

	ISED CABid: ES1909	Test report No: NIE: 67125RRF.003A3
Test Report USA FCC Part 15.247, 1 CANADA RSS-247, RSS	15.209 S-Gen	
(*) Identification of item tested	Loadsensing G6	
(*) Trademark	LS-G6-LAS-TIL90	
(*) Model and /or type reference	HW version: LS-G6-LASEF SW version: 2.54 FCC ID: 2AHN4-LSG6LAS IC: 21260-LSG6LASTL90	R360-1 rev0 TL90
Other identification of the product	Wireless datalogger	
(*) Features	LoRa communication	
Applicant	Worldsensing S.L. Calle Viriat 47, planta 10, 0	08014, Barcelona, Spain
Test method requested, standard	USA FCC Part 15.247 (10) the bands 902 - 928 MHz, 3 5850 MHz. USA FCC Part 15.209 (10) limits; general requirements CANADA RSS-247 Issue 2 CANADA RSS-Gen Issue Guidance for Performing C Digital Transmission System Spectrum System, and Hyb Under Section 15.247 of th Guidance v05r02 dated Ap ANSI C63.10-2013: Americ Unlicensed Wireless Device IN COMPLIANCE	 D-1-19 Edition): Operation within 2400 -2483.5 MHz, and 5725 - D-1-19 Edition): Radiated emission S. Performance (February 2017). S. Amendment 1, March 2019 Sompliance Measurements on m. Frequency Hopping Spread Drid Systems Devices Operating De FCC Rules. 558074 D01 Meas Sorril 2, 2019. Can National Standard for Testing es.
Approved by (name / position & signature)	Rafael López Martín	
Date of issue	2021-11-17	Manager
Report template No	FDT08_23 (*) "Data provided by the clien	ť"

Index

Competences and guarantees	.3
General conditions	.3
Uncertainty	.3
Data provided by the client	.3
Usage of samples	.4
Test sample description	.4
Identification of the client	.5
Testing period and place	.5
Document history	.5
Environmental conditions	.6
Remarks and comments	.7
Testing verdicts	.8
Summary	.8
Appendix A: Test results	.9

Competences and guarantees

DEKRA Testing and Certification S.A.U. is a testing laboratory accredited by the National Accreditation Body (ENAC -Entidad Nacional de Acreditación), to perform the tests indicated in the Certificate No. 51/LE 147.

DEKRA Testing and Certification is a FCC-recognized accredited testing laboratory with appropriate scope of accreditation that covers the performed tests in this report.

DEKRA Testing and Certification is an ISED-recognized accredited testing laboratory, CABid: ES1909, with the appropriate scope of accreditation that covers the performed tests in this report.

In order to assure the traceability to other national and international laboratories, DEKRA Testing and Certification S.A.U. has a calibration and maintenance program for its measurement equipment.

DEKRA Testing and Certification S.A.U. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Testing and Certification S.A.U. at the time of performance of the test.

DEKRA Testing and Certification S.A.U. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document. **IMPORTANT:** No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Testing and Certification S.A.U.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Testing and Certification S.A.U.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Testing and Certification S.A.U. and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the DEKRA Testing and Certification S.A.U. internal document PODT000.

Data provided by the client

The following data has been provided by the client:

- 1. Information relating to the description of the sample ("Identification of the item tested", "Trademark", "Model and/or type reference tested").
- 2. The sample consists of a wireless inclinometer and laser distance meter. It sends the data via radio.

DEKRA Testing and Certification S.A.U. declines any responsibility with respect to the information provided by the client and that may affect the validity of results.

Usage of samples

Samples undergoing test have been selected by: The client.

- Sample M/01 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
67125/036	Wireless datalogger	LS-G6-LASER	32683	2021/02/16

Sample M/01 has undergone the following test(s): The Conducted tests indicated in the Appendix A except hopping mode.

- Sample M/02 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
67125/036	Wireless datalogger	LS-G6-LASER	32683	2021/02/16
67125/037	Antenna			2021/02/16

Sample M/02 has undergone the following test(s): The Radiated tests indicated in the Appendix A.

- Sample M/03 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
67125/045	Wireless datalogger	LS-G6-LASER	70692	2021/06/15

Sample M/03 has undergone the following test(s): The Conducted tests in hopping mode indicated in the Appendix A.

Test sample description

Ports:	Cable				
	Port name and	Specified	Attached	Shielded	Coupled
	description	max	during test		to
		length [m]			patient ⁽³⁾
	Miniusb port for configuration				
	RF port attached to				
Supplementary information to the ports	-				
Rated power supply	F		Reference poles		
	voltage and Frequency		L1 L2	L3	N PE
	AC:				
	AC:				
	DC: DC lithium battery. Saft LSH 14. 3.6V				
	DC:				

Rated Power	1300mA at 3.6V recommended continuous current by manufacturer.		
Clock frequencies	-		
Other parameters	-		
Software version:	2.54		
Hardware version	LS-G6-LAS-TIL90-1 rev0		
Dimensions in cm (W x H x D):	103 x 100 x 61 mm		
Mounting position	Table top equipment		
	Wall/Ceiling mounted equipment		
	Floor standing equipment		
	Hand-held equipment		
	Other:		
Modules/parts	Module/parts of test item	Туре	Manufacturer
	-		
Accessories (not part of the test	Description	Туре	Manufacturer
item):	2 x Saft batteries	Battery	Saft
	-		
Documents as provided by the	Description	File name	Issue date
applicant	-		

⁽³⁾ Only for Medical Equipment

Identification of the client

Worldsensing S.L.

Calle Viriat 47, planta 10, 08014, Barcelona, Spain

Testing period and place

Test Location	DEKRA Testing and Certification S.A.U.	
Date (start)	2021-01-26	
Date (finish)	2021-06-16	

Document history

Report number	Date	Description
67125RRF.003	2021-06-21	First release.
67125RRF.003A1	2021-07-19	Second release. This report is modified due to IC ID update. This modification test report cancels and replaces the test report 67125RRF.003.
67125RRF.003A2	2021-10-20	Third release. This report is modified due to FCC 15.247 (a) (1) (iii) / RSS-247 5.1. (c) testing Specifications. This modification test report cancels and replaces the test report 67125RRF.003A1.
67125RRF.003A3	2021-11-17	Fourth release. This report is modified due to FCC ID update. This modification test report cancels and replaces the test report 67125RRF.003A2.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 75 %

In the semianechoic chamber, the following limits were not exceeded during the test.

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 75 %

In the chamber for conducted measurements, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 75 %

Remarks and comments

The tests have been performed by the technical personnel: Alfonso Gutiérrez, Javier Nadales, Cristina Calle, Pablo Redondo.

Used instrumentation:

Conducted Measurements:

	<u></u>	Last Calibration	Due Calibration
1.	Shielded Room ETS LINDGREN S101	N.A.	N.A.
2.	Signal and Spectrum Analyzer 10 Hz - 40 GHz ROHDE AND SCHWARZ FSV40	2020/03	2022/03
3.	DC Power Supply 30V/5A KEYSIGHT TECHNOLOGIES U8002A	N.A.	N.A.
4.	Digital Multimeter, FLUKE 175	2020/11	2021/11

Radiated Measurements:

ated	Measurements:		
		Last Calibration	Due Calibration
1.	Semianechoic Absorber Lined Chamber ETS LINDGREN FACT 3 200 STP	N.A.	N.A.
2.	Shielded Room ETS LINDGREN S101	N.A.	N.A.
3.	Biconical/Log Antenna 30 MHz - 6 GHz ETS LINDGREN 3142E	2020/04	2023/04
4.	Preamplifier G>40dB 10MHz-6GHz, BONN ELEKTRONIK, BLNA 0160-01N	2021/03	2022/03
5.	EMI Test Receiver 7 GHz ROHDE AND SCHWARZ ESR7	2020/12	2022/12
6.	Digital Multimeter, FLUKE 175	2020/11	2021/11
7.	Horn Antenna 1-18 GHz SCHWARZBECK MESS-ELEKTRONIK BBHA 9120 D	2019/11	2022/11
8.	RF Preamplifier, 40 dB ,1-18 GHz BONN ELEKTRONIK BLMA 0118-1M	2021/06	2022/06
9.	Spectrum Analyzer ROHDE AND SCHWARZ FSW50	2020/07	2022/07

Testing verdicts

Not applicable:	N/A
Pass:	Р
Fail:	F
Not measured:	N/M

Summary

1. LoRa 915 MHz

FCC PART 15 PARAGRAPH / RSS-247							
Requirement – Test	Verdict	Remark					
FCC 15.247 (a)(1) / RSS-247 5.1. (b)	Р						
FCC 15.247 (a)(1)(iii) / RSS-247 5.1. (c)	Number of hopping channels	Р					
FCC 15.247 (f) / RSS-247 5.3. (a)	Time of occupancy (Dwell Time)	Р					
FCC 15.247 (b) / RSS-247 5.4. (a)	Maximum peak output power and antenna gain	Р					
FCC 15.247 (d) / RSS-247 5.5.	Band-edge compliance of conducted emissions (Transmitter)	Р					
FCC 15.247 (f) / RSS-247 5.3. (b)	Power spectral density for hybrid systems	Р					
FCC 15.247 (d) / RSS-247 5.5.	Emission limitations radiated (Transmitter)	Р					
Supplementary information and remarks:							

Appendix A: Test results

Report No: (NIE) 67125RRF.003A3

2021-11-17

INDEX

TEST CONDITIONS	11
Occupied Bandwidth	13
FCC 15.247 (a) (1) / RSS-247 5.1. (b) 20 dB Bandwidth and Carrier frequency separation	15
FCC 15.247 (f) / RSS-247 5.3. (a) Time of occupancy (Dwell Time)	18
FCC 15.247 (b) / RSS-247 5.4 (a) Maximum output power and antenna gain	20
FCC 15.247 (d) / RSS-247 5.5. Band-edge compliance of conducted emissions (Transmitter)	23
FCC 15.247 (f) / RSS-247 5.3. (b) Power spectral density for hybrid systems	26
FCC 15.247 (d) / RSS-247 5.5. Emission limitations radiated (Transmitter)	29

TEST CONDITIONS

POWER SUPPLY:

V nonimal:	3.6 Vdc
Type of Power Supply:	Lithium Battery (Saft LSH 14).

ANTENNA:

Type of Antenna:	External (Omnidirectional stubby antenna with RPSMA)
Maximum Declared Assembly Gain:	-3.2 dBi

TEST FREQUENCIES:

Conducted Tests:	
Low Channel:	902.3 MHz
Middle Channel:	914.9 MHz
High Channel:	927.7 MHz
Radiated Tests:	
Low Channel:	902.3 MHz
Middle Channel:	914.9 MHz
High Channel:	927.7 MHz

• The equipment can operate as a hybrid system using 8 hopping channels.

CONDUCTED MEASUREMENTS

The equipment under test was set up in a shielded room and it is connected to the spectrum analyser using a low loss RF cable. The reading of the spectrum analyser is corrected taking into account the cable loss.

The DC supply voltage is applied using an external calibrated power supply.

RADIATED MEASUREMENTS

All radiated tests were performed in a semi-anechoic chamber. The measurement antenna (Bilog antenna for the range between 30 MHz to 1000 MHz and 1 GHz-10 GHz Double ridge horn antenna) is situated at a distance of 3 m.

The equipment under test was set up on a non-conductive platform above the ground plane and the situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height (Bilog antenna and Double ridge horn antenna) was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.

A resolution bandwidth/video bandwidth of 100 kHz/300 kHz was used for frequencies below 1 GHz and 1 MHz / 3 MHz for frequencies above 1 GHz.

Radiated measurements setup from 30 MHz to 1 GHz:

Radiated measurements setup from 1 GHz to 10 GHz:

Occupied Bandwidth

SPECIFICATION:

FCC §2.1049. Measurements required: Occupied bandwidth.

RSS-Gen Clause 6.7.

RESULTS:

	Low Channel	High Channel			
99% Bandwidth (kHz)	129,38706	128,38716	129,33706		
-26 dBc Bandwidth (kHz)	164,384	163,584	164,234		
Measurement uncertainty (kHz)) < <u>+</u> 0.52				

Verdict: PASS

Low Channel:

												\$ \$
Spect	rum											
Ref L	evel	30.00	dBm	-	RBW 5 kHz							
🗕 Att		40	0 dB SWT 10	.1 ms 😑	VBW 20 kHz	Mo	ode Swe	ер				
😑 1Pk Vi	iew			-								
							D3	[1]				-0.14 dB
20 dBm	-+						M1				16	4.3840 kHz
				т 1				E BW			129.3870	61294 kHz
10 dBm	-+			4			M1	ս¥			000.04	16.09 dBm
				/			1		1		902.34	05960 MHZ
0 dBm-												
-10 dBa		1 0.0	10 d8m	IMI2				k k	3			
-10 001		/I -9.9.						4	<u> </u>			
-20 dBn	n			~~~~					\rightarrow			
			and the second se							m		
-30 dBn	n		- Area and -							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		N	~~~~								~ hay and	
-40 dBn	\sim	1 P P							-		- Vin	m
50 dba												· · · · ·
-50 050												
-60 dBn	n											
CE 902	2.3 MI	Hz			1000	1 nt	5				Snan	500.0 kHz
Markor					1000	- PC					opun	
Tyne	Ref		X-value	· 1	Y-value	1	Funct	ion		Euno	tion Result	1
M1	1101	1	902.34059	, 96 MHz	16.09 dB	m	- T unio	ion			xion result	
T1		1	902.233956	6 MHz	7.83 dB	m	00	C BW			129.3870	61294 kHz
T2		1	902.363343	87 MHz	7.36 dB	m						
M2		1	902.21720	08 MHz	-9.98 dB	m						
D3	M2	1	164.3	84 kHz	-0.14 c	зB						
								Mea	asurir	ng 🔳		
<u> </u>								,				111

Middle Channel:

Spectrum Ref Level 30.00 dBm 🔵 RBW 5 kHz Att 40 dB SWT 10.1 ms 🔵 **VBW** 20 kHz Mode Sweep ⊖1Pk View D3[1] 0.24 dE 163.5840 kHz M. 20 dBm· X. OCC BW 128.387161284 kHz м1[¥ 16.52 dBm 10 dBm 914.8426560 MHz 0 dBmм -10 dBm-D1 -9.480 dBm -20 dBm--30 dBm m 40 dBmm -50 dBm· -60 dBm-CF 914.9 MHz 10001 pts Span 500.0 kHz Marker Type | Ref | Trc X-value Y-value Function Function Result Μ1 914.842656 MHz 16.52 dBm 128.387161284 kHz Τ1 1 914.8346065 MHz 8.70 dBm Occ Bw 914.9629937 MHz 7.75 dBm Τ2 M2 914.817358 MHz -10.11 dBm 1 DЗ M2 163.584 kHz 0.24 dB 1 Measuring... ----

High Channel:

FCC 15.247 (a) (1) / RSS-247 5.1. (b) 20 dB Bandwidth and Carrier frequency separation

SPECIFICATION:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

RESULTS:

	Low Channel	Middle Channel	High Channel		
20 dB Spectrum bandwidth (kHz)	143,235	139,496	138,878		
Measurement uncertainty (kHz)	z) <± 0.52				

Verdict: PASS

Low Channel:

													- (%)
Spectru	um												
Ref Lev	vel 30	0.00 dBm			RBW	3 kHz							(= .
Att		40 dB	SWT 10	.1 ms 🥃	VBW	10 kHz	Mod	le Swe	ep				
●1Pk Viev	W												
								M	l[1]	M1		902.34	17.91 dBm 03960 MHz
20 dBm—			~~~~~			m		~M:	2[1]~	\sim	\sim	902.22	-2.14 dBm
10 dBm—												7	550101112
0 dBm—	N	12 /	D									<u></u>	
-10 dBm-		-2.090 c	Bm									2~~~	
	γV												~~~
, 1 20 aвm−													
-30 dBm-													
-40 dBm-													
-50 dBm-	_												
-60 dBm-	+												
CF 902.3	3 MHz	2				1000	1 pts					Span	200.0 kHz
Marker													
Type I	Ref	Trc	X-value		Y-	value		Funct	ion		Func	tion Result	
M1		1	902.34039	96 MHz		17.91 dB	m						
M2 D3	M2	1	902.22598	34 MHZ 35 kHz		-2.14 dB -0.00 c	m iB						
		(Mea	asuring			

Middle Channel:

/RA

High Channel:

													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Spectr	um												
Ref Le	vel	30.00 dBm	1	-	RBW	3 kHz							(
Att		40 dE	SWT 10	.1 ms 🥃	VBW	10 kHz	Мо	de Swe	ер				
● 1Pk Vie	w												
-								M	[[1]				17.41 dBm
						M1						927.69	10210 MHz
20 dBm-						X		M	2[1]				-2.60 dBm
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					$\sim$	927.63	08720 MHz
10 dBm-		/											
		Ma											
0 dBm—	D	1 -2,590 0	Bm		_							<u><u></u></u>	
		N											
-10 aBm		1											m
Δ	\wedge	, 											- mark
-20 aBro													
	۲												
-90 ubili													
40 d0m													
-40 ubiii													
E0 d0m													
-JU UBIII													
-60 dBm													
00 0011													
CF 927.	.7 M⊢	z				1000	1 pts	;				Span	200.0 kHz
Marker					_								
Туре	Ref	Trc	X-value	9	<u> </u>	'-value		Funct	ion		Fund	ction Result	:
M1		1	927.6910	21 MHz		17.41 dE	3m						
M2	LLC.	1	927.6308	72 MHz		-2.60 dE	3m						
L D3	M2	1	138.8	78 KHZ		-0.02	ав						
		Л							Me	asuring			i

Carrier frequency separation

199.7 kHz

Spectrum	<u> </u>							
Ref Level	30.00 dBm	ו	e RB	W 50 kHz				(-
🗕 Att	40 dE	s 👄 SWT	1.1 ms 👄 🛛	W 300 kHz	Mode Swee	р		
⊖1Pk View		_						
					D2[1]		0.03 dB
oo Joo M1					54353			199.70 kHz
		<u> </u>	\neg			. <u>.</u>	902.	18.04 uBm 63350 MHz
V	\	Y		$ \vee $	\sim	τV	- I - \	
10 dBm	\							
0 dBm								
-10 dBm——								
-20 dBm——								λ
-30 dBm								
								I ° UNU
-40 dBm								0.0
-50 dBm								
-60 dBm								
Start 902.5	5 MHz			691	pts		Stop 9	904.0 MHz
][]					Measuring		4 //

The hopping channel carrier frequencies are separated by a minimum of the 20 dB bandwidth of the hopping channel.

FCC 15.247 (f) / RSS-247 5.3. (a) Time of occupancy (Dwell Time)

SPECIFICATION:

For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

RESULTS:

1. OPERATION AS A FREQUENCY HOPPING SYSTEM USING 8 HOPPING CHANNELS:

- TX time per hop:

153.153 ms (see next plots)

- Number of hops over a period of 2.5 s:

1 (see next plots)

Spectrun	n								
Ref Leve	I 30.00 dBm	1	RBW	100 kHz					(=)
🖷 Att	40 dB	6 👄 SWT 29	5 s 👄 VBW	300 kHz					
SGL TRG: V	'ID								
⊖1Pk View	1								
20 dBm									
1									
10 dBm									
9 dBm	TRG 0.000 (dBm							
10 dBm									
-20 dBm									
30 dBm									
40 dBm									
al Schaburgan	and hall and a planded	have the for the stand	monortheman	a had been a superior	notherholdsubser	Mundmiddurge	montellingermentionel	udbandhadhadha	well of the optimities
-60 dBm									
CE 902.3 M	/ /IHz			1000	nts				2.5.5/
	Y			1300	- P- 2	Read	v		2.0.57
	11					Keau			

Spectrum	ן י										
Ref Level 30.00 dBm											
🖷 Att	4	+O dB	🕳 SWT	600	ms 👄 VE	3W 300 kHz	2				
SGL TRG: V	ID										
⊖1Pk View											
							D	2[1]			-0.02 dB
					M1					1	.53.153 ms
20 dBm			-				watthe have a strength of the	f1[1]			18.19 dBm
								1	1	1	0.000000 S
10 dBm											
0 dBm	TRG 0.	000 d	Bm								
-10 dBm				_	_						
-20 dBm											
-30 dBm											
-50 abiii											
40 d0m											
-40 UBIII-											
HAR ARADO	nhwyrth	44M	etrather	man	M		h	atternetaria	and rest in the second second	MUM COMPANY	heredentification
-60 dBm											
CF 902.3 M	/IHz					100	0 pts				60.0 ms/
)(Read	v i		
											- ///

Average Time of Occupancy = 153.654 ms. -

Average Time of Occupancy is < 0.4 s per time period in seconds equal to the number of hopping frequencies employed (2) multiplied by 0.4.

> Measurement uncertainty (ms) <±1.02

FCC 15.247 (b) / RSS-247 5.4 (a) Maximum output power and antenna gain

SPECIFICATION:

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels. Hybrid systems shall comply with the 1 W limit. Additionally for RSS-247:

For FHSs operating in the band 902-928 MHz, the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the e.i.r.p. shall not exceed 1 W if the hopset uses less than 50 hopping channels.

RESULTS:

The maximum conducted (average) output power was measured using the method AVGSA-1 (trace averaging across on and off times of the EUT transmissions) according to point 11.9.2.2.2 of ANSI C.63.10-2013".

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power.

Maximum Declared Antenna Gain: -3.2 dBi

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

	Low Channel	Middle Channel	High Channel
Maximum Average Conducted Power (dBm)	14,75	14,62	14,86
Duty Cycle Correction (dB)		2.10	
Corrected Maximum Average Conducted Power (dBm)	16,85	16,72	16,96
Corrected Maximum EIRP Average Conducted Power (dBm)	13,65	13,52	13,76
Measurement uncertainty (dB)		<±2.57	

DEKRA Testing and Certification, S.A.U. Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29507456

Maximum Average Output Power:

Low Channel:

Middle Channel:

DEKRA Testing and Certification, S.A.U. Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29507456

High Channel:

FCC 15.247 (d) / RSS-247 5.5. Band-edge compliance of conducted emissions (Transmitter)

SPECIFICATION:

In any 100 kHz bandwidths outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

RESULTS:

The attenuation of highest emissions at the band-edge is more than 30 dB respect to the highest level of the desired power.

- HOPPING OFF:
 - LOW FREQUENCY SECTION:

- HIGH FREQUENCY SECTION:

Verdict: PASS

- HOPPING ON:
 - LOW FREQUENCY SECTION:

Spectrum Ref Level 30.00 dBm 😑 RBW 100 kHz 40 dB 👄 SWT 10 ms 👄 VBW 300 kHz Mode Sweep Att ●1Pk View M1[1] 18.18 dBm 902.861500 MHz M1 -33.49 dBm .999500 MHz -M2[1] 20 dBm ر مرار 10 dBm 0 dBm -10 dBm-D1 -11.820 dBm--20 dBm -30 dBm -40 dBm Jul -60 dBm F1 Start 895.0 MHz 10000 pts Stop 905.0 MHz Measuring... (....) 🦛

- HIGH FREQUENCY SECTION:

Verdict: PASS

Measurement uncertainty (dB) <±2.57

FCC 15.247 (f) / RSS-247 5.3. (b) Power spectral density for hybrid systems

SPECIFICATION:

For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS:

The maximum power spectral density level was measured using the method AVGPSD-1 according to point 11.10.3 of ANSI C.63.10-2013.

	Low Channel	Middle Channel	High Channel
Average Power Spectral Density (dBm)	3,77	4,58	3,72
Duty Cycle Correction (dB)		2.09	
Corrected Average Power Spectral Density (dBm)	5,867	6,677	5,817
Measurement uncertainty (dB)		<±2.57	

DEKRA Testing and Certification, S.A.U. Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29507456

Power Spectral Density:

Low Channel:

Middle Channel:

Spectrum Ref Level 30.00 dBm 👄 RBW 3 kHz SWT 10.1 ms 👄 VBW 10 kHz 40 dB Att Mode Sweep SGL Count 300/300 ●1Rm AvgPwr M1[1] 4.58 dBm 914.9540550 MHz 20 dBm-10 dBm T 0 dBm -10 dBm -20 dBm· -30 dBm -40 dBm-50 dBm -60 dBm CF 914.9 MHz 10001 pts Span 300.0 kHz Ready

High Channel:

FCC 15.247 (d) / RSS-247 5.5. Emission limitations radiated (Transmitter)

SPECIFICATION:

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)/RSS-Gen):

Frequency Range (MHz)	Field strength (µV/m)	Field strength (dBµV/m)	Measurement distance (m)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	30
1.705 - 30.0	30	-	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
960 - 10000	500	54	3

The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

<u>RSS-247</u>. Attenuation below the general field strength limits specified in RSS-Gen is not required.

RESULTS:

The situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.

All tests were performed in a semi-anechoic chamber at a distance of 3 m for the frequency range 30 MHz-10 GHz

The field strength is calculated by adding correction factor to the measured level from the spectrum analyzer. This correction factor includes antenna factor, cable loss and pre-amplifiers gain.

RADIATED:

Frequency range 30 MHz - 1 GHz:

The spurious frequencies do not depend on the operating channel.

No spurious frequencies detected at less than 20 dB below the limit.

Frequency range 1 - 10 GHz:

The results in the next tables show the maximum measured levels in the 1-10 GHz range (see next plots).

Spurious frequencies with peak levels above the average limit (54 $dB\mu V/m$ at 3 m) are measured with average detector for checking compliance with the average limit.

- LOW CHANNEL. Spurious frequencies closest to the limit:

Spurious	Emission			Measurement
Frequency	Level	Polarization	Detector	Uncertainty
(GHz)	(dBµV/m)			(dB)
1.804533	42.4	V	Peak	<± 4.98
2.707	38.73	V	Peak	<± 4.98
3.60875	47.14	V	Peak	<± 4.98
4.51115	49.94	V	Peak	<± 4.98
6.316	48.54	V	Peak	<± 4.98
7.21875	49.49	V	Peak	<± 4.98
8.12075	51.2	V	Peak	<± 4.98
9.02375	48.38	V	Peak	<± 4.98

- MIDDLE CHANNEL. Spurious frequencies closest to the limit:

Spurious Frequency (GHz)	Emission Level (dBµV/m)	Polarization	Detector	Measurement Uncertainty (dB)
1.8298	44.22	Н	Peak	<± 4.98
2.7448	52.12	V	Peak	<± 4.98
4.5745	49.34	V	Peak	<± 4.98
6.4045	48.85	V	Peak	<± 4.98
7.3195	49.66	V	Peak	<± 4.98
8.234	53.54	V	Peak	<± 4.98
9.14875	50.00	V	Peak	<± 4.98

- HIGH CHANNEL. Spurious frequencies closest to the limit:

Spurious	Emission			Measurement
Frequency	Level	Polarization	Detector	Uncertainty
(GHz)	(dBµV/m)			(dB)
1.855267	49.67	Н	Peak	<± 4.98
2.783267	41.99	V	Peak	<± 4.98
5.56625	50.43	V	Peak	<± 4.98
6 4027	63.79	Н	Peak	<± 4.98
0.4937	58.22	Н	Avg	<± 4.98
7.4215	45.76	V	Peak	<± 4.98
0.240	54.99	V	Peak	<± 4.98
0.349	48.28	V	Avg	<± 4.98

FREQUENCY RANGE 30 MHz - 1 GHz:

This plot is valid for all channels.

The peak above the limit is the carrier frequency.

FREQUENCY RANGE 1 - 3 GHz:

- Middle Channel:

DEKRA Testing and Certification, S.A.U. Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29507456

- High Channel:

FREQUENCY RANGE 3 - 10 GHz:

- Low Channel:

- Middle Channel:

- High Channel:

