FCC Test Report (Spot Check) Report No.: RF200312C06-1 FCC ID: PY320100481 Original FCC ID: PY319300461 Test Model: CAX25 Received Date: Jan. 08, 2020 Test Date: Jun. 15 ~ Jun. 17, 2020 Issued Date: Jun. 30, 2020 Applicant: NETGEAR, Inc. Address: 350 East Plumeria Drive San Jose, CA 95134 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN FCC Registration / 788550 / TW0003 **Designation Number:** This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. Report No.: RF200312C06-1 Page No. 1 / 34 Report Format Version:6.1.2 ## **Table of Contents** | R | Release Control Record | | | | |---|---|---|--------------------|--| | 1 | C | Certificate of Conformity | 4 | | | 2 | s | Summary of Test Results | 5 | | | | 2.1
2.2 | Measurement Uncertainty | | | | 3 | G | General Information | 6 | | | | 3.4 | General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test General Description of Applied Standards and References | 8
9
11
11 | | | 4 | Т | est Types and Results | . 13 | | | | 4.1
4.1.1 | Radiated Emission and Bandedge MeasurementLimits of Radiated Emission and Bandedge Measurement | . 13
. 13 | | | | 4.1.2 | Test Instruments | . 14 | | | | | Test Procedures Deviation from Test Standard | | | | | | Test Setup | | | | | | EUT Operating Conditions | | | | | | Test Results | | | | | 4.2 | Conducted Emission Measurement | | | | | | Limits of Conducted Emission Measurement | | | | | | Test Procedures | | | | | | Deviation from Test Standard | | | | | | Test Setup | | | | | | EUT Operating Conditions | | | | | 4.2. <i>1</i>
4.3 | Test Results Transmit Power Measurement | | | | | - | Limits of Transmit Power Measurement | | | | | | Test Setup | | | | | | Test Instruments | | | | | 4.3.4 | Test Procedure | . 26 | | | | | Deviation from Test Standard | | | | | | EUT Operating Conditions | | | | | | Test Result | | | | 5 | P | rictures of Test Arrangements | . 31 | | | A | Annex A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)3 | | | | | A | Annex B- Band Edge Measurement | | | | | A | ppend | lix – Information of the Testing Laboratories | 34 | | ## **Release Control Record** | Issue No. | Description | Date Issued | |---------------|------------------|---------------| | RF200312C06-1 | Original release | Jun. 30, 2020 | ## 1 Certificate of Conformity Product: AX2400 WiFi Cable Modem Router Brand: Netgear Test Model: CAX25 Sample Status: Mass product **Applicant:** NETGEAR, Inc. **Test Date:** Jun. 15 ~ Jun. 17, 2020 **Standards:** 47 CFR FCC Part 15, Subpart E (Section 15.407) ANSI C63.10:2013 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report. Celine Chou / Senior Specialist Approved by: Jun. 30, 2020 Bruce Chen / Senior Project Engineer ## 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart E (Section 15.407) | | | | | |--|---|--------|---|--| | FCC
Clause | Test Item | Result | Remarks | | | 15.407(b)(6) | AC Power Conducted Emissions | Pass | Meet the requirement of limit. Minimum passing margin is -15.44dB at 0.15000MHz. | | | 15.407(b)
(1/2/3/4(i/ii)/6) | Radiated Emissions & Band
Edge Measurement | Pass | Meet the requirement of limit. Minimum passing margin is -2.2dB at 5150.00MHz. | | | 15.407(a)(1/2/3) | Max Average Transmit Power | Pass | Meet the requirement of limit. | | | | Occupied Bandwidth Measurement | - | Reference only. | | | 15.407(a)(1/2/3) | Peak Power Spectral Density | N/A | Refer to note 1 | | | 15.407(e) | 6dB bandwidth | N/A | Refer to note 1 | | | 15.407(g) | Frequency Stability | N/A | Refer to note 1 | | | 15.203 | Antenna Requirement | Pass | Antenna connector is IPEX not a standard connector. | | ## Note: - 1. This report is a partial report. Therefore, only Output Power, AC Power Conducted Emission and Radiated Emissions were verified and recorded in this report. Other testing data please refer to the original BV CPS report no.: RF190729C13-1. - 2. For U-NII-3 band compliance with rule part 15.407(b)(4)(i), the OOBE test plots were recorded in Annex A. - 3. For U-NII-1 band compliance with rule 15.407(b) of the band-edge items, the test plots were recorded in Annex B. Test Procedures refer to report 4.1.3. - 4. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. ## 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|-----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 2.79 dB | | | 9kHz ~ 30MHz | 3.04 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 200MHz | 3.63 dB | | | 200MHz ~1000MHz | 3.64 dB | | Radiated Emissions above 1 GHz | 1GHz ~ 18GHz | 2.29 dB | | Naulated Ellissions above 1 GHZ | 18GHz ~ 40GHz | 2.29 dB | ## 2.2 Modification Record There were no modifications required for compliance. #### 3 General Information ## 3.1 General Description of EUT | Product | AX2400 WiFi Cable Modem Router | |-----------------------|---| | Brand | Netgear | | Test Model | CAX25 | | Sample Status | Mass product | | Power Supply Rating | 12Vdc from adapter | | Madulatian Tuna | 256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM | | Modulation Type | 1024QAM for OFDMA | | Modulation Technology | OFDM, OFDMA | | | 802.11a: 54/48/36/24/18/12/9/6Mbps | | Transfer Rate | 802.11n: up to 450Mbps | | Transier Rate | 802.11ac: up to 1300Mbps | | | 802.11ax: up to 1800Mbps | | Operating Frequency | 5180 ~ 5240MHz, 5745 ~ 5825MHz | | | 5180 ~ 5240MHz: | | | 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 4 | | | 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 2 | | Number of Channel | 802.11ac (VHT80), 802.11ax (HE80): 1 | | Number of Chamiler | 5745 ~ 5825MHz: | | | 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 5 | | | 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 2 | | | 802.11ac (VHT80), 802.11ax (HE80): 1 | | | CDD Mode: | | | 5180 ~ 5240MHz: 870.952mW | | Output Power | 5745 ~ 5825MHz: 945.896mW | | Output i owei | Beamforming Mode: | | | 5180 ~ 5240MHz: 860.871mW | | | 5745 ~ 5825MHz: 814.471mW | | Antenna Type | Refer to note | | Antenna Connector | Refer to note | | Accessory Device | Adapter | | Cable Supplied | 1.0m shielded Ethernet cable without core | #### Note: - 1. Exhibit prepared for FCC Spot Check Verification report, the format, test items and amount of spot-check test data are decided by applicant's engineering judgment, for more details please refer to declaration letter exhibit. Radiated emission and power line conducted emission verification test based on the worst output power channel. - 2. This report is a partial report. Therefore, only Output Power, AC Power Conducted Emission and Radiated Emissions were verified and recorded in this report. Other testing data please refer to the original BV CPS report no.: RF190729C13-1. # 3. The EUT incorporates a MIMO function. Physically, the EUT provides 3 completed transmitters and 3 receivers. | Modulation Mode | Beamforming Mode | TX Function | |------------------|------------------|-------------| | 802.11a | Not Support | 3TX | | 802.11n (HT20) | Support | 3TX | | 802.11n (HT40) | Support | 3TX | | 802.11ac (VHT20) | Support | 3TX | | 802.11ac (VHT40) | Support | 3TX | | 802.11ac (VHT80) | Support | 3TX | | 802.11ax (HE20) | Support | 3TX | | 802.11ax (HE40) | Support | 3TX | | 802.11ax (HE80) | Support | 3TX |
^{*} The bandwidth and modulation are similar for HT20/HT40 on 802.11n mode and VHT20/VHT40/VHT80 on 802.11ac mode and HE20/HE40/HE80 on 802.11ax mode. Therefore the investigated worst case is the representative mode in test report. (Final test mode refer section 3.2.1) 4. The EUT consumes power from the following adapters. | - I U I | | | |--------------|---|--| | Adapter 1 | | | | Brand | NETGEAR | | | Model | 2ABN042F 1 | | | Input Power | 100-120Vac, 50/60Hz, 1.3A | | | Output Power | 12Vdc, 3.5A | | | Power Line | 1.8m cable without core attached on adapter | | | Adapter 2 | | | |--------------|---|--| | Brand | NETGEAR | | | Model | AD2150F10 | | | Input Power | 100-120Vac, 50/60Hz, 1.0A | | | Output Power | 12Vdc, 3.5A | | | Power Line | 1.8m cable without core attached on adapter | | ^{*} Adapter 1 was chosen for final test and presented in the test report. 5. The following antennas were provided to the EUT. | Ant. Type | Ant. Type PIFA | | | |--------------------------------|----------------|--------|--------| | Connecter Type | er Type IPEX | | | | Directional Antenna Gain (dBi) | | | | | Item | 2.4G | UNII-1 | UNII-3 | | - | 5.25 | 6.34 | 6.79 | ^{*} For detailed antenna information, please refer to the Operational Description-Antenna Specification report. ^{*} For 802.11n and 802.11ac, CDD mode and Beamforming mode are presented in power output test item. For other test items, CDD mode is the worst case for final tests after pretesting. ^{*} The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible. ## 3.2 Description of Test Modes ## For 5180 ~ 5240MHz: 4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 36 | 5180 MHz | 44 | 5220 MHz | | 40 | 5200 MHz | 48 | 5240 MHz | 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 38 | 5190 MHz | 46 | 5230 MHz | 1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80): | Channel | Frequency | |---------|-----------| | 42 | 5210MHz | #### For 5745 ~ 5825MHz: 5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 149 | 5745MHz | 161 | 5805MHz | | 153 | 5765MHz | 165 | 5825MHz | | 157 | 5785MHz | | | 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): | Channel | Frequency | Channel | Frequency | | |---------|-----------|---------|-----------|--| | 151 | 5755MHz | 159 | 5795MHz | | 1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80): | Channel | Frequency | | |---------|-----------|--| | 155 | 5775MHz | | ## 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT Configure | | Applic | able to | | | |---------------|-----------|--------|--------------|----------|-------------| | Mode | RE≥1G | RE<1G | PLC | Р | Description | | - | $\sqrt{}$ | V | \checkmark | √ | - | Where RE≥1G: Radiated Emission above 1GHz & Bandedge RE<1G: Radiated Emission below 1GHz Measurement PLC: Power Line Conducted Emission P: Transmit Power Measurement #### Note: 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Z-plane**. 2. Radiated emission test (below 1GHz) and power line conducted emission test items chosen the worst maximum power. ## Radiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Mode | Frequency
Band (MHz) | Available
Channel | Tested Channel | Modulation
Technology | Data Rate
(Mbps) | |-----------------------|-----------------|-------------------------|----------------------|----------------|--------------------------|---------------------| | - | 802.11ax (HE80) | 5180-5240 | 42 | 42 | OFDMA | MCS0 | | - | 802.11ax (HE80) | 5745-5825 | 155 | 155 | OFDMA | MCS0 | ## **Radiated Emission Test (Below 1GHz):** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | reneming v | marinon(e) mae | (11010) 00100104 | TOT LITE IIII LOCK | ac noted boton | | | |---------------|-----------------|------------------|--------------------|-----------------|------------|-----------| | EUT Configure | Mode | Frequency | Available | Tested Channel | Modulation | Data Rate | | Mode | Wode | Band (MHz) | Channel | resteu Chamilei | Technology | (Mbps) | | | 802.11ax (HE80) | 5180-5240 | 42 | 455 | OFDMA | MCS0 | | - | 802.11ax (HE80) | 5745-5825 | 155 | 155 | OFDMA | MCS0 | ## **Power Line Conducted Emission Test:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Mode | Frequency
Band (MHz) | Available
Channel | Tested Channel | Modulation
Technology | Data Rate
(Mbps) | |-----------------------|-----------------|-------------------------|----------------------|----------------|--------------------------|---------------------| | | 802.11ax (HE80) | 5180-5240 | 42 | 455 | OFDMA | MCS0 | | - | 802.11ax (HE80) | 5745-5825 | 155 | 155 | OFDMA | MCS0 | ## **Transmit Power Measurement:** - This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode. - Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure Mode | Mode | Frequency Band (MHz) | Available
Channel | Tested Channel | Modulation
Technology | Data Rate
(Mbps) | |---------------------|------------------|----------------------|----------------------|----------------|--------------------------|---------------------| | | 802.11a | | 36 to 48 | 36, 40, 48 | OFDM | 6.0 | | | 802.11ac (VHT20) | | 36 to 48 | 36, 40, 48 | OFDM | 6.5 | | | 802.11ac (VHT40) | | 38 to 46 | 38, 46 | OFDM | 13.5 | | - | 802.11ac (VHT80) | 5180-5240 | 42 | 42 | OFDM | 29.3 | | | 802.11ax (HE20) | | 36 to 48 | 36, 40, 48 | OFDMA | MCS0 | | | 802.11ax (HE40) | | 38 to 46 | 38, 46 | OFDMA | MCS0 | | | 802.11ax (HE80) | | 42 | 42 | OFDMA | MCS0 | | | 802.11a | | 149 to 165 | 149, 157, 165 | OFDM | 6.0 | | | 802.11ac (VHT20) | | 149 to 165 | 149, 157, 165 | OFDM | 6.5 | | | 802.11ac (VHT40) | | 151 to 159 | 151, 159 | OFDM | 13.5 | | - | 802.11ac (VHT80) | 5745-5825 | 155 | 155 | OFDM | 29.3 | | | 802.11ax (HE20) | | 149 to 165 | 149, 157, 165 | OFDMA | MCS0 | | | 802.11ax (HE40) | | 151 to 159 | 151, 159 | OFDMA | MCS0 | | | 802.11ax (HE80) | | 155 | 155 | OFDMA | MCS0 | ## **Test Condition:** | Applicable to | Environmental Conditions | Input Power | Tested by | |---------------|--------------------------|--------------|------------| | RE≥1G | 27 deg. C, 68% RH | 120Vac, 60Hz | Noah Chang | | RE<1G | 27 deg. C, 68% RH | 120Vac, 60Hz | Noah Chang | | PLC | 22 deg. C, 68% RH | 120Vac, 60Hz | Luis Lee | | Р | 25 deg. C, 60% RH | 120Vac, 60Hz | Ivan Tseng | ## 3.3 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|-----------|--------|-----------|------------|------------------|---------| | A. | Notebook | Lenovo | 81A4 | YD02TWF5 | PPD-QCNFA435 | - | | B. | Load | NA | NA | NA | NA | - | | C. | USB Flash | HP | v250W | 05 | FCC DoC Approved | - | #### Note: - 1. All power cords of the above support units are non-shielded (1.8m). - 2. Item A acted as a communication partner to transfer data. | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|-------------| | 1. | LAN | 1 | 5 | N | 0 | RJ45, Cat5e | | 2. | LAN | 3 | 1.5 | N | 0 | RJ45, Cat5e | ## 3.3.1 Configuration of System under Test ## 3.4 General Description of Applied Standards and References The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: #### Test standard: **FCC Part 15, Subpart E (15.407)** ANSI C63.10:2013 All test items have been performed and recorded as per the above standards. ## **References Test Guidance:** KDB 789033 D02 General UNII Test Procedure New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01 All test items have been performed as a reference to the above KDB test guidance. ## 4 Test Types and Results ## 4.1 Radiated Emission and Bandedge Measurement ## 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. | Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |-------------------
-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | #### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Limits of unwanted emission out of the restricted bands | Applicable To | | | Limit | | | |--|---------------|----------------------|---|---|------------------| | 789033 D02 General UNII Test Procedure
New Rules v02r01 | | Field Strength at 3m | | | | | | | PK: 74 (dBµV/m) | AV: 54 (dBμV/m) | | | | Frequency Band | Applicable To | | EIRP Limit | Equivalent Field Strength at 3m | | | 5150~5250 MHz | | 15.407(b)(1) | | | | | 5250~5350 MHz | | 15.407(b)(2) | 15.407(b)(2) | PK: -27 (dBm/MHz) | PK: 68.2(dBµV/m) | | 5470~5725 MHz | | 15.407(b)(3) | | | | | 5725~5850 MHz | \boxtimes | 15.407(b)(4)(i) | PK: -27 (dBm/MHz) *1
PK: 10 (dBm/MHz) *2
PK: 15.6 (dBm/MHz) *3
PK: 27 (dBm/MHz) *4 | PK: 68.2(dBµV/m)*1
PK: 105.2 (dBµV/m)*2
PK: 110.8(dBµV/m)*3
PK: 122.2 (dBµV/m)*4 | | | | | 15.407(b)(4)(ii) | Emission limits in section 15.247(d) | | | ^{*1} beyond 75 MHz or more above of the band edge. Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $$E = \frac{1000000\sqrt{30P}}{3}$$ µV/m, where P is the eirp (Watts). Report No.: RF200312C06-1 Page No. 13 / 34 Report Format Version:6.1.2 ^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above. ^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. ^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. ## 4.1.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|------------------------------|---|---------------|---------------| | Test Receiver ROHDE & SCHWARZ | ESCI | 100424 | Dec. 31, 2019 | Dec. 30, 2020 | | Spectrum Analyzer ROHDE & SCHWARZ | FSP40 | 100040 | Sep. 23, 2019 | Sep. 22, 2020 | | BILOG Antenna
SCHWARZBECK | VULB9168 | 9168-155 | Nov. 11, 2019 | Nov. 10, 2020 | | HORN Antenna
SCHWARZBECK | BBHA 9120D | 9120D-1170 | Nov. 24, 2019 | Nov. 23, 2020 | | HORN Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170241 | Nov. 24, 2019 | Nov. 23, 2020 | | Loop Antenna
TESEQ | HLA 6121 | 45745 | Jul. 01, 2019 | Jun. 30, 2020 | | Preamplifier Agilent (Below 1GHz) | 8447D | 2944A10631 | Jul. 11, 2019 | Jul. 10, 2020 | | Preamplifier
KEYSIGHT
(Above 1GHz) | 83017A | MY53270295 | Jun. 08, 2020 | Jun. 07, 2021 | | RF Coaxial Cable
WOKEN
With 5dB PAD | 8D-FB | Cable-CH4-01 | Aug. 20, 2019 | Aug. 19, 2020 | | RF Coaxial Cable
EMCI | EMC102-KM-KM-
3000 | 150929 | Aug. 20, 2019 | Aug. 19, 2020 | | RF Coaxial Cable
EMCI | EMC102-KM-KM-
600 | 150928 | Aug. 20, 2019 | Aug. 19, 2020 | | RF signal cable
HUBER+SUHNER | SUCOFLEX 104 | MY 13380+295012/04 | Jul. 11, 2019 | Jul. 10, 2020 | | RF signal cable
HUBER+SUHNER | SUCOFLEX 104 | Cable-CH4-03 (250724) | Jul. 11, 2019 | Jul. 10, 2020 | | Software
BV ADT | ADT_Radiated_
V7.6.15.9.5 | NA | NA | NA | | Antenna Tower inn-co GmbH | MA 4000 | 010303 | NA | NA | | Antenna Tower Controller BV ADT | AT100 | AT93021703 | NA | NA | | Turn Table
BV ADT | TT100 | TT93021703 | NA | NA | | Turn Table Controller BV ADT | SC100 | SC93021703 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | Pre-amplifier (18GHz-40GHz)
EMC | EMC184045B | 980175 | Sep. 05, 2019 | Sep. 04, 2020 | | USB Wideband Power Sensor
KEYSIGHT | U2021XA | MY55050005/MY5519000
4/MY55190007/MY55210
005 | Jul. 15, 2019 | Jul. 14, 2020 | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. ^{2.} The test was performed in HwaYa Chamber 4. #### 4.1.3 Test Procedures #### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. ## Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. (802.11a: RBW = 1MHz, VBW = 1kHz; 802.11ax (HE20): RBW = 1MHz, VBW = 1kHz; 802.11ax (HE40): RBW = 1MHz, VBW = 3kHz; 802.11ax (HE80): RBW = 1MHz, VBW = 3kHz) - 4. All modes of operation were investigated and the worst-case emissions are reported. #### 4.1.4 Deviation from Test Standard No deviation. Report No.: RF200312C06-1 Page No. 15 / 34 Report Format Version:6.1.2 ## 4.1.5 Test Setup ## For Radiated emission below 30MHz ## For Radiated emission 30MHz to 1GHz ## For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.1.6 EUT Operating Conditions - a. Placed the EUT on the testing table. - b. Prepared a notebook to act as a communication partner and placed it outside of testing area. - c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency. - d. The communication partner sent data to EUT by command "PING". ## 4.1.7 Test Results Above 1GHz data: 802.11ax (HE80) | CHANNEL | TX Channel 42 | | Peak (PK) | |-----------------|---------------|--|--------------| | FREQUENCY RANGE | 1GHz ~ 40GHz | | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|-----------------------|----------------------------|---------------------|-----------------------------|--| | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR (dB/m) | | | 1 | 5150.00 | 57.2 PK | 74.0 | -16.8 | 1.00 H | 53 | 46.7 | 10.5 | | | 2 | 5150.00 | 45.7 AV | 54.0 | -8.3 | 1.00 H | 53 | 35.2 | 10.5 | | | 3 | *5210.00 | 93.1 PK | | | 1.00 H | 53 | 53.6 | 39.5 | | | 4 | *5210.00 | 84.4 AV | | | 1.00 H | 53 | 44.9 | 39.5 | | | 5 | 5350.00 | 55.5 PK | 74.0 | -18.5 | 1.00 H | 53 | 45.6 | 9.9 | | | 6 | 5350.00 | 45.2 AV | 54.0 | -8.8 | 1.00 H | 53 | 35.3 | 9.9 | | | 7 | #10420.00 | 60.6 PK | 68.2 | -7.6 | 1.69 H | 100 | 39.1 | 21.5 | | | | | ANT | ENNA POLAR | ITY & TEST DIS | STANCE: VERT | TICAL AT 3 M | | | | | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR (dB/m) | | | 1 | 5150.00 | 62.6 PK | 74.0 | -11.4 | 1.00 V | 112 | 52.1 | 10.5 | | | 2 | 5150.00 | 51.8 AV | 54.0 | -2.2 | 1.00 V | 112 | 41.3 |
10.5 | | | 3 | *5210.00 | 106.3 PK | | | 1.00 V | 112 | 66.8 | 39.5 | | | 4 | *5210.00 | 96.3 AV | | | 1.00 V | 112 | 56.8 | 39.5 | | | 5 | 5350.00 | 59.2 PK | 74.0 | -14.8 | 1.00 V | 112 | 49.3 | 9.9 | | | 6 | 5350.00 | 48.9 AV | 54.0 | -5.1 | 1.00 V | 112 | 39.0 | 9.9 | | | 7 | #10420.00 | 62.0 PK | 68.2 | -6.2 | 1.69 V | 325 | 40.5 | 21.5 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. Margin value = Emission Level Limit value. - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. - 6. " # ": The radiated frequency is out of the restricted band. | CHANNEL | TX Channel 155 | DETECTOR FINICION 1 | Peak (PK) | |-----------------|----------------|---------------------|--------------| | FREQUENCY RANGE | 1GHz ~ 40GHz | | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|-----------------------|----------------------------|---------------------|-----------------------------|--| | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR (dB/m) | | | 1 | #5629.60 | 56.5 PK | 68.2 | -11.7 | 2.13 H | 110 | 46.2 | 10.3 | | | 2 | *5775.00 | 98.2 PK | | | 2.13 H | 110 | 57.9 | 40.3 | | | 3 | *5775.00 | 87.6 AV | | | 2.13 H | 110 | 47.3 | 40.3 | | | 4 | #5955.20 | 57.4 PK | 68.2 | -10.8 | 2.13 H | 110 | 46.4 | 11.0 | | | 5 | 11550.00 | 61.8 PK | 74.0 | -12.2 | 1.96 H | 133 | 38.9 | 22.9 | | | 6 | 11550.00 | 50.0 AV | 54.0 | -4.0 | 1.96 H | 133 | 27.1 | 22.9 | | | | | ANT | ENNA POLAR | ITY & TEST DIS | STANCE: VERT | ICAL AT 3 M | | | | | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR (dB/m) | | | 1 | #5632.40 | 62.8 PK | 68.2 | -5.4 | 1.24 V | 73 | 52.5 | 10.3 | | | 2 | *5775.00 | 110.7 PK | | | 1.24 V | 73 | 70.4 | 40.3 | | | 3 | *5775.00 | 100.6 AV | | | 1.24 V | 73 | 60.3 | 40.3 | | | 4 | #5940.80 | 62.4 PK | 68.2 | -5.8 | 1.24 V | 73 | 51.5 | 10.9 | | | 5 | 11550.00 | 63.1 PK | 74.0 | -10.9 | 1.96 V | 188 | 40.2 | 22.9 | | | 6 | 11550.00 | 50.2 AV | 54.0 | -3.8 | 1.96 V | 188 | 27.3 | 22.9 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. Margin value = Emission Level Limit value. - 4. The other emission levels were very low against the limit. - 5. " * ": Fundamental frequency. - 6. " # ": The radiated frequency is out of the restricted band. ## Below 1GHz Worst-Case Data: ## 802.11ax (HE80) | CHANNEL | TX Channel 155 | DETECTOR | Ouesi Beek (OB) | |-----------------|----------------|----------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|-------------|---------|----------------------------|---------------------|--------------------------------|--| | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 53.18 | 31.2 QP | 40.0 | -8.8 | 1.99 H | 91 | 39.8 | -8.6 | | | 2 | 121.10 | 34.6 QP | 43.5 | -8.9 | 1.99 H | 91 | 45.3 | -10.7 | | | 3 | 173.49 | 34.3 QP | 43.5 | -9.2 | 1.00 H | 93 | 43.5 | -9.2 | | | 4 | 315.14 | 35.7 QP | 46.0 | -10.3 | 1.00 H | 106 | 42.4 | -6.7 | | | 5 | 472.31 | 32.2 QP | 46.0 | -13.8 | 1.99 H | 16 | 35.8 | -3.6 | | | 6 | 895.32 | 38.9 QP | 46.0 | -7.1 | 1.00 H | 237 | 31.6 | 7.3 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. The other emission levels were very low against the limit of frequency range $30 MHz \sim 1000 MHz$. - 4. Margin value = Emission Level Limit value. - 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. | CHANNEL | TX Channel 155 | DETECTOR | Overi Book (OB) | |-----------------|----------------|----------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--| | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 123.04 | 38.9 QP | 43.5 | -4.6 | 1.50 V | 88 | 49.4 | -10.5 | | | 2 | 134.68 | 37.5 QP | 43.5 | -6.0 | 1.50 V | 88 | 47.0 | -9.5 | | | 3 | 198.71 | 38.8 QP | 43.5 | -4.7 | 2.00 V | 284 | 50.0 | -11.2 | | | 4 | 588.74 | 40.5 QP | 46.0 | -5.5 | 1.50 V | 88 | 41.0 | -0.5 | | | 5 | 887.56 | 38.7 QP | 46.0 | -7.3 | 1.00 V | 131 | 31.6 | 7.1 | | | 6 | 936.07 | 43.4 QP | 46.0 | -2.6 | 1.00 V | 298 | 35.1 | 8.3 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz. - 4. Margin value = Emission Level Limit value. - 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. ## 4.2 Conducted Emission Measurement ## 4.2.1 Limits of Conducted Emission Measurement | Frequency (MHz) | Conducted Limit (dBuV) | | | | | |-----------------|------------------------|---------|--|--|--| | | Quasi-peak | Average | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | 0.50 - 5.0 | 56 | 46 | | | | | 5.0 - 30.0 | 60 | 50 | | | | Note: 1. The lower limit shall apply at the transition frequencies. ## 4.2.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|--------------------------|----------------|---------------|---------------| | Test Receiver ROHDE & SCHWARZ | ESCI | 100613 | Dec. 11, 2019 | Dec. 10, 2020 | | RF signal cable
Woken | 5D-FB | Cable-cond1-01 | Sep. 05, 2019 | Sep. 04, 2020 | | LISN
ROHDE & SCHWARZ
(EUT) | ENV216 | 101826 | Feb. 20, 2020 | Feb. 19, 2021 | | LISN
ROHDE & SCHWARZ
(Peripheral) | ESH3-Z5 | 100311 | Aug. 22, 2019 | Aug. 21, 2020 | | Software
ADT | BV ADT_Cond_
V7.3.7.4 | NA | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Shielded Room 1. - 3. The VCCI Site Registration No. is C-12040. ^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. #### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. #### 4.2.4 Deviation from Test Standard No deviation. #### 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.2.6 EUT Operating Conditions Same as 4.1.6. ## 4.2.7 Test Results Worst-case data: 802.11ax (HE80) | Phase | Line (L) | Detector Function | Quasi-Peak (QP) / | |--------|----------|--------------------|-------------------| | Filase | Line (L) | Detector i unction | Average (AV) | | | Freq. Corr. | | Reading Value | | Emissio | Emission Level | | Limit | | rgin | |----|-------------|--------|---------------|-------|-----------|----------------|-----------|-------|--------|--------| | No | Freq. | Factor | [dB (uV)] | | [dB (uV)] | | [dB (uV)] | | (dB) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15800 | 9.80 | 39.17 | 25.59 | 48.97 | 35.39 | 65.57 | 55.57 | -16.60 | -20.18 | | 2 | 0.17384 | 9.80 | 33.95 | 18.70 | 43.75 | 28.50 | 64.77 | 54.77 | -21.02 | -26.27 | | 3 | 0.19400 | 9.81 | 34.60 | 22.78 | 44.41 | 32.59 | 63.86 | 53.86 | -19.45 | -21.27 | | 4 | 0.22985 | 9.82 | 32.50 | 22.07 | 42.32 | 31.89 | 62.46 | 52.46 | -20.14 | -20.57 | | 5 | 0.26200 | 9.83 | 23.93 | 14.66 | 33.76 | 24.49 | 61.37 | 51.37 | -27.61 | -26.88 | | 6 | 0.33800 | 9.84 | 26.81 | 15.63 | 36.65 | 25.47 | 59.25 | 49.25 | -22.60 | -23.78 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level =
Correction Factor + Reading Value. | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|-------------|-------------------|-----------------------------------| | | Freq. Corr. | | Reading Value | | Emissio | n Level | Limit | | Margin | | |----|-------------|--------|---------------|-------|-----------|---------|-----------|-------|--------|--------| | No | rieq. | Factor | [dB (uV)] | | [dB (uV)] | | [dB (uV)] | | (dB) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15000 | 9.82 | 40.74 | 28.06 | 50.56 | 37.88 | 66.00 | 56.00 | -15.44 | -18.12 | | 2 | 0.17384 | 9.82 | 36.28 | 19.94 | 46.10 | 29.76 | 64.77 | 54.77 | -18.67 | -25.01 | | 3 | 0.19400 | 9.81 | 34.60 | 21.69 | 44.41 | 31.50 | 63.86 | 53.86 | -19.45 | -22.36 | | 4 | 0.21800 | 9.82 | 30.44 | 15.31 | 40.26 | 25.13 | 62.89 | 52.89 | -22.63 | -27.76 | | 5 | 0.24200 | 9.83 | 27.83 | 8.86 | 37.66 | 18.69 | 62.03 | 52.03 | -24.37 | -33.34 | | 6 | 0.28982 | 9.85 | 29.18 | 17.20 | 39.03 | 27.05 | 60.53 | 50.53 | -21.50 | -23.48 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. #### 4.3 Transmit Power Measurement #### 4.3.1 Limits of Transmit Power Measurement | Operation
Band | | EUT Category | Limit | |-------------------|-----------|-----------------------------------|---| | 11 NIII 4 | | Outdoor Access Point | 1 Watt (30 dBm) (Max. e.i.r.p ≤ 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon) | | U-NII-1 | | Fixed point-to-point Access Point | 1 Watt (30 dBm) | | | $\sqrt{}$ | Indoor Access Point | 1 Watt (30 dBm) | | | | Mobile and Portable client device | 250mW (24 dBm) | | U-NII-2A | | | 250mW (24 dBm) or 11 dBm+10 log B* | | U-NII-2C | | | 250mW (24 dBm) or 11 dBm+10 log B* | | U-NII-3 | | $\sqrt{}$ | 1 Watt (30 dBm) | ^{*}B is the 26 dB emission bandwidth in megahertz Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices, Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$; Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT}; Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20-MHz channel widths with N_{ANT} ≥ 5. For power measurements on all other devices: Array Gain = 10 log(N_{ANT}/N_{SS}) dB. #### 4.3.2 Test Setup #### 4.3.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.3.4 Test Procedure Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst and set the detector to average. Duty factor is not added to measured value. #### 4.3.5 Deviation from Test Standard No deviation. ## 4.3.6 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. ## 4.3.7 Test Result Power Output: CDD Mode 802.11a | Chan. Freq. | Aver | age Power (d | lBm) | Total
Power | Total
Power | Power
Limit | Pass / Fail | | |-------------|-------|--------------|---------|----------------|----------------|----------------|-------------|-------------| | Crian. | (MHz) | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | Pass / Pall | | 36 | 5180 | 22.37 | 22.03 | 22.52 | 510.820 | 27.08 | 30.00 | Pass | | 40 | 5200 | 23.91 | 23.74 | 24.30 | 751.782 | 28.76 | 30.00 | Pass | | 48 | 5240 | 24.69 | 24.44 | 24.75 | 870.952 | 29.40 | 30.00 | Pass | | 149 | 5745 | 24.98 | 24.69 | 25.06 | 929.844 | 29.68 | 30.00 | Pass | | 157 | 5785 | 24.89 | 24.63 | 25.17 | 927.573 | 29.67 | 30.00 | Pass | | 165 | 5825 | 24.76 | 24.64 | 25.12 | 915.385 | 29.62 | 30.00 | Pass | # 802.11ac (VHT20) | Chan. Freq. | | Average Power (dBm) | | | Total
Power | Total
Power | Power
Limit | Pass / Fail | |-------------|-------|---------------------|---------|---------|----------------|----------------|----------------|-------------| | Chan. | (MHz) | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | Fass / Fall | | 36 | 5180 | 21.37 | 20.92 | 21.30 | 395.579 | 25.97 | 30.00 | Pass | | 40 | 5200 | 24.37 | 23.91 | 24.61 | 808.632 | 29.08 | 30.00 | Pass | | 48 | 5240 | 24.62 | 24.42 | 24.69 | 860.871 | 29.35 | 30.00 | Pass | | 149 | 5745 | 24.95 | 24.74 | 24.98 | 925.234 | 29.66 | 30.00 | Pass | | 157 | 5785 | 24.97 | 24.72 | 25.03 | 928.954 | 29.68 | 30.00 | Pass | | 165 | 5825 | 24.91 | 24.82 | 24.97 | 927.182 | 29.67 | 30.00 | Pass | # 802.11ac (VHT40) | Chan. Freq. | Average Power (dBm) | | | Total
Power | Total
Power | Power
Limit | Pass / Fail | | |-------------|---------------------|---------|---------|----------------|----------------|----------------|-------------|-------------| | Chan. | an. (MHz) | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | Pass / Fall | | 38 | 5190 | 19.35 | 19.48 | 19.82 | 270.755 | 24.33 | 30.00 | Pass | | 46 | 5230 | 23.45 | 23.03 | 23.83 | 663.765 | 28.22 | 30.00 | Pass | | 151 | 5755 | 25.03 | 24.60 | 24.91 | 916.565 | 29.62 | 30.00 | Pass | | 159 | 5795 | 24.93 | 24.74 | 24.84 | 913.813 | 29.61 | 30.00 | Pass | ## 802.11ac (VHT80) | Chan. | Freq. | Average Power (dBm) | | | Total | Total
Power | Power
Limit | Pass / Fail | |-------|-------|---------------------|---------|---------|---------------|----------------|----------------|-------------| | Chan. | (MHz) | Chain 0 | Chain 1 | Chain 2 | Power
(mW) | (dBm) | (dBm) | Pass / Fall | | 42 | 5210 | 19.18 | 19.42 | 19.74 | 264.482 | 24.22 | 30.00 | Pass | | 155 | 5775 | 22.58 | 21.87 | 21.79 | 485.957 | 26.87 | 30.00 | Pass | Report No.: RF200312C06-1 Page No. 27 / 34 Report Format Version:6.1.2 # 802.11ax (HE20) | Chan. Freq. | Average Power (dBm) | | | Total
Power | Total
Power | Power
Limit | Pass / Fail | | |-------------|---------------------|---------|---------|----------------|----------------|----------------|-------------|-------------| | Chan. | (MHz) | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | Pass / Pall | | 36 | 5180 | 21.43 | 20.94 | 21.39 | 400.881 | 26.03 | 30.00 | Pass | | 40 | 5200 | 24.41 | 23.95 | 24.77 | 824.287 | 29.16 | 30.00 | Pass | | 48 | 5240 | 24.62 | 24.44 | 24.55 | 852.808 | 29.31 | 30.00 | Pass | | 149 | 5745 | 24.95 | 24.75 | 25.02 | 928.834 | 29.68 | 30.00 | Pass | | 157 | 5785 | 24.95 | 24.74 | 25.06 | 931.087 | 29.69 | 30.00 | Pass | | 165 | 5825 | 25.02 | 24.89 | 25.05 | 945.896 | 29.76 | 30.00 | Pass | # 802.11ax (HE40) | Chan. Freq. | Average Power (dBm) | | | Total
Power | Total
Power | Power
Limit | Pass / Fail | | |-------------|--|---------|---------|----------------|----------------|----------------|-------------|-------------| | Chan. | / \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | Fass / Fall | | 38 | 5190 | 19.44 | 19.54 | 19.81 | 273.571 | 24.37 | 30.00 | Pass | | 46 | 5230 | 23.54 | 23.01 | 23.83 | 667.476 | 28.24 | 30.00 | Pass | | 151 | 5755 | 25.05 | 24.67 | 25.00 | 929.207 | 29.68 | 30.00 | Pass | | 159 | 5795 | 25.05 | 24.86 | 24.89 | 934.405 | 29.71 | 30.00 | Pass | # 802.11ax (HE80) | Chan Freq. | Average Power (dBm) | | | Total
Power | Total
Power | Power
Limit | Pass / Fail | | |------------|---------------------|---------|---------|----------------|----------------|----------------|-------------|-------------| | Chan. | Chan. (MHz) | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | Pass / Faii | | 42 | 5210 | 19.26 | 19.43 | 19.85 | 268.639 | 24.29 | 30.00 | Pass | | 155 | 5775 | 22.72 | 22.06 | 21.77 | 498.077 | 26.97 | 30.00 | Pass | ## Beamforming Mode ## 802.11ac (VHT20) | Chan. | Freq. | Aver | age Power (c | dBm) | Total
Power | Total
Power | Power
Limit | Pass / Fail | |-------|-------|---------|--------------|---------|----------------|----------------|----------------|-------------| | | (MHz) | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | rass/raii | | 36 | 5180 | 21.37 | 20.92 | 21.30 | 395.579 | 25.97 | 29.66 | Pass | | 40 | 5200 | 24.37 | 23.91 | 24.61 | 808.632 | 29.08 | 29.66 | Pass | | 48 | 5240 | 24.62 | 24.42 | 24.69 | 860.871 | 29.35 | 29.66 | Pass | | 149 | 5745 | 24.08 | 24.20 | 24.47 | 798.784 | 29.02 | 29.21 | Pass | | 157 | 5785 | 24.22 | 24.23 | 24.34 | 800.735 | 29.03 | 29.21 | Pass | | 165 | 5825 | 24.20 | 24.38 | 24.39 | 811.974 | 29.10 | 29.21 | Pass | ## Note: - 1. 5180-5240MHz: Directional gain = 6.34dBi > 6dBi, so the power limit shall be reduced to 30 (6.34 6) = 29.66dBi. - 2. 5745-5825MHz: Directional gain = 6.79dBi > 6dBi, so the power limit shall be reduced to 30 (6.79 6) = 29.21dBi. ## 802.11ac (VHT40) | Chan. | Freq.
(MHz) | Average Power (dBm) | | Total
Power | Total
Power | Power
Limit | Pass / Fail | | |-------|----------------|---------------------|---------|----------------|----------------|----------------|-------------|-------------| | | | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | rass / raii | | 38 | 5190 | 19.35 | 19.48 | 19.82 | 270.755 | 24.33 | 29.66 | Pass | | 46 | 5230 | 23.45 | 23.03 | 23.83 | 663.765 | 28.22 | 29.66 | Pass | | 151 | 5755 | 24.23 | 24.16 | 24.25 | 791.538 | 28.98 | 29.21 | Pass | | 159 | 5795 | 24.40 | 24.24 | 24.31 | 810.657 | 29.09 | 29.21 | Pass | ## Note: - 1. 5180-5240MHz: Directional gain = 6.34dBi > 6dBi, so the power limit shall be reduced to 30 (6.34 6) = 29.66dBi. - 2. 5745-5825MHz: Directional gain = 6.79dBi > 6dBi, so the power limit shall be reduced to 30 (6.79 6) = 29.21dBi. ## 802.11ac (VHT80) | Chan. | Freq.
(MHz) | Average Power (dBm) | |
Total
Power | Total
Power | Power
Limit | Pass / Fail | | |-------|----------------|---------------------|---------|----------------|----------------|----------------|-------------|-------------| | | | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | rass / raii | | 42 | 5210 | 19.18 | 19.42 | 19.74 | 264.482 | 24.22 | 29.66 | Pass | | 155 | 5775 | 21.19 | 20.57 | 21.42 | 384.223 | 25.85 | 29.21 | Pass | #### Note: - 1. 5180-5240MHz: Directional gain = 6.34dBi > 6dBi, so the power limit shall be reduced to 30 (6.34 6) = 29.66dBi. - 2. 5745-5825MHz: Directional gain = 6.79dBi > 6dBi, so the power limit shall be reduced to 30 (6.79 6) = 29.21dBi. ## 802.11ax (HE20) | Chan. | Freq. | Aver | age Power (d | dBm) | Total
Power | Total
Power | Power
Limit | Pass / Fail | |-------|-------|---------|--------------|---------|----------------|----------------|----------------|-------------| | | (MHz) | Chain 0 | Chain 1 | Chain 2 | (mW) | (dBm) | (dBm) | rass / raii | | 36 | 5180 | 21.43 | 20.94 | 21.39 | 400.881 | 26.03 | 29.66 | Pass | | 40 | 5200 | 24.41 | 23.95 | 24.77 | 824.287 | 29.16 | 29.66 | Pass | | 48 | 5240 | 24.62 | 24.44 | 24.55 | 852.808 | 29.31 | 29.66 | Pass | | 149 | 5745 | 24.14 | 24.26 | 24.35 | 798.374 | 29.02 | 29.21 | Pass | | 157 | 5785 | 24.18 | 24.27 | 24.40 | 804.542 | 29.06 | 29.21 | Pass | | 165 | 5825 | 24.22 | 24.43 | 24.36 | 814.471 | 29.11 | 29.21 | Pass | #### Note: - 1. 5180-5240MHz: Directional gain = 6.34dBi > 6dBi, so the power limit shall be reduced to 30 (6.34 6) = 29.66dBi. - 2. 5745-5825MHz: Directional gain = 6.79dBi > 6dBi, so the power limit shall be reduced to 30 (6.79 6) = 29.21dBi. ## 802.11ax (HE40) | Chan. | Freq.
(MHz) | Average Power (dBm) | | Total | Total | Power | Dogs / Fail | | |-------|----------------|---------------------|---------|---------|---------------|----------------|----------------|-------------| | | | Chain 0 | Chain 1 | Chain 2 | Power
(mW) | Power
(dBm) | Limit
(dBm) | Pass / Fail | | 38 | 5190 | 19.44 | 19.54 | 19.81 | 273.571 | 24.37 | 29.66 | Pass | | 46 | 5230 | 23.54 | 23.01 | 23.83 | 667.476 | 28.24 | 29.66 | Pass | | 151 | 5755 | 24.33 | 24.21 | 24.31 | 804.426 | 29.05 | 29.21 | Pass | | 159 | 5795 | 24.25 | 24.33 | 24.42 | 813.786 | 29.11 | 29.21 | Pass | ## Note: - 1. 5180-5240MHz: Directional gain = 6.34dBi > 6dBi, so the power limit shall be reduced to 30 (6.34 6) = 29.66dBi. - 2. 5745-5825MHz: Directional gain = 6.79dBi > 6dBi, so the power limit shall be reduced to 30 (6.79 6) = 29.21dBi. ## 802.11ax (HE80) | Chan. | Freq.
(MHz) | Average Power (dBm) | | | Total | Total
Power | Power
Limit | Pass / Fail | |-------|----------------|---------------------|---------|---------|---------------|----------------|----------------|-------------| | | | Chain 0 | Chain 1 | Chain 2 | Power
(mW) | (dBm) (dBm) | rass/rall | | | 42 | 5210 | 19.26 | 19.43 | 19.85 | 268.639 | 24.29 | 29.66 | Pass | | 155 | 5775 | 21.21 | 20.67 | 21.47 | 389.092 | 25.90 | 29.21 | Pass | #### Note: - 1. 5180-5240MHz: Directional gain = 6.34dBi > 6dBi, so the power limit shall be reduced to 30 (6.34 6) = 29.66dBi. - 2. 5745-5825MHz: Directional gain = 6.79dBi > 6dBi, so the power limit shall be reduced to 30 (6.79 6) = 29.21dBi. | 5 Pictures of Test Arrangements | | |---|--| | Please refer to the attached file (Test Setup Photo). | Report No.: RF200312C06-1 Page No. 31 / 34 Report Format Version:6.1.2 # Annex A- Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band) ## 802.11ax (HE80) ## **Annex B- Band Edge Measurement** ## 802.11ax (HE80) ## Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323 If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END ---