Product description          |                                                                                                      |
| Product name:                | TV-BOX                                                                                               |
| Trademark:                   | STATIONPC                                                                                            |
| Model and/or type reference: | Station F1                                                                                           |
| Family Model:                | N/A                                                                                                  |
| Test Sample Number           | S240529012005                                                                                        |
| Date of tests:               | May 30, 2024 ~ Jun 18, 2024                                                                          |
|                              |                                                                                                      |

Measurement Procedure Used:

| APPLICABLE STANDARDS                                                              |             |
|-----------------------------------------------------------------------------------|-------------|
| STANDARD/ TEST PROCEDURE                                                          | TEST RESULT |
| FCC 47 CFR Part 2, Subpart J<br>FCC 47 CFR Part 15, Subpart C<br>ANSI C63.10-2013 | Complied    |

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared By: Joe. Yan Joe.Yan Approved : Alex Li By : Alex Li (Project Engineer) (Supervisor) (Manager)

| SUMMARY OF TEST RESULTS        |                                |         |        |
|--------------------------------|--------------------------------|---------|--------|
| FCC Part15 (15.247), Subpart C |                                |         |        |
| Standard Section               | Test Item                      | Verdict | Remark |
| 15.207                         | Conducted Emission             | PASS    |        |
| 15.209 (a)<br>15.205 (a)       | Radiated Spurious Emission     | PASS    |        |
| 15.247(a)(1)                   | Hopping Channel Separation     | PASS    |        |
| 15.247(b)(1)                   | Peak Output Power              | PASS    |        |
| 15.247(a)(iii)                 | Number of Hopping Frequency    | PASS    |        |
| 15.247(a)(iii)                 | Dwell Time                     | PASS    |        |
| 15.247(a)(1)                   | Bandwidth                      | PASS    |        |
| 15.247 (d)                     | Band Edge Emission             | PASS    |        |
| 15.247 (d)                     | Spurious RF Conducted Emission | PASS    |        |
| 15.203                         | Antenna Requirement            | PASS    |        |

ACCR Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.





### **3 FACILITIES AND ACCREDITATIONS**

#### 3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

#### 3.2 LABORATORY ACCREDITATIONS AND LISTINGS

| Site Description |                                                                    |
|------------------|--------------------------------------------------------------------|
| CNAS-Lab.        | : The Certificate Registration Number is L5516.                    |
| IC-Registration  | The Certificate Registration Number is 9270A.                      |
|                  | CAB identifier:CN0074                                              |
| FCC- Accredited  | Test Firm Registration Number: 463705.                             |
|                  | Designation Number: CN1184                                         |
| A2LA-Lab.        | The Certificate Registration Number is 4298.01                     |
|                  | This laboratory is accredited in accordance with the recognized    |
|                  | International Standard ISO/IEC 17025:2005 General requirements for |
|                  | the competence of testing and calibration laboratories.            |
|                  | This accreditation demonstrates technical competence for a defined |
|                  | scope and the operation of a laboratory quality management system  |
|                  | (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).     |
| Name of Firm     | : Shenzhen NTEK Testing Technology Co., Ltd.                       |
| Site Location    | : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang   |
|                  | Street, Bao'an District, Shenzhen 518126 P.R. China.               |

#### 3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | Conducted Emission Test             | ±2.80dB     |
| 2   | RF power, conducted                 | ±0.16dB     |
| 3   | Spurious emissions, conducted       | ±0.21dB     |
| 4   | All emissions, radiated(30MHz~1GHz) | ±2.64dB     |
| 5   | All emissions, radiated(1GHz~6GHz)  | ±2.40dB     |
| 6   | All emissions, radiated(>6GHz)      | ±2.52dB     |
| 7   | Temperature                         | ±0.5°C      |
| 8   | Humidity                            | ±2%         |
| 9   | All emissions, radiated(9KHz~30MHz) | ±6dB        |
| 10  | Occupied bandwidth                  | ±3.7%       |





### 4 GENERAL DESCRIPTION OF EUT

| Product Feature and Specification |                                                                                                                                                            |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Equipment                         | TV-BOX                                                                                                                                                     |  |
| Trade Mark                        | STATIONPC                                                                                                                                                  |  |
| FCC ID                            | 2BFTW-SPCF1                                                                                                                                                |  |
| Model No.                         | Station F1                                                                                                                                                 |  |
| Family Model                      | N/A                                                                                                                                                        |  |
| Model Difference                  | This model contains 2 different combinations for DDR, which are 2GB+32GB, 4GB+32GB, and have the same running rate. We choose 4GB+32GB as the test sample. |  |
| Operating Frequency               | 2402MHz~2480MHz                                                                                                                                            |  |
| Modulation                        | GFSK, π/4-DQPSK, 8-DPSK                                                                                                                                    |  |
| Number of Channels                | 79 Channels                                                                                                                                                |  |
| Antenna Type                      | PIFA Antenna                                                                                                                                               |  |
| Antenna Gain                      | 3.23 dBi                                                                                                                                                   |  |
| Adapter                           | MODEL:KYT050200BU<br>INPUT:100-240V~50/60Hz 0.35A Max<br>OUTPUT:5V2A                                                                                       |  |
| Battery                           | N/A                                                                                                                                                        |  |
| Rating                            | DC 5V From Adapter AC 120V/60Hz                                                                                                                            |  |
| HW Version                        | V1.2                                                                                                                                                       |  |
| SW Version                        | StationF1_StationOS_v1.5.10.11_eMMc_240425                                                                                                                 |  |

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.





| Revision History |         |                         |              |  |
|------------------|---------|-------------------------|--------------|--|
| Report No.       | Version | Description             | Issued Date  |  |
| S24052901205001  | Rev.01  | Initial issue of report | Jun 18, 2024 |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         |                         |              |  |
|                  |         | 1                       | J1           |  |



### 5 DESCRIPTION OF TEST MODES

**NTEK** 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for  $\pi$ /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

| Channel | Frequency(MHz) |
|---------|----------------|
| 0       | 2402           |
| 1       | 2403           |
|         |                |
| 39      | 2441           |
| 40      | 2442           |
|         |                |
| 77      | 2479           |
| 78      | 2480           |

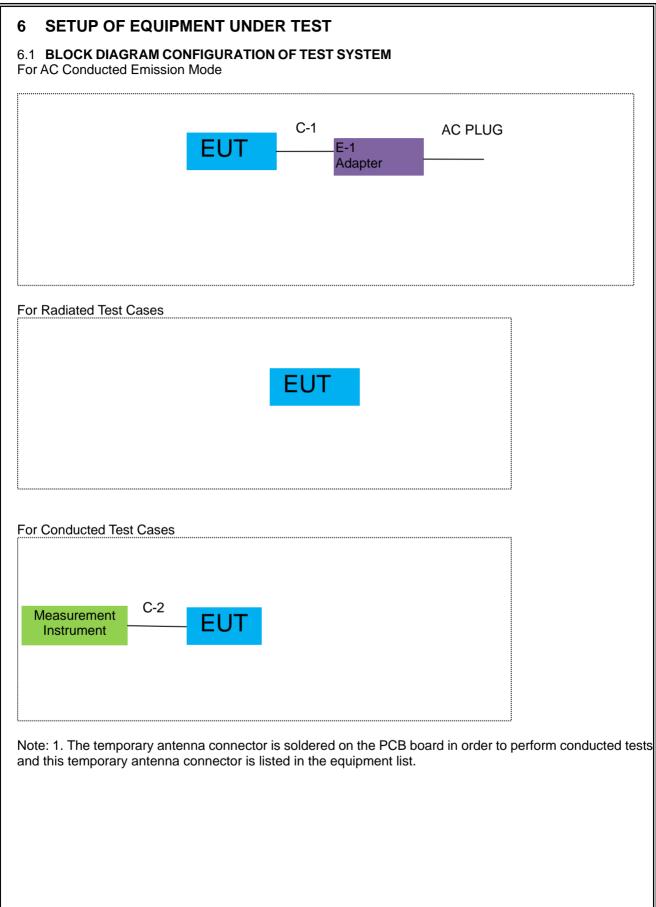
Note: fc=2402MHz+k×1MHz k=0 to 78

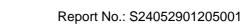
The following summary table is showing all test modes to demonstrate in compliance with the standard.

| For AC Conducted Emission |                  |  |
|---------------------------|------------------|--|
| Final Test Mode           | Description      |  |
| Mode 1                    | normal link mode |  |
|                           |                  |  |

Note: AC power line Conducted Emission was tested under maximum output power.

| For Radiated Test Cases |                  |  |
|-------------------------|------------------|--|
| Final Test Mode         | Description      |  |
| Mode 1                  | normal link mode |  |
| Mode 2                  | CH00(2402MHz)    |  |
| Mode 3                  | CH39(2441MHz)    |  |
| Mode 4                  | CH78(2480MHz)    |  |


Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.


| For Conducted Test Cases |               |  |
|--------------------------|---------------|--|
| Final Test Mode          | Description   |  |
| Mode 2                   | CH00(2402MHz) |  |
| Mode 3                   | CH39(2441MHz) |  |
| Mode 4                   | CH78(2480MHz) |  |
| Mode 5                   | Hopping mode  |  |

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.





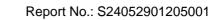




#### 6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Certificate #4298.01


| Item | Equipment | Model/Type No. | Series No. | Note        |
|------|-----------|----------------|------------|-------------|
| AE-1 | Adapter   | N/A            | N/A        | Peripherals |
|      |           |                |            |             |
|      |           |                |            |             |

lac.

| Item | Cable Type   | Shielded Type | Ferrite Core | Length |
|------|--------------|---------------|--------------|--------|
| C-1  | Type-C Cable | NO            | NO           | 1.0m   |
| C-2  | RF Cable     | YES           | NO           | 0.1m   |
|      |              |               |              |        |

#### Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".



#### 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

ilac-

ACCREDITED Certificate #4298.01

#### Radiation& Conducted Test equipment

| Vaulatio |                                             | lest equipment  |                 |                   |                  |                     |                           |
|----------|---------------------------------------------|-----------------|-----------------|-------------------|------------------|---------------------|---------------------------|
|          | Kind of<br>Equipment                        | Manufacturer    | Type No.        | Serial No.        | Last calibration | Calibrated<br>until | Calibrati<br>on<br>period |
| 1        | Spectrum<br>Analyzer                        | Aglient         | E4440A          | MY41000130        | 2024.03.12       | 2025.03.11          | 1 year                    |
| 2        | Spectrum<br>Analyzer                        | Agilent         | N9020A          | MY49100060        | 2024.04.26       | 2025.04.25          | 1 year                    |
| 3        | Spectrum<br>Analyzer                        | R&S             | FSV40           | 101417            | 2024.04.26       | 2025.04.25          | 1 year                    |
| 4        | Test Receiver                               | R&S             | ESPI7           | 101318            | 2024.03.12       | 2025.03.11          | 1 year                    |
| 5        | Bilog Antenna                               | TESEQ           | CBL6111D        | 31216             | 2024.03.11       | 2025.03.10          | 1 year                    |
| 6        | 50Ω Coaxial<br>Switch                       | Anritsu         | MP59B           | 6200983705        | 2023.05.06       | 2026.05.05          | 3 year                    |
| 7        | Horn Antenna                                | SCHWARZBE<br>CK | BBHA 9120<br>D  | 2816              | 2023.01.12       | 2026.01.11          | 3 year                    |
| 8        | Broadband<br>Horn Antenna                   | SCHWARZBE<br>CK | BBHA 9170       | 803               | 2022.11.07       | 2025.11.06          | 3 year                    |
| 9        | Amplifier                                   | EMC             | EMC051835<br>SE | 980246            | 2024.01.23       | 2025.01.22          | 1 year                    |
| 10       | Active Loop<br>Antenna                      | SCHWARZBE<br>CK | FMZB 1519<br>B  | 055               | 2023.11.03       | 2026.11.02          | 3 year                    |
| 11       | Power Meter                                 | DARE            | RPR3006W        | 15I00041SN<br>084 | 2024.04.25       | 2025.04.24          | 1 year                    |
| 12       | Test Cable<br>(9KHz-30MHz)                  | N/A             | R-01            | N/A               | 2022.06.17       | 2025.06.16          | 3 year                    |
| 13       | Test Cable<br>(30MHz-1GHz<br>)              | N/A             | R-02            | N/A               | 2022.06.17       | 2025.06.16          | 3 year                    |
| 14       | High Test<br>Cable(1G-40G<br>Hz)            | N/A             | R-03            | N/A               | 2022.06.17       | 2025.06.16          | 3 year                    |
| 15       | Filter                                      | TRILTHIC        | 2400MHz         | 29                | 2023.03.26       | 2026.03.25          | 3 year                    |
| 16       | temporary<br>antenna<br>connector<br>(Note) | NTS             | R001            | N/A               | N/A              | N/A                 | N/A                       |

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list





| AC Co | AC Conduction Test equipment   |                 |           |            |                  |                     |                    |
|-------|--------------------------------|-----------------|-----------|------------|------------------|---------------------|--------------------|
| Item  | Kind of<br>Equipment           | Manufacturer    | Type No.  | Serial No. | Last calibration | Calibrated<br>until | Calibration period |
| 1     | Test Receiver                  | R&S             | ESCI      | 101160     | 2024.03.12       | 2025.03.11          | 1 year             |
| 2     | LISN                           | R&S             | ENV216    | 101313     | 2024.03.12       | 2025.03.11          | 1 year             |
| 3     | LISN                           | SCHWARZBE<br>CK | NNLK 8129 | 8129245    | 2024.03.12       | 2025.03.11          | 1 year             |
| 4     | 50Ω Coaxial<br>Switch          | ANRITSU<br>CORP | MP59B     | 6200983704 | 2023.05.06       | 2026.05.05          | 3 year             |
| 5     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C01       | N/A        | 2023.05.06       | 2026.05.05          | 3 year             |
| 6     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C02       | N/A        | 2023.05.06       | 2026.05.05          | 3 year             |
| 7     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C03       | N/A        | 2023.05.06       | 2026.05.05          | 3 year             |

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

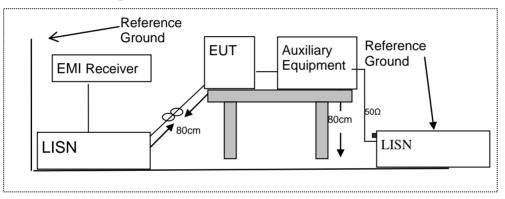


#### 7 TEST REQUIREMENTS

#### 7.1 CONDUCTED EMISSIONS TEST

#### 7.1.1 Applicable Standard

According to FCC Part 15.207(a)


#### 7.1.2 Conformance Limit

|                | Conducted Emission Limit |         |  |
|----------------|--------------------------|---------|--|
| Frequency(MHz) | Quasi-peak               | Average |  |
| 0.15-0.5       | 66-56*                   | 56-46*  |  |
| 0.5-5.0        | 56                       | 46      |  |
| 5.0-30.0       | 60                       | 50      |  |

Note: 1. \*Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
  - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 7.1.3 Test Configuration



#### 7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

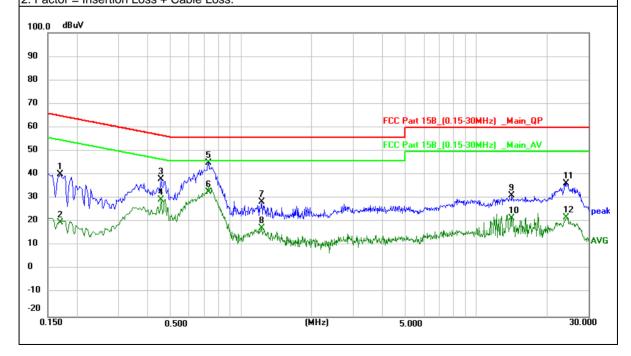
- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
  may be terminated, if required, using the correct terminating impedance. The overall length shall not
  exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

#### 7.1.5 Test Results

Pass






#### 7.1.6 Test Results

| EUT:           | TV-BOX                          | Model Name :       | Station F1 |
|----------------|---------------------------------|--------------------|------------|
| Temperature:   | <b>22</b> ℃                     | Relative Humidity: | 57%        |
| Pressure:      | 1010hPa                         | Phase :            | L          |
| Test Voltage : | DC 5V from Adapter AC 120V/60Hz | Test Mode:         | Mode 1     |

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Demerly |
|-----------|---------------|----------------|--------------|--------|--------|---------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark  |
| 0.1700    | 32.20         | 9.97           | 42.17        | 64.96  | -22.79 | QP      |
| 0.1700    | 12.08         | 9.97           | 22.05        | 54.96  | -32.91 | AVG     |
| 0.4540    | 28.68         | 10.55          | 39.23        | 56.80  | -17.57 | QP      |
| 0.4540    | 19.97         | 10.55          | 30.52        | 46.80  | -16.28 | AVG     |
| 0.7260    | 33.41         | 11.11          | 44.52        | 56.00  | -11.48 | QP      |
| 0.7260    | 23.29         | 11.11          | 34.40        | 46.00  | -11.60 | AVG     |
| 1.2260    | 17.90         | 12.12          | 30.02        | 56.00  | -25.98 | QP      |
| 1.2260    | 7.61          | 12.12          | 19.73        | 46.00  | -26.27 | AVG     |
| 14.1540   | 22.75         | 9.70           | 32.45        | 60.00  | -27.55 | QP      |
| 14.1540   | 13.11         | 9.70           | 22.81        | 50.00  | -27.19 | AVG     |
| 24.1980   | 28.39         | 9.65           | 38.04        | 60.00  | -21.96 | QP      |
| 24.1980   | 12.98         | 9.65           | 22.63        | 50.00  | -27.37 | AVG     |

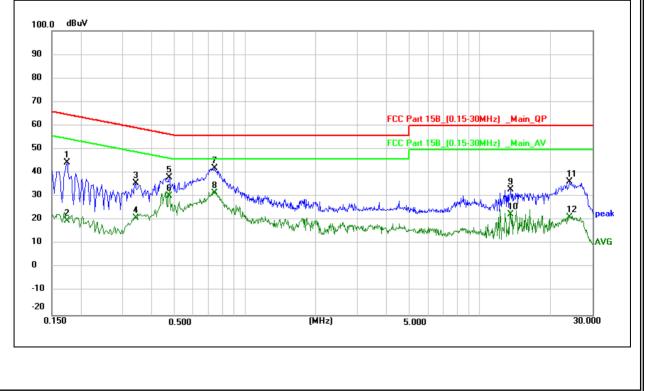
#### Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.








| EUT:           | TV-BOX                          | Model Name :       | Station F1 |
|----------------|---------------------------------|--------------------|------------|
| Temperature:   | <b>25</b> ℃                     | Relative Humidity: | 62%        |
| Pressure:      | 1010hPa                         | Phase :            | Ν          |
| Test Voltage : | DC 5V from Adapter AC 120V/60Hz | Test Mode:         | Mode 1     |

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin |        |
|-----------|---------------|----------------|--------------|--------|--------|--------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark |
| 0.1740    | 34.56         | 9.97           | 44.53        | 64.77  | -20.24 | QP     |
| 0.1740    | 9.96          | 9.97           | 19.93        | 54.77  | -34.84 | AVG    |
| 0.3420    | 25.39         | 10.32          | 35.71        | 59.15  | -23.44 | QP     |
| 0.3420    | 10.79         | 10.32          | 21.11        | 49.15  | -28.04 | AVG    |
| 0.4740    | 27.60         | 10.59          | 38.19        | 56.44  | -18.25 | QP     |
| 0.4740    | 19.92         | 10.59          | 30.51        | 46.44  | -15.93 | AVG    |
| 0.7420    | 30.98         | 11.13          | 42.11        | 56.00  | -13.89 | QP     |
| 0.7420    | 20.52         | 11.13          | 31.65        | 46.00  | -14.35 | AVG    |
| 13.4820   | 23.46         | 9.70           | 33.16        | 60.00  | -26.84 | QP     |
| 13.4820   | 12.90         | 9.70           | 22.60        | 50.00  | -27.40 | AVG    |
| 23.9940   | 26.69         | 9.65           | 36.34        | 60.00  | -23.66 | QP     |
| 23.9940   | 11.82         | 9.65           | 21.47        | 50.00  | -28.53 | AVG    |

#### Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.





#### 7.2 RADIATED SPURIOUS EMISSION

#### 7.2.1 Applicable Standard

#### According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

#### 7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| According to 1 00 1 art15.20 | Recording to FOOT art 15.200, Restricted bands |               |             |  |  |  |
|------------------------------|------------------------------------------------|---------------|-------------|--|--|--|
| MHz                          | MHz                                            | MHz           | GHz         |  |  |  |
| 0.090-0.110                  | 16.42-16.423                                   | 399.9-410     | 4.5-5.15    |  |  |  |
| 0.495-0.505                  | 16.69475-16.69525                              | 608-614       | 5.35-5.46   |  |  |  |
| 2.1735-2.1905                | 16.80425-16.80475                              | 960-1240      | 7.25-7.75   |  |  |  |
| 4.125-4.128                  | 25.5-25.67                                     | 1300-1427     | 8.025-8.5   |  |  |  |
| 4.17725-4.17775              | 37.5-38.25                                     | 1435-1626.5   | 9.0-9.2     |  |  |  |
| 4.20725-4.20775              | 73-74.6                                        | 1645.5-1646.5 | 9.3-9.5     |  |  |  |
| 6.215-6.218                  | 74.8-75.2                                      | 1660-1710     | 10.6-12.7   |  |  |  |
| 6.26775-6.26825              | 123-138                                        | 2200-2300     | 14.47-14.5  |  |  |  |
| 8.291-8.294                  | 149.9-150.05                                   | 2310-2390     | 15.35-16.2  |  |  |  |
| 8.362-8.366                  | 156.52475-156.52525                            | 2483.5-2500   | 17.7-21.4   |  |  |  |
| 8.37625-8.38675              | 156.7-156.9                                    | 2690-2900     | 22.01-23.12 |  |  |  |
| 8.41425-8.41475              | 162.0125-167.17                                | 3260-3267     | 23.6-24.0   |  |  |  |
| 12.29-12.293                 | 167.72-173.2                                   | 3332-3339     | 31.2-31.8   |  |  |  |
| 12.51975-12.52025            | 240-285                                        | 3345.8-3358   | 36.43-36.5  |  |  |  |
| 12.57675-12.57725            | 322-335.4                                      | 3600-4400     | (2)         |  |  |  |
| 13.36-13.41                  |                                                |               |             |  |  |  |

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Restricted<br>Frequency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement Distance |
|------------------------------|-----------------------|-------------------------|----------------------|
| 0.009~0.490                  | 2400/F(KHz)           | 20 log (uV/m)           | 300                  |
| 0.490~1.705                  | 24000/F(KHz)          | 20 log (uV/m)           | 30                   |
| 1.705~30.0                   | 30                    | 29.5                    | 30                   |
| 30-88                        | 100                   | 40                      | 3                    |
| 88-216                       | 150                   | 43.5                    | 3                    |
| 216-960                      | 200                   | 46                      | 3                    |
| Above 960                    | 500                   | 54                      | 3                    |

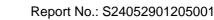
Limits of Radiated Emission Measurement(Above 1000MHz)

| Frequency(MHz)    | Class B (dBuV/m) (at 3M) |         |  |
|-------------------|--------------------------|---------|--|
| Frequency(iviriz) | PEAK                     | AVERAGE |  |
| Above 1000        | 74                       | 54      |  |

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);


Limit line=Specific limits(dBuV) + distance extrapolation factor.

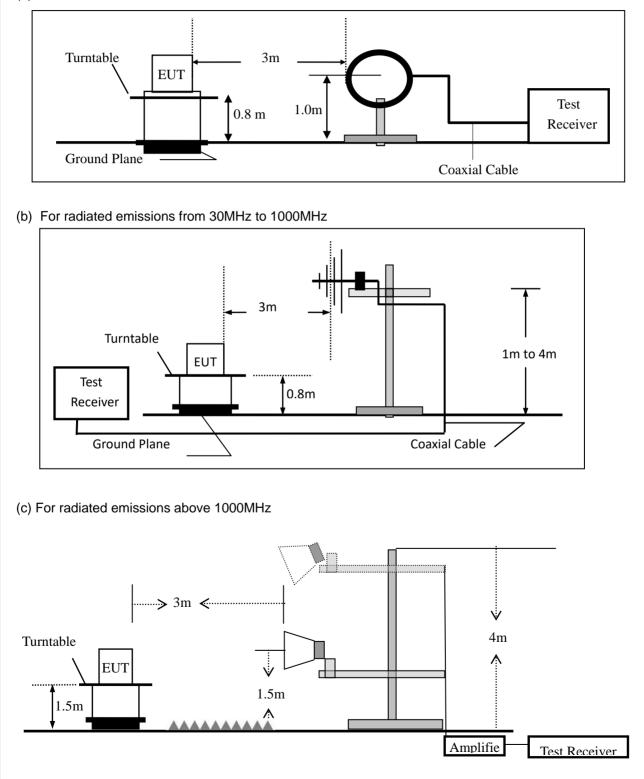
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

# NTEK 北测<sup>®</sup>




#### 7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

Certificate #4298.01

#### 7.2.4 Test Configuration

#### (a) For radiated emissions below 30MHz





#### 7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Certificate #4298.01

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

|                                       | -                                                 |
|---------------------------------------|---------------------------------------------------|
| Spectrum Parameter                    | Setting                                           |
| Attenuation                           | Auto                                              |
| Start Frequency                       | 1000 MHz                                          |
| Stop Frequency                        | 10th carrier harmonic                             |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
  - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported





| During the radiated emission t | During the radiated emission test, the Spectrum Analyzer was set with the following configurations: |                      |                 |  |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|-----------------|--|--|--|--|--|--|
| Frequency Band (MHz)           | Function                                                                                            | Resolution bandwidth | Video Bandwidth |  |  |  |  |  |  |
| 30 to 1000                     | QP                                                                                                  | 120 kHz              | 300 kHz         |  |  |  |  |  |  |
| Ab aug 4000                    | Peak                                                                                                | 1 MHz                | 1 MHz           |  |  |  |  |  |  |
| Above 1000                     | Average                                                                                             | 1 MHz                | 1 MHz           |  |  |  |  |  |  |

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10\*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

#### 7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

| EUT:         | TV-BOX            | Model No.:         | Station F1 |
|--------------|-------------------|--------------------|------------|
| Temperature: | 20 °C             | Relative Humidity: | 48%        |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Joe.Yan    |

| Freq. | Ant.Pol. | Emission Level(dBuV/m) |    | Limit 3 | m(dBuV/m) | Over(dB)<br>PK AV |    |  |
|-------|----------|------------------------|----|---------|-----------|-------------------|----|--|
| (MHz) | H/V      | PK                     | AV | PK      | AV        | PK                | AV |  |
|       |          |                        |    |         |           |                   |    |  |

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.





Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: TV-BOX Model Name : Station F1 Temperature: **25°**℃ 55% **Relative Humidity:** Test Mode: Mode 4 Pressure: 1010hPa DC 5V FROM ADAPTER AC 120V/60HZ Test Voltage : Meter Emission Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) 17.98 V 32.2924 18.84 36.82 40.00 -3.18 QP V 106.7587 19.13 30.50 43.50 -13.00 QP 11.37 V 143.8292 14.84 QP 18.95 33.79 43.50 -9.71 V 157.5586 15.46 15.79 31.25 43.50 -12.25 QP QP V 374.6225 9.29 21.76 31.05 46.00 -14.95 V 576.6443 25.31 36.97 46.00 -9.03 QP 11.66 **Remark:** Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit dBu¥/m 80.0 70 60 FCC Part15 RE-Class B\_30-1000MHz 50 Margin -6 dB 40 Å 3 2 **4** X 5 and where the strend of the st 30 A MAA 20 10 0.0 30.000 (MHz) 1000.000 60.00 300.00





| Polar | Frequency                                  | Meter<br>Reading                   | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Emission<br>Level | Limits                         | Margin             | Remark         |
|-------|--------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|--------------------|----------------|
| (H/V) | (MHz)                                      | (dBuV)                             | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (dBuV/m)          | (dBuV/m)                       | (dB)               |                |
| Н     | 49.5328                                    | 7.36                               | 20.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.85             | 40.00                          | -12.15             | QP             |
| Н     | 103.0800                                   | 8.83                               | 19.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.91             | 43.50                          | -15.59             | QP             |
| Н     | 143.8293                                   | 14.38                              | 14.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.22             | 43.50                          | -14.25             | QP             |
| Н     | 191.7450                                   | 14.73                              | 17.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.69             | 43.50                          | -10.81             | QP             |
| Н     | 255.6230                                   | 14.60                              | 19.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.05             | 46.00                          | -11.95             | QP             |
| Н     | 701.7610                                   | 8.62                               | 27.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.73             | 46.00                          | -10.27             | QP             |
|       |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                |                    |                |
| 80.0  | dBuV/m                                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                |                    |                |
| 70    |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                |                    |                |
| 60    |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | FCC Part15 RE-Class I          | B 30-1000MHz       |                |
| 50    |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | Margin -6 dB                   |                    |                |
| 40    |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                | 6                  |                |
| 30    | 1                                          |                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Martin Martin     | man do <sup>ang</sup> alamonta | North more the man | ang the sector |
| 20    | honeronderblitten at forset Marshell about | WWW. Martinger and a factor of the | with the state of |                   |                                |                    |                |
| 10    |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                |                    |                |
| 0.0   |                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                |                    |                |
|       | 100 000                                    | ).00                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MHz)              | 300.00                         |                    | 1000.000       |





| ■ Spurious  | Emission                                                                             | h Above 1     | GHz (1GH          | z to 25GF        | z)                |            |         |        |        |            |
|-------------|--------------------------------------------------------------------------------------|---------------|-------------------|------------------|-------------------|------------|---------|--------|--------|------------|
| EUT:        |                                                                                      | -BOX          |                   | Mode             | ,                 |            | Statior | ר F1   |        |            |
| Temperature | : 20                                                                                 | °C            |                   | Relat            | ve Humidity       | <i>/</i> : | 48%     |        |        |            |
| Test Mode:  |                                                                                      |               | e3/Mode4          | Test I           |                   |            | Joe.Ya  | an     |        |            |
|             |                                                                                      |               |                   |                  |                   | twas       |         |        |        |            |
|             | All the modulation modes have been tested, and the worst result was report as below: |               |                   |                  |                   |            |         |        |        |            |
| Frequency   | Read<br>Level                                                                        | Cable<br>loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level | Li         | mits    | Margin | Remark | Comment    |
| (MHz)       | (dBµV)                                                                               | (dB)          | dB/m              | (dB)             | (dBµV/m)          | (dB        | µV/m)   | (dB)   | Remark | Comment    |
|             | ,                                                                                    |               | Low Chanr         | nel (2402 M      | IHz)(8-DPSK       | )Abo       | ove 1G  | . ,    |        |            |
| 4804.214    | 64.54                                                                                | 5.21          | 35.59             | 44.30            | 61.04             | 74         | 4.00    | -12.96 | Pk     | Vertical   |
| 4804.214    | 43.88                                                                                | 5.21          | 35.59             | 44.30            | 40.38             | 54         | 4.00    | -13.62 | AV     | Vertical   |
| 7206.265    | 62.61                                                                                | 6.48          | 36.27             | 44.60            | 60.76             | 74         | 4.00    | -13.24 | Pk     | Vertical   |
| 7206.265    | 41.59                                                                                | 6.48          | 36.27             | 44.60            | 39.74             | 54         | 4.00    | -14.26 | AV     | Vertical   |
| 4804.109    | 63.21                                                                                | 5.21          | 35.55             | 44.30            | 59.67             | 74         | 4.00    | -14.33 | Pk     | Horizontal |
| 4804.109    | 41.71                                                                                | 5.21          | 35.55             | 44.30            | 38.17             | 54         | 4.00    | -15.83 | AV     | Horizontal |
| 7206.224    | 61.16                                                                                | 6.48          | 36.27             | 44.52            | 59.39             | 74         | 4.00    | -14.61 | Pk     | Horizontal |
| 7206.224    | 41.20                                                                                | 6.48          | 36.27             | 44.52            | 39.43             | 54         | 4.00    | -14.57 | AV     | Horizontal |
|             |                                                                                      |               | Mid Chann         | el (2441 M       | Hz)( 8-DPSK       | )Abo       | ove 1G  |        |        |            |
| 4882.396    | 65.28                                                                                | 5.21          | 35.66             | 44.20            | 61.95             | 74         | 4.00    | -12.05 | Pk     | Vertical   |
| 4882.396    | 43.41                                                                                | 5.21          | 35.66             | 44.20            | 40.08             | 54         | 4.00    | -13.92 | AV     | Vertical   |
| 7323.241    | 63.32                                                                                | 7.10          | 36.50             | 44.43            | 62.49             | 74         | 4.00    | -11.51 | Pk     | Vertical   |
| 7323.241    | 43.42                                                                                | 7.10          | 36.50             | 44.43            | 42.59             | 54         | 4.00    | -11.41 | AV     | Vertical   |
| 4882.108    | 62.20                                                                                | 5.21          | 35.66             | 44.20            | 58.87             | 74         | 4.00    | -15.13 | Pk     | Horizontal |
| 4882.108    | 42.71                                                                                | 5.21          | 35.66             | 44.20            | 39.38             | 54         | 4.00    | -14.62 | AV     | Horizontal |
| 7323.132    | 61.75                                                                                | 7.10          | 36.50             | 44.43            | 60.92             | 74         | 4.00    | -13.08 | Pk     | Horizontal |
| 7323.132    | 41.98                                                                                | 7.10          | 36.50             | 44.43            | 41.15             |            | 4.00    | -12.85 | AV     | Horizontal |
|             |                                                                                      |               | High Chanr        | nel (2480 M      | Hz)( 8-DPSK       | ) Ab       | ove 1G  | i      |        |            |
| 4960.397    | 65.15                                                                                | 5.21          | 35.52             | 44.21            | 61.67             | 74         | 4.00    | -12.33 | Pk     | Vertical   |
| 4960.397    | 44.34                                                                                | 5.21          | 35.52             | 44.21            | 40.86             | 54         | 4.00    | -13.14 | AV     | Vertical   |
| 7440.201    | 63.37                                                                                | 7.10          | 36.53             | 44.60            | 62.40             | 74         | 4.00    | -11.60 | Pk     | Vertical   |
| 7440.201    | 42.38                                                                                | 7.10          | 36.53             | 44.60            | 41.41             | 54         | 4.00    | -12.59 | AV     | Vertical   |
| 4960.225    | 62.53                                                                                | 5.21          | 35.52             | 44.21            | 59.05             | 74         | 4.00    | -14.95 | Pk     | Horizontal |
| 4960.225    | 41.84                                                                                | 5.21          | 35.52             | 44.21            | 38.36             | 54         | 4.00    | -15.64 | AV     | Horizontal |
| 7440.298    | 61.56                                                                                | 7.10          | 36.53             | 44.60            | 60.59             | 74         | 4.00    | -13.41 | Pk     | Horizontal |
| 7440.298    | 42.32                                                                                | 7.10          | 36.53             | 44.60            | 41.35             | 54         | 4.00    | -12.65 | AV     | Horizontal |

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor.

(2) All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (3Mbps for 8-DPSK modulation) test result is the worst.





| Spurious      | Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz |               |                   |                  |                   |         |        |           |          |            |
|---------------|----------------------------------------------------------------------|---------------|-------------------|------------------|-------------------|---------|--------|-----------|----------|------------|
| EUT:          | TV-BOX Model No.: S                                                  |               |                   |                  |                   |         | Stati  | on F1     |          |            |
| Temperature:  | <b>20</b> ℃                                                          |               |                   | Rel              | ative Humidi      | ty:     | 48%    |           |          |            |
| Test Mode:    | Mode2/ M                                                             | lode4         |                   | Tes              | t By:             |         | Joe.   | Yan       |          |            |
| All the modul | ation mod                                                            | es have       | been test         | ed, and          | the worst res     | sult wa | as rep | ort as be | low:     |            |
| Frequency     | Meter<br>Reading                                                     | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level | Lim     | nits   | Margin    | Detector | Comment    |
| (MHz)         | (dBµV)                                                               | (dB)          | dB/m              | (dB)             | (dBµV/m)          | (dBµ'   | V/m)   | (dB)      | Туре     |            |
|               |                                                                      |               | 31                | /lbps(8-D        | PSK)-Non-ho       | pping   |        |           |          |            |
| 2310.00       | 59.01                                                                | 2.97          | 27.80             | 43.80            | 45.98             | 74      | 4      | -28.02    | Pk       | Horizontal |
| 2310.00       | 45.39                                                                | 2.97          | 27.80             | 43.80            | 32.36             | 54      | 4      | -21.64    | AV       | Horizontal |
| 2310.00       | 59.38                                                                | 2.97          | 27.80             | 43.80            | 46.35             | 74      | 4      | -27.65    | Pk       | Vertical   |
| 2310.00       | 42.71                                                                | 2.97          | 27.80             | 43.80            | 29.68             | 54      | 4      | -24.32    | AV       | Vertical   |
| 2390.00       | 58.78                                                                | 3.14          | 27.21             | 43.80            | 45.33             | 74      | 4      | -28.67    | Pk       | Vertical   |
| 2390.00       | 43.39                                                                | 3.14          | 27.21             | 43.80            | 29.94             | 54      | 4      | -24.06    | AV       | Vertical   |
| 2390.00       | 57.16                                                                | 3.14          | 27.21             | 43.80            | 43.71             | 74      | 4      | -30.29    | Pk       | Horizontal |
| 2390.00       | 44.12                                                                | 3.14          | 27.21             | 43.80            | 30.67             | 54      | 4      | -23.33    | AV       | Horizontal |
| 2483.50       | 59.90                                                                | 3.58          | 27.70             | 44.00            | 47.18             | 74      | 4      | -26.82    | Pk       | Vertical   |
| 2483.50       | 43.68                                                                | 3.58          | 27.70             | 44.00            | 30.96             | 54      | 4      | -23.04    | AV       | Vertical   |
| 2483.50       | 60.10                                                                | 3.58          | 27.70             | 44.00            | 47.38             | 74      | 4      | -26.62    | Pk       | Horizontal |
| 2483.50       | 44.40                                                                | 3.58          | 27.70             | 44.00            | 31.68             | 54      | 4      | -22.32    | AV       | Horizontal |
|               |                                                                      |               |                   | 3Mbps(8          | -DPSK)-hopp       | ing     |        |           |          |            |
| 2310.00       | 51.90                                                                | 2.97          | 27.80             | 43.80            | 38.87             | 74.     | 00     | -35.13    | Pk       | Vertical   |
| 2310.00       | 42.07                                                                | 2.97          | 27.80             | 43.80            | 29.04             | 54.     | 00     | -24.96    | AV       | Vertical   |
| 2310.00       | 53.15                                                                | 2.97          | 27.80             | 43.80            | 40.12             | 74.     | 00     | -33.88    | Pk       | Horizontal |
| 2310.00       | 45.06                                                                | 2.97          | 27.80             | 43.80            | 32.03             | 54.     | 00     | -21.97    | AV       | Horizontal |
| 2390.00       | 54.31                                                                | 3.14          | 27.21             | 43.80            | 40.86             | 74.     | 00     | -33.14    | Pk       | Vertical   |
| 2390.00       | 42.67                                                                | 3.14          | 27.21             | 43.80            | 29.22             | 54.     | 00     | -24.78    | AV       | Vertical   |
| 2390.00       | 52.86                                                                | 3.14          | 27.21             | 43.80            | 39.41             | 74.     | 00     | -34.59    | Pk       | Horizontal |
| 2390.00       | 41.63                                                                | 3.14          | 27.21             | 43.80            | 28.18             | 54.     | 00     | -25.82    | AV       | Horizontal |
| 2483.50       | 54.97                                                                | 3.58          | 27.70             | 44.00            | 42.25             | 74.     | 00     | -31.75    | Pk       | Vertical   |
| 2483.50       | 44.04                                                                | 3.58          | 27.70             | 44.00            | 31.32             | 54.     | 00     | -22.68    | AV       | Vertical   |
| 2483.50       | 54.40                                                                | 3.58          | 27.70             | 44.00            | 41.68             | 74.     | 00     | -32.32    | Pk       | Horizontal |
| 2483.50       | 44.83                                                                | 3.58          | 27.70             | 44.00            | 32.11             | 54.     | 00     | -21.89    | AV       | Horizontal |

Note:

(1) All other emissions more than 20dB below the limit.(2)Only the worst data is recorded in the report, the data rates (3Mbps for 8-DPSK modulation) test result is the worst.





| EUT:           | ious Emission in Restricted Band 326<br>TV-BOX |               |                   |       |               |                   |          | Station F1 |           |          |            |
|----------------|------------------------------------------------|---------------|-------------------|-------|---------------|-------------------|----------|------------|-----------|----------|------------|
| Temperature:   | <b>20</b> °C                                   |               |                   |       | Relat         | ive Humidit       | y:       | 48%        |           |          |            |
| Test Mode:     | Mode                                           | e2/ Mode      | 94                |       | Test I        | By:               | -        | Joe.۱      | /an       |          |            |
| All the modula | ation mode                                     | es have       | been teste        | ed, a | and the       | e worst res       | ult wa   | is rep     | ort as be | low:     |            |
| Frequency      | Reading<br>Level                               | Cable<br>Loss | Antenna<br>Factor |       | eamp<br>actor | Emission<br>Level | Lin      | nits       | Margin    | Detector | Comment    |
| (MHz)          | (dBµV)                                         | (dB)          | dB/m              | (     | dB)           | (dBµV/m)          | (dBµ     | ıV/m)      | (dB)      | Туре     |            |
| 3260           | 60.65                                          | 4.04          | 29.57             | 44    | 4.70          | 49.56             | 49.56 74 |            | -24.44    | Pk       | Vertical   |
| 3260           | 55.78                                          | 4.04          | 29.57             | 44    | 4.70          | 44.69 54          |          | 54         | -9.31     | AV       | Vertical   |
| 3260           | 61.39                                          | 4.04          | 29.57             | 44    | 4.70          | 50.30 74          |          | '4         | -23.70    | Pk       | Horizontal |
| 3260           | 57.36                                          | 4.04          | 29.57             | 44    | 4.70          | 46.27             | 5        | 64         | -7.73     | AV       | Horizontal |
| 3332           | 64.96                                          | 4.26          | 29.87             | 44    | 4.40          | 54.69             | 7        | '4         | -19.31    | Pk       | Vertical   |
| 3332           | 54.02                                          | 4.26          | 29.87             | 44    | 4.40          | 43.75             | 5        | 64         | -10.25    | AV       | Vertical   |
| 3332           | 61.88                                          | 4.26          | 29.87             | 44    | 4.40          | 51.61             | 7        | '4         | -22.39    | Pk       | Horizontal |
| 3332           | 53.77                                          | 4.26          | 29.87             | 44    | 4.40          | 43.50             | 5        | 54         | -10.50    | AV       | Horizontal |
| 17797          | 44.02                                          | 10.99         | 43.95             | 43    | 3.50          | 55.46             | 7        | '4         | -18.54    | Pk       | Vertical   |
| 17797          | 32.76                                          | 10.99         | 43.95             | 43    | 3.50          | 44.20             | 5        | 64         | -9.80     | AV       | Vertical   |
| 17788          | 44.16                                          | 11.81         | 43.69             | 44    | 4.60          | 55.06             | 7        | '4         | -18.94    | Pk       | Horizontal |
| 17788          | 31.40                                          | 11.81         | 43.69             | 44    | 4.60          | 42.30             | 5        | 4          | -11.70    | AV       | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.



#### 7.3 NUMBER OF HOPPING CHANNEL

#### 7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

#### 7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

Certificate #4298.01

#### 7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.3.6 Test Results

| EUT:         | TV-BOX        | Model No.:         | Station F1 |
|--------------|---------------|--------------------|------------|
| Temperature: | <b>20</b> ℃   | Relative Humidity: | 48%        |
| Test Mode:   | Mode 5(1Mbps) | Test By:           | Joe.Yan    |



#### 7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

#### 7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

#### 7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

#### 7.4.6 Test Results

| EUT:         | TV-BOX            | Model No.:         | Station F1 |
|--------------|-------------------|--------------------|------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%        |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Joe.Yan    |





#### 7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

#### 7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

#### 7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

Certificate #4298.01

#### 7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW  $\geq$  1MHz VBW  $\geq$  RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.



#### 7.5.6 **Test Results**

| EUT:         | TV-BOX            | Model No.:         | Station F1                   |
|--------------|-------------------|--------------------|------------------------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | Station F1<br>48%<br>Joe.Yan |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Joe.Yan                      |

Certificate #4298.01

Test data reference attachment.

Note:

A Period Time = (channel number)\*0.4

DH1 Dwell time: Reading \* (1600/2)\*31.6/(channel number) DH3 Dwell time: Reading \* (1600/4)\*31.6/(channel number) DH5 Dwell time: Reading \* (1600/6)\*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to  $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$  hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time





#### 7.6 20DB BANDWIDTH TEST

#### 7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.6.2 Conformance Limit

No limit requirement.

#### 7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  1% of the 20 dB bandwidth VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

Certificate #4298.01

#### 7.6.6 Test Results

| EUT:         | TV-BOX            | Model No.:         | Station F1 |
|--------------|-------------------|--------------------|------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%        |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Joe.Yan    |





#### 7.7 PEAK OUTPUT POWER

#### 7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

#### 7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

#### 7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$  bandwidth of the emission being measured

 $VBW \ge RBW$ 

Sweep = auto

Detector function = peak Trace = max hold

#### 7.7.6 Test Results

| EUT:         | TV-BOX            | Model No.:         | Station F1 |
|--------------|-------------------|--------------------|------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%        |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Joe.Yan    |





#### 7.8 CONDUCTED BAND EDGE MEASUREMENT

#### 7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

#### 7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

#### 7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

#### 7.8.6 Test Results

| EUT:         | TV-BOX               | Model No.:         | Station F1 |
|--------------|----------------------|--------------------|------------|
| Temperature: | 20 °C                | Relative Humidity: |            |
| Test Mode:   | Mode2 /Mode4/ Mode 5 | Test By:           | Joe.Yan    |





#### 7.9 SPURIOUS RF CONDUCTED EMISSION

#### 7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

#### 7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW  $\geq$  [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

#### 7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.





#### 7.10 ANTENNA APPLICATION

#### 7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### 7.10.2 Result

The EUT antenna is PIFA Antenna (Gain: 3.23 dBi). It comply with the standard equirement.



#### 7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

#### 7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

#### 7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

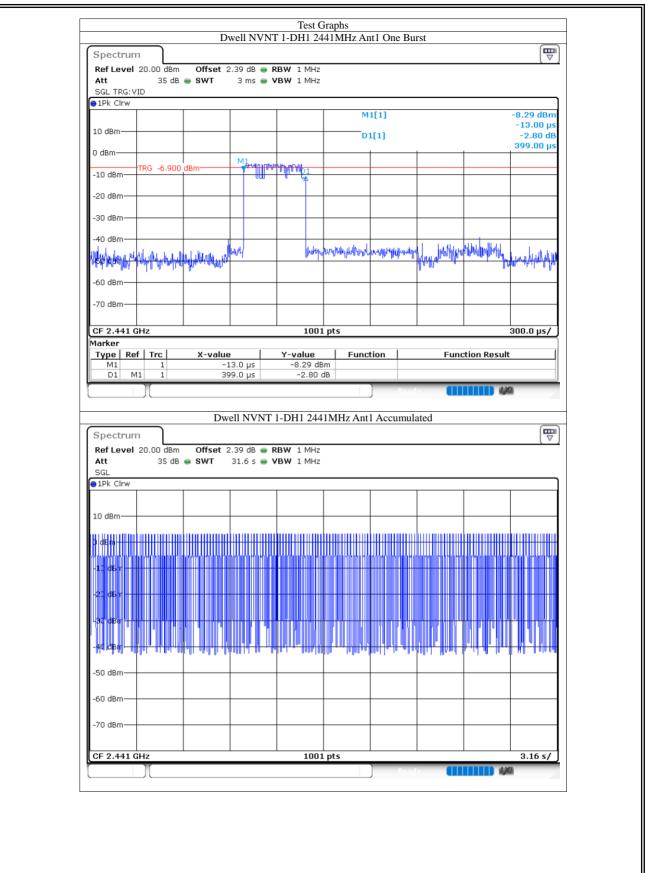




## 8 TEST RESULTS

## 8.1 DWELL TIME

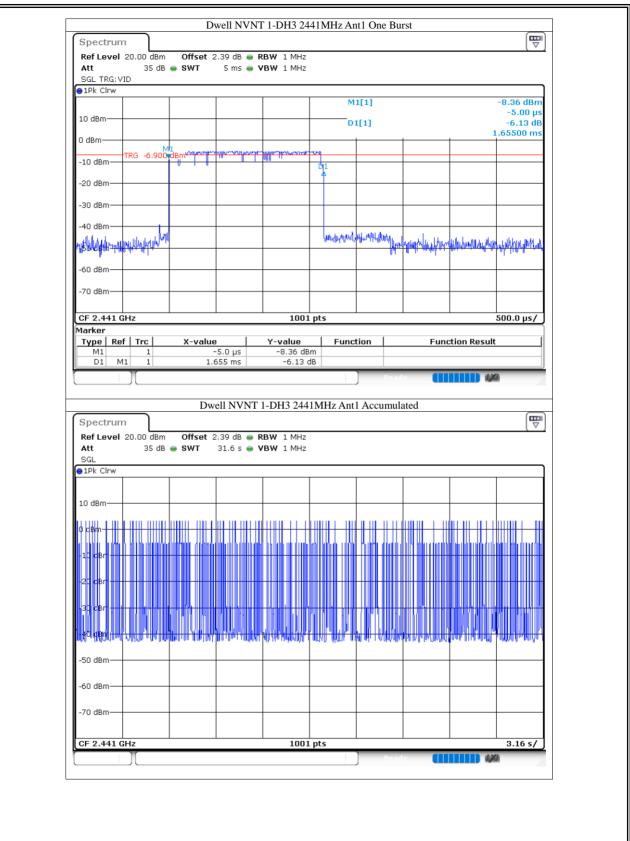
| Condition | Mode  | Frequency<br>(MHz) | Antenna | Pulse<br>Time<br>(ms) | Total<br>Dwell<br>Time<br>(ms) | Burst<br>Count | Period<br>Time<br>(ms) | Limit<br>(ms) | Verdict |
|-----------|-------|--------------------|---------|-----------------------|--------------------------------|----------------|------------------------|---------------|---------|
| NVNT      | 1-DH1 | 2441               | Ant1    | 0.399                 | 79.401                         | 199            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH3 | 2441               | Ant1    | 1.655                 | 187.015                        | 113            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH5 | 2441               | Ant1    | 2.912                 | 276.64                         | 95             | 31600                  | 400           | Pass    |
| NVNT      | 2-DH1 | 2441               | Ant1    | 0.39                  | 81.9                           | 210            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH3 | 2441               | Ant1    | 1.64                  | 221.4                          | 135            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH5 | 2441               | Ant1    | 2.888                 | 254.144                        | 88             | 31600                  | 400           | Pass    |
| NVNT      | 3-DH1 | 2441               | Ant1    | 0.387                 | 85.527                         | 221            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH3 | 2441               | Ant1    | 1.64                  | 214.84                         | 131            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH5 | 2441               | Ant1    | 2.896                 | 286.704                        | 99             | 31600                  | 400           | Pass    |




ilac-MR

ACCREDITED

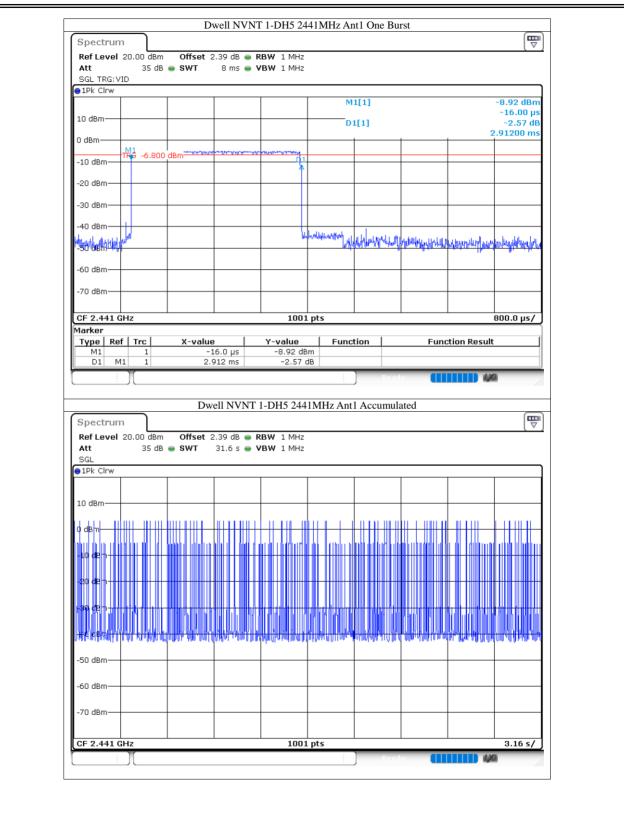
Certificate #4298.01


#### Report No.: S24052901205001





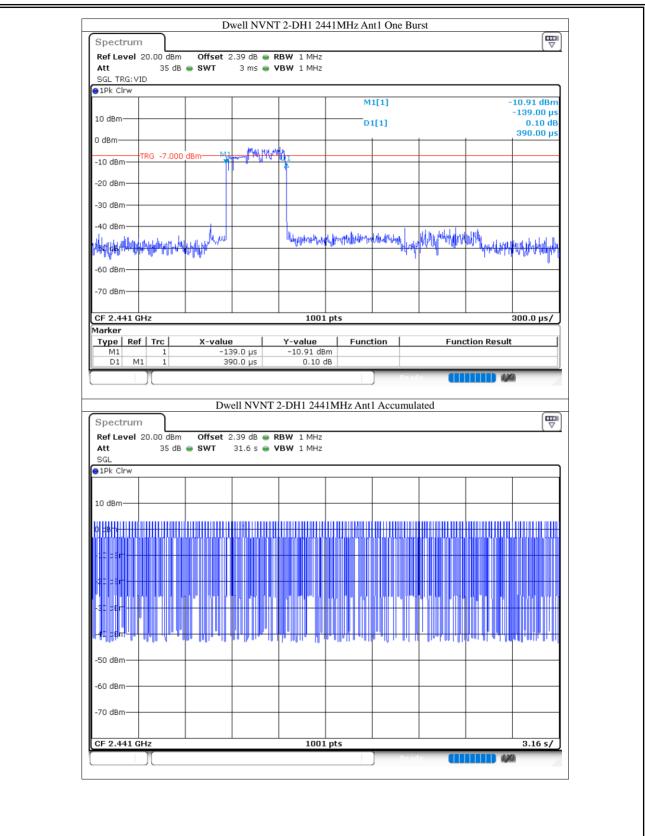
ACCREDITED


Certificate #4298.01





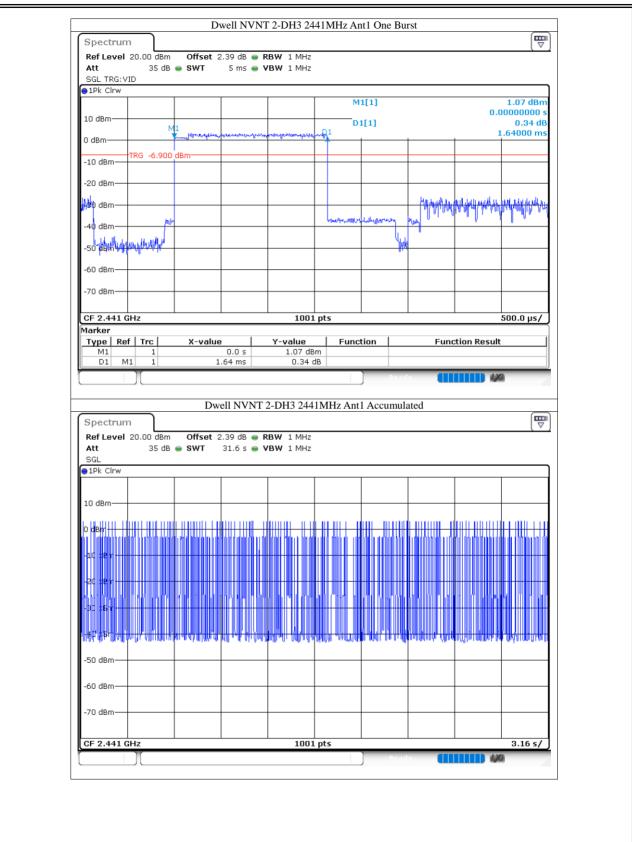
ACCREDITED


Certificate #4298.01





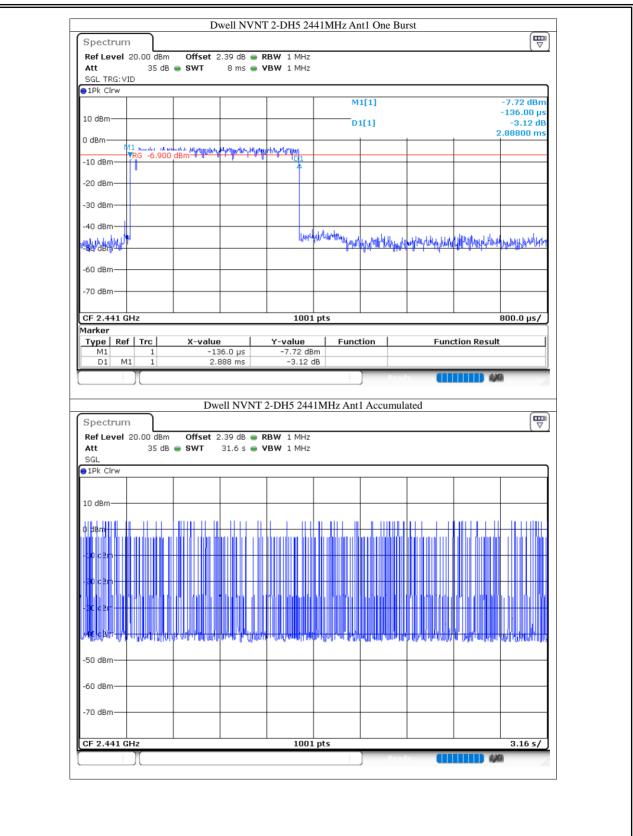
ACCREDITED


Certificate #4298.01





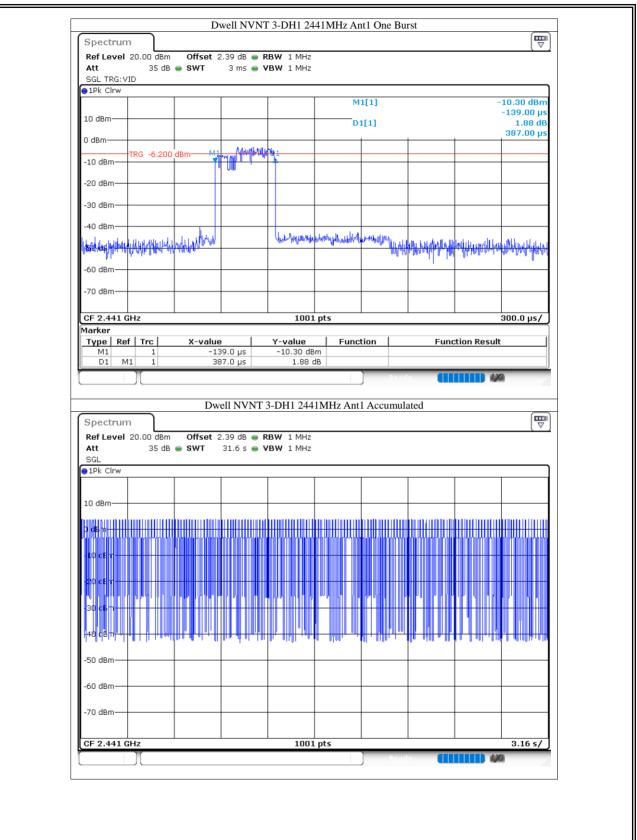
ACCREDITED


Certificate #4298.01





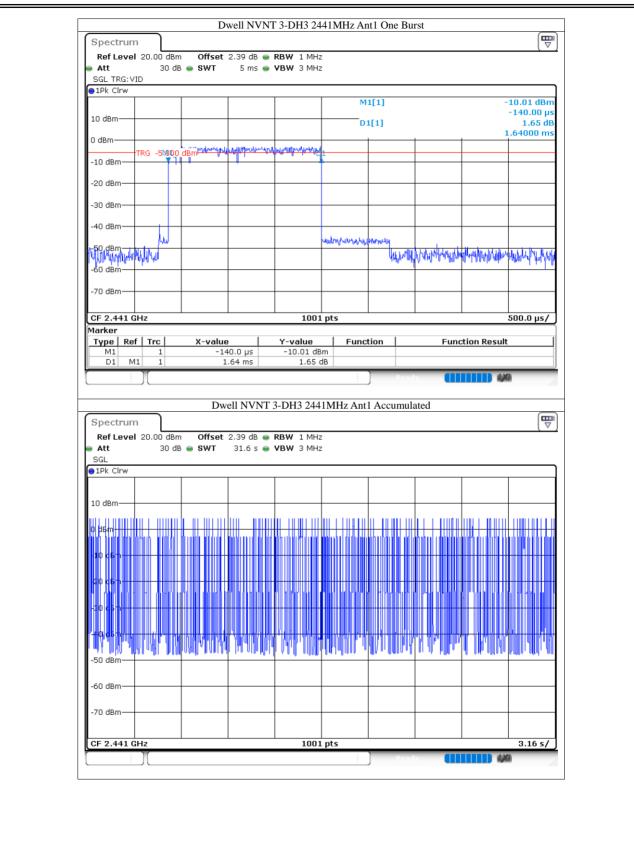
ACCREDITED


Certificate #4298.01





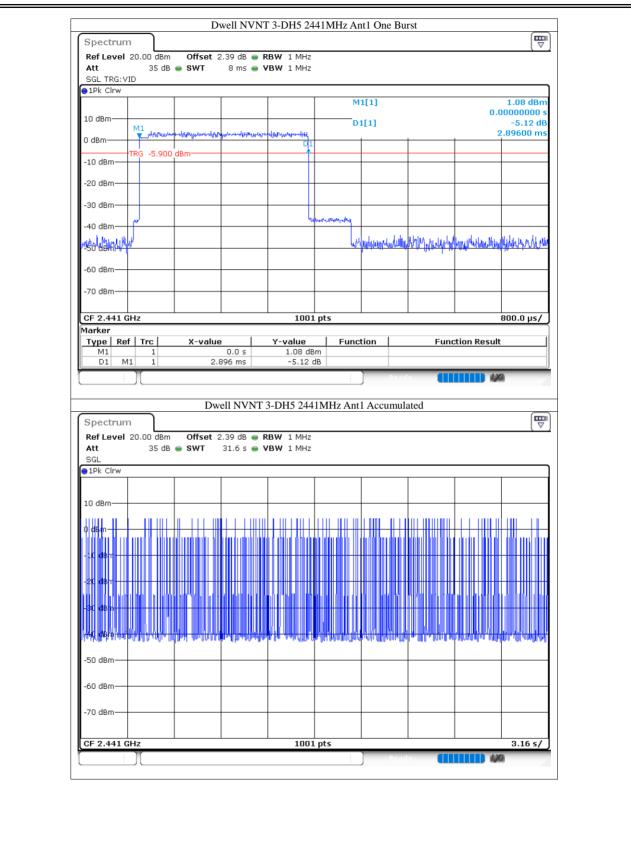
ACCREDITED


Certificate #4298.01





ACCREDITED


Certificate #4298.01





ACCREDITED

Certificate #4298.01







## 8.2 MAXIMUM CONDUCTED OUTPUT POWER

| Condition | Mode  | Frequency<br>(MHz) | Antenna | Conducted<br>Power<br>(dBm) | Limit<br>(dBm) | Verdict |
|-----------|-------|--------------------|---------|-----------------------------|----------------|---------|
| NVNT      | 1-DH5 | 2402               | Ant1    | 3.31                        | 21             | Pass    |
| NVNT      | 1-DH5 | 2441               | Ant1    | 3.34                        | 21             | Pass    |
| NVNT      | 1-DH5 | 2480               | Ant1    | 2.73                        | 21             | Pass    |
| NVNT      | 2-DH5 | 2402               | Ant1    | 3.94                        | 21             | Pass    |
| NVNT      | 2-DH5 | 2441               | Ant1    | 3.98                        | 21             | Pass    |
| NVNT      | 2-DH5 | 2480               | Ant1    | 3.33                        | 21             | Pass    |
| NVNT      | 3-DH5 | 2402               | Ant1    | 4.9                         | 21             | Pass    |
| NVNT      | 3-DH5 | 2441               | Ant1    | 4.91                        | 21             | Pass    |
| NVNT      | 3-DH5 | 2480               | Ant1    | 4.32                        | 21             | Pass    |





| Spectrum                                                                                                                                                                                                                       |        |                           |                                  |                      |          |             |       |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------|----------------------------------|----------------------|----------|-------------|-------|-----------------------|
| SGL Count 100/10                                                                                                                                                                                                               | dB SWT | 2.38 dB 👄 RB<br>1 ms 👄 VB |                                  | Mode Aut             | o Sweep  |             |       |                       |
| ●1Pk Max                                                                                                                                                                                                                       |        |                           |                                  | M                    | 1[1]     |             |       | 3.31 dBm              |
| 10 dBm                                                                                                                                                                                                                         |        |                           |                                  |                      |          |             | 2.402 | 213990 GHz            |
| 0 dBm                                                                                                                                                                                                                          | _      |                           |                                  | M1                   |          |             |       |                       |
|                                                                                                                                                                                                                                |        |                           |                                  |                      |          |             |       |                       |
| -10 dBm                                                                                                                                                                                                                        |        |                           |                                  |                      |          |             |       |                       |
| -20 dBm                                                                                                                                                                                                                        |        |                           |                                  |                      |          |             |       |                       |
| -30 dBm                                                                                                                                                                                                                        |        |                           |                                  |                      |          |             |       |                       |
| -40 dBm                                                                                                                                                                                                                        |        |                           |                                  |                      |          |             |       |                       |
| -50 dBm                                                                                                                                                                                                                        |        |                           |                                  |                      |          |             |       |                       |
|                                                                                                                                                                                                                                |        |                           |                                  |                      |          |             |       |                       |
| -60 dBm                                                                                                                                                                                                                        |        |                           |                                  |                      |          |             |       |                       |
| -70 dBm                                                                                                                                                                                                                        |        |                           |                                  |                      |          |             |       |                       |
|                                                                                                                                                                                                                                |        |                           | 100                              |                      |          |             |       | in 5.0 MHz            |
| CF 2.402 GHz Spectrum Ref Level 20.00 d Att 35                                                                                                                                                                                 |        | 2.39 dB 👄 RB1             | W 2 MHz                          | H5 2441M             |          | × (1)       | ••••• | -                     |
| Spectrum<br>Ref Level 20.00 d<br>Att 35<br>SGL Count 100/100                                                                                                                                                                   | dB SWT |                           | <b>VNT 1-D</b><br><b>W</b> 2 MHz | H5 2441M             |          | × <b>()</b> |       |                       |
| Spectrum<br>Ref Level 20.00 d<br>Att 35                                                                                                                                                                                        | dB SWT | 2.39 dB 👄 RB1             | <b>VNT 1-D</b><br><b>W</b> 2 MHz | H5 2441M<br>Mode Aut |          | · •         |       | 0 (Ⅲ<br>▽<br>3.34 dBm |
| Spectrum<br>Ref Level 20.00 d<br>Att 35<br>SGL Count 100/100                                                                                                                                                                   | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep | · •         |       | ¶<br>                 |
| Spectrum<br>Ref Level 20.00 d<br>Att 35<br>SGL Count 100/100<br>•1Pk Max                                                                                                                                                       | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             |       | 0 (Ⅲ<br>▽<br>3.34 dBm |
| Spectrum<br>Ref Level 20.00 d<br>Att 35<br>SGL Count 100/100<br>• 1Pk Max<br>10 dBm                                                                                                                                            | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             |       | 0 (Ⅲ<br>▽<br>3.34 dBm |
| Spectrum           Ref Level 20.00 d           Att 35           SGL Count 100/100           1Pk Max           10 dBm           0 dBm           -10 dBm                                                                         | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             |       | 0 (Ⅲ<br>▽<br>3.34 dBm |
| Spectrum           Ref Level 20.00 d           Att 35           SGL Count 100/100           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm                                                       | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             |       | 0 (Ⅲ<br>▽<br>3.34 dBm |
| Spectrum           Ref Level 20.00 d           Att 35           SGL Count 100/100           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             |       | 0 (Ⅲ<br>▽<br>3.34 dBm |
| Spectrum           Ref Level 20.00 d           Att 35           SGL Count 100/100           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm                                                       | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             |       | 3.34 dBm              |
| Spectrum           Ref Level 20.00 d           Att 35           SGL Count 100/100           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm                                     | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             |       | 3.34 dBm              |
| Spectrum           Ref Level 20.00 d           Att 35           SGL Count 100/100           IPk Max           IO dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                   | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             |       | 3.34 dBm              |
| Spectrum<br>Ref Level 20.00 d<br>Att 35<br>SGL Count 100/100<br>• 1Pk Max<br>10 dBm<br>- 10 dBm<br>- 20 dBm<br>- 20 dBm<br>- 40 dBm<br>- 50 dBm                                                                                | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             |       | 3.34 dBm              |
| Spectrum           Ref Level 20.00 d           Att 35           SGL Count 100/100           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>w 2 MHz<br>w 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             | 2.441 | 3.34 dBm<br>00500 GHz |
| Spectrum<br>Ref Level 20.00 d<br>Att 35<br>SGL Count 100/100<br>• 1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm                                                                 | dB SWT | 2.39 dB 👄 RB1             | VNT 1-D<br>W 2 MHz<br>W 2 MHz    | H5 2441M<br>Mode Aut | to Sweep |             | 2.441 | 3.34 dBm<br>00500 GHz |





| SGL Count 100/100                                                                                                                                                                | 42 dB 😑 RE<br>1 ms 😑 VE |                      | Mode Auto               | Sweep |       |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|-------------------------|-------|-------|-----------------------|
| ●1Pk Max                                                                                                                                                                         |                         |                      | M1[                     | 1]    | 2.479 | 2.73 dBm<br>90010 GHz |
| 10 dBm                                                                                                                                                                           |                         | M1                   |                         |       | 2.475 | 50010 0112            |
| 0 dBm                                                                                                                                                                            | <br>                    |                      |                         |       | <br>  |                       |
| -10 dBm                                                                                                                                                                          |                         |                      |                         |       |       |                       |
| -20 dBm                                                                                                                                                                          |                         |                      |                         |       |       |                       |
|                                                                                                                                                                                  |                         |                      |                         |       |       |                       |
| -30 dBm                                                                                                                                                                          |                         |                      |                         |       |       |                       |
| -40 dBm                                                                                                                                                                          |                         |                      |                         |       |       |                       |
| -50 dBm                                                                                                                                                                          |                         |                      |                         |       |       |                       |
| -60 dBm                                                                                                                                                                          |                         |                      |                         |       |       |                       |
| -70 dBm                                                                                                                                                                          |                         |                      |                         |       |       |                       |
|                                                                                                                                                                                  |                         |                      |                         |       |       |                       |
| CF 2.48 GHz                                                                                                                                                                      |                         | 1001                 | pts                     | _     |       | n 5.0 MHz             |
| Ref Level 20.00 dBm<br>Att 35 dB                                                                                                                                                 | 38 dB 👄 RE              | 3W 2 MHz             | H5 2402MH2<br>Mode Auto |       |       |                       |
| Att 35 dB<br>SGL Count 100/100                                                                                                                                                   | 38 dB 👄 RE              | 3W 2 MHz             | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00         dBm           Att         35 dB         SGL Count 100/100           IPk Max         IPk Max         IPk Max                                      | 38 dB 👄 RE              | 3W 2 MHz             |                         | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           1Pk Max         10 dBm                                                     | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           1Pk Max         10 dBm                                                     | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           1Pk Max         10 dBm                                                     | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           I Pk Max         10 dBm           0 dBm         -0 dBm                     | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           IPk Max         10 dBm           0 dBm                                     | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           1Pk Max         10 dBm           0 dBm                                     | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           • IPk Max         -0 dBm           10 dBm         -0 dBm           -10 dBm | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           I Pk Max         10 dBm           10 dBm                                   | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           1Pk Max         100 dBm           10 dBm         0 dBm           -10 dBm   | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           IPk Max         10 dBm           0 dBm                                     | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep |       |                       |
| Ref Level         20.00 dBm           Att         35 dB           SGL Count         100/100           IPk Max         10 dBm           0 dBm         -0 dBm           -10 dBm    | 38 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz | Mode Auto               | Sweep | 2.402 | 3.94 dBm<br>05840 GHz |

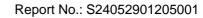




| Ref Level 20.0<br>Att<br>SGL Count 100                                                                                                               | 35 dB <b>SW</b> 1          |              | <ul> <li>RBW 2 MHz</li> <li>VBW 2 MHz</li> </ul> | Mode Aut              | to Sweep |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------------------------------------------------|-----------------------|----------|----------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ●1Pk Max                                                                                                                                             |                            | 1            |                                                  |                       |          |                |                            | 0.00.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                      |                            |              |                                                  | M                     | 1[1]     |                | 2.44                       | 3.98 dBm<br>L09090 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10 dBm                                                                                                                                               |                            |              |                                                  | M1                    |          |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 dBm                                                                                                                                                |                            |              |                                                  |                       |          | anne           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 40                                                                                                                                                | All all and a free and and |              |                                                  |                       |          | and the second | and an and a second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBm                                                                                                                                              |                            |              |                                                  |                       |          |                | - Maria                    | March and and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 720'dBm                                                                                                                                              |                            |              |                                                  |                       |          |                |                            | Contractor and the second seco |
| -30 dBm                                                                                                                                              |                            |              |                                                  |                       |          |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                      |                            |              |                                                  |                       |          |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm                                                                                                                                              |                            |              |                                                  |                       |          |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -50 dBm                                                                                                                                              |                            |              |                                                  |                       |          |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -60 dBm                                                                                                                                              |                            |              |                                                  |                       |          |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                      |                            |              |                                                  |                       |          |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -70 dBm                                                                                                                                              |                            |              |                                                  |                       |          |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CF 2.441 GHz                                                                                                                                         |                            |              | 100                                              | 1 pts                 |          |                | Spa                        | in 6.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Spectrum                                                                                                                                             | ٦                          | Pov          | ver NVNT 2-D                                     |                       | ) Read   |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                      | 35 dB <b>SW</b> 1          | et 2.42 dB ( |                                                  | 0H5 2480M             |          | ly <b>an</b>   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100                                                                                                   | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D                                     | DH5 2480M<br>Mode Aut |          | Iv III         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100                                                                                                   | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | DH5 2480M<br>Mode Aut | to Sweep |                |                            | <br>3.33 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100<br>1Pk Max                                                                                        | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | <br>3.33 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100<br>@1Pk Max<br>10 dBm<br>0 dBm                                                                    | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | <br>3.33 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spectrum<br>Ref Level 20.1<br>Att<br>SGL Count 100<br>1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm                                                          | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | 3.33 dBm<br>01950 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100<br>@1Pk Max<br>10 dBm<br>0 dBm                                                                    | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | <br>3.33 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100<br>● 1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm                                                        | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | 3.33 dBm<br>01950 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spectrum<br>Ref Level 20.4<br>Att<br>SGL Count 100<br>● 1Pk Max<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm<br>-30 dBm                                | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | 3.33 dBm<br>01950 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spectrum<br>Ref Level 20.4<br>Att<br>SGL Count 100<br>● 1Pk Max<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm                                           | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | 3.33 dBm<br>01950 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spectrum<br>Ref Level 20.4<br>Att<br>SGL Count 100<br>● 1Pk Max<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm<br>-30 dBm                                | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | 3.33 dBm<br>01950 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spectrum<br>Ref Level 20.4<br>Att<br>SGL Count 100<br>● 1Pk Max<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm                     | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | 3.33 dBm<br>01950 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spectrum<br>Ref Level 20.1<br>Att<br>SGL Count 100<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | 3.33 dBm<br>01950 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100<br>10 dBm<br>0 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm              | 35 dB <b>SW</b> 1          | et 2.42 dB ( | Ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                |                            | 3.33 dBm<br>01950 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spectrum<br>Ref Level 20.0<br>Att<br>SGL Count 100<br>1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm   | 35 dB <b>SW</b> 1          | et 2.42 dB ( | ver NVNT 2-D<br>RBW 2 MHz<br>VBW 2 MHz           | Mode Aut              | to Sweep |                | 2.480                      | 3.33 dBm<br>01950 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |






| Att<br>SGL Count 10                                                                                                                  | 35 dB :<br>0/100  | SWT                   | 1 ms 🖷 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BW 2 MHz                         | Mode Aut              | o Sweep           |               |                |            |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|-------------------|---------------|----------------|------------|
| ●1Pk Max                                                                                                                             |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | M                     | 1[1]              |               |                | 4.90 dBm   |
| 10 dBm                                                                                                                               |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               | 2.40           | 196750 GHz |
|                                                                                                                                      |                   |                       | and the second s | M                                | -<br>www.www.uwy      | warmen            |               |                |            |
| 0 dBm                                                                                                                                |                   | and the second second | - enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                       |                   |               | <u></u>        |            |
| -10 dBm                                                                                                                              |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               | and the second | *          |
| -20 dBm                                                                                                                              |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               |                | - marker   |
|                                                                                                                                      |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               |                |            |
| -30 dBm                                                                                                                              |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               |                |            |
| -40 dBm                                                                                                                              |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               |                |            |
| -50 dBm                                                                                                                              |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               |                |            |
| -60 dBm                                                                                                                              |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               |                |            |
| -50 0011                                                                                                                             |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               |                |            |
| -70 dBm                                                                                                                              |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                       |                   |               |                |            |
| 25 0 100 011                                                                                                                         |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1001                             | ntc                   |                   |               | Spa            | an 6.5 MHz |
| CF 2.402 GHz                                                                                                                         |                   |                       | Power 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1001<br>NVNT 3-D                 |                       | ) Read<br>Hz Ant1 | ly <b>(11</b> | 4              |            |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10                                                                                      | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-DI                        | H5 2441MI             |                   | · •           |                |            |
| Spectrum<br>Ref Level 20<br>Att                                                                                                      | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-DI<br>BW 2 MHz            | H5 2441MI<br>Mode Aut |                   | •             |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10                                                                                      | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                |            |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm                                                                 | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>0 dBm                                                        | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm                                                                 | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>0 dBm                                                        | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-10 dBm                                           | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>IPk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-28° dBm                                 | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>IPk Max<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm<br>-40 dBm                     | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>IPk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm                       | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>IPk Max<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm<br>-40 dBm                     | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm            | 1.00 dBm<br>35 dB |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               |                | 4.91 dBm   |
| Spectrum<br>Ref Level 20<br>Att<br>SGL Count 10<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-60 dBm | 0/100             |                       | 39 dB 👄 RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NVNT 3-D<br>BW 2 MHz<br>BW 2 MHz | H5 2441MI<br>Mode Aut | o Sweep           |               | 2.44           | 4.91 dBm   |



ACCREDITED Certificate #4298.01

| Ref Level 20.00 |                         | 2.42 dB 👄 RBW 2 MHz                                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -  |
|-----------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| SGL Count 100/1 | 35 dB <b>SWT</b><br>100 | 1 ms 🖷 VBW 2 MHz                                                                                                | Mode Auto Sweep                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _  |
| 1Pk Max         |                         |                                                                                                                 | M1[1]                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.32 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|                 |                         |                                                                                                                 | mili                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.47994810 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| LO dBm          |                         | M                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  |
| ) dBm           |                         | and and a second and | have the property and the second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  |
|                 | al and a second         |                                                                                                                 |                                         | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 10 dBm          |                         |                                                                                                                 |                                         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Non and the second seco | 4  |
| 20 dBm          |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| 2 de la Bill    |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  |
| 30 dBm          |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  |
|                 |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 40 dBm          |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  |
| 50 dBm          |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 60 dBm          |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1  |
| 70 dBm          |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                 |                         |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| CF 2.48 GHz     |                         | 100                                                                                                             | 1 pts                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Span 6.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41 |





## 8.3 -20DB BANDWIDTH

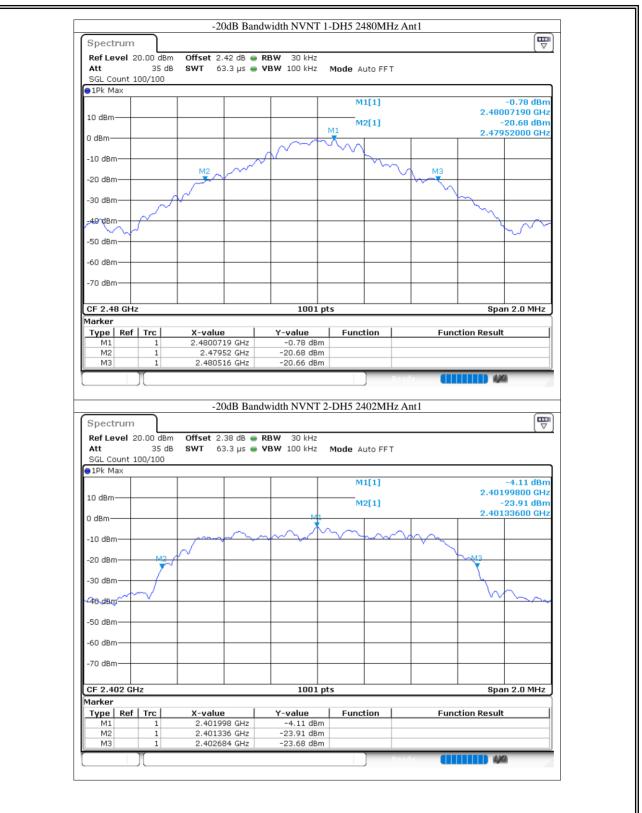
| Condition | Mode  | Frequency<br>(MHz) | Antenna | -20 dB<br>Bandwidth<br>(MHz) | Verdict |
|-----------|-------|--------------------|---------|------------------------------|---------|
| NVNT      | 1-DH5 | 2402               | Ant1    | 0.956                        | Pass    |
| NVNT      | 1-DH5 | 2441               | Ant1    | 0.948                        | Pass    |
| NVNT      | 1-DH5 | 2480               | Ant1    | 0.996                        | Pass    |
| NVNT      | 2-DH5 | 2402               | Ant1    | 1.348                        | Pass    |
| NVNT      | 2-DH5 | 2441               | Ant1    | 1.344                        | Pass    |
| NVNT      | 2-DH5 | 2480               | Ant1    | 1.358                        | Pass    |
| NVNT      | 3-DH5 | 2402               | Ant1    | 1.336                        | Pass    |
| NVNT      | 3-DH5 | 2441               | Ant1    | 1.298                        | Pass    |
| NVNT      | 3-DH5 | 2480               | Ant1    | 1.286                        | Pass    |

ACCREE

Certificate #4298.01










ACCREDITED

Certificate #4298.01







ACCREDITED

Certificate #4298.01





ACCREDITED

Certificate #4298.01





ACCREDITED Certificate #4298.01

| Spectrum    |          |                        |                   |               |                                       | ₩)  |
|-------------|----------|------------------------|-------------------|---------------|---------------------------------------|-----|
| Ref Level 2 | 0.00 dBr | n Offset 2.42 dB 🥃     | RBW 30 kHz        |               |                                       |     |
| Att         | 35 di    | В <b>SWT</b> 63.3 µs 🖷 | VBW 100 kHz r     | Node Auto FFT |                                       |     |
| SGL Count 1 | 00/100   |                        |                   |               |                                       | _   |
| 1Pk Max     |          |                        |                   |               |                                       |     |
|             |          |                        |                   | M1[1]         | -3.03 d                               |     |
| 10 dBm      |          |                        |                   |               | 2.48002000                            |     |
|             |          |                        |                   | M2[1]         | -23.01 d                              |     |
| ) dBm       |          |                        | <u></u> <u>M1</u> |               | 2.47936400                            | GHZ |
|             |          |                        |                   |               |                                       |     |
| 10 dBm —    |          | -                      |                   |               | Yron I                                | _   |
|             | м        |                        |                   |               |                                       |     |
| 20 dBm —    | M        |                        |                   |               |                                       |     |
|             |          |                        |                   |               |                                       |     |
| 30 dBm      |          |                        |                   |               |                                       |     |
| 40-d8m      | $\sim$   |                        |                   |               |                                       | ~   |
|             |          |                        |                   |               | · · · · · · · · · · · · · · · · · · · |     |
| 50 dBm      |          |                        |                   |               |                                       |     |
|             |          |                        |                   |               |                                       |     |
| 60 dBm —    |          |                        |                   |               |                                       | _   |
|             |          |                        |                   |               |                                       |     |
| 70 dBm      |          |                        |                   |               |                                       | _   |
|             |          |                        |                   |               |                                       |     |
| F 2.48 GHz  | :        |                        | 1001 pts          | 5             | Span 2.0 M                            | Hz  |
| larker      |          |                        |                   |               |                                       |     |
| Type   Ref  | Trc      | X-value                | Y-value           | Function      | Function Result                       | 1   |
| M1          | 1        | 2.48002 GHz            | -3.03 dBm         |               |                                       |     |
| M2          | 1        | 2.479364 GHz           | -23.01 dBm        |               |                                       |     |
| M3          | 1        | 2.48065 GHz            | -22.91 dBm        |               |                                       |     |





## 8.4 OCCUPIED CHANNEL BANDWIDTH

| Condition | Mode  | Frequency (MHz) | Antenna | 99% OBW (MHz) |
|-----------|-------|-----------------|---------|---------------|
| NVNT      | 1-DH5 | 2402            | Ant1    | 0.851         |
| NVNT      | 1-DH5 | 2441            | Ant1    | 0.845         |
| NVNT      | 1-DH5 | 2480            | Ant1    | 0.869         |
| NVNT      | 2-DH5 | 2402            | Ant1    | 1.185         |
| NVNT      | 2-DH5 | 2441            | Ant1    | 1.197         |
| NVNT      | 2-DH5 | 2480            | Ant1    | 1.189         |
| NVNT      | 3-DH5 | 2402            | Ant1    | 1.195         |
| NVNT      | 3-DH5 | 2441            | Ant1    | 1.187         |
| NVNT      | 3-DH5 | 2480            | Ant1    | 1.187         |



# ACCREDITED Certificate #4298.01





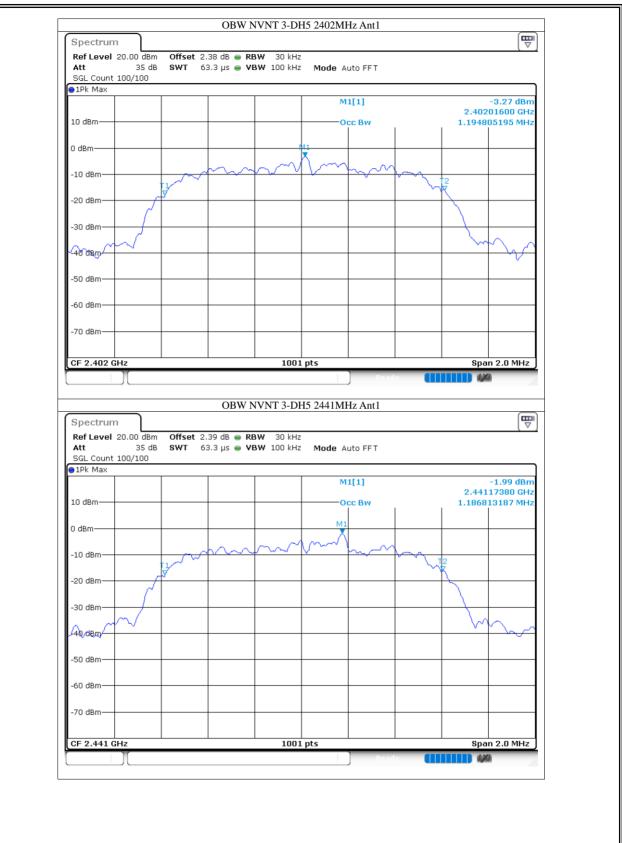
ACCREDITED

Certificate #4298.01





ACCREDITED


Certificate #4298.01





ACCREDITED

Certificate #4298.01





ACCREDITED

Certificate #4298.01





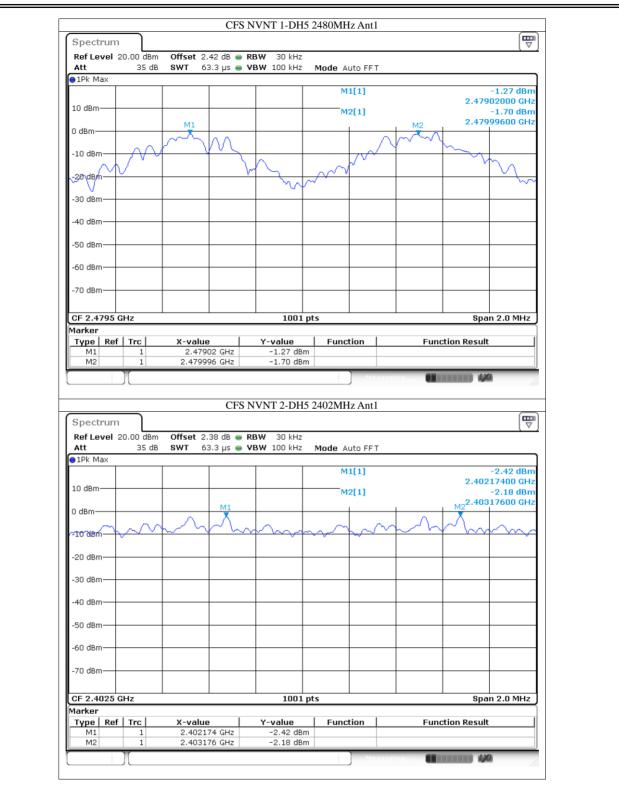


## 8.5 CARRIER FREQUENCIES SEPARATION

| Condition | Mode  | Antenna | Hopping<br>Freq1 (MHz) | Hopping<br>Freq2 (MHz) | HFS<br>(MHz) | Limit<br>(MHz) | Verdict |
|-----------|-------|---------|------------------------|------------------------|--------------|----------------|---------|
| NVNT      | 1-DH5 | Ant1    | 2402.026               | 2403.07                | 1.044        | 0.637          | Pass    |
| NVNT      | 1-DH5 | Ant1    | 2441.174               | 2442.174               | 1            | 0.632          | Pass    |
| NVNT      | 1-DH5 | Ant1    | 2479.02                | 2479.996               | 0.976        | 0.664          | Pass    |
| NVNT      | 2-DH5 | Ant1    | 2402.174               | 2403.176               | 1.002        | 0.899          | Pass    |
| NVNT      | 2-DH5 | Ant1    | 2441.174               | 2442.174               | 1            | 0.896          | Pass    |
| NVNT      | 2-DH5 | Ant1    | 2479.174               | 2480.176               | 1.002        | 0.905          | Pass    |
| NVNT      | 3-DH5 | Ant1    | 2402.018               | 2403.006               | 0.988        | 0.891          | Pass    |
| NVNT      | 3-DH5 | Ant1    | 2441.018               | 2442.006               | 0.988        | 0.865          | Pass    |
| NVNT      | 3-DH5 | Ant1    | 2479.018               | 2480.022               | 1.004        | 0.857          | Pass    |

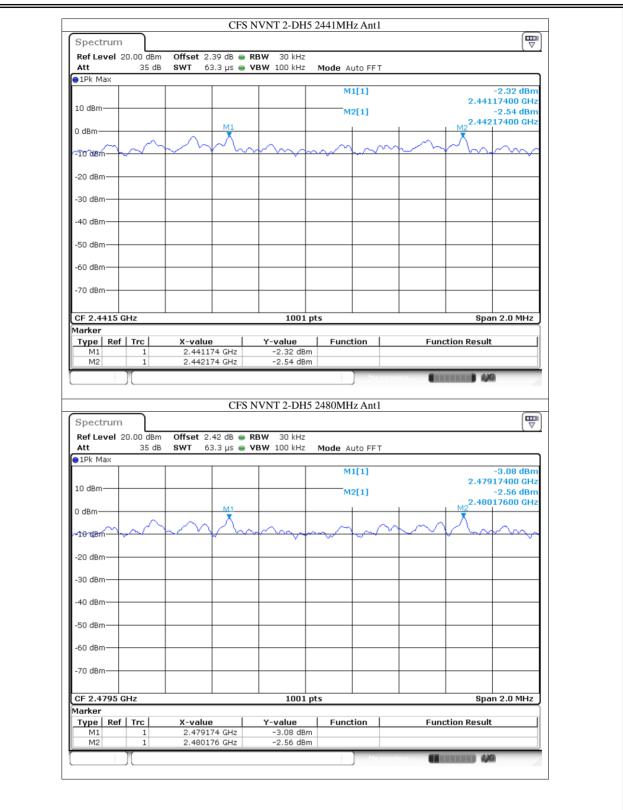








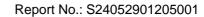

ACCREDITED

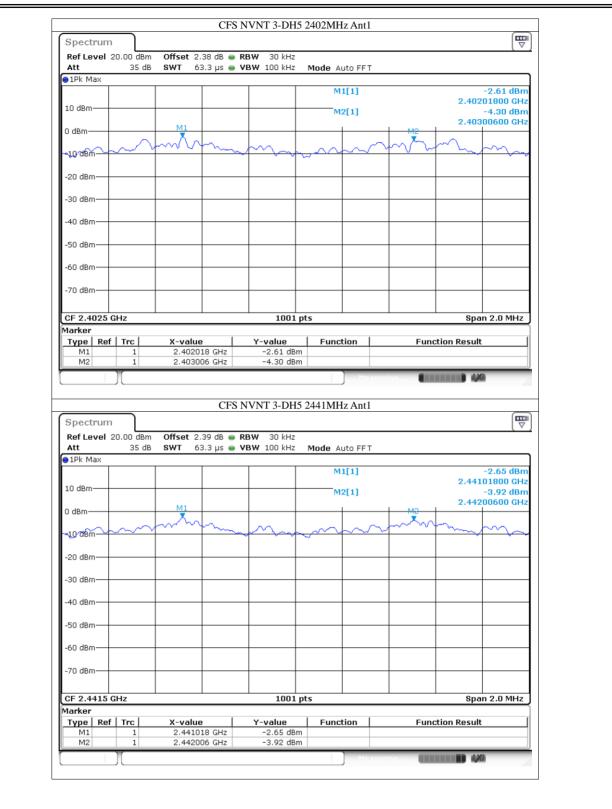

Certificate #4298.01












ACCREDITED

Certificate #4298.01









| Spectrum<br>Ref Level : |        | Offset 2.42 di | 3 👄 RBW 30 kHz  |        |         |             |            |            |
|-------------------------|--------|----------------|-----------------|--------|---------|-------------|------------|------------|
| Att                     | 35 dB  |                | 5 🖶 VBW 100 kHz |        | ito FFT |             |            |            |
| 1Pk Max                 |        |                | _               |        |         |             |            |            |
|                         |        |                |                 | M1     | [1]     |             |            | -3.04 dBm  |
| 10 40                   |        |                |                 |        |         |             | 2.479      | 901800 GHz |
| 10 dBm                  |        |                |                 | M2     | 2[1]    |             |            | -3.34 dBm  |
| 0 dBm                   |        | M1             |                 |        |         | M2          | 2.480      | 002200 GHz |
|                         |        |                |                 |        |         | X           | ~          |            |
| 10 d8m                  | $\sim$ |                | hom.            |        | $\sim$  | $\sim \sim$ |            | m          |
| 29 abin                 |        |                |                 | $\sim$ |         |             |            |            |
| -20 dBm                 |        |                |                 |        |         |             |            |            |
|                         |        |                |                 |        |         |             |            |            |
| -30 dBm                 |        |                |                 |        |         |             |            |            |
|                         |        |                |                 |        |         |             |            |            |
| -40 dBm                 |        |                |                 |        |         |             |            |            |
|                         |        |                |                 |        |         |             |            |            |
| -50 dBm                 |        |                |                 |        |         |             |            |            |
|                         |        |                |                 |        |         |             |            |            |
| -60 dBm                 |        |                |                 |        |         |             |            |            |
|                         |        |                |                 |        |         |             |            |            |
| -70 dBm                 |        |                |                 |        |         |             |            |            |
|                         |        |                |                 |        |         |             |            |            |
| CF 2.4795               | GHz    |                | 1001            | pts    |         |             | Spa        | an 2.0 MHz |
| 1arker                  |        |                |                 |        |         |             |            |            |
| Type Ref                | Trc    | X-value        | Y-value         | Funct  | ion     | Fund        | tion Resul | t l        |
| M1                      | 1      | 2.479018 GH    | Iz -3.04 dB     | m      |         |             |            |            |



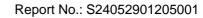


## 8.6 NUMBER OF HOPPING CHANNEL

| Condition | Mode  | Antenna | Hopping Number | Limit | Verdict |
|-----------|-------|---------|----------------|-------|---------|
| NVNT      | 1-DH5 | Ant1    | 79             | 15    | Pass    |
| NVNT      | 2-DH5 | Ant1    | 79             | 15    | Pass    |
| NVNT      | 3-DH5 | Ant1    | 79             | 15    | Pass    |






|                                                                                                                                                                                                                                                                                 |                        |                   | Hopping                    | Test C<br>No. NVNT 1                     |                                        | 2MHz Ant                                                            | 1           |                    | _                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|----------------------------|------------------------------------------|----------------------------------------|---------------------------------------------------------------------|-------------|--------------------|--------------------------------------------------------|
| Spectrum                                                                                                                                                                                                                                                                        |                        |                   |                            |                                          |                                        |                                                                     |             |                    |                                                        |
| Ref Level 2<br>Att                                                                                                                                                                                                                                                              | 0.00 dBm<br>35 dB      | Offset 2<br>SWT   |                            | <b>RBW</b> 100 kHz<br><b>VBW</b> 300 kHz |                                        | uto Sweep                                                           |             |                    |                                                        |
| ●1Pk Max                                                                                                                                                                                                                                                                        | 00 00                  |                   |                            |                                          | Houe A                                 |                                                                     |             |                    |                                                        |
|                                                                                                                                                                                                                                                                                 |                        |                   |                            |                                          | м                                      | 1[1]                                                                |             | 2.4                | 2.12 dBm<br>020040 GHz                                 |
| 10 dBm                                                                                                                                                                                                                                                                          |                        |                   |                            |                                          | M                                      | 2[1]                                                                |             |                    | 1.59 dBm<br>800765 GHz                                 |
| o <mark>a</mark> km <u>h (h h h h</u>                                                                                                                                                                                                                                           | <del>la da da da</del> | AUVUUU            | <b>1</b> 00000             | AUPULATE AND A MARKED A                  | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | IN A A A A A A A A A A A A A A A A A A A                            | INALANDIA ( | huvur              |                                                        |
| -10 deriver                                                                                                                                                                                                                                                                     | UWNN                   | NANAA             | MANAY                      | navana                                   | <u>uuuuuu</u>                          | UNANA                                                               | 64694604    | <u>unviu</u>       | ULANU -                                                |
| 1                                                                                                                                                                                                                                                                               | 4818484                | lkohlkol          | 00000104                   | Abailidhand                              | NANAANA                                | A A B K A A A A A A                                                 | Indeellaar  | lagalaa            | <b>MANANA</b>                                          |
| -20 dBm                                                                                                                                                                                                                                                                         |                        |                   |                            |                                          |                                        |                                                                     |             |                    |                                                        |
| -80 dBm                                                                                                                                                                                                                                                                         |                        |                   |                            |                                          |                                        |                                                                     |             |                    | +                                                      |
| -40 dBm                                                                                                                                                                                                                                                                         |                        |                   |                            |                                          |                                        |                                                                     |             |                    | + +                                                    |
| 50 dBm                                                                                                                                                                                                                                                                          |                        |                   |                            |                                          |                                        |                                                                     |             |                    |                                                        |
|                                                                                                                                                                                                                                                                                 |                        |                   |                            |                                          |                                        |                                                                     |             |                    | 1 14                                                   |
| -60 dBm                                                                                                                                                                                                                                                                         |                        |                   |                            |                                          |                                        |                                                                     |             |                    |                                                        |
| -70 dBm                                                                                                                                                                                                                                                                         |                        |                   |                            |                                          |                                        |                                                                     |             |                    |                                                        |
| Ptart 0.4 CU                                                                                                                                                                                                                                                                    | _                      |                   |                            | 1001                                     | ntc                                    |                                                                     |             | Dtar f             | 1499E OU-                                              |
| Start 2.4 GH<br>Marker                                                                                                                                                                                                                                                          | ۷                      |                   |                            | 1001                                     | prs                                    |                                                                     |             | stop 2             | 2.4835 GHz                                             |
| Type Ref<br>M1                                                                                                                                                                                                                                                                  | Trc 1                  | X-value<br>2 4020 | e                          | Y-value<br>2.12 dB                       | Funct                                  | tion                                                                | Fund        | tion Resu          | lt                                                     |
| M2                                                                                                                                                                                                                                                                              | 1                      | 2.48007           |                            | 1.59 dB                                  |                                        |                                                                     |             |                    |                                                        |
|                                                                                                                                                                                                                                                                                 |                        |                   |                            |                                          | 1                                      |                                                                     |             | 1000 B             | MA                                                     |
|                                                                                                                                                                                                                                                                                 | ~                      |                   |                            |                                          |                                        | Measur                                                              |             |                    |                                                        |
|                                                                                                                                                                                                                                                                                 | ~                      |                   | Hopping                    | No NVNT 2                                | -DH5 2402                              | MHz Anti                                                            | _           |                    |                                                        |
| Spectrum                                                                                                                                                                                                                                                                        |                        |                   | Hopping 1                  | No. NVNT 2                               | -DH5 2402                              | 2MHz Ant1                                                           | _           |                    |                                                        |
| Spectrum<br>Ref Level 20                                                                                                                                                                                                                                                        |                        | Offset 2          | .38 dB 😑 I                 | <b>RBW</b> 100 kHz                       |                                        | 2MHz Ant 1                                                          | _           |                    |                                                        |
| Ref Level 2<br>Att                                                                                                                                                                                                                                                              | D.00 dBm<br>35 dB      |                   | .38 dB 😑 I                 |                                          |                                        | 2MHz Ant 1                                                          | _           |                    |                                                        |
| Ref Level 2                                                                                                                                                                                                                                                                     |                        | Offset 2          | .38 dB 😑 I                 | <b>RBW</b> 100 kHz                       | Mode A                                 |                                                                     | _           |                    | -3.13 dBm                                              |
| Ref Level 2<br>Att                                                                                                                                                                                                                                                              |                        | Offset 2          | .38 dB 😑 I                 | <b>RBW</b> 100 kHz                       | Mode A                                 | uto Sweep                                                           | _           | 2.4                | -3.13 dBm<br>015865 GHz<br>0.14 dBm                    |
| Ref Level 20<br>Att<br>P1Pk Max                                                                                                                                                                                                                                                 | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 24<br>Att<br>PIPK Max<br>10 dBm<br>0 dBm                                                                                                                                                                                                                              | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 20<br>Att<br>PIPk Max<br>10 dBm<br>-10 dBm<br>-10 dBm                                                                                                                                                                                                                 | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 24<br>Att<br>PIPK Max<br>10 dBm<br>0 dBm                                                                                                                                                                                                                              | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 20<br>Att<br>PIPk Max<br>10 dBm<br>-10 dBm<br>-10 dBm                                                                                                                                                                                                                 | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 20<br>Att<br>PIPK Max<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                                                                                 | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 20<br>Att<br>1Pk Max<br>10 dBm<br>10 dBm<br>20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                                                                                   | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 20<br>Att<br>10 dBm<br>10 dBm<br>10 dBm<br>20 dBm<br>-20 dBm<br>-80 dBm                                                                                                                                                                                               | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 20<br>Att<br>PIPk Max<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-80 dBm<br>-40 dBm                                                                                                                                                                                 | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 20<br>Att<br>IPk Max<br>10 dBm<br>10 dBm<br>20 dBm<br>20 dBm<br>40 dBm<br>40 dBm<br>40 dBm                                                                                                                                                                            | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4                | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 20           Att           IPk Max           10 dBm           OdBm           -10 dBm           -20 dBm           -80 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm                                                                      | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz                              | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4<br>2.4<br>WWWW | -3.13 dBm<br>015865 GH2<br>0.14 dBm<br>802435/GH2      |
| Ref Level 2/<br>Att           1Pk Max           10 dBm           10 dBm           -10 dBm           -20 dBm           -80 dBm           -50 dBm           -60 dBm           -70 dBm           Start 2.4 GH                                                                      | 35 dB                  | Offset 2<br>SWT   | .38 dB 👄 🛙<br>1 ms 👄 V     | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>1[1]<br>2[1]                                           |             | 2.4<br>2.4<br>WWWW | -3.13 dBr<br>⊽<br>015865 GHz<br>0.14 dBr<br>8024334GHz |
| Ref Level 20           Att           1Pk Max           10 dBm           10 dBm           -10 dBm           -20 dBm           -80 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Start 2.4 GH           Marker           Type         Ref | 35 dB                  | Offset 2<br>SWT   | .38 dB • 1<br>1 ms • 1<br> | RBW 100 kHz<br>VBW 300 kHz               | Mode A                                 | uto Sweep<br>[[1]<br>2[1]<br>v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/ |             | 2.4<br>2.4<br>WWWW | -3.13 dBm<br>015865 GHz<br>0.14 dBm<br>802433/GHz      |
| Ref Level 20           Att           1Pk Max           10 dBm           10 dBm           10 dBm           20 dBm           -20 dBm           -80 dBm           -60 dBm           -70 dBm           Start 2.4 GH           Marker                                                | 35 dB                  | Offset 2<br>SWT   | .38 dB • 1<br>1 ms • 1<br> | RBW 100 kHz                              | Mode A                                 | uto Sweep<br>[[1]<br>2[1]<br>v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/v/ |             | 2.4<br>2.4<br>WWWW | -3.13 dBm<br>015865 GHz<br>0.14 dBm<br>802433/GHz      |





| Spectrum       |             |                   |           |                            |                |           |           |              | (                          | ₹)              |
|----------------|-------------|-------------------|-----------|----------------------------|----------------|-----------|-----------|--------------|----------------------------|-----------------|
| Ref Level 2    |             |                   | _         | 3W 100 kHz                 |                |           |           |              |                            |                 |
| Att            | 35 dB       | SWT               | 1 ms 😑 VI | <b>BW</b> 300 kHz          | Mode A         | uto Sweep |           |              |                            | _               |
| 1Pk Max        |             |                   |           |                            |                |           |           |              |                            |                 |
|                |             |                   |           |                            | M              | 1[1]      |           |              | -1.99 dE                   |                 |
| .0 dBm         |             |                   |           |                            |                | 111       |           |              | 15865 G                    |                 |
|                |             |                   |           |                            | IML            | 2[1]      |           |              | -2.32 ue<br>04940 <u>G</u> |                 |
| AR RAYLAND     |             | 1.1.1.1.1.1       | ush w     | di cobbe d                 |                | All all A |           | 1            | I M2                       | 12              |
| property and   | When mental | envioentrustation | annonanan | Arriver                    | wy wy www wo w | ռառուհարկ | Angerrage | MAN WAY      | why                        |                 |
| 10 dBm         |             |                   |           |                            |                |           |           |              |                            |                 |
|                |             |                   |           |                            |                |           |           |              |                            |                 |
| 20 dBm —       |             |                   |           |                            |                |           |           |              |                            |                 |
|                |             |                   |           |                            |                |           |           |              |                            |                 |
| 80 dBm         |             |                   |           |                            |                |           |           |              |                            |                 |
|                |             |                   |           |                            |                |           |           |              | 1                          |                 |
| 40 dBm         |             |                   |           |                            |                |           |           |              |                            |                 |
|                |             |                   |           |                            |                |           |           |              |                            | L.              |
| 50 dBm         |             |                   |           |                            |                |           |           |              |                            | MP <sup>1</sup> |
| 50 dBm         |             |                   |           |                            |                |           |           |              |                            |                 |
| JU UBIII       |             |                   |           |                            |                |           |           |              |                            |                 |
| 70 dBm         |             |                   |           |                            |                |           |           |              |                            |                 |
| , o ubiii      |             |                   |           |                            |                |           |           |              |                            |                 |
|                |             |                   |           |                            |                |           |           |              |                            |                 |
| start 2.4 GF   | IZ          |                   |           | 1001                       | pts            |           |           | Stop 2.      | .4835 GH                   | z               |
| arker          |             |                   |           |                            |                |           |           |              |                            | _               |
| Type Ref<br>M1 | Trc<br>1    | 2.401586          | E CUIR    | <u>Y-value</u><br>-1.99 dB | Funct          | ion       | Fund      | ction Result |                            |                 |
| M1<br>M2       | 1           | 2.401586          |           | -1.99 dB<br>-2.52 dB       |                |           |           |              |                            | _               |





## 8.7 BAND EDGE

|           |       | -                  |         |                 |                    |                |         |
|-----------|-------|--------------------|---------|-----------------|--------------------|----------------|---------|
| Condition | Mode  | Frequency<br>(MHz) | Antenna | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |
| NVNT      | 1-DH5 | 2402               | Ant1    | No-Hopping      | -53.13             | -20            | Pass    |
| NVNT      | 1-DH5 | 2480               | Ant1    | No-Hopping      | -52.93             | -20            | Pass    |
| NVNT      | 2-DH5 | 2402               | Ant1    | No-Hopping      | -48.7              | -20            | Pass    |
| NVNT      | 2-DH5 | 2480               | Ant1    | No-Hopping      | -50.12             | -20            | Pass    |
| NVNT      | 3-DH5 | 2402               | Ant1    | No-Hopping      | -50.36             | -20            | Pass    |
| NVNT      | 3-DH5 | 2480               | Ant1    | No-Hopping      | -47.16             | -20            | Pass    |

ACCRED

Certificate #4298.01

ED



ACCREDITED Certificate #4298.01

| Spectrum                                                                                                                                                                                                                                                                                                              |                                             |                                                              | <u> </u>                                                                                                                                                                                                                                                                                       | 1-DH5 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | ·F1                                     |            |                     |                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|------------|---------------------|-------------------------------------------------|
| Ref Level                                                                                                                                                                                                                                                                                                             |                                             | Offset 2.                                                    | 38 dB 👄 RI                                                                                                                                                                                                                                                                                     | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |                                         |            |                     | ( >                                             |
| Att                                                                                                                                                                                                                                                                                                                   |                                             |                                                              |                                                                                                                                                                                                                                                                                                | <b>BW</b> 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          | uto FFT                                 |            |                     |                                                 |
| SGL Count                                                                                                                                                                                                                                                                                                             | 100/100                                     |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                         |            |                     |                                                 |
|                                                                                                                                                                                                                                                                                                                       |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | м                                                                        | 1[1]                                    |            |                     | 2.24 dBm                                        |
| 10 dBm                                                                                                                                                                                                                                                                                                                |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          | I                                       | I          | 2.401               | .98400 GHz                                      |
| TO UBIII                                                                                                                                                                                                                                                                                                              |                                             |                                                              |                                                                                                                                                                                                                                                                                                | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                        |                                         |            |                     |                                                 |
| 0 dBm                                                                                                                                                                                                                                                                                                                 |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                        |                                         |            |                     |                                                 |
| -10 dBm                                                                                                                                                                                                                                                                                                               |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                         |            |                     |                                                 |
|                                                                                                                                                                                                                                                                                                                       |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                        |                                         |            |                     |                                                 |
| -20 dBm                                                                                                                                                                                                                                                                                                               |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                         |            |                     |                                                 |
| -30 dBm                                                                                                                                                                                                                                                                                                               |                                             |                                                              |                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |                                         |            |                     |                                                 |
| SU UBIII                                                                                                                                                                                                                                                                                                              |                                             |                                                              | $\sim$                                                                                                                                                                                                                                                                                         | $\langle \neg \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |                                         |            |                     |                                                 |
| -40 dBm                                                                                                                                                                                                                                                                                                               |                                             |                                                              | <u>⊢ / °</u>                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          | $\sim$ \                                |            |                     |                                                 |
|                                                                                                                                                                                                                                                                                                                       |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                         |            |                     |                                                 |
| -50 dBm                                                                                                                                                                                                                                                                                                               | $\sim$                                      |                                                              | $\sim$                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          | ~~~~                                    | $\sim$     | how                 | m ~                                             |
| -60 dBm                                                                                                                                                                                                                                                                                                               |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                         |            |                     | ~~                                              |
|                                                                                                                                                                                                                                                                                                                       |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                         |            |                     |                                                 |
| -70 dBm                                                                                                                                                                                                                                                                                                               |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                         |            |                     |                                                 |
|                                                                                                                                                                                                                                                                                                                       |                                             |                                                              |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                         |            |                     |                                                 |
| CF 2.402 G                                                                                                                                                                                                                                                                                                            | Hz                                          |                                                              |                                                                                                                                                                                                                                                                                                | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pts                                                                      |                                         | ·          | Spa                 | n 8.0 MHz                                       |
| Spectrum                                                                                                                                                                                                                                                                                                              | ·                                           |                                                              |                                                                                                                                                                                                                                                                                                | DH5 2402M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | J                                       | g Emission |                     |                                                 |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                                      | 20.00 dBm<br>35 dB                          | Offset 2                                                     | 2.38 dB 👄 F                                                                                                                                                                                                                                                                                    | DH5 2402M<br>RBW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z                                                                        |                                         | g Emission |                     |                                                 |
| Ref Level                                                                                                                                                                                                                                                                                                             | 20.00 dBm<br>35 dB                          | Offset 2                                                     | 2.38 dB 👄 F                                                                                                                                                                                                                                                                                    | <b>RBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z                                                                        |                                         | g Emission |                     |                                                 |
| Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                                                                                         | 20.00 dBm<br>35 dB                          | Offset 2                                                     | 2.38 dB 👄 F                                                                                                                                                                                                                                                                                    | <b>RBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z<br>z <b>Mode</b> /                                                     |                                         | g Emission |                     | 2.56 dBm                                        |
| Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                                                                                         | 20.00 dBm<br>35 dB                          | Offset 2                                                     | 2.38 dB 👄 F                                                                                                                                                                                                                                                                                    | <b>RBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z Mode /                                                                 | Auto FFT                                | g Emission | 2.401               | 2.56 dBm<br>85000 GHz                           |
| Ref Level<br>Att<br>SGL Count<br>9 1Pk Max                                                                                                                                                                                                                                                                            | 20.00 dBm<br>35 dB                          | Offset 2                                                     | 2.38 dB 👄 F                                                                                                                                                                                                                                                                                    | <b>RBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z Mode /                                                                 | Auto FFT                                | g Emission | 2.401               | 2.56 dBm                                        |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm<br>0 dBm                                                                                                                                                                                                                                                           | 20.00 dBm<br>35 dB                          | Offset 2                                                     | 2.38 dB 👄 F                                                                                                                                                                                                                                                                                    | <b>RBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z Mode /                                                                 | Auto FFT                                | g Emission | 2.401               | 2.56 dBm<br>85000 GHz<br>51.29∕₫Bm              |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-10 dBm                                                                                                                                                                                                                                              | 20.00 dBm<br>35 dB<br>100/100               | Offset 2<br>SWT 22                                           | 2.38 dB 👄 F                                                                                                                                                                                                                                                                                    | <b>RBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z Mode /                                                                 | Auto FFT                                | g Emission | 2.401               | 2.56 dBm<br>85000 GHz<br>51.29∕₫Bm              |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                  | 20.00 dBm<br>35 dB                          | Offset 2<br>SWT 22                                           | 2.38 dB 👄 F                                                                                                                                                                                                                                                                                    | <b>RBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z Mode /                                                                 | Auto FFT                                | g Emission | 2.401               | 2.56 dBm<br>85000 GHz<br>51.29∕₫Bm              |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-10 dBm                                                                                                                                                                                                                                              | 20.00 dBm<br>35 dB<br>100/100               | Offset 2<br>SWT 22                                           | 2.38 dB 👄 F                                                                                                                                                                                                                                                                                    | <b>RBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z Mode /                                                                 | Auto FFT                                | g Emission | 2.401               | 2.56 dBm<br>85000 GHz<br>51.29∕₫Bm              |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                                                                                                            | 20.00 dBm<br>35 dB<br>100/100               | Offset 2<br>SWT 22                                           | 2.38 dB ● F<br>7.5 μs ● N                                                                                                                                                                                                                                                                      | <b>RBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z Mode /                                                                 | Auto FFT                                | g Emission | 2.401               | 2.56 dBm<br>85000 GHz<br>51.29∕₫Bm              |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                                                                                                                      | 20.00 dBm<br>35 dB<br>100/100               | Offset 2<br>SWT 22                                           | 2.38 dB ● F<br>7.5 μs ● N                                                                                                                                                                                                                                                                      | RBW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z Mode /<br>M<br>M                                                       | Auto FFT  1[1] 2[1]                     |            | 2.401               | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                                                                                                                                   | 20.00 dBm<br>35 dB<br>100/100               | Offset 2<br>SWT 22                                           | 2.38 dB ● F<br>7.5 μs ● N                                                                                                                                                                                                                                                                      | RBW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z Mode /<br>M<br>M                                                       | Auto FFT  1[1] 2[1]                     |            | 2.401               | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm                                                                                                                                                                                     | 20.00 dBm<br>35 dB<br>100/100               | Offset 2<br>SWT 22                                           | 2.38 dB ● F<br>7.5 μs ● N                                                                                                                                                                                                                                                                      | RBW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z Mode /<br>M<br>M                                                       | Auto FFT  1[1] 2[1]                     |            | 2.401               | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                                                                                                                                   | 20.00 dBm<br>35 dB<br>100/100               | Offset 2<br>SWT 22                                           | 2.38 dB ● F<br>7.5 μs ● N                                                                                                                                                                                                                                                                      | RBW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z Mode /<br>M<br>M                                                       | Auto FFT  1[1] 2[1]                     |            | 2.401               | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |
| Ref Level<br>Att           SGL Count           • 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm                                                                                               | 20.00 dBm<br>35 dB<br>100/100<br>D1 -17.761 | Offset 2<br>SWT 22                                           | 2.38 dB ● F<br>7.5 μs ● N                                                                                                                                                                                                                                                                      | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z Mode /                                                                 | Auto FFT  1[1] 2[1]                     |            | 2.401<br>-<br>2.400 | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |
| Ref Level<br>Att           SGL Count           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.3000           Marker                                                       | 20.00 dBm<br>35 dB<br>100/100<br>D1 -17.761 | Offset 2<br>SWT 22                                           | 2.38 dB ● F<br>7.5 μs ● N<br>M4                                                                                                                                                                                                                                                                | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z Mode /<br>M<br>M<br>M                                                  | Auto FFT<br>1[1]<br>2[1]<br>ԿՄԱՍԻՆԱԱՆԴՆ |            | 2.401<br>2.400      | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -70 dBm           -70 dBm           Start 2.306           Marker           Type   Ref                                                     | 20.00 dBm<br>35 dB<br>100/100<br>D1 -17.761 | Offset 2<br>SWT 22<br>dBm                                    | 2.38 dB ● F<br>7.5 μs ● N<br>Μ4<br>√₩/μ <sup>/*</sup> /₩/π/μ                                                                                                                                                                                                                                   | 28w         100 kHz           /Bw         300 kHz           /Bw         300 kHz           ////////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 Mode /<br>۲۰۰۰ M                                                       | Auto FFT<br>1[1]<br>2[1]<br>ԿՄԱՍԻՆԱԱՆԴՆ |            | 2.401<br>-<br>2.400 | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |
| Ref Level<br>Att           SGL Count           • 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.306           Marker           Type           M1                            | 20.00 dBm<br>35 dB<br>100/100<br>D1 -17.761 | Offset 2<br>SWT 22<br>dBm<br>/////////////////////////////// | <ul> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> </ul>                                                                                                                                                                                                 | 2BW 100 kHz<br>/BW 300 kHz<br>/BW 300 kHz<br>//BW | z Mode /<br>M<br>M<br>س<br>pts                                           | Auto FFT<br>1[1]<br>2[1]<br>ԿՄԱՍԻՆԱԱՆԴՆ |            | 2.401<br>2.400      | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |
| Ref Level<br>Att           SGL Count           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.3000           Marker           Type           M1           M2           M3 | 20.00 dBm<br>35 dB<br>100/100<br>D1 -17.761 | Offset 2<br>SWT 22<br>dBm<br>/////////////////////////////// | <ul> <li>.38 dB          <ul> <li>7.5 μs</li> <li>Ν</li> </ul> </li> <li>M4         <ul> <li>Μ4</li> <li>Μ4</li> <li>Μ4</li> <li>Μ4</li> <li>Μ4</li> <li>Μ4</li> <li>Μ4</li> <li>Μ4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> </ul> </li> </ul> | 100 kHz     //www.ybw 300 kHz     //www.ybw 300 kHz     //www.ybw 300 kHz     //www.ybw 300 kHz     //wwwwybw 300 kHz     //wwwybw 300 kHz     //wwww 300 kHz     //www 300 kHz     //wwybw 300 k                                                                                                                                                                                                                                                                                                         | z Mode /<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>Funci<br>m<br>m<br>m | Auto FFT<br>1[1]<br>2[1]<br>ԿՄԱՍԻՆԱԱՆԴՆ |            | 2.401<br>2.400      | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |
| Ref Level<br>Att           SGL Count           • 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.306           Marker           Type           M1                            | 20.00 dBm<br>35 dB<br>100/100<br>D1 -17.761 | Offset 2<br>SWT 22<br>dBm<br>/////////////////////////////// | <ul> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> <li>M4</li> </ul>                                                                                                                                                                                                 | 2BW 100 kHz<br>/BW 300 kHz<br>/BW 300 kHz<br>//BW | z Mode /<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>Funci<br>m<br>m<br>m | Auto FFT<br>1[1]<br>2[1]<br>ԿՄԱՍԻՆԱԱՆԴՆ |            | 2.401<br>2.400      | 2.56 dBm<br>85000 GHz<br>51.29 dBm<br>00000 GHz |



ILAC-MRA

ACCREDITED Certificate #4298.01

| Att<br>SGL Count                                                                                                                                                                                                                                                                                                                                              | 20.00 dBm<br>35 dB                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | BW 100 kHz<br>BW 300 kHz                             | Mode Au       | uto FFT                   |            |                |                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------|---------------|---------------------------|------------|----------------|----------------------------------------------------|
| IPk Max                                                                                                                                                                                                                                                                                                                                                       | 100/100                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      |               |                           |            |                |                                                    |
|                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      | M             | 1[1]                      |            | 2.470          | 2.25 dBm<br>985610 GHz                             |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                        |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      |               |                           |            | 2.479          | 85610 GHZ                                          |
|                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | M1                                                   |               |                           |            |                |                                                    |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      | 7             |                           |            |                |                                                    |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      | 4             |                           |            |                |                                                    |
|                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      | $\sim$        |                           |            |                |                                                    |
| -20 dBm—                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      | $\rightarrow$ |                           |            |                |                                                    |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      | )             |                           |            |                |                                                    |
| 50 abiii                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      | 1             | 6                         |            |                |                                                    |
| -40 dBm—                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>├</u> ~  |                                                      |               | ř \                       |            |                |                                                    |
| -50 dem-                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      |               | har                       |            |                |                                                    |
| -50 d8m                                                                                                                                                                                                                                                                                                                                                       | www                                                                                     | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                      |               |                           | - An and   | m              | m                                                  |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      |               |                           |            |                |                                                    |
| 70.45                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      |               |                           |            |                |                                                    |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      |               |                           |            |                |                                                    |
| CF 2.48 G                                                                                                                                                                                                                                                                                                                                                     | <br>                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 1001                                                 | ntc           |                           |            |                | in 8.0 MHz                                         |
|                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                      |               | Read                      | ly 🚺       |                | 0                                                  |
| Spectrun<br>Ref Level                                                                                                                                                                                                                                                                                                                                         | n                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | DH5 2480M                                            |               | No-Hoppin                 | g Emission | L              |                                                    |
| Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                                                                                                                                 | n<br>20.00 dBm<br>35 dB                                                                 | Offset 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.42 dB 👄 R |                                                      |               |                           | g Emission | 1              |                                                    |
| Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                                                                                                                                 | n<br>20.00 dBm<br>35 dB                                                                 | Offset 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.42 dB 👄 R | <b>RBW</b> 100 kHz                                   | Mode 4        | Auto FFT                  | g Emission |                |                                                    |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                                                                                                                                                                                                                                      | n<br>20.00 dBm<br>35 dB                                                                 | Offset 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.42 dB 👄 R | <b>RBW</b> 100 kHz                                   | Mode A        | Auto FFT<br>1[1]          | g Emission | 2.480          | 1.64 dBm<br>005000 GHz                             |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                                                                                                                                                                                                                                      | n<br>20.00 dBm<br>35 dB                                                                 | Offset 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.42 dB 👄 R | <b>RBW</b> 100 kHz                                   | Mode A        | Auto FFT                  | g Emission | 2.480          | 1.64 dBm                                           |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                                                            | n<br>20.00 dBm<br>35 dB                                                                 | Offset 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.42 dB 👄 R | <b>RBW</b> 100 kHz                                   | Mode A        | Auto FFT<br>1[1]          | g Emission | 2.480          | 1.64 dBm<br>005000 GHz<br>-51.26 dBm               |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                                                            | n<br>20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB 👄 R | <b>RBW</b> 100 kHz                                   | Mode A        | Auto FFT<br>1[1]          | g Emission | 2.480          | 1.64 dBm<br>005000 GHz<br>-51.26 dBm               |
| Ref Level<br>Att<br>SGL Count<br>PIPk Max<br>10 dBm                                                                                                                                                                                                                                                                                                           | n<br>20.00 dBm<br>35 dB                                                                 | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB 👄 R | <b>RBW</b> 100 kHz                                   | Mode A        | Auto FFT<br>1[1]          | g Emission | 2.480          | 1.64 dBm<br>005000 GHz<br>-51.26 dBm               |
| Ref Level<br>Att<br>SGL Count<br>IPk Max<br>10 dBm                                                                                                                                                                                                                                                                                                            | n<br>20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB 👄 R | <b>RBW</b> 100 kHz                                   | Mode A        | Auto FFT<br>1[1]          | g Emission | 2.480          | 1.64 dBm<br>005000 GHz<br>-51.26 dBm               |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           -10 dBm           -10 dBm           -20 cBm           -30 dBm                                                                                                                                                                                                             | n<br>20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB 👄 R | <b>RBW</b> 100 kHz                                   | Mode A        | Auto FFT<br>1[1]          | g Emission | 2.480          | 1.64 dBm<br>005000 GHz<br>-51.26 dBm               |
| Ref Level<br>Att           SGL Count           • 1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                                                                                                                                                                               | n<br>20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB     | XBW 100 kHz<br>/BW 300 kHz                           | Mode 4        | Auto FFT 1[1] 2[1]        |            | 2.480          | 1.64 dBm<br>005000 GHz<br>-51.26 dBm<br>150000 GHz |
| Ref Level<br>Att           SGL Count           • 1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                                                                                                                                                                             | n<br>20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB 👄 R | XBW 100 kHz<br>/BW 300 kHz                           | Mode 4        | Auto FFT 1[1] 2[1]        | g Emission | 2.480          | 1.64 dBm<br>005000 GHz<br>-51.26 dBm               |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           -10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -60 dBm                                                                                                                                                                         | n<br>20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB     | XBW 100 kHz<br>/BW 300 kHz                           | Mode 4        | Auto FFT 1[1] 2[1]        |            | 2.480          | 1.64 dBm<br>005000 GHz<br>-51.26 dBm<br>150000 GHz |
| Ref Level<br>Att<br>SGL Count<br>● 1Pk Max<br>10 dBm<br>-10 dBm<br>-20 cBm<br>-30 dBm<br>-40 dBm<br>-40 dBm                                                                                                                                                                                                                                                   | n<br>20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB     | XBW 100 kHz<br>/BW 300 kHz                           | Mode 4        | Auto FFT 1[1] 2[1]        |            | 2.480          | 1.64 dBm<br>005000 GHz<br>-51.26 dBm<br>150000 GHz |
| Ref Level<br>Att           SGL Count           • 1Pk Max           • 1Pk Max           • 0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -60 dBm           -70 dBm           -70 dBm                                                                                                                                  | n<br>20.00 dBm<br>35 dB<br>100/100<br>201 -17.749                                       | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB     | XBW 100 kHz<br>/BW 300 kHz                           | Mode 4        | Auto FFT 1[1] 2[1]        |            | 2.480<br>2.483 | 1.64 dBm<br>005000 GHz<br>-51.26 dBm<br>150000 GHz |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 cBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Start 2.47           Marker                                                                                                 | n<br>20.00 dBm<br>35 dB<br>100/100<br>100/100                                           | Offset 2<br>SWT 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.42 dB     | RBW 100 kHz<br>/BW 300 kHz                           | Mode A        | Auto FF T<br>1[1]<br>2[1] |            | 2.480<br>2.483 | 1.64 dBm<br>005000 GHz<br>51.26 dBm<br>50000 GHz   |
| Ref Level<br>Att           SGL Count           10 dBm           M1           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.47           Marker           Type         Re           M1                                                                 | n<br>20.00 dBm<br>35 dB<br>100/100<br>201 -17.749<br>4                                  | Offset 2<br>SWT 22<br>dBm<br>M3<br>M3<br>M3<br>M4<br>UMWM<br>UMWM<br>UMWM<br>Z.4800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.42 dB     | RBW         100 kHz           // BW         300 kHz  | Mode A        | Auto FF T<br>1[1]<br>2[1] |            | 2.480<br>2.483 | 1.64 dBm<br>005000 GHz<br>51.26 dBm<br>50000 GHz   |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           -10 dBm           -10 dBm           -20 cBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.47           Marker           Type         Re                                                                     | n<br>20.00 dBm<br>35 dB<br>100/100<br>100/100<br>101 -17.749<br>4                       | Offset 2<br>SWT 22<br>dBm<br>M3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.42 dB     | RBW         100 kHz           /// WW         300 kHz | Mode 4        | Auto FF T<br>1[1]<br>2[1] |            | 2.480<br>2.483 | 1.64 dBm<br>005000 GHz<br>51.26 dBm<br>50000 GHz   |
| Ref Level<br>Att           SGL Count           9 1Pk Max           10 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -50 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.47           Marker           Type           M1           M2 | n<br>20.00 dBm<br>35 dB<br>100/100<br>201 -17.749<br>0 -17.749<br>6 GHz<br>6 GHz<br>1 1 | Offset 2<br>SWT 22<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm<br>dBm | 2.42 dB     | KBW         100 kHz           /// WW         300 kHz | Mode 4        | Auto FF T<br>1[1]<br>2[1] |            | 2.480<br>2.483 | 1.64 dBm<br>005000 GHz<br>51.26 dBm<br>50000 GHz   |



ILAC-MRA

ACCREDITED Certificate #4298.01

|                                                                                                                                                                                                                                                                                                         | 20.00 dBm                                                                                |                                                                                                   |                                                                                 | <b>W</b> 100 kHz                                                                                                          |                                                                                        |                      |               |                |                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|---------------|----------------|---------------------------------------------------------|
| Att<br>SGL Count                                                                                                                                                                                                                                                                                        | 35 dB<br>100/100                                                                         | SWT 18.                                                                                           | a ha 😑 AB                                                                       | 3W 300 kHz                                                                                                                | Mode A                                                                                 | uto FFT              |               |                |                                                         |
| ⊖1Pk Max                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      |               |                | 1.00 -0                                                 |
|                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           | M                                                                                      | 1[1]                 |               | 2.402          | -1.02 dBm<br>204800 GHz                                 |
| 10 dBm                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      |               |                |                                                         |
| 0 dBm                                                                                                                                                                                                                                                                                                   |                                                                                          |                                                                                                   |                                                                                 | M                                                                                                                         | 1                                                                                      |                      |               |                |                                                         |
| 0 0.0.11                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                   |                                                                                 | m                                                                                                                         | m,                                                                                     |                      |               |                |                                                         |
| -10 dBm—                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           | $\rightarrow$                                                                          |                      |               |                |                                                         |
| -20 dBm                                                                                                                                                                                                                                                                                                 |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      |               |                |                                                         |
| -20 0011                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      |               |                |                                                         |
| -30 dBm                                                                                                                                                                                                                                                                                                 |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      |               |                |                                                         |
| 40 dBm                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                   | $\sim\sim\sim$                                                                  |                                                                                                                           |                                                                                        | m                    |               |                |                                                         |
| -40 dBm                                                                                                                                                                                                                                                                                                 |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      | Ν             |                |                                                         |
| -50 dBm                                                                                                                                                                                                                                                                                                 |                                                                                          | $\sim \sim $ |                                                                                 |                                                                                                                           |                                                                                        |                      | $\rightarrow$ | www            |                                                         |
| ~ ~~~ ~                                                                                                                                                                                                                                                                                                 | v~v~                                                                                     |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      |               |                | · · · · · · · · · · · · · · · · · · ·                   |
| -60 dBm                                                                                                                                                                                                                                                                                                 |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      |               |                |                                                         |
| -70 dBm                                                                                                                                                                                                                                                                                                 |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      |               |                |                                                         |
|                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                                   |                                                                                 |                                                                                                                           |                                                                                        |                      |               |                |                                                         |
| CF 2.402 C                                                                                                                                                                                                                                                                                              | GHz                                                                                      |                                                                                                   |                                                                                 | 1001                                                                                                                      | pts                                                                                    |                      |               | Spa            | in 8.0 MHz                                              |
| Spectrun                                                                                                                                                                                                                                                                                                | n                                                                                        | Band Edge I                                                                                       |                                                                                 |                                                                                                                           |                                                                                        | )<br>No-Hoppir       | ng Emission   |                |                                                         |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                        | n<br>20.00 dBm<br>35 dB                                                                  |                                                                                                   | 38 dB 👄 R                                                                       | <b>BW</b> 100 kHz                                                                                                         | 2                                                                                      |                      |               |                |                                                         |
| Ref Level                                                                                                                                                                                                                                                                                               | n<br>20.00 dBm<br>35 dB                                                                  | Offset 2.3                                                                                        | 38 dB 👄 R                                                                       | <b>BW</b> 100 kHz                                                                                                         | :<br>Mode /                                                                            | Auto FFT             |               |                |                                                         |
| Ref Level<br>Att<br>SGL Count<br>9 1Pk Max                                                                                                                                                                                                                                                              | n<br>20.00 dBm<br>35 dB                                                                  | Offset 2.3                                                                                        | 38 dB 👄 R                                                                       | <b>BW</b> 100 kHz                                                                                                         | :<br>Mode /                                                                            |                      |               |                | -1.35 dBm<br>.85000 GHz                                 |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                                                                                                                                                                                | n<br>20.00 dBm<br>35 dB                                                                  | Offset 2.3                                                                                        | 38 dB 👄 R                                                                       | <b>BW</b> 100 kHz                                                                                                         | :<br>Mode /<br>M                                                                       | Auto FFT             |               | 2.401          | -1.35 dBm<br>185000 GHz<br>-49.40 dBm                   |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                                                                                                                                      | n<br>20.00 dBm<br>35 dB                                                                  | Offset 2.3                                                                                        | 38 dB 👄 R                                                                       | <b>BW</b> 100 kHz                                                                                                         | :<br>Mode /<br>M                                                                       | Auto FFT             |               | 2.401          | -1.35 dBm<br>185000 GHz                                 |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                                                                                                                                                                                | n<br>20.00 dBm<br>35 dB                                                                  | Offset 2.3                                                                                        | 38 dB 👄 R                                                                       | <b>BW</b> 100 kHz                                                                                                         | :<br>Mode /<br>M                                                                       | Auto FFT             |               | 2.401          | -1.35 dBm<br>185000 GHz<br>-49.40 dBm                   |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                                                                                                                                      | n<br>20.00 dBm<br>35 dB                                                                  | Offset 2.3<br>SWT 227                                                                             | 38 dB 👄 R                                                                       | <b>BW</b> 100 kHz                                                                                                         | :<br>Mode /<br>M                                                                       | Auto FFT             |               | 2.401          | -1.35 dBm<br>185000 GHz<br>-49.40 dBm                   |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                                                                                                                                      | n<br>20.00 dBm<br>35 dB<br>100/100                                                       | Offset 2.3<br>SWT 227                                                                             | 38 dB 👄 R                                                                       | <b>BW</b> 100 kHz                                                                                                         | :<br>Mode /<br>M                                                                       | Auto FFT             |               | 2.401          | -1.35 dBm<br>185000 GHz<br>-49.40 dBm                   |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm                                                                                                                                                                                                                                                    | n<br>20.00 dBm<br>35 dB<br>100/100                                                       | Offset 2.3<br>SWT 227                                                                             | 38 dB 👄 R                                                                       | <b>BW</b> 100 kHz                                                                                                         | :<br>Mode /<br>M                                                                       | Auto FFT             |               | 2.401          | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>00000 GHz       |
| Ref Level           Att           SGL Count           • 1Pk Max           10 dBm           • 10 dBm           • 10 dBm           • 10 dBm           • 20 dBm           • 30 dBm           • 40 dBm                                                                                                      | n<br>20.00 dBm<br>35 dB<br>100/100                                                       | Offset 2.3<br>SWT 227                                                                             | 38 dB ● R<br>.5 µs ● V                                                          | BW 100 kHz<br>BW 300 kHz                                                                                                  | : Mode /<br>M                                                                          | Auto FFT  1[1]  2[1] | ng Emission   | 2.401<br>2.400 | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>00000 GHz<br>Hz |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm                                                                                                                     | n<br>20.00 dBm<br>35 dB<br>100/100                                                       | Offset 2.3<br>SWT 227                                                                             | 38 dB ● R<br>.5 µs ● V                                                          | BW 100 kHz<br>BW 300 kHz                                                                                                  | : Mode /<br>M                                                                          | Auto FFT  1[1]  2[1] |               | 2.401<br>2.400 | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>00000 GHz       |
| Ref Level<br>Att           SGL Count           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                                                                                                   | n<br>20.00 dBm<br>35 dB<br>100/100                                                       | Offset 2.3<br>SWT 227                                                                             | 38 dB ● R<br>.5 µs ● V                                                          | BW 100 kHz<br>BW 300 kHz                                                                                                  | : Mode /<br>M                                                                          | Auto FFT  1[1]  2[1] | ng Emission   | 2.401<br>2.400 | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>00000 GHz<br>Hz |
| Ref Level<br>Att<br>SGL Count<br>● 1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm                                                                                                                                                                                  | n<br>20.00 dBm<br>35 dB<br>100/100                                                       | Offset 2.3<br>SWT 227                                                                             | 38 dB ● R<br>.5 µs ● V                                                          | BW 100 kHz<br>BW 300 kHz                                                                                                  | : Mode /<br>M                                                                          | Auto FFT  1[1]  2[1] | ng Emission   | 2.401<br>2.400 | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>00000 GHz<br>Hz |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm                                                                                                   | n<br>20.00 dBm<br>35 dB<br>100/100<br>201 -21.018                                        | Offset 2.3<br>SWT 227                                                                             | 38 dB ● R<br>.5 µs ● V                                                          | BW 100 kHz<br>BW 300 kHz                                                                                                  |                                                                                        | Auto FFT  1[1]  2[1] | ng Emission   | 2.400<br>2.400 | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>00000 GHz<br>Hz |
| Ref Level<br>Att           SGL Count           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Marker                                                                | n<br>20.00 dBm<br>35 dB<br>100/100<br>01 -21.018<br>Մ <sup>ո</sup> ւչլուդիչութի<br>6 GHz | Offset 2.3<br>SWT 227                                                                             | 38 dB ● R<br>.5 µs ● V                                                          | BW 100 kHz<br>BW 300 kHz                                                                                                  | : Mode /<br>                                                                           | Auto FFT  1[1] 2[1]  | ng Emission   | 2.401<br>2.400 | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>000000 GHz      |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 2.300           Marker           Type         Re                | n<br>20.00 dBm<br>35 dB<br>100/100<br>D1 -21.018<br>թույն -21.018<br>6 GHz<br>f   Trc    | Offset 2.3<br>SwT 227<br>dBm<br>dBm                                                               | 38 dB ● R<br>.5 µs ● V                                                          | BW 100 kHz<br>BW 300 kHz<br>עריישער אין אין<br>ערישער אין<br>1001<br>Y-value                                              | :<br>Mode /<br>M<br>س<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲ | Auto FFT  1[1] 2[1]  | ng Emission   | 2.400<br>2.400 | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>000000 GHz      |
| Ref Level<br>Att           SGL Count           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.300           Marker           Type           M1           M2 | 100/100<br>35 dB<br>100/100<br>01 -21.018<br>0                                           | Offset 2.3<br>SWT 227                                                                             | 38 dB • R<br>.5 µs • V                                                          | BW 100 kHz<br>BW 300 kHz<br>עישאיקאיקאיק<br>עישאיקאיקאיק<br>עישאיקאיקאיקאיק<br>1001<br>Y-value<br>-1.35 dBr<br>-49.40 dBr | :<br>Mode /<br>                                                                        | Auto FFT  1[1] 2[1]  | ng Emission   | 2.401<br>2.400 | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>000000 GHz      |
| Ref Level<br>Att           SGL Count           9 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.300           Marker           Type         Re           M1   | n<br>20.00 dBm<br>35 dB<br>100/100<br>                                                   | Offset 2.3<br>SWT 227                                                                             | 38 dB<br>.5 µs<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V | BW 100 kHz<br>BW 300 kHz                                                                                                  | : Mode /<br>                                                                           | Auto FFT  1[1] 2[1]  | ng Emission   | 2.401<br>2.400 | -1.35 dBm<br>85000 GHz<br>-49.40 dBm<br>000000 GHz      |



ACCREDITED Certificate #4298.01

| Att                                                                                                                                                                                                            | 20.00 dBm<br>35 dB                                                                 |                                        |                         | 3W 100 kHz<br>3W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                               | uto FFT              |            |                |                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------|------------|----------------|----------------------------------------------------------------|
| SGL Count<br>1Pk Max                                                                                                                                                                                           | 100/100                                                                            |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      |            |                |                                                                |
|                                                                                                                                                                                                                |                                                                                    |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | м                                                                                             | 1[1]                 |            | 2.479          | -0.50 dBm<br>986410 GHz                                        |
| 10 dBm                                                                                                                                                                                                         |                                                                                    |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      |            |                |                                                                |
| 0 dBm                                                                                                                                                                                                          |                                                                                    |                                        |                         | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               |                      |            |                |                                                                |
| 0 dbiii                                                                                                                                                                                                        |                                                                                    |                                        |                         | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sim$                                                                                        |                      |            |                |                                                                |
| -10 dBm—                                                                                                                                                                                                       |                                                                                    |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      |            |                |                                                                |
| -20 dBm                                                                                                                                                                                                        |                                                                                    |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      |            |                |                                                                |
| -20 000                                                                                                                                                                                                        |                                                                                    |                                        |                         | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                             |                      |            |                |                                                                |
| -30 dBm                                                                                                                                                                                                        |                                                                                    |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               | h                    |            |                |                                                                |
| -40 dBm                                                                                                                                                                                                        |                                                                                    |                                        | $\sim$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               | m                    |            |                |                                                                |
| TO UDIII                                                                                                                                                                                                       |                                                                                    | T                                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      | \          |                |                                                                |
| -50 dBm                                                                                                                                                                                                        | ~~~                                                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      | 10-v       | m              |                                                                |
| -60 dBm                                                                                                                                                                                                        | ~ ~0 •                                                                             | Č.                                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      |            |                | r www                                                          |
| -00 0811                                                                                                                                                                                                       |                                                                                    |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      |            |                |                                                                |
| -70 dBm—                                                                                                                                                                                                       |                                                                                    |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      |            |                |                                                                |
|                                                                                                                                                                                                                |                                                                                    |                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                      |            |                |                                                                |
| CF 2.48 GF                                                                                                                                                                                                     | Iz                                                                                 |                                        |                         | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pts                                                                                           | <u> </u>             |            | Spa            | n 8.0 MHz                                                      |
| Spectrum                                                                                                                                                                                                       |                                                                                    | Band Edge                              |                         | DH5 2480M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               | J Read               | g Emission |                |                                                                |
| Spectrum                                                                                                                                                                                                       | ו<br>20.00 dBm<br>35 dB                                                            |                                        | 42 dB 😑 🛚               | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                                                                             |                      |            |                |                                                                |
| Spectrum<br>Ref Level<br>Att                                                                                                                                                                                   | ו<br>20.00 dBm<br>35 dB                                                            | Offset 2.                              | 42 dB 😑 🛚               | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z<br>z <b>Mode</b> /                                                                          | Auto FFT             |            |                |                                                                |
| Spectrum<br>Ref Level<br>Att<br>SGL Count                                                                                                                                                                      | ו<br>20.00 dBm<br>35 dB                                                            | Offset 2.                              | 42 dB 😑 🛚               | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z Mode /                                                                                      | Auto FFT             |            | 2.479          | -0.87 dBm<br>985000 GHz                                        |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>@ 1Pk Max<br>10 dBm<br>M1                                                                                                                                         | ו<br>20.00 dBm<br>35 dB                                                            | Offset 2.                              | 42 dB 😑 🛚               | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z Mode /                                                                                      | Auto FFT             |            | 2.479          | -0.87 dBm                                                      |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>IPk Max<br>10 dBm-<br>M1<br>0 dBm-                                                                                                                                | ו<br>20.00 dBm<br>35 dB                                                            | Offset 2.                              | 42 dB 😑 🛚               | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z Mode /                                                                                      | Auto FFT             |            | 2.479          | -0.87 dBm<br>85000 GHz<br>51.40 dBm                            |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>PIPk Max<br>10 dBm<br>-10 dBm<br>-10 dBm                                                                                                                          | 20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2.<br>SWT 22                    | 42 dB 😑 🛚               | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z Mode /                                                                                      | Auto FFT             |            | 2.479          | -0.87 dBm<br>85000 GHz<br>51.40 dBm                            |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>IPk Max<br>10 dBm-<br>M1<br>0 dBm-                                                                                                                                | 20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2.<br>SWT 22                    | 42 dB 😑 🛚               | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z Mode /                                                                                      | Auto FFT             |            | 2.479          | -0.87 dBm<br>85000 GHz<br>51.40 dBm                            |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>PIPk Max<br>10 dBm<br>-10 dBm<br>-10 dBm                                                                                                                          | 20.00 dBm<br>35 dB<br>100/100                                                      | Offset 2.<br>SWT 22                    | 42 dB 😑 🛚               | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z Mode /                                                                                      | Auto FFT             |            | 2.479          | -0.87 dBm<br>85000 GHz<br>51.40 dBm                            |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>ID dBm-<br>10 dBm-<br>-10 dBm-<br>-20 dBm-<br>-30 dBm-<br>-30 dBm-<br>-40 dBm-                                                                                    | D1 -20.497                                                                         | Offset 2.<br>SWT 22                    | 42 dB 😑 🛚               | <b>BW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z Mode /                                                                                      | Auto FFT             |            | 2.479          | -0.87 dBm<br>85000 GHz<br>51.40 dBm                            |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>● 1Pk Max<br>10 dBm<br>-10 dBm<br>-20 cBm<br>-30 dBm                                                                                                              | 20.00 dBm<br>35 dB<br>100/100<br>D1 -20.497                                        | Offset 2.<br>SwT 227                   | 42 dB ● R<br>7.5 μs ● V | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | z Mode /<br>M<br>M                                                                            | Auto FFT  1[1] 2[1]  | g Emission | 2.479          | -0.87 dBm<br>85000 GHz<br>-51.40 dBm<br>50000 GHz              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>PIPk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                         | 20.00 dBm<br>35 dB<br>100/100<br>D1 -20.497                                        | Offset 2.<br>SWT 22                    | 42 dB ● R<br>7.5 μs ● V | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | z Mode /<br>M<br>M                                                                            | Auto FFT  1[1] 2[1]  | g Emission | 2.479          | -0.87 dBm<br>85000 GHz<br>-51.40 dBm<br>50000 GHz              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>ID dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm                                                                                | 20.00 dBm<br>35 dB<br>100/100<br>D1 -20.497                                        | Offset 2.<br>SwT 227                   | 42 dB ● R<br>7.5 μs ● V | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | z Mode /<br>M<br>M                                                                            | Auto FFT  1[1] 2[1]  | g Emission | 2.479          | -0.87 dBm<br>85000 GHz<br>-51.40 dBm<br>50000 GHz              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-70 dBm                                                                               | D1 -20.497                                                                         | Offset 2.<br>SwT 227                   | 42 dB ● R<br>7.5 μs ● V | 100 kH2<br>BW 300 kH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 Mode /<br>M<br>M<br>M                                                                       | Auto FFT  1[1] 2[1]  | g Emission | 2.479<br>2.483 | -0.87 dBm<br>985000 GHz<br>51.40 dBm<br>950000 GHz             |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>•1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm                                  | D1 -20.497                                                                         | Offset 2.<br>SwT 227                   | 42 dB ● R<br>7.5 μs ● V | 28W 100 kHz<br>78W 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Mode /<br>M<br>M<br>M                                                                       | Auto FFT  1[1] 2[1]  | g Emission | 2.479<br>2.483 | -0.87 dBm<br>85000 GHz<br>-51.40 dBm<br>50000 GHz              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>ID dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm<br>-70 dBm<br>-70 dBm<br>Start 2.476<br>Marker<br>Type Ref                     | 20.00 dBm<br>35 dB<br>100/100<br>D1 -20.497<br>14<br>Microsoft<br>5 GHz<br>f   Trc | Offset 2.<br>SwT 227                   | 42 dB                   | 28W 100 kHz<br>78W 300 kHz<br>70ulloukinini<br>1001<br>Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | z Mode /<br>M<br>M<br>M<br>m<br>m<br>m<br>m<br>m<br>m<br>m<br>m<br>m<br>m<br>m<br>m<br>m<br>m | Auto FFT  1[1]  2[1] | g Emission | 2.479<br>2.483 | -0.87 dBm<br>85000 GHz<br>51.40 dBm<br>50000 GHz<br>.52576 GHz |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>ID dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm<br>-70 dBm                                               | 20.00 dBm<br>35 dB<br>100/100<br>D1 -20.497                                        | Offset 2.<br>SWT 22                    | 42 dB • R<br>7.5 μs • V | BW 100 kHz<br>BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>2 Mode /<br>M<br>                                                                        | Auto FFT  1[1]  2[1] | g Emission | 2.479<br>2.483 | -0.87 dBm<br>85000 GHz<br>51.40 dBm<br>50000 GHz<br>.52576 GHz |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-70 dBm<br>-70 dBm<br>Start 2.476<br>Marker<br>Type Ref<br>M1 | 20.00 dBm<br>35 dB<br>100/100<br>D1 -20.497                                        | Offset 2.<br>SWT 221                   | 42 dB                   | BW 100 kHz<br>BW 300 kHz<br>90 kHz<br>90 kHz<br>90 kHz<br>100 | z Mode /<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M      | Auto FFT  1[1]  2[1] | g Emission | 2.479<br>2.483 | -0.87 dBm<br>85000 GHz<br>51.40 dBm<br>50000 GHz<br>.52576 GHz |



ACCREDITED Certificate #4298.01

| Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                                                                                       | 20.00 dBm<br>35 dB<br>100/100     |                      |                          | W 100 kHz<br>W 300 kHz                                                                                                         | Mode Au                                                                                                                                                                        | to FFT                       |                  |                  |                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|------------------|------------------------------------------------------------------------------------|
| ⊖1Pk Max                                                                                                                                                                                                                                                                                                            | 1                                 | , ,                  |                          |                                                                                                                                |                                                                                                                                                                                |                              |                  |                  |                                                                                    |
|                                                                                                                                                                                                                                                                                                                     |                                   |                      |                          |                                                                                                                                | M1                                                                                                                                                                             | [1]                          |                  | 2.401            | -0.33 dBm<br>187210 GHz                                                            |
| 10 dBm                                                                                                                                                                                                                                                                                                              |                                   |                      |                          |                                                                                                                                |                                                                                                                                                                                |                              |                  | 2.10.            | 07210 012                                                                          |
|                                                                                                                                                                                                                                                                                                                     |                                   |                      |                          | M1                                                                                                                             |                                                                                                                                                                                |                              |                  |                  |                                                                                    |
| 0 dBm                                                                                                                                                                                                                                                                                                               |                                   |                      |                          | ~~~~                                                                                                                           | <u>No</u>                                                                                                                                                                      |                              |                  |                  |                                                                                    |
| -10 dBm                                                                                                                                                                                                                                                                                                             |                                   |                      |                          |                                                                                                                                | m                                                                                                                                                                              |                              |                  |                  |                                                                                    |
| -10 ubiii—                                                                                                                                                                                                                                                                                                          |                                   |                      |                          |                                                                                                                                |                                                                                                                                                                                |                              |                  |                  |                                                                                    |
| -20 dBm—                                                                                                                                                                                                                                                                                                            |                                   |                      |                          | /                                                                                                                              |                                                                                                                                                                                |                              |                  |                  |                                                                                    |
|                                                                                                                                                                                                                                                                                                                     |                                   |                      |                          |                                                                                                                                | 1                                                                                                                                                                              |                              |                  |                  |                                                                                    |
| -30 dBm—                                                                                                                                                                                                                                                                                                            |                                   |                      | ~ ~                      |                                                                                                                                |                                                                                                                                                                                | <u>h n n</u>                 |                  |                  |                                                                                    |
| -40 dBm                                                                                                                                                                                                                                                                                                             |                                   |                      | ww                       |                                                                                                                                |                                                                                                                                                                                | ·~~\                         |                  |                  |                                                                                    |
| TO GOIL                                                                                                                                                                                                                                                                                                             |                                   |                      |                          |                                                                                                                                |                                                                                                                                                                                |                              |                  |                  |                                                                                    |
| -50 dBm                                                                                                                                                                                                                                                                                                             | 0000                              | h                    |                          |                                                                                                                                |                                                                                                                                                                                |                              | han              | $\sim \sim \sim$ | 100                                                                                |
| $\dots$                                                                                                                                                                                                                                                                                                             | www.                              | ľ ľ                  |                          |                                                                                                                                |                                                                                                                                                                                |                              |                  | ~~~~ V           | ·.~~~                                                                              |
| -60 dBm—                                                                                                                                                                                                                                                                                                            |                                   |                      |                          |                                                                                                                                |                                                                                                                                                                                |                              |                  |                  |                                                                                    |
| 70 45                                                                                                                                                                                                                                                                                                               |                                   |                      |                          |                                                                                                                                |                                                                                                                                                                                |                              |                  |                  |                                                                                    |
| -70 dBm                                                                                                                                                                                                                                                                                                             |                                   |                      |                          |                                                                                                                                |                                                                                                                                                                                |                              |                  |                  |                                                                                    |
|                                                                                                                                                                                                                                                                                                                     |                                   |                      |                          |                                                                                                                                |                                                                                                                                                                                |                              |                  |                  |                                                                                    |
| CF 2.402 (                                                                                                                                                                                                                                                                                                          | GHZ                               |                      |                          | 1001                                                                                                                           | pts                                                                                                                                                                            | _                            |                  | Spa              | in 8.0 MHz                                                                         |
| Spectrur<br>Ref Level                                                                                                                                                                                                                                                                                               |                                   | Band Edge 1          |                          |                                                                                                                                |                                                                                                                                                                                | o-Hoppin                     | g Emission       |                  |                                                                                    |
| Ref Level<br>Att                                                                                                                                                                                                                                                                                                    | 20.00 dBm<br>35 dB                | Offset 2.2           | 38 dB 👄 RI               | DH5 2402M<br>BW 100 kHz<br>BW 300 kHz                                                                                          | :                                                                                                                                                                              |                              | g Emission       |                  |                                                                                    |
| Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                                                                                       | 20.00 dBm<br>35 dB                | Offset 2.2           | 38 dB 👄 RI               | <b>BW</b> 100 kHz                                                                                                              | Mode A                                                                                                                                                                         | uto FFT                      | g Emission       |                  |                                                                                    |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                                                                                                                                                                                            | 20.00 dBm<br>35 dB                | Offset 2.2           | 38 dB 👄 RI               | <b>BW</b> 100 kHz                                                                                                              | Mode A                                                                                                                                                                         |                              | g Emission       | 2.40             | -0.35 dBm                                                                          |
| Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                                                                                       | 20.00 dBm<br>35 dB                | Offset 2.2           | 38 dB 👄 RI               | <b>BW</b> 100 kHz                                                                                                              | Mode A<br>                                                                                                                                                                     | uto FFT                      | g Emission       |                  | -0.35 dBm<br>195000 GHz<br>-48.06 dBm                                              |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                                                                                                                                                                                            | 20.00 dBm<br>35 dB                | Offset 2.2           | 38 dB 👄 RI               | <b>BW</b> 100 kHz                                                                                                              | Mode A<br>                                                                                                                                                                     | uto FFT                      | g Emission       |                  | -0.35 dBm<br>195000 GHz                                                            |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max                                                                                                                                                                                                                                                                            | 20.00 dBm<br>35 dB                | Offset 2.2           | 38 dB 👄 RI               | <b>BW</b> 100 kHz                                                                                                              | Mode A<br>                                                                                                                                                                     | uto FFT                      | g Emission       |                  | -0.35 dBm<br>195000 GHz<br>-48.06 dBm                                              |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                  | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB 👄 RI               | <b>BW</b> 100 kHz                                                                                                              | Mode A<br>                                                                                                                                                                     | uto FFT                      | g Emission       |                  | -0.35 dBm<br>195000 GHz<br>-48.06 dBm                                              |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                | 20.00 dBm<br>35 dB                | Offset 2.<br>SWT 227 | 38 dB 👄 RI               | <b>BW</b> 100 kHz                                                                                                              | Mode A<br>                                                                                                                                                                     | uto FFT                      | g Emission       |                  | -0.35 dBm<br>195000 GHz<br>-48.06 dBm                                              |
| Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                  | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB 👄 RI               | <b>BW</b> 100 kHz                                                                                                              | Mode A<br>                                                                                                                                                                     | uto FFT                      | g Emission       |                  | -0.35 dBm<br>195000 GHz<br>-48.06 dBm                                              |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB 👄 RI               | <b>BW</b> 100 kHz                                                                                                              | Mode A<br>                                                                                                                                                                     | uto FFT                      | g Emission       |                  | -0.35 dBm<br>95000 GHz<br>48.06 dBm<br>000000 GHz                                  |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB ● R<br>7.5 µs ● V  | BW 100 kHz<br>BW 300 kHz                                                                                                       | Mode A<br>M1<br>                                                                                                                                                               | uto FFT<br>[1]<br>2[1]       |                  | 2.400            | -0.35 dBm<br>95000 GHz<br>48.06 dBm<br>000000 GHz<br>M2                            |
| Ref Level<br>Att<br>SGL Count<br>● 1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB ● R<br>7.5 µs ● V  | BW 100 kHz<br>BW 300 kHz                                                                                                       | Mode A<br>M1<br>                                                                                                                                                               | uto FFT<br>[1]<br>2[1]       |                  | 2.400            | -0.35 dBm<br>95000 GHz<br>48.06 dBm<br>000000 GHz<br>M2                            |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB ● R<br>7.5 µs ● V  | BW 100 kHz<br>BW 300 kHz                                                                                                       | Mode A<br>M1<br>                                                                                                                                                               | uto FFT<br>[1]<br>2[1]       |                  | 2.400            | -0.35 dBm<br>95000 GHz<br>48.06 dBm<br>000000 GHz<br>M2                            |
| Ref Level<br>Att<br>SGL Count<br>● 1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB ● R<br>7.5 µs ● V  | BW 100 kHz<br>BW 300 kHz                                                                                                       | Mode A<br>M1<br>                                                                                                                                                               | uto FFT<br>[1]<br>2[1]       |                  | 2.400            | -0.35 dBm<br>95000 GHz<br>48.06 dBm<br>000000 GHz<br>M2                            |
| Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>10 dBm                                                                                                                                                                                                                                                                | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB ● R<br>7.5 µs ● V  | BW 100 kHz<br>BW 300 kHz                                                                                                       | Mode A<br>                                                                                                                                                                     | uto FFT<br>[1]<br>2[1]       |                  | 2.400            | -0.35 dBm<br>95000 GHz<br>-48.06 dBm<br>000000 GHz<br>-48.06 dBm<br>000000 GHz<br> |
| Ref Level<br>Att<br>SGL Count<br>O dBm<br>0 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-70 dBm<br>-70 dBm                                                                                                                                                                  | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB ● R<br>7.5 µs ● V  | BW 100 kHz<br>BW 300 kHz                                                                                                       | Mode A<br>                                                                                                                                                                     | uto FFT<br>[1]<br>2[1]       |                  | 2.400            | -0.35 dBm<br>95000 GHz<br>48.06 dBm<br>000000 GHz<br>M2                            |
| Ref Level<br>Att           SGL Count           ● 1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.30           Marker           Type         Re                             | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB ● Ri<br>.5 µs ● Vi | BW 100 kHz<br>BW 300 kHz                                                                                                       | Mode A<br>M1<br>M2                                                                                                                                                             | uto FFT<br>[1]<br>[1]<br>[1] | hast-Mayron show | 2.400            | -0.35 dBm<br>95000 GHz<br>-48.06 dBm<br>000000 GHz                                 |
| Ref Level<br>Att           SGL Count           10 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.30           Marker           Type         Re           M1 | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB • R<br>7.5 μs • V  | BW 100 kHz<br>BW 300 kHz<br>M4<br>M4<br>1001<br>Y-value<br>-0.35 dBn                                                           | Mode A<br>M1<br>M2<br>M2<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3                                                                         | uto FFT<br>[1]<br>[1]<br>[1] | hast-Mayron show | 2.400<br>        | -0.35 dBm<br>95000 GHz<br>-48.06 dBm<br>000000 GHz                                 |
| Ref Level<br>Att           SGL Count           ○IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.30           Marker           Type         Re                              | 20.00 dBm<br>35 dB<br>100/100     | Offset 2.<br>SWT 227 | 38 dB ● Ri<br>.5 µs ● Vi | BW 100 kHz<br>BW 300 kHz<br>M4<br>M4<br>M4<br>M4<br>M6<br>M6<br>M6<br>M6<br>M6<br>M6<br>M6<br>M6<br>M6<br>M6<br>M6<br>M6<br>M6 | Mode A<br>M1<br>M2<br>M2<br>m2<br>m2<br>m2<br>m2<br>m2<br>m2<br>m2<br>m2<br>m3<br>m2<br>m3<br>m2<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3 | uto FFT<br>[1]<br>[1]<br>[1] | hast-Mayron show | 2.400<br>        | -0.35 dBm<br>95000 GHz<br>-48.06 dBm<br>000000 GHz                                 |
| Ref Level<br>Att           SGL Count           SGL Count           10 dBm           0 dBm           -10 dBm           -10 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 2.30           Marker           Type           M1           M2              | 20.00 dBm<br>35 dB<br>100/100<br> | Offset 2.<br>SWT 227 | 38 dB                    | BW 100 kHz<br>BW 300 kHz<br>M4<br>M4<br>M4<br>1001<br>Y-value<br>-0.35 dBn<br>-48.06 dBn                                       | Mode A<br>M1<br>M2<br>M2<br>m2<br>m2<br>m2<br>m2<br>m2<br>m2<br>m2<br>m2<br>m3<br>m2<br>m3<br>m2<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3<br>m3 | uto FFT<br>[1]<br>[1]<br>[1] | hast-Mayron show | 2.400<br>        | -0.35 dBm<br>95000 GHz<br>-48.06 dBm<br>000000 GHz                                 |



ILAC-MRA

ACCREDITED Certificate #4298.01

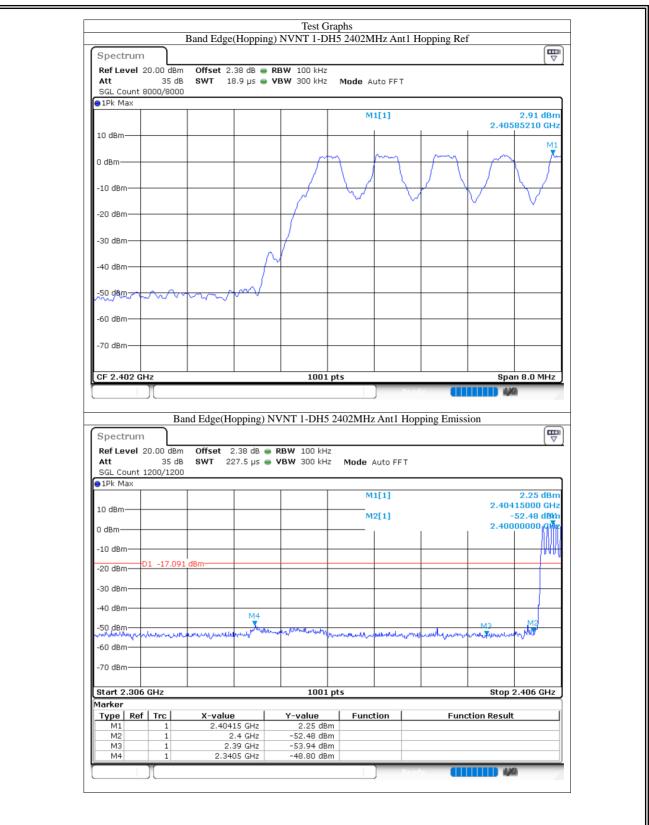
| Ref Level 20.0<br>Att<br>SGL Count 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35 dB <b>SW</b> 1                         | Г 18.9 µs 👄 🕻                              | <b>RBW</b> 100 kHz<br><b>/BW</b> 300 kHz | Mode A                                                                                                                                | uto FFT             |            |                         |                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|-------------------------|----------------------------------------------------|
| ●1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                            |                                          | M                                                                                                                                     | 1[1]                |            | 0.400                   | -1.44 dBm<br>11190 GHz                             |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                                            |                                          |                                                                                                                                       |                     |            | 2.480                   | 11130 GHS                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         |                                                    |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                            | 0.0000                                   | M1<br>X.                                                                                                                              |                     |            |                         |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                            |                                          | m I                                                                                                                                   |                     |            |                         |                                                    |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         |                                                    |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         |                                                    |
| -20 0811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         |                                                    |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | m                                          | 1                                        |                                                                                                                                       | m                   |            |                         |                                                    |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                            | +                                        |                                                                                                                                       |                     |            |                         |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 1                                          |                                          |                                                                                                                                       |                     |            |                         |                                                    |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    | ~                                          |                                          |                                                                                                                                       |                     |            | m                       | m                                                  |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         | ~m                                                 |
| -00 ubiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         |                                                    |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                            |                                          |                                                                                                                                       |                     |            |                         |                                                    |
| CF 2.48 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                            | 1001                                     | nts                                                                                                                                   |                     |            |                         | n 8.0 MHz                                          |
| ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                            | 34                                       |                                                                                                                                       | Dore                |            |                         | <u> </u>                                           |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | Edge NVNT 3                                |                                          |                                                                                                                                       | No-Hoppin           | g Emission |                         |                                                    |
| Ref Level 20.0<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D0 dBm Offs<br>35 dB SW1                  | Edge NVNT 3<br>set 2.42 dB<br>Г 227.5 µs ● | <b>RBW</b> 100 kHz                       | 2                                                                                                                                     |                     | g Emission |                         |                                                    |
| Ref Level 20.0<br>Att<br>SGL Count 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D0 dBm Offs<br>35 dB SW1                  | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2                                                                                                                                     |                     | g Emission |                         |                                                    |
| Ref Level 20.0<br>Att<br>SGL Count 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D0 dBm Offs<br>35 dB SW1                  | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2<br>2 Mode /                                                                                                                         |                     | g Emission |                         | (∇)<br>-1.92 dBm                                   |
| Ref Level 20.0<br>Att<br>SGL Count 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D0 dBm Offs<br>35 dB SW1                  | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2<br>2 Mode /<br>M                                                                                                                    | Auto FFT<br>1[1]    | g Emission | 2.479                   | (∇)<br>-1.92 dBm<br>985000 GHz                     |
| Ref Level 20.0<br>Att<br>SGL Count 100<br>1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D0 dBm Offs<br>35 dB SW1                  | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2<br>2 Mode /<br>M                                                                                                                    | Auto FFT            | g Emission | 2.479                   | (∇)<br>-1.92 dBm                                   |
| Ref Level         20.0           Att         SGL Count         100           • 1Pk Max         10 dBm         0 dBm           • 0 dBm         0 dBm         0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D0 dBm Offs<br>35 dB SW1                  | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2<br>2 Mode /<br>M                                                                                                                    | Auto FFT<br>1[1]    | g Emission | 2.479                   | (∇)<br>-1.92 dBm<br>985000 GHz<br>-52.40 dBm       |
| Ref Level 20.0<br>Att<br>SGL Count 100<br>1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D0 dBm Offs<br>35 dB SW1                  | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2<br>2 Mode /<br>M                                                                                                                    | Auto FFT<br>1[1]    | g Emission | 2.479                   | (∇)<br>-1.92 dBm<br>985000 GHz<br>-52.40 dBm       |
| Ref Level 20.0           Att           SGL Count 100           1Pk Max           10 dBm           0 dmm           -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D0 dBm Offs<br>35 dB SW1                  | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2<br>2 Mode /<br>M                                                                                                                    | Auto FFT<br>1[1]    | g Emission | 2.479                   | (∇)<br>-1.92 dBm<br>985000 GHz<br>-52.40 dBm       |
| Ref Level 20.0<br>Att<br>SGL Count 100<br>1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 cBm<br>D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00 dBm Offs<br>35 dB SW1<br>/100          | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2<br>2 Mode /<br>M                                                                                                                    | Auto FFT<br>1[1]    | g Emission | 2.479                   | (∇)<br>-1.92 dBm<br>985000 GHz<br>-52.40 dBm       |
| Ref Level 20.0<br>Att<br>SGL Count 100<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00 dBm Offs<br>35 dB SW1<br>/100          | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2<br>2 Mode /<br>M                                                                                                                    | Auto FFT<br>1[1]    | g Emission | 2.479                   | (∇)<br>-1.92 dBm<br>985000 GHz<br>-52.40 dBm       |
| Ref Level         20.0           Att         SGL Count 100           > 1Pk Max         10 dBm           0 dBm         -           -10 dBm         0           -20 dBm         01           -30 dBm         -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 dBm Offs<br>35 dB SW1<br>/100          | et 2.42 dB 👄                               | <b>RBW</b> 100 kHz                       | 2<br>2 Mode /<br>M                                                                                                                    | Auto FFT<br>1[1]    | g Emission | 2.479                   | (∇)<br>-1.92 dBm<br>985000 GHz<br>-52.40 dBm       |
| Ref Level         20.0           Att         SGL Count 100           • 1Pk Max         •           10 dBm         •           • 0 dBm         •           • 0 dBm         •           • -10 dBm         •           • -20 dBm         •           • -30 dBm         •           • -40 dBm         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -21.440 dBm                               | set 2.42 dB<br>Γ 227.5 μs<br>Γ             | RBW 100 kHz<br>VBW 300 kHz               | 2 Mode /<br>M                                                                                                                         | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483     | -1.92 dBm<br>085000 GHz<br>52.40 dBm<br>50000 GHz  |
| Ref Level 20.0<br>Att<br>SGL Count 100<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-10 cBm<br>-20 cBm<br>-20 cBm<br>-30 dBm<br>-40 dBm<br>M4<br>-50 dBM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -21.440 dBm                               | et 2.42 dB 👄                               | RBW 100 kHz<br>VBW 300 kHz               | 2 Mode /<br>M                                                                                                                         | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483     | -1.92 dBm<br>085000 GHz<br>52.40 dBm<br>50000 GHz  |
| Ref Level 20.0           Att           SGL Count 100           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -40 dBm           -40 dBm           -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -21.440 dBm                               | set 2.42 dB<br>Γ 227.5 μs<br>Γ             | RBW 100 kHz<br>VBW 300 kHz               | 2 Mode /<br>M                                                                                                                         | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483     | -1.92 dBm<br>085000 GHz<br>52.40 dBm<br>50000 GHz  |
| Ref Level         20.0           Att         SGL Count 100           SGL Count         100           IPk Max         10           0 dBm         0           -10 cBm         0           -20 cBm         01           -30 dBm         01           -40 dBm         14           -50 dBm         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -21.440 dBm                               | set 2.42 dB<br>Γ 227.5 μs<br>Γ             | RBW 100 kHz<br>VBW 300 kHz               | 2 Mode /<br>M                                                                                                                         | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483     | -1.92 dBm<br>085000 GHz<br>52.40 dBm<br>50000 GHz  |
| Ref Level         20.0           Att         SGL Count 100           9 IPk Max         10 dBm           10 dBm         0           -10 dBm         0           -20 dBm         01           -30 dBm         01           -40 dBm         14           -60 dBm         -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -21.440 dBm                               | set 2.42 dB<br>Γ 227.5 μs<br>Γ             | RBW 100 kHz<br>VBW 300 kHz               | 2 Mode /<br>                                                                                                                          | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483<br> | -1.92 dBm<br>85000 GHz<br>52.40 dBm<br>50000 GHz   |
| Ref Level 20.0           Att           SGL Count 100           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -60 dBm           -70 dBm           -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -21.440 dBm                               | set 2.42 dB<br>Γ 227.5 μs<br>Γ             | RBW 100 kHz<br>VBW 300 kHz               | 2 Mode /<br>                                                                                                                          | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483<br> | -1.92 dBm<br>085000 GHz<br>52.40 dBm<br>50000 GHz  |
| Ref Level         20.0           Att         SGL Count 100           9 1Pk Max         10           10 dBm         10           -10 cBm         10           -20 cBm         01           -30 dBm         01           -40 dBm         11           -60 dBm         14           -70 dBm         15           -70 dBm         14           -70 dBm         14 | -21.440 dBm                               | et 2.42 dB •<br>Γ 227.5 μs •               | RBW 100 kHz                              | 2 Mode /<br>M<br>M<br>M                                                                                                               | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483<br> | -1.92 dBm<br>985000 GHz<br>52.40 dBm<br>950000 GHz |
| Ref Level 20.0           Att           SGL Count 100           1Pk Max           10 dBm           0 dm           -10 dBm           -20 dBm           -40 dBm           -40 dBm           -60 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm           Type           Ref           M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -21.440 dBm<br>-21.440 dBm<br>-21.440 dBm | set 2.42 dB<br>Γ 227.5 μs                  | RBW 100 kHz<br>VBW 300 kHz               | 2<br>2<br>Mode /<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                       | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483<br> | -1.92 dBm<br>985000 GHz<br>52.40 dBm<br>950000 GHz |
| Ref Level         20.0           Att         SGL Count 100           9 IPk Max         10 dBm           10 dBm         0           -10 dBm         0           -20 dBm         01           -30 dBm         01           -40 dBm         01           -70 dBm          | -21.440 dBm<br>-21.440 dBm<br>-21.440 dBm | et 2.42 dB ●<br>Γ 227.5 μs ●               | RBW 100 kHz<br>VBW 300 kHz               | 2<br>Mode /<br>M<br>M<br>M<br>M<br>M<br>M                                                                                             | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483<br> | -1.92 dBm<br>985000 GHz<br>52.40 dBm<br>950000 GHz |
| Ref Level 20.0           Att           SGL Count 100           1Pk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -40 dBm           -60 dBm           -70 dBm           Start 2.476 GH           Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -21.440 dBm<br>-21.440 dBm<br>-21.440 dBm | set 2.42 dB<br>Γ 227.5 μs                  | RBW 100 kHz<br>VBW 300 kHz               | 2<br>2 Mode /<br>M<br>M<br>M<br>M<br>2<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | Auto FFT  1[1] 2[1] |            | 2.479<br>-<br>2.483<br> | -1.92 dBm<br>985000 GHz<br>52.40 dBm<br>950000 GHz |





I

## 8.8 BAND EDGE(HOPPING)


| Condition | Mode  | Frequency<br>(MHz) | Antenna | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |
|-----------|-------|--------------------|---------|-----------------|--------------------|----------------|---------|
| NVNT      | 1-DH5 | 2402               | Ant1    | Hopping         | -51.71             | -20            | Pass    |
| NVNT      | 1-DH5 | 2480               | Ant1    | Hopping         | -48.68             | -20            | Pass    |
| NVNT      | 2-DH5 | 2402               | Ant1    | Hopping         | -47.67             | -20            | Pass    |
| NVNT      | 2-DH5 | 2480               | Ant1    | Hopping         | -47.94             | -20            | Pass    |
| NVNT      | 3-DH5 | 2402               | Ant1    | Hopping         | -50.25             | -20            | Pass    |
| NVNT      | 3-DH5 | 2480               | Ant1    | Hopping         | -46.06             | -20            | Pass    |



ACCREDITED

Certificate #4298.01



