

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

HEARING AID COMPATIBILITY

Applicant Name:

LG Electronics U.S.A, Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States**

Date of Testing: 02/18/2019 - 02/26/2019 Test Site/Location: PCTEST Lab, Columbia, MD, USA **Test Report Serial No.:** 1M1902110024-11.ZNF-R1 Date of Issue: 03/11/2019

FCC ID: ZNFX220TB

APPLICANT: LG ELECTRONICS U.S.A, INC.

Audio Band Magnetic Testing (T-Coil) Scope of Test:

Application Type: Certification FCC Rule Part(s): CFR §20.19(b) ANSI C63.19-2011 **HAC Standard:**

285076 D01 HAC Guidance v05

285076 D02 T-Coil testing for CMRS IP v03

DUT Type: Portable Handset Model: LM-X220TB

Additional Model(s): LMX220TB, X220TB, LM-X220MB, LMX220MB, X220MB

Test Device Serial No.: Pre-Production Sample [S/N: 00740]

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

Note: This revised Test Report (S/N: 1M1902110024-11.ZNF-R1) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 1 of 75
1M1902110024-11 7NF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 1 of 75

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	8
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	18
6.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	21
7.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	24
8.	FCC 3G MEASUREMENTS	27
9.	T-COIL TEST SUMMARY	28
10.	MEASUREMENT UNCERTAINTY	39
11.	EQUIPMENT LIST	40
12.	TEST DATA	41
13.	CALIBRATION CERTIFICATES	63
14.	CONCLUSION	70
15.	REFERENCES	71
16.	TEST SETUP PHOTOGRAPHS	73

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 2 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 2 01 75

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-86581 to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 3 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 3 01 75

2. DUT DESCRIPTION

FCC ID: ZNFX220TB

Applicant: LG Electronics U.S.A, Inc.

1000 Sylvan Avenue

Englewood Cliffs, NJ 07632

United States

Model: LM-X220TB

Additional Model(s): LMX220TB, X220TB, LM-X220MB, LMX220MB, X220MB

Serial Number: 00740
HW Version: Rev.1.0
SW Version: X220TB08g
Antenna: Internal Antenna
DUT Type: Portable Handset

I. LTE Band Selection

This device supports the following pairs of LTE bands with similar frequencies: LTE B25 & B2, LTE B26 & B5 and LTE B66 & B4. These pairs of LTE bands have the same target powers and share the same transmission paths. Since the supported frequency span for the smaller LTE bands are completely covered by the larger LTE bands, only the larger LTE bands (LTE B25, B26, and B66) were evaluated for hearing-aid compliance.

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 4 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 4 of 75

Table 2-1 ZNFX220TB HAC Air Interfaces

Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated	
	850	VO	Yes	Yes: WIFI or BT	CMRS Voice ¹	EFR	
GSM	1900	,,,		res. Will of B1	CIVINO VOICE	EIN	
	GPRS/EDGE	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS	
	850						
UMTS	1700	VD	Yes	Yes: WIFI or BT	CMRS Voice ¹	NB AMR	
OWITS	1900						
	HSPA	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS	
	680 (B71)	VD	Yes ³				
	700 (B12)			Yes: WIFI or BT	VoLTE¹, Google Duo²	VoLTE: NB AMR, WB AMR, EVS Google Duo: OPUS	
	850 (B5)						
LTE (FDD)	850 (B26)						
LIL (FDD)	1700 (B4)		Yes				
	1700 (B66)						
	1900 (B2)						
	1900 (B25)						
	2450						
	5200 (U-NII 1)				VoWIFI², Google Duo²	V-VALUEL NID ANAD NAID ANAD EVE	
WIFI	5300 (U-NII 2A)	VD	Yes	Yes: GSM, UMTS, or LTE		VoWIFI: NB AMR, WB AMR, EVS Google Duo: OPUS	
	5500 (U-NII 2C)					Google Duo. O1 03	
	5800 (U-NII 3)						
ВТ	2450	DT	No	Yes: GSM, UMTS, or LTE	N/A	N/A	
VO = Voice Onl	Type Transport VO = Voice Only DT = Digital Data - Not intended for Voice Services			Notes: 1 Reference level in accordance with 7.4.2.1 of ANSI C63.19-2011 and July 2012 C63 VoLTE Interpretation. 2 Reference level is -20dBm0 in accordance with FCC KDB 285076 D02			
VD = CMRS and/or IP Voice over Data Transport			³ LTE B71, while outside the scop of ANSI C63.19 and FCC HAC regulations, was additionally tested to the existing HAC				

vo = voice only	Reference level in accordance with 7.4.2.1 of ANSI C63.19-2011 and July 2012 C63 Vol.18 Interpretation.
DT = Digital Data - Not intended for Voice Services	² Reference level is -20dBm0 in accordance with FCC KDB 285076 D02
VD = CMRS and/or IP Voice over Data Transport	3 ITE 871, while outside the scop of ANSI C63 19 and ECC HAC regulations, was additionally tested to the existing HAC

procedures.

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 5 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 5 01 75

ANSI C63.19-2011 PERFORMANCE CATEGORIES 3.

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz - 3000 Hz per §8.3.2.

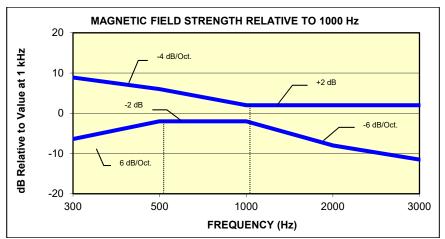


Figure 3-1 Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB(A/m) at 1 kHz

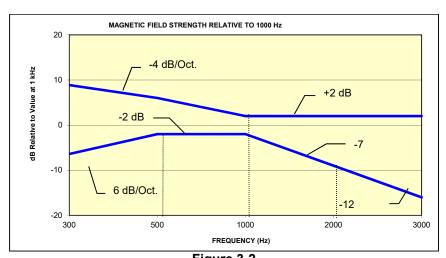


Figure 3-2 Magnetic Field frequency response for wireless devices with an axial field that exceeds -15 dB(A/m) at 1 kHz

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 6 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 6 01 75

© 2019 PCTEST Engineering Laboratory, Inc.

REV 3 3 M

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameters		
Category	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]		
T1	0 to 10 dB		
T2	10 to 20 dB		
Т3	20 to 30 dB		
T4	T4 > 30 dB		
Table 3-1 Magnetic Coupling Parameters			

Note: The FCC limit for SNNR is 20dB and the test data margins will indicate a margin from the FCC limit for compliance.

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 7 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 7 of 75

METHOD OF MEASUREMENT

Test Setup I.

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

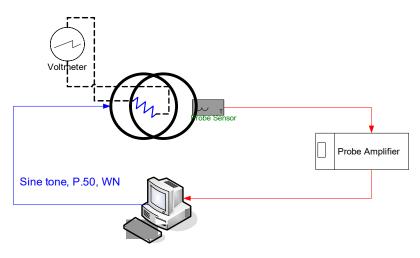


Figure 4-1 Validation Setup with Helmholtz Coil

Figure 4-2 **T-Coil Test Setup**

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 8 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Ŭ

© 2019 PCTEST Engineering Laboratory, Inc.

REV 3.3.M

II. Scanning Mechanism

Manufacturer: TEM

Accuracy: ± 0.83 cm/meter

Minimum Step Size: 0.1 mm

Maximum speed 6.1 cm/sec

Line Voltage: 115 VAC

Line Frequency: 60 Hz

Material Composite: Delrin (Acetal)

Data Control: Parallel Port

Dynamic Range (X-Y-Z): 45 x 31.75 x 47 cm

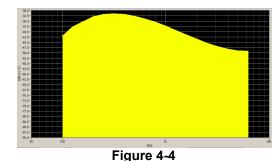
Dimensions: 36" x 25" x 38" Operating Area: 36" x 49" x 55"

Reflections: < -20 dB (in anechoic chamber)

Figure 4-3 RF Near-Field Scanner

III. ITU-T P.50 Artificial Voice

Manufacturer: ITU-T


Active Frequency Range: 100 Hz – 8 kHz

Stimulus Type: Male and Female, no spaces

Single Sample 20.96 seconds

Duration: 20.96 second

Activity Level: 100%

Spectral Characteristic of full P.50

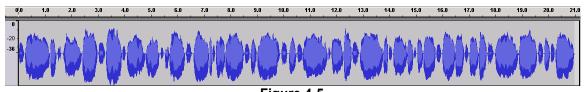
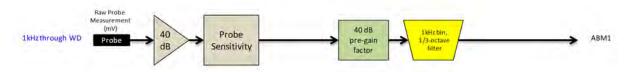



Figure 4-5
Temporal Characteristic of full P.50

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 9 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 9 01 75

ABM1 Measurement Block Diagram:

ABM2 Measurement Block Diagram:

Figure 4-6 Magnetic Measurement Processing Steps

IV. **Test Procedure**

- 1. Ambient Noise Check per C63.19 §7.3.1
 - Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - "A-weighting" and Half-Band Integration was applied to the measurements.
 - Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - ABM1 Validation The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_c = \frac{NI}{r\sqrt{1.25^3}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^3}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For the Helmholtz Coil, N=20; r=0.13m; R=10.193 Ω and using V=29mV:

$$H_c = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^3}} = 0.316 \, A/m \approx -10 \, dB(A/m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29mVwas observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 10 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 10 01 75

measurement at -10dB(A/m). This was verified to be within ± 0.5 dB of the -10dB(A/m) value (see Page 37).

c. Frequency Response Validation

The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1kHz, between 300 – 3000 Hz using the P.50 signal as shown below:

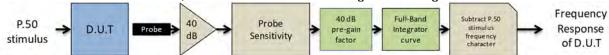


Figure 4-7 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz - 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

> Table 4-1 **ABM2 Frequency Response Validation**

	HBI, A -	HBI, A -	
f (Hz)	Measured	Theoretical	dB Var.
	(dB re 1kHz)	(dB re 1kHz)	
100	-16.180	-16.170	-0.010
125	-13.257	-13.250	-0.007
160	-10.347	-10.340	-0.007
200	-8.017	-8.010	-0.007
250	-5.925	-5.920	-0.005
315	-4.045	-4.040	-0.005
400	-2.405	-2.400	-0.005
500	-1.212	-1.210	-0.002
630	-0.349	-0.350	0.001
800	0.071	0.070	0.001
1000	0.000	0.000	0.000
1250	-0.503	-0.500	-0.003
1600	-1.513	-1.510	-0.003
2000	-2.778	-2.780	0.002
2500	-4.316	-4.320	0.004
3150	-6.166	-6.170	0.004
4000	-8.322	-8.330	0.008
5000	-10.573	-10.590	0.017
6300	-13.178	-13.200	0.022
8000	-16.241	-16.270	0.029
10000	-19.495	-19.520	0.025

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dog 11 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 11 of 75

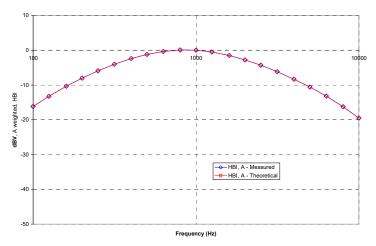


Figure 4-8 **ABM2 Frequency Response Validation**

The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and Aweighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

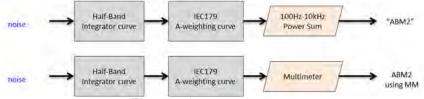


Figure 4-9 **ABM2 Validation Block Diagram**

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

Table 4-2 **ABM2 Power Sum Validation**

7121121 01101 04111 14110410101				
WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)	
-60	-60.36	-60.2	0.16	
-50	-50.19	-50.13	0.06	
-40	-40.14	-40.03	0.11	
-30	-30.13	-30.01	0.12	
-20	-20.12	-20	0.12	
-10	-10.14	-10	0.14	

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 12 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 12 01 75

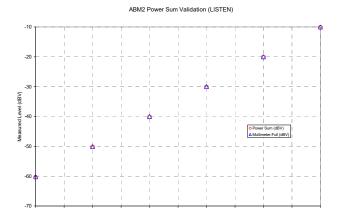
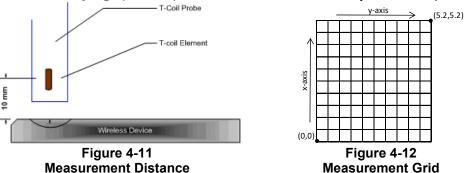



Figure 4-10 **ABM2 Power Sum Validation**

- Measurement Test Setup
 - a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-12, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-14 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 12 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 13 of 75

- ii. See Section 5 and 6 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE), and Voice Over WIFI (VoWIFI) testing.
- iii. See Section 7 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.

Real-Time Analyzer (RTA)

i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.

d. WD Radio Configuration Selection

- i. The device was chosen to be tested in the worst-case ABM2 condition (See Section 8 for more information regarding worst-case configurations for UMTS. LTE configuration information can be found in Section 5. WIFI configuration information can be found in Section 6 and 7.)
- ii. Supported GSM vocoders were investigated for the worst-case ABM2 condition. GSM-EFR was deemed the worst-case condition for the GSM air interface.

4. Signal Quality Data Analysis

- a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.

b. Frequency Response

- The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 - 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
- ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-7. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
- iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.

c. Signal Quality Index

- i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz -10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
- ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
- iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 14 of 75
1M1902110024-11 7NF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 14 of 75

V. **Test Setup**

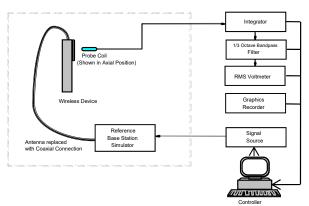


Figure 4-13 **Audio Magnetic Field Test Setup**

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

Deviation from C63.19 Test Procedure VI.

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 15 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 15 01 75

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band. Only middle channels were evaluated for data modes since circuit-switched voice modes were worst-case.

Table 4-3
Center Channels and Frequencies

Test frequencies & associated channels				
rest frequencies à associated t	inamiers .			
Channel	Frequency (MHz)			
Cellular 850				
190 (GSM)	836.60			
4183 (UMTS)	836.60			
AWS 1750				
1412 (UMTS)	1730.40			
PCS 1900				
661 (GSM)	1880			
9400 (UMTS)	1880			

2. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. The middle channel and supported bandwidths from the worst-case band according to Table 7-5 was additionally evaluated with OTT VoIP for each probe orientation. See Tables 9-4 to 9-8 and 9-14 for LTE bandwidths and channels.

3. WIFI

The middle channel for each 802.11 standard was tested for each probe orientation. The 2.4GHz 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels. The 5GHz 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested on higher U-NII bands as well as applicable low and high channels. See Tables 9-9 to 9-11 and 9-15 to 9-17 for WIFI standards and channels.

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 16 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 10 01 75

IX. **Test Flow**

The flow diagram below was followed (From C63.19):

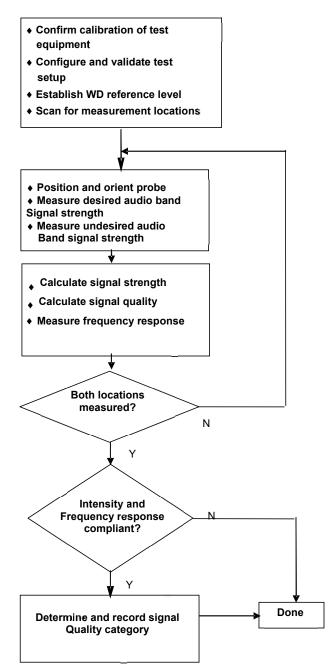


Figure 4-14 C63.19 T-Coil Signal Test Process

	000.10	con orginal root i rootoo		
FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 17 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 17 0175

© 2019 PCTEST Engineering Laboratory, Inc.

REV 3.3.M

5. **VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION**

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

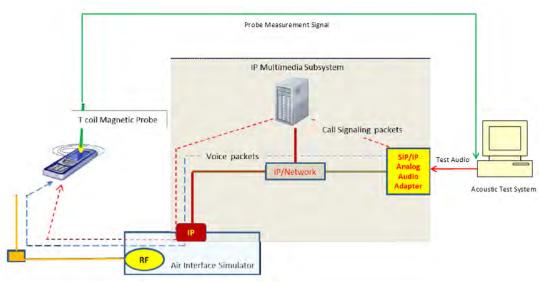


Figure 5-1 Test Setup for VoLTE over IMS T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the normal speech input level*. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection.

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 18 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 16 01 75

^{*} http://c63.org/documents/misc/posting/new_interpretations.htm

II. **DUT Configuration for VoLTE over IMS T-coil Testing**

1. Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. 16QAM, 1RB, 0RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

> Table 5-1 **VoLTE over IMS SNNR by Radio Configuration**

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
12	707.5	23095	10	QPSK	1	0	-2.23	-32.59	30.36
12	707.5	23095	10	QPSK	1	25	-2.30	-33.22	30.92
12	707.5	23095	10	QPSK	1	49	-2.66	-33.04	30.38
12	707.5	23095	10	QPSK	25	0	-2.40	-33.47	31.07
12	707.5	23095	10	QPSK	25	12	-2.43	-32.61	30.18
12	707.5	23095	10	QPSK	25	25	-2.67	-33.43	30.76
12	707.5	23095	10	QPSK	50	0	-2.81	-33.02	30.21
12	707.5	23095	10	16QAM	1	0	-2.53	-31.89	29.36
12	707.5	23095	10	16QAM	1	25	-2.57	-32.21	29.64
12	707.5	23095	10	16QAM	1	49	-2.69	-32.99	30.30
12	707.5	23095	10	16QAM	25	0	-2.72	-33.96	31.24
12	707.5	23095	10	16QAM	25	12	-2.49	-33.32	30.83
12	707.5	23095	10	16QAM	25	25	-2.63	-33.20	30.57
12	707.5	23095	10	16QAM	50	0	-2.67	-33.28	30.61

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

> Table 5-2 **AMR Codec Investigation - VoLTE over IMS**

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	-1.35	-2.56	2.99	2.76		Band 12 23	
ABM2 (dBA/m)	-32.19	-32.33	-32.64	-32.24	Axial		23095
Frequency Response	Pass	Pass	Pass	Pass	Axiai		
S+N/N (dB)	30.84	29.77	35.63	35.00			

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 10 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 19 of 75

Table 5-3 **EVS Codec Investigation - VoLTE over IMS**

		roongunon			
Codec Setting:	EVS Primary WB 13.2kbps	EVS Primary WB 9.6kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	-1.42	-1.41			
ABM2 (dBA/m)	-32.81	-33.35	Axial	Band 12	23095
Frequency Response	Pass	Pass	Axiai	10MHz	23093
S+N/N (dB)	31.39	31.94			

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC = "Max Power"

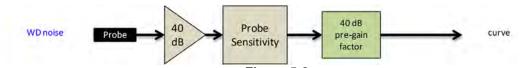


Figure 5-2 **Audio Band Magnetic Curve Measurement Block Diagram**

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 20 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 20 01 75

6. **VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION**

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoWIFI over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

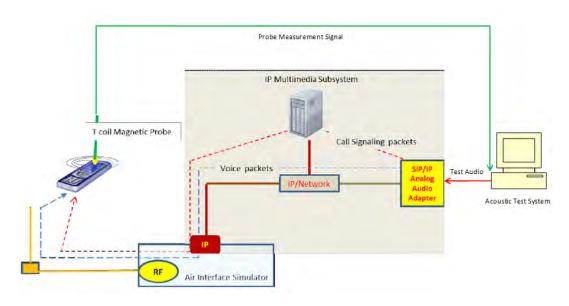


Figure 6-1 Test Setup for VoWIFI over IMS T-Coil Measurements

2. Audio Level Settings

According to KDB 285076 D02 released by the FCC OET regarding the appropriate audio levels to be used for VoWIFI over IMS T-Coil testing, -20dBm0 shall be used for the normal speech input level². The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection.

² FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

FCC Office of Engineers	reconline of Engineering and Technology RDB, 2000/0 D02 T-con Testing for CMRS IF V03, September 13, 2017								
FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager					
Filename:	Test Dates:	DUT Type:		Page 21 of 75					
1M1902110024-11 7NF-R1	02/18/2019 - 02/26/2019	Portable Handset		- U					

DUT Configuration for VoWIFI over IMS T-coil Testing II.

1. Radio Configuration

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each 802.11 standard:

> Table 6-1 802.11b SNNR by Radio Configuration

	ouziria ortitit ay riaano oomigananon							
Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
802.11b	6	DSSS	1	-6.45	-33.64	27.19		
802.11b	6	DSSS	2	-6.35	-34.22	27.87		
802.11b	6	CCK	5.5	-6.02	-33.80	27.78		
802.11b	6	CCK	11	-5.87	-33.55	27.68		

Table 6-2 802.11g/a SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
802.11g	6	BPSK	6	-6.23	-34.07	27.84
802.11g	6	BPSK	9	-6.15	-34.04	27.89
802.11g	6	QPSK	12	-6.30	-34.24	27.94
802.11g	6	QPSK	18	-6.28	-34.33	28.05
802.11g	6	16-QAM	24	-6.37	-34.29	27.92
802.11g	6	16-QAM	36	-6.30	-35.93	29.63
802.11g	6	64-QAM	48	-6.20	-34.09	27.89
802.11g	6	64-QAM	54	-6.40	-36.00	29.60

Table 6-3 802.11n 20MHz BW SNNR by Radio Configuration

	COZITINI ZOMINIZ BYY CHANTE BY Madio Comingulation								
Mode	Bandwidth [MHz]	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
802.11n	20	40	BPSK	6.5	-6.30	-34.73	28.43		
802.11n	20	40	QPSK	13	-6.15	-34.55	28.40		
802.11n	20	40	QPSK	19.5	-6.54	-33.90	27.36		
802.11n	20	40	16-QAM	26	-6.61	-34.17	27.56		
802.11n	20	40	16-QAM	39	-6.16	-34.32	28.16		
802.11n	20	40	64-QAM	52	-6.61	-34.17	27.56		
802.11n	20	40	64-QAM	58.5	-6.18	-34.42	28.24		
802.11n	20	40	64-QAM	65	-6.70	-34.65	27.95		

Table 6-4 802 11n 40MHz RW SNNR by Radio Configuration

	602.1111 40WINZ BW SWINK by Radio Configuration								
Mode	Bandwidth [MHz]	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
802.11n	40	38	BPSK	13.5	-6.71	-34.13	27.42		
802.11n	40	38	QPSK	27	-6.16	-34.04	27.88		
802.11n	40	38	QPSK	40.5	-6.79	-34.05	27.26		
802.11n	40	38	16-QAM	54	-6.15	-34.27	28.12		
802.11n	40	38	16-QAM	81	-6.38	-34.31	27.93		
802.11n	40	38	64-QAM	108	-6.24	-34.23	27.99		
802.11n	40	38	64-QAM	121.5	-6.35	-34.15	27.80		
802.11n	40	38	64-QAM	135	-6.39	-34.35	27.96		

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 22 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 22 of 75

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The WB AMR 6.6kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

> Table 6-5 AMR Codec Investigation - VoWIFI over IMS

Aint ooded investigation - vovin rover into											
Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel			
ABM1 (dBA/m)	-5.40	-6.23	-1.00	-1.19	-1.19						
ABM2 (dBA/m)	-36.25	-36.15	-36.35	-36.43	Axial	2 4CHz	2.4GHz IEEE 802.11b	6			
Frequency Response	Pass	Pass	Pass	Pass	Axiai	2.4GHz		o o			
S+N/N (dB)	30.85	29.92	35.35	35.24							

Table 6-6 **EVS Codec Investigation – VoWIFI over IMS**

Codec Setting:	EVS Primary WB 13.2kbps	EVS Primary WB 9.6kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	-5.76	-5.56				
ABM2 (dBA/m)	-36.51	-36.88	Axial	2.4GHz	JEEE 000 441	
Frequency Response	Pass	Pass	Axiai	2.4GHz IEEE 802.11b	6	
S+N/N (dB)	30.75	31.32				

Mute on; Backlight off; Max Volume; Max Contrast

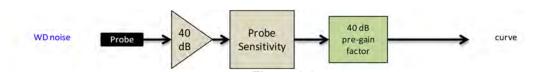


Figure 6-2 **Audio Band Magnetic Curve Measurement Block Diagram**

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 23 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 23 01 73

7. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

Test System Setup for OTT VoIP T-Coil Testing I.

1. OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kb/s to 64kb/s. All air interfaces capable of a data connection were evaluated with Google Duo.

2. Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

3. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation³. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

II. **DUT Configuration for OTT VolP T-Coil Testing**

1. Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The 6kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-Coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

> Table 7-1 Codec Investigation - OTT VoIP (EDGE)

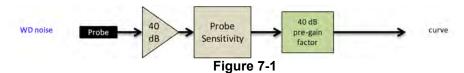
000001		,,, O,, t	··· (,	
Codec Setting:	64kbps	6kbps	Orientation	Channel	
ABM1 (dBA/m)	6.77	6.43			
ABM2 (dBA/m)	-19.66	-19.32	Axial	400	
Frequency Response	Pass	Pass	Axial	190	
S+N/N (dB)	26.43	25.75			

³ FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 24 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 24 01 75

Table 7-2
Codec Investigation – OTT VoIP (HSPA)

	,				
Codec Setting:	64kbps	6kbps	Orientation	Channel	
ABM1 (dBA/m)	6.89	6.81			
ABM2 (dBA/m)	-33.36	-32.82	Axial	4400	
Frequency Response	Pass	Pass	Axiai	4183	
S+N/N (dB)	40.25	39.63			


Table 7-3
Codec Investigation – OTT VoIP (LTE)

				1 /	
Codec Setting:	64kbps	6kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	6.66	6.61			
ABM2 (dBA/m)	-30.83	-30.86	Axial	Band 25 20MHz	00005
Frequency Response	Pass	Pass	Axiai		20MHz
S+N/N (dB)	37.49	37.47			

Table 7-4
Codec Investigation – OTT VoIP (WIFI)

Code investigation CTT von (vvn)									
Codec Setting:	64kbps	6kbps	Orientation	Band	Standard	Channel			
ABM1 (dBA/m)	6.89	6.58			2.4GHz IEEE 802.11b				
ABM2 (dBA/m)	-36.10	-36.20	Axial	2.401-		IEEE 902 11b	0		
Frequency Response	Pass	Pass	Axiai	2.4GHz		6			
S+N/N (dB)	42.99	42.78							

- Mute on; Backlight off; Max Volume; Max Contrast
- · Radio Configurations can be found in Section 9.II.F

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 25 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 25 01 75

2. Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the worst-case LTE FDD band to be used for OTT VoIP testing. LTE Band 25 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE FDD bands:

Table 7-5
OTT VoIP (LTE) SNNR by Radio Configuration

				_,	,				
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
71	680.5	133297	20	16QAM	1	0	6.76	-30.46	37.22
12	707.5	23095	10	16QAM	1	0	6.17	-31.35	37.52
26	831.5	26865	15	16QAM	1	0	6.77	-30.22	36.99
66	1745.0	132322	20	16QAM	1	0	6.42	-30.59	37.01
25	1882.5	26365	20	16QAM	1	0	6.19	-30.01	36.20

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 26 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 20 01 75

8. FCC 3G MEASUREMENTS

UMTS Test Configurations

AMR at 12.2kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset. See below plot for ABM noise comparison between vocoder rates:

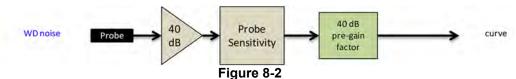


Figure 8-1 **UMTS Audio Band Magnetic Noise**

Table 8-1 **Codec Investigation - UMTS**

Codec Setting:	AMR 12.2kbps	AMR 7.95kbps	AMR 4.75kbps	Orientation	Channel	
ABM1 (dBA/m)	2.85	2.86	2.60			
ABM2 (dBA/m)	-35.97	-36.17	-36.52	Axial	9400	
Frequency Response	Pass	Pass	Pass	Axiai		
S+N/N (dB)	38.82	39.03	39.12			

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: ZNFX220TB	V BENEFIT STUDIES AT		LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 27 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 27 of 75

© 2019 PCTEST Engineering Laboratory, Inc.

REV 3 3 M 2/1/2019

9. T-COIL TEST SUMMARY

Table 9-1 Consolidated Tabled Results

			esponse	Mag	netic / Verdict	FCC	SNNR dict	Margin from FCC Limit	C63.19-2011
C63.19	9 Section	8.3			3.1		3.4	(dB)	Rating
		Axial	Radial	Axial	Radial	Axial	Radial		
GSM	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-3.96	Т3
	PCS	PASS	NA	PASS	PASS	PASS	PASS		_
EDGE	Cellular	PASS	NA	PASS	PASS	PASS	PASS	-6.10	Т3
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS	••	
	Cellular	PASS	NA	PASS	PASS	PASS	PASS		
UMTS	AWS	PASS	NA	PASS	PASS	PASS	PASS	-12.07	T4
	PCS	PASS	NA	PASS	PASS	PASS	PASS		
	Cellular	PASS	NA	PASS	PASS	PASS	PASS		
HSPA (OTT VoIP)	AWS	PASS	NA	PASS	PASS	PASS	PASS	-14.33	T4
(011 10)	PCS	PASS	NA	PASS	PASS	PASS	PASS		
	B71	PASS	NA	PASS	PASS	PASS	PASS		
	B12	PASS	NA	PASS	PASS	PASS	PASS		
LTE FDD	B26	PASS	NA	PASS	PASS	PASS	PASS	-6.06	Т3
	B66	PASS	NA	PASS	PASS	PASS	PASS		
	B25	PASS	NA	PASS	PASS	PASS	PASS		
LTE FDD (OTT VoIP)	B25	PASS	NA	PASS	PASS	PASS	PASS	-14.18	T4
	802.11b	PASS	NA	PASS	PASS	PASS	PASS		
WLAN	802.11g	PASS	NA	PASS	PASS	PASS	PASS	-5.70	Т3
	802.11n	PASS	NA	PASS	PASS	PASS	PASS		
	802.11b	PASS	NA	PASS	PASS	PASS	PASS		
WLAN (OTT VoIP)	802.11g	PASS	NA	PASS	PASS	PASS	PASS	-18.63	T4
(OTT VOIP)	802.11n	PASS	NA	PASS	PASS	PASS	PASS		
	802.11a	PASS	NA	PASS	PASS	PASS	PASS	4.00	To
U-NII	802.11n	PASS	NA	PASS	PASS	PASS	PASS	-4.92	Т3
U-NII	802.11a	PASS	NA	PASS	PASS	PASS	PASS	46.06	T4
(OTT VoIP)	802.11n	PASS	NA	PASS	PASS	PASS	PASS	-16.86	14

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 28 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 20 01 75

I. **Raw Handset Data**

Table 9-2 **Raw Data Results for GSM**

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		128	5.94	-18.31		1.53	24.25	20.00	-4.25	Т3	
	Axial	190	6.11	-17.85	-62.74	1.43	23.96	20.00	-3.96	Т3	3.0, 2.6
GSM850		251	5.81	-18.27		1.53	24.08	20.00	-4.08	Т3	
GSWOOD		128	-3.57	-34.28			30.71	20.00	-10.71	T4	
	Radial	190	-3.71	-33.28	-61.86	N/A	29.57	20.00	-9.57	Т3	2.6, 2.2
		251	-3.10	-33.96			30.86	20.00	-10.86	T4	
		512	6.06	-25.81		1.59	31.87	20.00	-11.87	T4	
	Axial	661	6.07	-25.63	-62.74	1.60	31.70	20.00	-11.70	T4	3.0, 2.6
GSM1900		810	5.80	-24.91		1.58	30.71	20.00	-10.71	T4	
G3W 1900		512	-2.99	-36.77			33.78	20.00	-13.78	T4	
	Radial	661	-3.09	-37.04	-61.86	N/A	33.95	20.00	-13.95	T4	2.6, 2.2
		810	-3.64	-36.71			33.07	20.00	-13.07	T4	

Table 9-3 **Raw Data Results for UMTS**

Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates		
	4132	2.80	-35.86		1.87	38.66	20.00	-18.66	T4			
Axial	4183	2.80	-35.44	-62.74	1.87	38.24	20.00	-18.24	T4	3.0, 2.6		
	4233	2.80	-35.79		1.88	38.59	20.00	-18.59	T4			
	4132	-6.60	-38.84			32.24	20.00	-12.24	T4			
Radial	4183	-6.64	-38.85	-61.86	N/A	32.21	20.00	-12.21	T4	2.6, 2.2		
	4233	-6.81	-38.88			32.07	20.00	-12.07	T4			
							•					
	1312	2.71	-36.21		1.85	38.92	20.00	-18.92	T4			
Axial	1412	2.83	-35.75	-62.74	1.87	38.58	20.00	-18.58	T4	3.0, 2.6		
	1513	2.81	-35.71		1.87	38.52	20.00	-18.52	T4			
	1312	-6.65	-38.90			32.25	20.00	-12.25	T4			
Radial	1412	-6.50	-38.78	-61.86	N/A	32.28	20.00	-12.28	T4	2.6, 2.2		
	1513	-6.62	-38.83	Ī		32.21	20.00	-12.21	T4			
	9262	2.85	-35.30		1.86	38.15	20.00	-18.15	T4			
Axial	9400	2.86	-35.92	-62.74	1.84	38.78	20.00	-18.78	T4	3.0, 2.6		
	9538	2.81	-35.72	-61.86	1.87	38.53	20.00	-18.53	T4			
	9262	-6.53	-38.83			32.30	20.00	-12.30	T4			
Radial	9400	-6.48	-39.34		-61.86		N/A	32.86	20.00	-12.86	T4	2.6, 2.2
	9538	-6.30	-38.78		-01.00			32.48	20.00	-12.48	T4	
	Axial Radial Axial Radial	Axial 4132 Axial 4183 4233 A132 Radial 4183 4233 Axial 1312 Axial 1412 1513 Radial 1412 1513 Axial 9400 9538 9262 Radial 9400	Axial 4132 2.80 4183 2.80 4233 2.80 4132 -6.60 4233 2.80 4132 -6.60 4183 -6.64 4233 -6.81 Axial 1312 2.71 Axial 1412 2.83 1513 2.81 1312 -6.65 Radial 1412 -6.50 1513 -6.62 Axial 9262 2.85 9538 2.81 9262 -6.53 Radial 9400 -6.48	Axial 4132 2.80 -35.86 Axial 4183 2.80 -35.44 4233 2.80 -35.79 4132 -6.60 -38.84 4233 -6.64 -38.85 4233 -6.81 -38.88 Axial 1312 2.71 -36.21 Axial 1412 2.83 -35.75 1513 2.81 -35.71 Radial 1412 -6.65 -38.90 Radial 1513 -6.62 -38.83 Axial 9262 2.85 -35.30 Axial 9400 2.86 -35.92 9538 2.81 -35.72 9262 -6.53 -38.83 Radial 9400 -6.48 -39.34	Channel [dB(A/m)] [dB(A/m)]	Orientation Channel (dB(A/m)) (dB(A/m)) ABM2 (dB(A/m)) (dB(A/m)) (dB(A/m)) Ambient Noise (dB(A/m)) (dB(A/m)) Response Margin (dB) Axial 4132 2.80 -35.84 -62.74 1.87 4233 2.80 -35.79 -62.74 1.87 Radial 4132 -6.60 -38.84 -61.86 N/A Radial 4183 -6.64 -38.85 -61.86 N/A Axial 1312 2.71 -36.21 -62.74 1.87 Axial 1412 2.83 -35.75 -62.74 1.87 Radial 1312 -6.65 -38.90 -61.86 N/A Radial 1412 -6.50 -38.78 -61.86 N/A Axial 9262 2.85 -35.30 -62.74 1.86 Axial 9400 2.86 -35.92 -62.74 1.84 Axial 9400 -6.63 -38.83 -62.74 1.87 Radial 9400 -6.63 -38.83 <t< td=""><td>Orientation Channel (dB(A/m)) ABM1 (dB(A/m)) ABM2 (dB(A/m)) Ambient Noise (dB(A/m)) Response Margin (dB) \$4+N/N (dB) Axial 4183 2.80 -35.86 1.87 38.66 Axial 4183 2.80 -35.44 -62.74 1.87 38.24 Radial 4132 -6.60 -38.84 -61.86 N/A 32.24 Radial 4183 -6.64 -38.85 -61.86 N/A 32.21 Axial 1312 2.71 -36.21 -6.2.74 1.85 38.92 Axial 1412 2.83 -35.75 -62.74 1.87 38.58 1513 2.81 -35.71 -62.74 1.87 38.52 Radial 1412 -6.65 -38.90 -61.86 N/A 32.25 Radial 1513 -6.62 -38.83 -61.86 N/A 32.22 Axial 9962 2.85 -35.30 -61.86 N/A 38.15 Axial <t< td=""><td>Orientation Channel (dB(A/m)) (dB(A/m)) ABM2 (dB(A/m)) (dB(A/m)) Ambient Noise (dB(A/m)) Response (Margin (dB)) S+N/N (dB) FCC Limit (dB) Axial 4132 2.80 -35.86 1.87 38.66 20.00 Axial 4133 2.80 -35.79 1.88 38.59 20.00 Radial 4132 -6.60 -38.84 -61.86 N/A 32.24 20.00 Radial 4183 -6.64 -38.85 -61.86 N/A 32.21 20.00 Axial 1312 2.71 -36.21 -61.86 N/A 32.21 20.00 Axial 1412 2.83 -35.75 -62.74 1.87 38.58 20.00 Radial 1412 2.83 -35.75 -62.74 1.87 38.52 20.00 Radial 1412 -6.65 -38.90 32.25 20.00 Radial 1412 -6.50 -38.78 -61.86 N/A 32.28 20.00 Axial</td><td>Orientation Channel (dB(A/m)) ABM1 (dB(A/m)) ABM2 (dB(A/m)) Ambient Noise (dB(A/m)) Response Margin (dB) \$410 (dB) FCC Limit (dB) <</td><td>Orientation Channel [dB(A/m)] ABM1 [dB(A/m)] ABM2 [dB(A/m)] Ambient Noise [dB(A/m)] Response (dB) S+N/N (dB) FCC Limit (dB) C63.79-2011 (dB) Rating Axial 4132 2.80 -35.86 1.87 38.66 20.00 -18.66 T4 Axial 4183 2.80 -35.79 -62.74 1.87 38.24 20.00 -18.66 T4 Radial 4132 -6.60 -38.84 -61.86 NA 32.24 20.00 -18.59 T4 Radial 4183 -6.64 -38.85 -61.86 NA 32.21 20.00 -12.24 T4 Radial 1412 2.83 -35.75 -62.74 1.87 38.58 20.00 -18.92 T4 Axial 1412 2.83 -35.75 -62.74 1.87 38.58 20.00 -18.52 T4 Radial 1412 -6.65 -38.90 -62.74 1.87 38.52 20.00 -18.52 T4 <t< td=""></t<></td></t<></td></t<>	Orientation Channel (dB(A/m)) ABM1 (dB(A/m)) ABM2 (dB(A/m)) Ambient Noise (dB(A/m)) Response Margin (dB) \$4+N/N (dB) Axial 4183 2.80 -35.86 1.87 38.66 Axial 4183 2.80 -35.44 -62.74 1.87 38.24 Radial 4132 -6.60 -38.84 -61.86 N/A 32.24 Radial 4183 -6.64 -38.85 -61.86 N/A 32.21 Axial 1312 2.71 -36.21 -6.2.74 1.85 38.92 Axial 1412 2.83 -35.75 -62.74 1.87 38.58 1513 2.81 -35.71 -62.74 1.87 38.52 Radial 1412 -6.65 -38.90 -61.86 N/A 32.25 Radial 1513 -6.62 -38.83 -61.86 N/A 32.22 Axial 9962 2.85 -35.30 -61.86 N/A 38.15 Axial <t< td=""><td>Orientation Channel (dB(A/m)) (dB(A/m)) ABM2 (dB(A/m)) (dB(A/m)) Ambient Noise (dB(A/m)) Response (Margin (dB)) S+N/N (dB) FCC Limit (dB) Axial 4132 2.80 -35.86 1.87 38.66 20.00 Axial 4133 2.80 -35.79 1.88 38.59 20.00 Radial 4132 -6.60 -38.84 -61.86 N/A 32.24 20.00 Radial 4183 -6.64 -38.85 -61.86 N/A 32.21 20.00 Axial 1312 2.71 -36.21 -61.86 N/A 32.21 20.00 Axial 1412 2.83 -35.75 -62.74 1.87 38.58 20.00 Radial 1412 2.83 -35.75 -62.74 1.87 38.52 20.00 Radial 1412 -6.65 -38.90 32.25 20.00 Radial 1412 -6.50 -38.78 -61.86 N/A 32.28 20.00 Axial</td><td>Orientation Channel (dB(A/m)) ABM1 (dB(A/m)) ABM2 (dB(A/m)) Ambient Noise (dB(A/m)) Response Margin (dB) \$410 (dB) FCC Limit (dB) <</td><td>Orientation Channel [dB(A/m)] ABM1 [dB(A/m)] ABM2 [dB(A/m)] Ambient Noise [dB(A/m)] Response (dB) S+N/N (dB) FCC Limit (dB) C63.79-2011 (dB) Rating Axial 4132 2.80 -35.86 1.87 38.66 20.00 -18.66 T4 Axial 4183 2.80 -35.79 -62.74 1.87 38.24 20.00 -18.66 T4 Radial 4132 -6.60 -38.84 -61.86 NA 32.24 20.00 -18.59 T4 Radial 4183 -6.64 -38.85 -61.86 NA 32.21 20.00 -12.24 T4 Radial 1412 2.83 -35.75 -62.74 1.87 38.58 20.00 -18.92 T4 Axial 1412 2.83 -35.75 -62.74 1.87 38.58 20.00 -18.52 T4 Radial 1412 -6.65 -38.90 -62.74 1.87 38.52 20.00 -18.52 T4 <t< td=""></t<></td></t<>	Orientation Channel (dB(A/m)) (dB(A/m)) ABM2 (dB(A/m)) (dB(A/m)) Ambient Noise (dB(A/m)) Response (Margin (dB)) S+N/N (dB) FCC Limit (dB) Axial 4132 2.80 -35.86 1.87 38.66 20.00 Axial 4133 2.80 -35.79 1.88 38.59 20.00 Radial 4132 -6.60 -38.84 -61.86 N/A 32.24 20.00 Radial 4183 -6.64 -38.85 -61.86 N/A 32.21 20.00 Axial 1312 2.71 -36.21 -61.86 N/A 32.21 20.00 Axial 1412 2.83 -35.75 -62.74 1.87 38.58 20.00 Radial 1412 2.83 -35.75 -62.74 1.87 38.52 20.00 Radial 1412 -6.65 -38.90 32.25 20.00 Radial 1412 -6.50 -38.78 -61.86 N/A 32.28 20.00 Axial	Orientation Channel (dB(A/m)) ABM1 (dB(A/m)) ABM2 (dB(A/m)) Ambient Noise (dB(A/m)) Response Margin (dB) \$410 (dB) FCC Limit (dB) <	Orientation Channel [dB(A/m)] ABM1 [dB(A/m)] ABM2 [dB(A/m)] Ambient Noise [dB(A/m)] Response (dB) S+N/N (dB) FCC Limit (dB) C63.79-2011 (dB) Rating Axial 4132 2.80 -35.86 1.87 38.66 20.00 -18.66 T4 Axial 4183 2.80 -35.79 -62.74 1.87 38.24 20.00 -18.66 T4 Radial 4132 -6.60 -38.84 -61.86 NA 32.24 20.00 -18.59 T4 Radial 4183 -6.64 -38.85 -61.86 NA 32.21 20.00 -12.24 T4 Radial 1412 2.83 -35.75 -62.74 1.87 38.58 20.00 -18.92 T4 Axial 1412 2.83 -35.75 -62.74 1.87 38.58 20.00 -18.52 T4 Radial 1412 -6.65 -38.90 -62.74 1.87 38.52 20.00 -18.52 T4 <t< td=""></t<>		

Table 9-4 **Raw Data Results for LTE B71**

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates																			
		20MHz	133297	-2.88	-31.24		1.29	28.36	20.00	-8.36	Т3																				
		15MHz	133397	-2.50	-31.38		1.38	28.88	20.00	-8.88	Т3																				
	Avial	15MHz	133297	-2.93	-30.72	-61.65	1.24	27.79	20.00	-7.79	Т3	3.0, 2.6																			
Axial	15MHz	133197	-2.81	-31.37	-01.03	1.39	28.56	20.00	-8.56	Т3	3.0, 2.0																				
LTE Band 71	E Rand 71	10MHz	133297	-2.51	-31.62		1.34	29.11	20.00	-9.11	Т3																				
LIE Ballu / I	and 71	5MHz	133297	-2.81	-32.06		1.38	29.25	20.00	-9.25	Т3																				
		20MHz	133297	-11.16	-38.13			26.97	20.00	-6.97	Т3																				
	Padial	15MHz	133297	-11.64	-38.10	64.00	64.00	04.00	64.96	61.06	64.96	61.06	64.96	64.96	61.06	61.96	61.96	61.96	61.06	61.96	61.96	61.96	61.96	61.96	61.96	NI/A	26.46	20.00	-6.46	Т3	2.6. 2.2
Radial	10MHz	133297	-11.72	-38.23	-61.86	-61.86 N/A	26.51	20.00	-6.51	T3	2.0, 2.2																				
		5MHz	133297	-11.41	-37.79			26.38	20.00	-6.38	Т3																				

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 29 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 29 01 75

Table 9-5 **Raw Data Results for LTE B12**

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		10MHz	23095	-2.77	-32.00		1.33	29.23	20.00	-9.23	Т3		
	Avial	5MHz	23095	-2.49	-32.27	-61.65	1.42	29.78	20.00	-9.78	Т3	3.0. 2.6	
	TE Band 12	3MHz	23095	-2.48	-32.01	-01.05	1.29	29.53	20.00	-9.53	Т3	3.0, 2.0	
LTE Bond 40		1.4MHz	23095	-2.41	-32.35		1.24	29.94	20.00	-9.94	Т3		
LIE Ballu 12		10MHz	23095	-11.80	-38.24			26.44	20.00	-6.44	Т3		
		5MHz	23095	-11.65	-38.27	-61.86 N/A	64.96	61.06	N/A	26.62	20.00	-6.62	Т3
Radial	3MHz	23095	-11.64	-37.96	-61.86		26.32	20.00	-6.32	Т3	2.0, 2.2		
		1.4MHz	23095	-11.92	-38.48			26.56	20.00	-6.56	Т3		

Table 9-6 **Raw Data Results for LTE B26**

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates													
		15MHz	26865	-2.57	-30.82		1.37	28.25	20.00	-8.25	Т3														
		10MHz	26865	-2.63	-32.41		1.49	29.78	20.00	-9.78	Т3														
	Axial	5MHz	26865	-2.49	-32.36	-61.65	1.36	29.87	20.00	-9.87	Т3	3.0, 2.6													
		3MHz	26865	-2.59	-32.27		1.42	29.68	20.00	-9.68	Т3														
		1.4MHz	26865	-2.60	-32.63		1.43	30.03	20.00	-10.03	T4														
LTE Band 26		15MHz	26965	-11.57	-37.85			26.28	20.00	-6.28	Т3														
LIE Ballu 20		15MHz	26865	-11.71	-37.77			26.06	20.00	-6.06	Т3														
		15MHz	26765	-11.25	-38.13			26.88	20.00	-6.88	Т3														
	Radial	10MHz	26865	-11.36	-38.08	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	N/A	26.72	20.00	-6.72	T3	2.6, 2.2
		5MHz	26865	-11.41	-38.08			26.67	20.00	-6.67	Т3														
		3MHz	26865	-11.58	-37.74			26.16	20.00	-6.16	Т3														
		1.4MHz	26865	-11.35	-38.27			26.92	20.00	-6.92	T3														

Table 9-7 **Raw Data Results for LTE B66**

1441 2441 100410 10. 2.2.20																						
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates										
		20MHz	132322	-2.56	-31.29		1.30	28.73	20.00	-8.73	Т3											
		15MHz	132322	-2.68	-31.13		1.09	28.45	20.00	-8.45	Т3											
	Axial	10MHz	132322	-2.62	-32.29	-61.65	1.37	29.67	20.00	-9.67	Т3	3.0, 2.6										
	TE Band 66	5MHz	132322	-2.67	-31.90	-01.05	1.53	29.23	20.00	-9.23	Т3	3.0, 2.6										
		3MHz	132322	-2.87	-32.52		1.41	29.65	20.00	-9.65	Т3											
LTE Band 66		1.4MHz	132322	-2.72	-32.68		1.37	29.96	20.00	-9.96	Т3											
LIE Ballu 00		20MHz	132322	-11.61	-38.08			26.47	20.00	-6.47	Т3											
		15MHz	132322	-11.28	-37.62	-61.86	-61.86 N/A	-61.86	-61.86	-61.86		26.34	20.00	-6.34	Т3							
		10MHz	132322	-11.63	-37.87						-61.86	-61.86	-61.86	-61.86	-61.86 N	64.96 N/A		26.24	20.00	-6.24	Т3	2.6, 2.2
		5MHz	132322	-11.16	-37.85											IN/A	26.69	20.00	-6.69	Т3	2.0, 2.2	
		3MHz	132322	-11.35	-38.12			26.77	20.00	-6.77	Т3											
		1.4MHz	132322	-11.57	-37.87			26.30	20.00	-6.30	T3											

Table 9-8 **Raw Data Results for LTE B25**

1/4/1/ 54/4/ 1/004/101 ETE 520																					
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates									
		20MHz	26365	-2.70	-31.28		1.40	28.58	20.00	-8.58	Т3										
		15MHz	26365	-2.64	-31.01		1.36	28.37	20.00	-8.37	Т3										
	Axial	10MHz	26365	-2.84	-32.04	-61.65	1.39	29.20	20.00	-9.20	Т3	3.0, 2.6									
	Axiai	5MHz	26365	-2.68	-31.46	-01.05	1.44	28.78	20.00	-8.78	Т3	3.0, 2.0									
	E Band 25	3MHz	26365	-2.68	-31.85		1.42	29.17	20.00	-9.17	Т3	ı									
LTE Bond 25		1.4MHz	26365	-2.60	-31.93		1.23	29.33	20.00	-9.33	Т3										
LIE Ballu 25		20MHz	26365	-11.44	-38.00				26.56	20.00	-6.56	Т3									
		15MHz	26365	-11.33	-38.18			26.85	20.00	-6.85	Т3										
		10MHz	26365	-11.57	-38.15	61.06	NI/A	26.58	20.00	-6.58	Т3	2.6, 2.2									
		5MHz	26365	-11.40	-38.09	-61.86		-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	-61.86	IN/A	26.69	20.00	-6.69	Т3	2.0, 2.2
		3MHz	26365	-11.46	-37.59			26.13	20.00	-6.13	Т3										
		1.4MHz	26365	-11.54	-37.88			26.34	20.00	-6.34	Т3										

FCC ID: ZNFX220TB	PCTEST**	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 30 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		. ago 00 0. 70

Table 9-9 **Raw Data Results for 2.4GHz WIFI**

				<u> </u>	INCOUNTS						
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	-6.45	-33.88		1.09	27.43	20.00	-7.43	Т3	
	Axial	6	-6.24	-33.95	-61.65	1.41	27.71	20.00	-7.71	Т3	3.0, 2.6
IEEE		11	-6.40	-33.89		1.36	27.49	20.00	-7.49	Т3	
802.11b		1	-12.96	-38.95			25.99	20.00	-5.99	Т3	
	Radial	6	-13.37	-39.07	-61.86	N/A	25.70	20.00	-5.70	Т3	2.6, 3.2
		11	-12.81	-39.12			26.31	20.00	-6.31	Т3	
IEEE	Axial	6	-6.34	-34.09	-61.65	1.30	27.75	20.00	-7.75	Т3	3.0, 2.6
802.11g	Radial	6	-13.00	-39.70	-61.86	N/A	26.70	20.00	-6.70	Т3	2.6, 3.2
IEEE	Axial	6	-6.49	-34.22	-61.65	1.30	27.73	20.00	-7.73	Т3	3.0, 2.6
802.11n	Radial	6	-13.03	-39.44	-61.86	N/A	26.41	20.00	-6.41	Т3	2.6, 3.2

Table 9-10 Raw Data Results for 5GHz WIFI 802.11a

					Jala ING	• • • • • • •							
Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	1	40	-6.24	-34.07		1.22	27.83	20.00	-7.83	Т3	
		20MHz	2A	56	-6.37	-34.23		1.23	27.86	20.00	-7.86	Т3	
	Axial	20MHz	2C	100	-6.39	-34.18	-61.65	1.26	27.79	20.00	-7.79	Т3	3.0, 2.6
	Axidi	20MHz	2C	116	-6.26	-34.00	-01.05	1.30	27.74	20.00	-7.74	Т3	3.0, 2.0
		20MHz	2C	140	-6.42	-34.17		1.14	27.75	20.00	-7.75	Т3	
		20MHz	3	157	-6.36	-34.15		1.25	27.79	20.00	-7.79	Т3	
IEEE 802.11a													
		20MHz	1	40	-12.97	-39.13			26.16	20.00	-6.16	Т3	
		20MHz	2A	52	-13.33	-38.25			24.92	20.00	-4.92	Т3	
	Radial	20MHz	2A	56	-12.78	-38.81	-61.86	N/A	26.03	20.00	-6.03	Т3	2.6, 3.2
	Radiai	20MHz	2A	64	-13.20	-38.69	-01.00	IN/A	25.49	20.00	-5.49	Т3	2.0, 3.2
		20MHz	2C	116	-12.68	-39.87			27.19	20.00	-7.19	Т3	1
		20MHz	3	157	-12.92	-39.79			26.87	20.00	-6.87	Т3	1

Table 9-11 Raw Data Results for 5GHz WIFI 802.11n

					- u.u								
Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Axial	40MHz	1	38	-6.31	-34.27	-61.65	1.25	27.96	20.00	-7.96	Т3	3.0, 2.6
IEEE	Axidi	20MHz	1	40	-6.41	-34.41	-01.05	1.32	28.00	20.00	-8.00	Т3	3.0, 2.0
802.11n													
002.1111	Radial	40MHz	1	38	-12.65	-39.55	-61.86	N/A	26.90	20.00	-6.90	Т3	2.6. 3.2
	Natial	20MHz	1	40	-13.18	-40.21	-01.00	IWA	27.03	20.00	-7.03	Т3	2.0, 3.2

Table 9-12 Raw Data Results for EDGE (OTT VoIP)

-								• • •				
	Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	EDGE850	Axial	190	6.46	-19.64	-61.65	1.22	26.10	20.00	-6.10	Т3	3.0, 2.6
	EDGE050	Radial	190	-2.84	-33.48	-61.86	N/A	30.64	20.00	-10.64	T4	2.6, 2.2
	EDGE1900	Axial	661	6.54	-27.01	-61.65	1.42	33.55	20.00	-13.55	T4	3.0, 2.6
	EDGE 1900	Radial	661	-2.09	-35.08	-61.86	N/A	32.99	20.00	-12.99	T4	2.6, 2.2

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 21 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 31 of 75

Table 9-13 Raw Data Results for HSPA (OTT VoIP)

			1144	Duta IX	counto ioi	11017	011 4011	,			
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
HSPA V	Axial	4183	6.34	-33.11	-61.65	1.50	39.45	20.00	-19.45	T4	3.0, 2.6
nora v	Radial	4183	-2.56	-36.89	-61.86	N/A	34.33	20.00	-14.33	T4	2.6, 2.2
HSPA IV	Axial	1412	6.58	-32.79	-61.65	1.12	39.37	20.00	-19.37	T4	3.0, 2.6
HOFAIV	Radial	1412	-2.57	-37.40	-61.86	N/A	34.83	20.00	-14.83	T4	2.6, 2.2
HSPA II	Axial	9400	6.42	-33.43	-61.65	1.35	39.85	20.00	-19.85	T4	3.0, 2.6
HOFAII	Radial	9400	-2.81	-37.39	-61.86	N/A	34.58	20.00	-14.58	T4	2.6, 2.2

Table 9-14 Raw Data Results for LTE B25 (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	26365	6.63	-30.52		0.85	37.15	20.00	-17.15	T4	
		15MHz	26615	6.54	-29.93		1.21	36.47	20.00	-16.47	T4	
		15MHz	26365	6.27	-30.62		1.20	36.89	20.00	-16.89	T4	
	Axial	15MHz	26115	6.30	-30.03	-61.65	1.38	36.33	20.00	-16.33	T4	3.0, 2.6
	Axiai	10MHz	26365	6.47	-30.74	-01.05	1.32	37.21	20.00	-17.21	T4	3.0, 2.0
		5MHz	26365	6.53	-31.94		1.56	38.47	20.00	-18.47	T4	
		3MHz	26365	6.42	-32.54		1.76	38.96	20.00	-18.96	T4	
LTE Band 25		1.4MHz	26365	6.50	-31.00		1.46	37.50	20.00	-17.50	T4	
LIE Ballu 25		20MHz	26365	-2.90	-37.12			34.22	20.00	-14.22	T4	
		15MHz	26365	-2.81	-37.09			34.28	20.00	-14.28	T4	
		10MHz	26640	-2.99	-37.71			34.72	20.00	-14.72	T4	
	Radial	10MHz	26365	-2.80	-36.98	-61.86	N/A	34.18	20.00	-14.18	T4	2.6, 2.2
	Radiai	10MHz	26090	-3.05	-37.37	-01.00	IVA	34.32	20.00	-14.32	T4	2.0, 2.2
		5MHz	26365	-2.54	-37.34			34.80	20.00	-14.80	T4	
		3MHz	26365	-2.73	-37.89			35.16	20.00	-15.16	T4	
		1.4MHz	26365	-2.69	-37.44			34.75	20.00	-14.75	T4	

Table 9-15 Raw Data Results for 2.4GHz WIFI (OTT VoIP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	7.01	-33.81		1.33	40.82	20.00	-20.82	T4	
	Axial	6	6.71	-33.95	-61.65	1.48	40.66	20.00	-20.66	T4	3.0, 2.6
IEEE		11	6.93	-33.99		1.43	40.92	20.00	-20.92	T4	
802.11b		1	0.11	-40.75			40.86	20.00	-20.86	T4	
	Radial	6	0.23	-38.40	-61.86	N/A	38.63	20.00	-18.63	T4	2.6, 3.2
		11	0.10	-39.46			39.56	20.00	-19.56	T4	
IEEE	Axial	6	6.90	-34.28	-61.65	1.29	41.18	20.00	-21.18	T4	3.0, 2.6
802.11g	Radial	6	-0.07	-39.35	-61.86	N/A	39.28	20.00	-19.28	T4	2.6, 3.2
IEEE	Axial	6	7.01	-34.31	-61.65	1.19	41.32	20.00	-21.32	T4	3.0, 2.6
802.11n	Radial	6	0.20	-40.31	-61.86	N/A	40.51	20.00	-20.51	T4	2.6, 3.2

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 32 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 32 01 73

Table 9-16 Raw Data Results for 5GHz WIFI 802.11a (OTT VoIP)

					oouito i				(,			
Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	1	40	7.23	-33.65		1.28	40.88	20.00	-20.88	T4	
		20MHz	2A	56	7.21	-34.16		1.11	41.37	20.00	-21.37	T4	
	Axial	20MHz	2C	116	6.76	-33.99	-61.65	1.16	40.75	20.00	-20.75	T4	3.0, 2.6
	Axidi	20MHz	3	149	6.86	-33.30	-01.05	1.18	40.16	20.00	-20.16	T4	3.0, 2.0
		20MHz	3	157	6.77	-33.76		1.08	40.53	20.00	-20.53	T4	
IEEE		20MHz	3	165	6.88	-33.94		1.25	40.82	20.00	-20.82	T4	
802.11a													
002.114		20MHz	1	40	0.24	-37.26			37.50	20.00	-17.50	T4	
		20MHz	2A	52	0.15	-36.83			36.98	20.00	-16.98	T4	
	Radial	20MHz	2A	56	-0.13	-37.54	-61.86	N/A	37.41	20.00	-17.41	T4	2.6, 3.2
	Radiai	20MHz	2A	64	-0.12	-36.98	-01.00	IN/A	36.86	20.00	-16.86	T4	2.0, 3.2
		20MHz	2C	116	0.23	-38.08			38.31	20.00	-18.31	T4	
		20MHz	3	157	0.14	-37.36			37.50	20.00	-17.50	T4	

Table 9-17 Raw Data Results for 5GHz WIFI 802.11n (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	7.10	-35.64	-61.65	1.45	42.74	20.00	-22.74	T4	3.0, 2.6
.ccc	Axidi	20MHz	1	40	7.02	-34.16	-01.05	1.37	41.18	20.00	-21.18	T4	3.0, 2.0
IEEE 802.11n													
002.1111	Radial	40MHz	1	38	0.17	-39.01	-61.86	N/A	39.18	20.00	-19.18	T4	2.6, 3.2
	Radiai	20MHz	1	40	0.16	-37.85	-01.00	N/A	38.01	20.00	-18.01	T4	2.0, 3.2

FCC ID: ZNFX220TB	PCTEST**	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 33 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		

II. **Test Notes**

A. General

- 1. Phone Condition: Mute on: Backlight off: Max Volume: Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- Hearing Aid Mode (Phone→Call Settings→Additional Settings→Hearing aids) was set to ON for Frequency Response compliance
- 4. Speech Signal: ITU-T P.50 Artificial Voice
- 5. Bluetooth and WIFI were disabled for 2G/3G/4G modes while testing.
- 6. Licensed data modes and Bluetooth were disabled for WIFI modes while testing.
- 7. The Margin from FCC limit column indicates a margin from the FCC limit for compliance (T3).

B. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);

C. UMTS

- 1. Power Configuration: TPC= "All 1s";
- 2. Vocoder Configuration: AMR 12.2 kbps (UMTS);

D. LTE FDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 0RB offset
- 3. Vocoder Configuration: WB AMR 6.60kbps
- 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 71 at 15MHz is the worst-case for the Axial probe orientation. LTE Band 26 at 15MHz bandwidth is the worst-case for the Radial probe orientation.

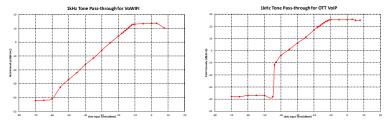
E. WIFI

- 1. Radio Configuration
 - a. 802.11b: DSSS, 1Mbps
 - b. 802.11g/a: BPSK, 6Mbps
 - c. 802.11n 20MHz: QPSK, 19.5Mbps
 - d. 802.11n 40MHz: QPSK, 40.5Mbps
- 2. Vocoder Configuration: WB AMR 6.6kbps
- 3. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. 802.11b is the worst-case for the Axial and Radial probe orientation.
- 4. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. 802.11a (U-NII 2C) is the worst-case for the Axial probe orientation. 802.11a (U-NII 2A) is the worst-case for the Radial probe orientation.

F. OTT VolP


- 1. Vocoder Configuration: 6kbps
- 2. EDGE Configuration

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 34 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		


- a. MCS Index: 7
- b. Number of TX slots: 2
- 3. HSPA Configuration:
 - a. Release: 6
 - b. 3GPP 34.121 Subtest 1
- 4. LTE FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 0RB offset
 - c. LTE Band 25 was the worst-case band from Table 7-5 and was used to test both Axial and Radial probe orientations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 25 at 15MHz is the worst-case for the Axial probe orientation. LTE Band 25 at 10MHz bandwidth is the worst-case for the Radial probe orientation.
- 5. WIFI Configuration:
 - a. Radio Configuration
 - i. 802.11b: DSSS, 1Mbps
 - ii. 802.11g/a: BPSK, 6Mbps
 - iii. 802.11n 20MHz: QPSK, 19.5Mbps
 - iv. 802.11n 40MHz: QPSK, 40.5Mbps
 - b. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. 802.11b is the worst-case for the Axial and Radial probe orientation.
 - c. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. 802.11a (U-NII 3) is the worst-case for the Axial probe orientation. 802.11a (U-NII 2A) is the worst-case for the Radial probe orientation.

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 35 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		

III. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE over IMS. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -20 dBm0 for VoWIFI over IMS and OTT VoIP. This measurement was taken in the axial configuration above the maximum location.

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 36 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		

IV. T-Coil Validation Test Results

Table 9-18
Helmholtz Coil Validation Table of Results – 02/18/2019

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.856	PASS
Environmental Noise	< -58 dBA/m	-62.74	PASS
Frequency Response, from limits	> 0 dB	0.80	PASS

Table 9-19
Helmholtz Coil Validation Table of Results – 02/25/2019

ltem	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.763	PASS
Environmental Noise	< -58 dBA/m	-61.65	PASS
Frequency Response, from limits	> 0 dB 0.50		PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.030	PASS
Environmental Noise	< -58 dBA/m	-61.86	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 37 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 37 01 73

V. ABM1 Magnetic Field Distribution Scan Overlays

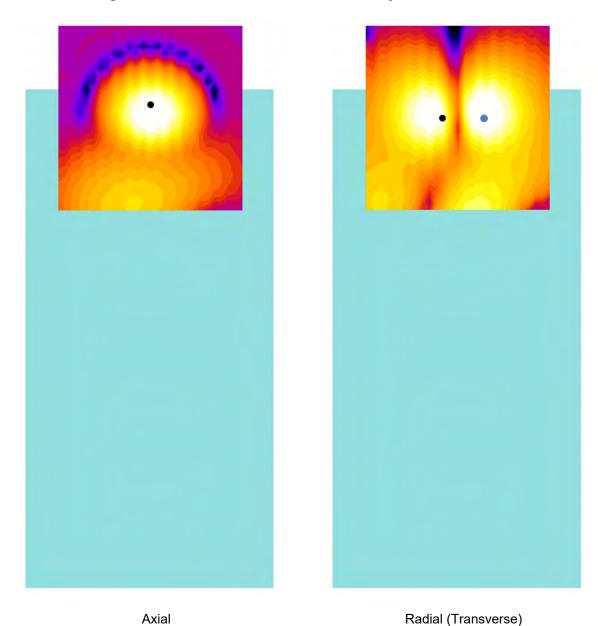


Figure 9-1
T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots. The VoWIFI and WIFI OTT VoIP radial measurement location is indicated by a blue cursor.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 38 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 30 01 73

© 2019 PCTEST Engineering Laboratory, Inc.

REV 3.3.M

10. MEASUREMENT UNCERTAINTY

Table 10-1 Uncertainty Estimation Table

Contribution	Data +/- %	Data +/- dB	Data Type Probability distribution Di		Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)							0.71
Expanded uncertainty (k=2), 95% confidence level							1.31

Notes:

- 1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.
- All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 20 of 75
1M1902110024-11 7NF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 39 of 75

EQUIPMENT LIST 11.

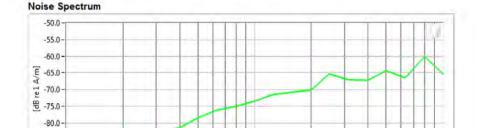
Table 11-1 Equipment List

=4=						
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Listen	SoundConnect	Microphone Power Supply	9/6/2018	Annual	9/6/2020	0899-PS150
Listen	SoundCheck	Acoustic Analyzer System - Audio Interface	9/6/2018	Biennial	9/6/2020	23792992
Listen	SoundCheck	Acoustic Analyzer System - Laptop	9/6/2018	Biennial	9/6/2020	2655082910
Rohde & Schwarz	CMW500	Radio Communication tester	8/3/2018	Annual	8/3/2019	140144
Rohde & Schwarz	CMW500	Radio Communication tester	4/20/2018	Annual	4/20/2019	128635
Rohde & Schwarz	CMW500	Radio Communication tester	5/29/2018	Annual	5/29/2019	161662
Seekonk	NC-100	Torque Wrench (8" lb)	5/10/2018	Biennial	5/10/2020	21053
TEM	Axial T-Coil Probe	Axial T-Coil Probe	9/19/2018	Annual	9/19/2020	TEM-1123
TEM	Radial T-Coil Probe	Radial T-Coil Probe	9/19/2018	Annual	9/19/2020	TEM-1129
TEM	Helmholtz Coil	Helmholtz Coil	10/10/2018	Annual	10/10/2020	SBI 1052
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM		HAC Positioner	N/A		N/A	N/A

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 40 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 40 01 75

TEST DATA 12.

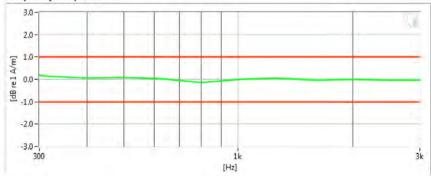
FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 41 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 41 0175


DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:


- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI1052; Calibrated: 10/10/2018

1k [Hz]

Frequency Response

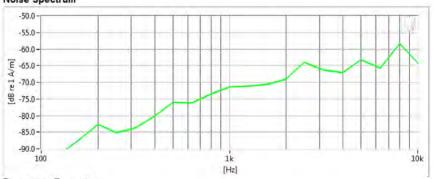
-85.0 --90.0 -100

Results

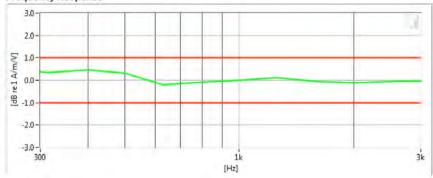
Verification 1kHz Intensity	-9,856 dE	3	Max/Min	-9.5/-10.5
Verification ABM2	-62.74 df	3 😵	Maximum	-58.0
Frequency Response Margin	800m df	3	Tolerance curves	Aligned Data

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 42 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 42 01 75

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1123; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI1052; Calibrated: 10/10/2018

Noise Spectrum

Frequency Response

Results

Verification 1kHz Intensity	-9.763	dB	0	Max/Min	-9.5/-10.5
Verification ABM2	-61.65	dB	9	Maximum	-58.0
Frequency Response Margin	500m	dB	0	Tolerance curves	Aligned Data

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 42 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 43 of 75

DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

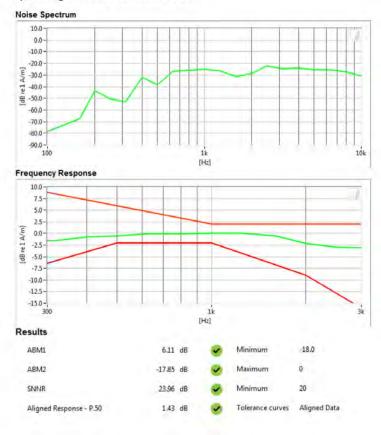
Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1129; Calibrated: 09/19/2018
- Helmholtz Coil SN: SBI1052; Calibrated: 10/10/2018

Noise Spectrum -50.0 -55,0 -60.0 re1 A/m] -65.0 -70.0 B -75.0 -80.0 -85.0 -90,0 100 [Hz] Frequency Response 3.0 2.0 re1 A/m/V] 0.0 置-1.0--2.0 -3.0-[Hz] Results Max/Min -9.5/-10.5 Verification 1kHz Intensity -10.03 dB -58.0 Verification ABM2 Maximum -61.86 dB Frequency Response Margin 700m dB Tolerance curves Aligned Data

FCC ID: ZNFX220TB	PETEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dags 44 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 44 of 75

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

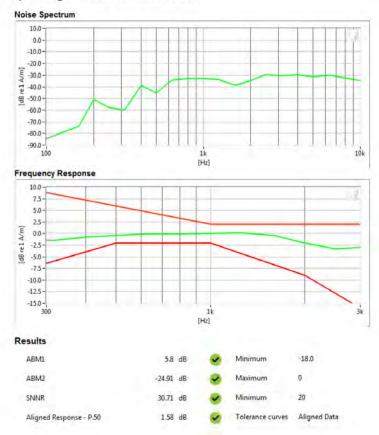
Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: GSM850
- · Channel: 190
- Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 45 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 45 01 75

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

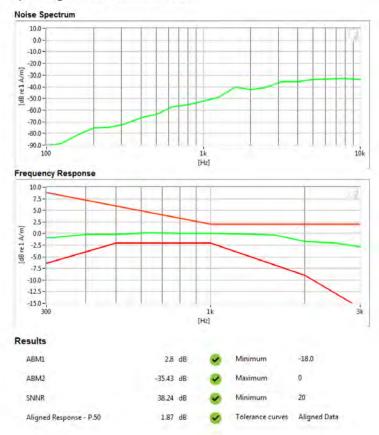
Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: GSM1900
- · Channel: 810
- Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 46 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 40 01 75

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

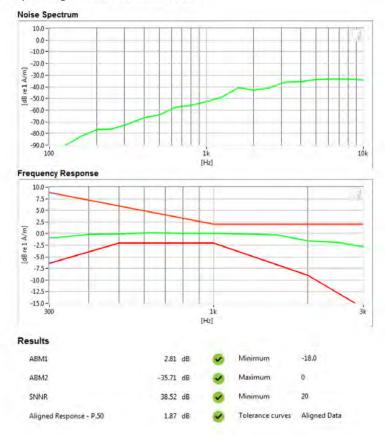
Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS Band V
- Channel: 4183
- Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFX220TB	PETEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 47 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 47 01 75

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

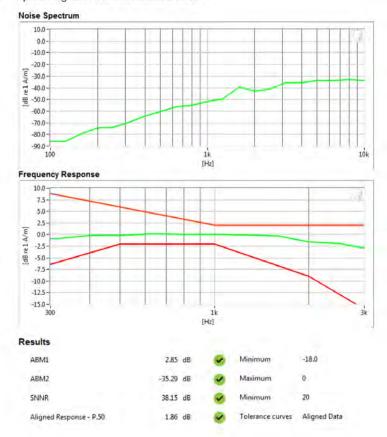
Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: UMTS Band IV
- Channel: 1513
- Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFX220TB	PCTEST**	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 48 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		· ·

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

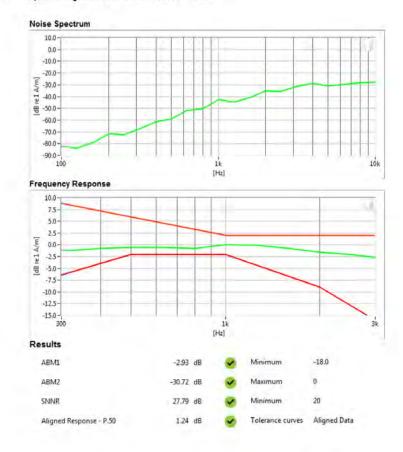
Test Configuration:

- Mode: UMTS Band II
- Channel: 9262
- Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFX220TB	PCTEST**	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 49 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		

Type: Portable Handset Serial: 00740

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

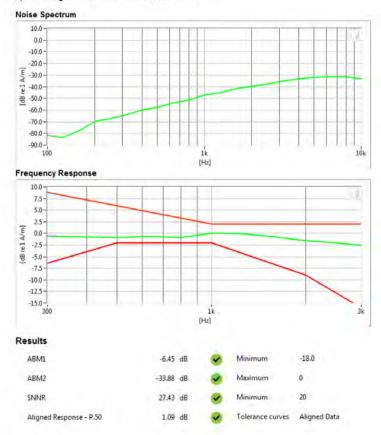
Test Configuration:

Mode: LTE FDD Band 71Bandwidth: 15MHzChannel: 133297

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFX220TB	PCTEST**	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 50 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		<u> </u>

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- Mode: 2.4GHz WIFI Standard: IEEE 802.11b
- Channel: 1
- Speech Signal: ITU-T P.50 Artificial Voice

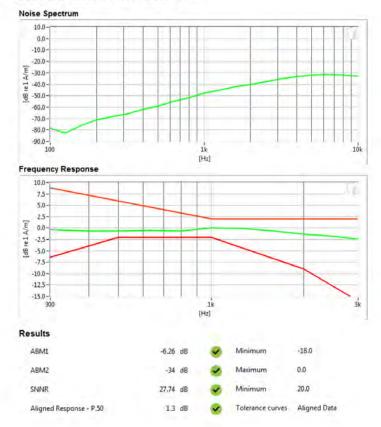
FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga E1 of 7E
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 51 of 75

Type: Portable Handset Serial: 00740

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018


Test Configuration:

Mode: 5GHz WIFI

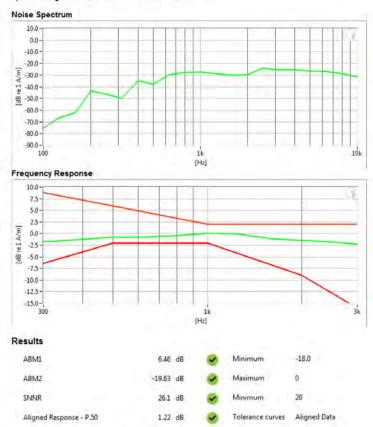
Standard: IEEE 802.11a (U-NII 2C)

Bandwidth: 20MHzChannel: 116

Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 52 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 32 01 73

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 09/19/2018

Test Configuration:

- VolP Application: Google Duo
- Mode: EDGE 850Channel: 190
- Speech Signal: ITU-T P.50 Artificial Voice

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 53 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 33 01 73

Type: Portable Handset Serial: 00740

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: GSM 850Channel: 190

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 54 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 54 of 75

Type: Portable Handset Serial: 00740

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: GSM 1900Channel: 810

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 55 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 55 of 75

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: UMTS Band V
Channel: 4233

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 56 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 50 of 75

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: UMTS Band IV
Channel: 1513

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogo 57 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 57 of 75

Type: Portable Handset Serial: 00740

Measurement Standard: ANSI C63.19-2011

Equipment:

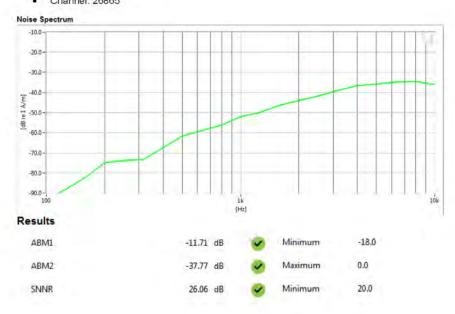
Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: UMTS Band II
Channel: 9262

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 58 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 56 01 75

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

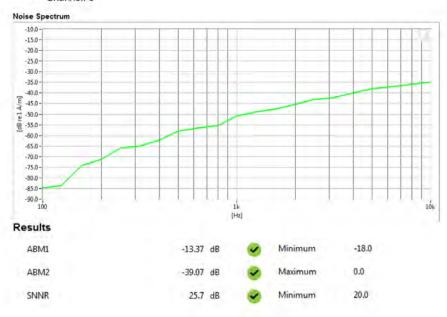
Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

Mode: LTE FDD Band 26Bandwidth: 15MHzChannel: 26865

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 59 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 59 01 75

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

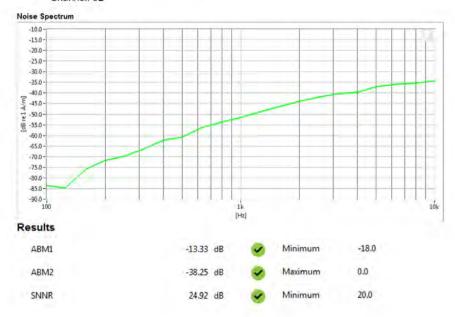
Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: 2.4GHz WIFIStandard: IEEE 802.11b
- Channel: 6

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 60 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 60 of 75

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

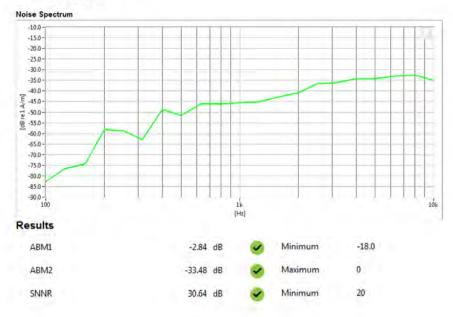
Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- Mode: 5GHz WIFI
- Standard: IEEE 802.11a (U-NII 2A)
- Channel: 52

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		① LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 61 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 61 0175

Type: Portable Handset Serial: 00740


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 09/19/2018

Test Configuration:

- VolP Application: Google Duo
- Mode: EDGE 850
- Channel: 190

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 62 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 62 01 75

13. CALIBRATION CERTIFICATES

FCC ID: ZNFX220TB	HAC (T-COIL) TEST REPORT		LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 63 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Fage 03 01 75

Certificate of Calibration

for

AXIAL T COIL PROBE

Manufactured by:

TEM CONSULTING LP

Model No:

AXIAL T COIL PROBE

Serial No: Calibration Recall No: TEM-1123 29156

Submitted By:

Customer:

Andrew Harwell

Company:

PCTest Engineering Lab

Address: 6660-B Dobbin Road

Columbia

MD 21045

The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

AXIAL T C TEM C

VOA+

Within (X)

tolerance of the indicated specification. See attached Report of Calibration.

Upon receipt for Calibration, the instrument was found to be:

The information supplied relates to the calibrated item listed above. West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.

Note: With this Certificate, Report of Calibration is included.

Approved by: Fc

Calibration Date:

19-Sep-18

Felix Christopher (QA Mgr.)

Certificate No:

QA Doc. #1051 Rev. 2.0 10/1/01

29156 -2

Certificate Page 1 of 1

ISO/IEC 17025:2005

West Caldwell Calibration Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

ACCREDITED

Calibration Lab. Cert. # 1533.01

 FCC ID: ZNFX220TB
 HAC (T-COIL) TEST REPORT
 Approved by: Quality Manager

 Filename:
 Test Dates:
 DUT Type:

 1M1902110024-11.ZNF-R1
 02/18/2019 - 02/26/2019
 Portable Handset

© 2019 PCTEST Engineering Laboratory, Inc.

ACCREDITED

Calibration Lab. Cert. # 1533.01

ISO/IEC 17025: 2005

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

for

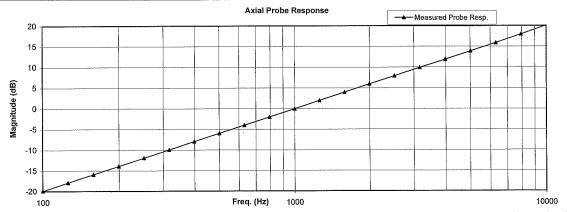
TEM Consulting LP Axial T Coil Probe Company: PCTest Enginering Lab

Model No.: Axial T Coil Probe

Serial No.: TEM-1123

I. D. No.: XXXX

Calibration results: Probe Sensitivity measured with Helmholtz Coil Before & after data same: ... X ... Helmholtz Coil; the number of turns on each coil; 10 Nο 0.204 Laboratory Environment: the radius of each coil, in meters; m 0.08 Ambient Temperature: 22.7 °C Α the current in the coils, in amperes.; 7.09 Ambient Humidity: 52.1 % RH Helmholtz Coil Constant; A/m/V Helmholtz Coil magnetic field; 5.95 A/m Ambient Pressure: 99.326 Calibration Date: 19-Sep-2018 Probe Sensitivity at 1000 Hz. Calibration Due: -59.89 dBV/A/m. Report Number: 29156 -2 1.013 mV/A/m Control Number: 29156 Probe resistance 903 Ohms


The above listed instrument meets or exceeds the tested manufacturer's specifications.

This Calibration is traceable through NIST test numbers:

683/284413-14

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISØ)17025

Cal. Date: 19-Sep-2018

Measurements performed by:

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 1 of 2

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Page 65 of 75	
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 03 01 73	

© 2019 PCTEST Engineering Laboratory, Inc.

HCATEMC_TEM-1123_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe Company: PCTest Enginering Lab

for Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Test	Function Tolerance		nce	Measured values		
				Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-59.89		
	-		dB			
2.0	Probe Level Linearity		6	6.03		
		Ref. (0 dB)	0	0.00		
•			-6	-6.03		
			-12	-12.05		
	· · · · · · · · · · · · · · · · · · ·	***************************************	Hz			
3.0	Probe Frequency Response		100	-19.9		
			126	-17.9		
			158	-15.9		
			200	-13.9		ļ
			251	-11.9		
			316	-9.9		
			398	-7.9		
			501	-6.0		
			631	-4.0		
			794	-2.0		
		Ref. (0 dB)	1000	0.0		
			1259	2.0		
			1585	4.0		
			1995	5.9		
			2512	7.9		
			3162	9.9		
			3981	11.9		
		5012	13.9			
		6310	15.9			
			7943	18.0		
			10000	20.1		

Instruments used for o	alibration:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018 Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

				i i
FOO ID. THEYOGOTO		HAC (T COUL) TEST DEPORT	(A) 1.C	Approved by:
FCC ID: ZNFX220TB	AND THE PARTY OF THE PARTY AND	HAC (T-COIL) TEST REPORT	LG LG	Quality Manager
Filename:	Test Dates:	DUT Type:		Page 66 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 00 01 75

© 2019 PCTEST Engineering Laboratory, Inc.

Certificate of Calibration

RADIAL T COIL PROBE

Manufactured by:

TEM CONSULTING LP

Model No: Serial No:

RADIAL T COIL PROBE TEM-1129

Calibration Recall No:

29156

Submitted By:

Customer:

Andrew Harwell

Company: Address:

PCTest Engineering Lab 6660-B Dobbin Road

Columbia

MD 21045

The subject instrument was calibrated to the indicated specification using standards traceable to the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

RADIAL T TEM C

Upon receipt for Calibration, the instrument was found to be:

Within

tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above. West Caldwell Calibration Laboratories' calibration control system meets the requirements, ISO 10012-1 MIL-STD-45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2008 and ISO 17025.

Note: With this Certificate, Report of Calibration is included.

Approved by: FC

Calibration Date:

19-Sep-18

Felix Christopher (QA Mgr.)

Certificate No:

QA Doc. #1051 Rev. 2.0 10/1/01

29156 -1

West Caldwell

Certificate Page 1 of 1

Calibration uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

1M1902110024-11.ZNF-R1 02/18/2019 - 02/26/2019 © 2019 PCTEST Engineering Laboratory, Inc.

FCC ID: ZNFX220TB

HAC (T-COIL) TEST REPORT

LG

Quality Manager

Approved by:

DUT Type:

Portable Handset

Page 67 of 75

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

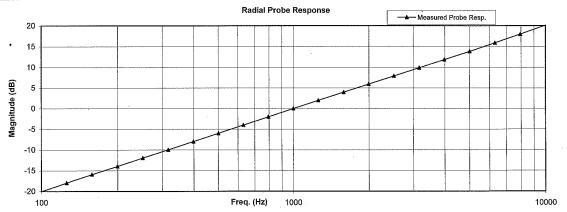
for

TEM Consulting LP Radial T Coil Probe ,Company: PCTest Engineering Lab Model No.: Radial T Coil Probe

Serial No.: TEM-1129

I. D. No.: XXXX

Probe Sensitivity measured wit	h Helmhol	tz Coil			
Helmholtz Coil;			Before & after data same:X		
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Environment:		
the current in the coils, in amperes.;	0.08	Α	Ambient Temperature:	22.7	°C
Helmholtz Coil Constant;	7.09	A/m/V	Ambient Humidity:	52.1	% RH
Helmholtz Coil magnetic field;	5.95	A/m	Ambient Pressure:	99.326	kPa
			Calibration Date:	19-Sep-2018	3
Probe Sensitivity at	1000	Hz.	Re-calibration Due:		
was	-60.37	dBV/A/m	Report Number:	2915	6 -1
	0.958	mV/A/m	Control Number:	2915	6
Probe resistance	886	Ohms			


The above listed instrument meets or exceeds the tested manufacturer's specifications.

This Calibration is traceable through NIST test numbers:

683/284413-14

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISQ 17025

Cal. Date: 19-Sep-2018

Measurements performed by:

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

James Zhu
Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	1 LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 68 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 00 01 75

© 2019 PCTEST Engineering Laboratory, Inc.

HCRTEMC_TEM-1129_Sep-19-2018

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab

for Model No.: Radial T Coil Probe

Serial No.: TEM-1129

Function	Tolerance		Measured values		
			Before	Out	Remarks
Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.37		
		dB			
Probe Level Linearity		6	6.03		
	Ref. (0 dB)	0	0.00		
		-6	-6.03		
		-12	-12.05		
		Hz			
Probe Frequency Response					
					İ
		501	-6.0		
					İ
	Ref. (0 dB)	1000	0.0		
		1259	2.0		
		1585	4.0		
		1995	6.0		
		2512	7.9		
		3162	9.9		
		3981	11.9		
		5012	13.9		
		6310	15.9		
		7943	18.0		
		10000	20.1		
	Probe Sensitivity at Probe Level Linearity Probe Frequency Response	Probe Sensitivity at 1000 Hz. Probe Level Linearity Ref. (0 dB)	Probe Sensitivity at 1000 Hz. dBV/A/m Probe Level Linearity 6 6 Ref. (0 dB) 0 -6 -12 Probe Frequency Response 100 126 158 200 251 316 398 501 631 794 Ref. (0 dB) 1000 1259 1585 1995 2512 3162 3981 5012 6310 7943	Probe Sensitivity at 1000 Hz. dBV/A/m -60.37 Probe Level Linearity 6 6 6.03 Ref. (0 dB) 0 0.00 -6 -6.03 -12 -12.05 Probe Frequency Response 100 -20.0 126 -17.9 158 -15.9 200 -14.0 251 -12.0 316 -10.0 398 -8.0 501 -6.0 631 -4.0 794 -2.0 Ref. (0 dB) 1000 0.0 1259 2.0 Ref. (0 dB) 1000 0.0 1259 2.0 1585 4.0 1995 6.0 1995 6.0 2512 7.9 3162 9.9 3981 11.9 5012 13.9 6310 15.9 7943 18.0	Probe Sensitivity at 1000 Hz. dBV/A/m -60.37 Probe Level Linearity Ref. (0 dB) 0 0.00 -6 6.03 -12 -12.05 Probe Frequency Response Hz Probe Frequency Response 100 -20.0 126 -17.9 158 -15.9 200 -14.0 251 -12.0 316 -10.0 398 -8.0 501 -6.0 631 -4.0 794 -2.0 Ref. (0 dB) 1000 0.0 1259 2.0 1855 4.0 1995 6.0 2512 7.9 3162 9.9 3981 11.9 5012 13.9 6310 15.9 7943 18.0

Instruments used for o	alibration:		Date of Cal.	Traceability No.	Due Date
' HP	34401A	S/N US360641	25-Jul-2018	,287708	25-Jul-2019
HP	34401A	S/N US361024	25-Jul-2018	,287708	25-Jul-2019
HP	33120A	S/N US360437	25-Jul-2018	,287708	25-Jul-2019
B&K	2133	S/N 1583254	25-Jul-2018	683/284413-14	25-Jul-2019

Cal. Date: 19-Sep-2018

Tested by: James Zhu

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

				İ
FCC ID. ZNEVOOTD	@ PCTEST	HAC (T COIL) TEST DEDORT	10	Approved by:
FCC ID: ZNFX220TB	THE RESERVE OF THE PARTY AND	HAC (T-COIL) TEST REPORT	LG LG	Quality Manager
Filename:	Test Dates:	DUT Type:		Page 69 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		rage 09 01 75

© 2019 PCTEST Engineering Laboratory, Inc.

14. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: ZNFX220TB	PCTEST	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dogo 70 of 75	
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 70 of 75	

15. REFERENCES

- ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v05," September 13, 2017
- 3. FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
- FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify
 Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 7. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells," U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- 12. Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 13. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 15. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- 19. Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dogg 71 of 75
1M1902110024-11 7NF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 71 of 75

- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 23. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 25. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 28. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: ZNFX220TB	PCTEST*	HAC (T-COIL) TEST REPORT	LG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 72 of 75
1M1902110024-11.ZNF-R1	02/18/2019 - 02/26/2019	Portable Handset		Page 72 01 75