

Report No. : FR1D2822-13

FCC RF Test Report

APPLICANT : VeriFone, Inc.

EQUIPMENT: Point of Sale Terminal

BRAND NAME : VeriFone

MODEL NAME : VX520/VX520G/VX520-G

FCC ID : B32VX520-G

STANDARD : FCC Part 15 Subpart C §15.225

CLASSIFICATION: (DXX) Low Power Communication Device Transmitter

The product was received on Apr. 25, 2014 and testing was completed on May 07, 2014. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

(Ince/sur

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 1 of 36
Report Issued Date : May 27, 2014

1190

Report Version : Rev. 01

Table of Contents

1.	SUM	MARY OF THE TEST RESULT	4
2.	GENE	ERAL INFORMATION	5
	2.1	Applicant	
	2.2	Manufacturer	5
	2.3	Product Details	5
	2.4	Table for Test Modes	6
	2.5	Table for Testing Locations	7
	2.6	Applied Standards	7
	2.7	Table for Supporting Units	
	2.8	Test Configurations	8
3.	TEST	RESULT	9
	3.1	AC Power Line Conducted Emissions Measurement	
	3.2	Field Strength of Fundamental Emissions and Mask Measurement	15
	3.3	20dB Spectrum Bandwidth Measurement	20
	3.4	Radiated Emissions Measurement	23
	3.5	Frequency Stability Measurement	30
	3.6	Antenna Requirements	33
4.	LIST	OF MEASURING EQUIPMENT	34
5.	TEST	LOCATION	35
6.	TAF (CERTIFICATE OF ACCREDITATION	36
ΑI	PPENI	DIX A. SETUP PHOTOGRAPHS	

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 2 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

Report No. : FR1D2822-13

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR1D2822-13	Rev. 01	Initial issue of report	May 27, 2014

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 3 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

1. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	FCC Rule	Description of Test	Result	Under Limit		
2.1	45.007	AO De carlina Constanta de Carlos	0 !:	9.50 dB at		
3.1	15.207	AC Power Line Conducted Emissions	Complies	27.118MHz		
3.2	15.225(a)(b)(c) Field Strength of Fundament	Field Strength of Fundamental Emissions	Complies	41.51 dB at		
3.2		Field Strength of Fundamental Emissions		13.560 MHz		
3.3	2.1049	20dB Spectrum Bandwidth	Complies	-		
	15 225(d)			5.88 dB at		
3.4	15.225(d) 15.209	Radiated Emissions	Complies	50.79 MHz		
	15.209	15.209				for Quasi-Peak
3.5	15.225(e) Frequency Stability		Complies	-		
3.6	3.6 15.203 Antenna Requirements		Complies	-		

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Field Strength of Fundamental Emissions	±0.8dB	Confidence levels of 95%
20dB Spectrum Bandwidth / Frequency Stability	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated / Band Edge Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7℃	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 4 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

2. GENERAL INFORMATION

2.1 Applicant

VeriFone, Inc.

1400 West Stanford Ranch Road Suite 200 Rocklin CA 95765 USA

2.2 Manufacturer

VeriFone, Inc.

1400 West Stanford Ranch Road Suite 200 Rocklin CA 95765 USA

2.3 Product Details

For more detailed features description, please refer to the manufacturer's specifications or user's manual.

Items	Description	
Power Type	9.3Vdc from Adapter	
Modulation	ASK	
Channel Number	1	
Channel Bandwidth (99%)	2.240 kHz	
Max. Field Strength	82.49 dBμV/m	
Test Freq. Range	13.553 ~ 13.567MHz	
Carrier Frequencies	13.56 MHz (Ch. 1)	
Antenna	Integrate Antenna (Without any antenna connector)	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 5 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

Specification of Accessory				
	Brand Name: VeriFone			
AC Ademies 4	Model No. : AU1370933g			
AC Adapter 1	Power Rating: I/P: 100-240Vac, 2A, O/P:9.3Vdc, 4A			
	Power Cord: 1.8 meter, non-shielded cable, with ferrite core			
	Brand Name: VeriFone			
AC Adapter 2	Model No. : SM09003A			
AC Adapter 2	Power Rating: I/P: 100-240Vac, 2A, O/P:9.3Vdc, 4A			
	Power Cord: 1.8 meter, non-shielded cable, with ferrite core			
	Brand Name: VeriFone			
Battery 1	Manufacturer : Palladium Energy			
	Model No. : 24016-01-R			
	Brand Name: VeriFone			
Battery 2	Manufacturer : SANYO			
	Model No. : 24016-01-R			
	Brand Name: VeriFone			

2.4 Table for Test Modes

Battery 3

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Manufacturer : Samsung

Model No.: 24016-01-R

Test Items	Mode	Channel
AC Power Line Conducted Emissions	CTX	-
Field Strength of Fundamental Emissions	CTX	1
20dB Spectrum Bandwidth	СТХ	1
Radiated Emissions 9kHz~30MHz	СТХ	1
Radiated Emissions 9kHz~10 th Harmonic	CTV	1
Band Edge Emissions	CTX	
Frequency Stability	Un-modulation	1

Note:

- 1. CTX=continuously transmitting.
- 2. The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 3 cm gap to the EUT.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 6 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

2.5 Table for Testing Locations

Test Site No.	Site Category	Location
CO05-HY	Conduction	Hwa Ya
TH02-HY	OVEN Room	Hwa Ya
03CH07-HY	SAC	Hwa Ya

Semi Anechoic Chamber (SAC).

2.6 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

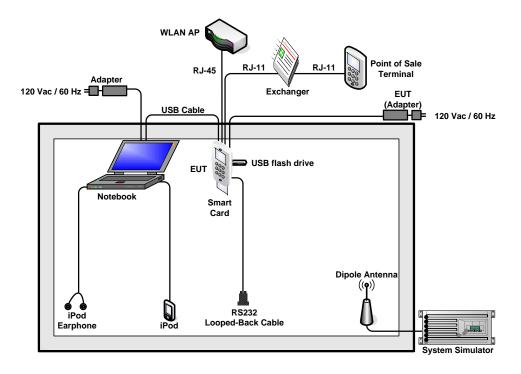
- FCC Part 15 Subpart C §15.225
- ANSI C63.4-2003

2.7 Table for Supporting Units

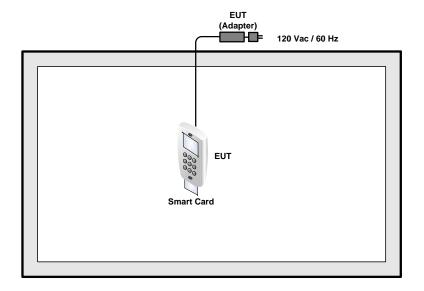
Support Unit	Manufacturer	Model	FCC ID
System Simulator	R&S	CMU 200	N/A
WLAN AP	D-Link	DIR-628	KA2DIR628A2
			FCC DoC/
Notebook	DELL	Latitude E6320	Contains FCC
			ID: QDS-BRCM1054
iPod	Apple	A1285	FCC DoC
iPod Earphone	Apple	N/A	Verification
USB flash drive	Transcend	TS8GJF300	FCC DoC
Exchange	Sun Moon Star	SMS-4 PLUS	N/A
Point of Sale Terminal	VeriFone	VX520	FCC DoC
Smart Card	N/A	N/A	N/A
MSR Card	N/A	N/A	N/A

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 7 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01


Report No.: FR1D2822-13

Report No.: FR1D2822-13


Test Configurations 2.8

<AC Conducted Emissions>

<Fundamental Emissions and Mask Measurement>

For radiated emissions 9kHz~30MHz and 30MHz~1GHz

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 8 of 36 Report Issued Date: May 27, 2014 Report Version : Rev. 01

3. TEST RESULT

3.1 AC Power Line Conducted Emissions Measurement

3.1.1 Limit

For a Low-power Radio-frequency device which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBμV)	AV Limit (dBμV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

3.1.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

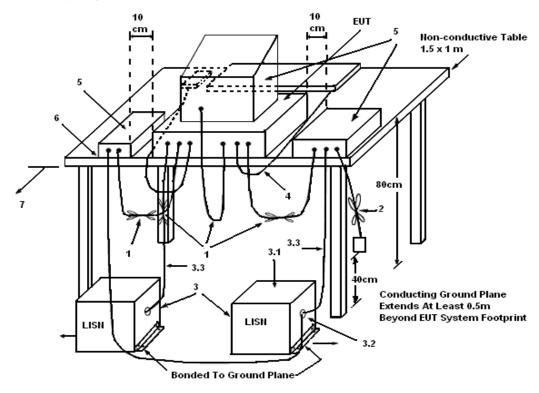
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.3 Test Procedures

- Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Report Issued Date : May 27, 2014 Report Version : Rev. 01


: 9 of 36

Page Number

Report No.: FR1D2822-13

3.1.4 Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 10 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

3.1.5 Test Deviation

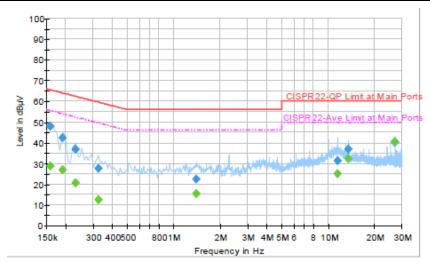
There is no deviation with the original standard.

3.1.6 EUT Operation during Test

The EUT was placed on the test table and programmed in transmitting function.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Report Issued Date : May 27, 2014
Report Version : Rev. 01


: 11 of 36

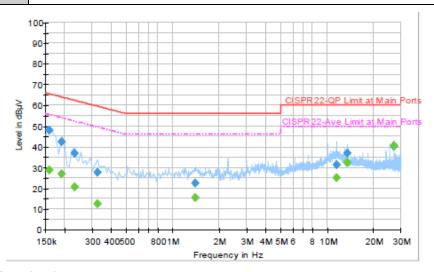
Page Number

Report No.: FR1D2822-13

3.1.7 Results of AC Power Line Conducted Emissions Measurement

Final Test Date	May 05, 2014	Test Site No.	CO05-HY
Temperature	20~22°C	Humidity	45~47%
Test Engineer	Cosmo Xu	Configuration	Transmitting Mode (13.56MHz)
		Phase	Line
	GSM850 (GPRS 8) Idle +	MSR + Smart Ca	rd + Printer + RFID On + Battery 1
Mode	+ Adapter 1 + USB Cable	1 + USB Cable (Load with Notebook) + RJ-45 Link + RJ-11 (Lo	
	RS232 (Load)		

Final Result : Quasi-Peak


Frequency (MHz)	Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.158000	47.8	Off	L1	19.3	17.8	65.6
0.190000	42.3	Off	L1	19.4	21.7	64.0
0.230000	37.0	Off	L1	19.4	25.4	62.4
0.326000	27.6	Off	L1	19.4	32.0	59.6
1.406000	22.6	Off	L1	19.4	33.4	56.0
11.494000	31.5	Off	L1	19.7	28.5	60.0
13.558000	37.0	Off	L1	19.8	23.0	60.0
27.118000	40.3	Off	L1	19.9	19.7	60.0

SPORTON INTERNATIONAL INC.

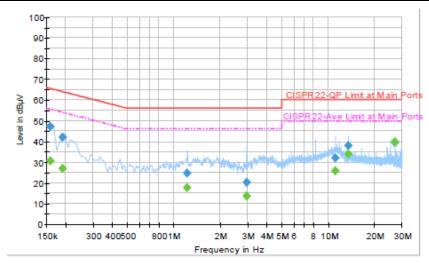
TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 12 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

Final Test Date	May 05, 2014	Test Site No.	CO05-HY	
Temperature	20~22°C	Humidity	45~47%	
Test Engineer	Cosmo Xu	Configuration	Transmitting Mode (13.56MHz)	
		Phase	Line	
	GSM850 (GPRS 8) Idle +	MSR + Smart Ca	rd + Printer + RFID On + Battery 1	
Mode	+ Adapter 1 + USB Cable (Load with Notebook) + RJ-45 Link + RJ-11 (Load) +			
	RS232 (Load)			

Final Result : Average

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.158000	29.0	Off	L1	19.3	26.6	55.6
0.190000	26.9	Off	L1	19.4	27.1	54.0
0.230000	20.8	Off	L1	19.4	31.6	52.4
0.326000	12.4	Off	L1	19.4	37.2	49.6
1.406000	15.3	Off	L1	19.4	30.7	46.0
11.494000	25.1	Off	L1	19.7	24.9	50.0
13.558000	32.5	Off	L1	19.8	17.5	50.0
27.118000	40.5	Off	L1	19.9	9.5	50.0


SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 13 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

Final Test Date	May 05, 2014	Test Site No.	CO05-HY
Temperature	20~22°C	Humidity	45~47%
Test Engineer	Cosmo Xu	Configuration	Transmitting Mode (13.56MHz)
		Phase	Neutral
	GSM850 (GPRS 8) Idle +	MSR + Smart Ca	rd + Printer + RFID On + Battery 1
Mode	+ Adapter 1 + USB Cable	(Load with Notebo	ook) + RJ-45 Link + RJ-11 (Load) +
	RS232 (Load)		

Final Result : Quasi-Peak

Frequency (MHz)	Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.158000	47.2	Off	N	19.3	18.4	65.6
0.190000	42.2	Off	N	19.4	21.8	64.0
1.222000	24.8	Off	N	19.6	31.2	56.0
2.958000	20.4	Off	N	19.6	35.6	56.0
11.086000	32.0	Off	N	19.7	28.0	60.0
13.558000	38.1	Off	N	19.9	21.9	60.0
27.118000	39.5	Off	N	20.0	20.5	60.0

Final Result: Average

rillai Nesu	Filial Result . Average						
Frequency	Average	Filter	Eiltor	Line	Corr.	Margin	Limit
(MHz)	(dBµV)		Lille	(dB)	(dB)	(dBµV)	
0.158000	30.5	Off	N	19.3	25.1	55.6	
0.190000	26.8	Off	N	19.4	27.2	54.0	
1.222000	17.8	Off	N	19.6	28.2	46.0	
2.958000	13.5	Off	N	19.6	32.5	46.0	
11.086000	25.8	Off	N	19.7	24.2	50.0	
13.558000	33.8	Off	N	19.9	16.2	50.0	
27.118000	39.7	Off	N	20.0	10.3	50.0	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 14 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

3.2 Field Strength of Fundamental Emissions and Mask Measurement

3.2.1 Limit

Field strength of fundamental emissions limit:

The field strength of fundamental emissions shall not exceed 15848 microvolts/meter at 30 meters.

The emissions limit in this paragraph is based on measurement instrumentation employing a QP detector.

Frequencies	Field Strength	Field Strength	Field Strength	
(MHz)	(microvolts/meter)	(dBµV/m) at 10m	(dBµV/m) at 3m	
13.553 ~ 13.567MHz	15848 at 30m	103.08 (QP)	124 (QP)	

Mask limit:

Rules and specifications	CFR 47 Part 15 section 15.225(a)-(d)					
Description	Compliance with the spectrum mask is tested using a spectrum					
Description	analyzer with F	RBW set to a 9	kHz for the ba	nd 13.553~13.	567MHz	
	Freq. of	Field	Field	Field	Field	
	Emission	Strength	Strength	Strength	Strength	
		(µV/m) at	(dBµV/m) at	(dBµV/m) at	(dBµV/m) at	
	(MHz)	30m	30m	10m	3m	
	1.705~13.110	30	29.5	48.58	69.5	
Limit	13.110~13.410	106	40.5	59.58	80.5	
	13.410~13.553	334	50.5	69.58	90.5	
	13.553~13.567	15848	84.0	103.08	124.0	
	13.567~13.710	334	50.5	69.58	90.5	
	13.710~14.010	106	40.5	59.58	80.5	
	14.010~30.000	30	29.5	48.58	69.5	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 15 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

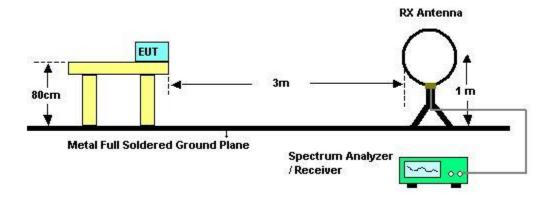
3.2.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	Auto
Center Frequency	Fundamental Frequency
RBW	9 kHz
Detector	QP

3.2.3 Test Procedures

- Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8
 meter above ground. The phase center of the loop receiving antenna mounted antenna tower
 was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested using a spectrum analyzer with RBW set to a 9kHz for the band 13.553~13.567MHz.


SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 16 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

3.2.4 Test Setup Layout

3.2.5 Test Deviation

There is no deviation with the original standard.

3.2.6 EUT Operation during Test

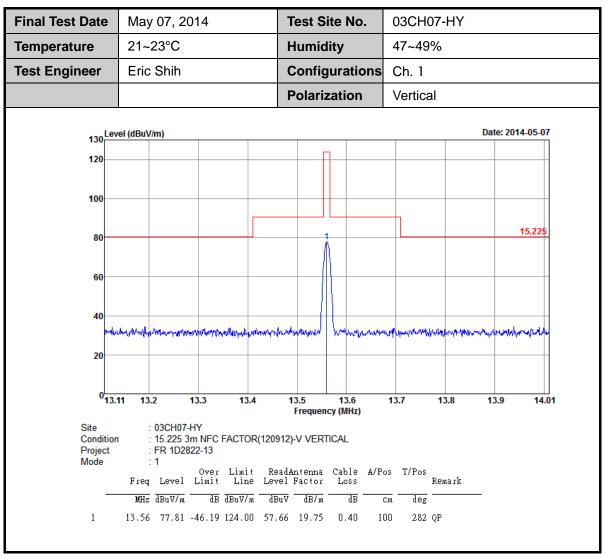
The EUT was programmed to be in continuously transmitting mode.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 17 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

3.2.7 Test Result of Field Strength of Fundamental Emissions


Final Test Date	May 07, 2014	Test Site No.	03CH07-HY
Temperature	21~23°C	Humidity	47~49%
Test Engineer	Eric Shih	Configurations	Ch. 1
		Polarization	Horizontal
	and (dDaAllan)		Date: 2014-05-07
130 Lev	vel (dBuV/m)		Date. 2014-03-07
120			
100			
80		1	15.225
60			
40			
_ν ν _γ ν _ν .	manifest for the form of the sale and the sale and sale a	the state of the second section of the section of the second section of the sect	ing the world a property to be seemed be a form a form of the first polyther a growth of the seemed by
20			
0 13.	11 13.2 13.3 13.4	13.5 13.6	13.7 13.8 13.9 14.01
13.	11 13.2 13.3 13.4	Frequency (MHz)	13.7 13.0 13.9 14.01
Site	: 03CH07-HY		
Condition Project	1 : 15.225 3m NFC FACTOR(120 : FR 1D2822-13	1912)-H HORIZONTAL	
Mode	:1		m/p
		teadAntenna Cable A/P vel Factor Loss	os 17Pos Remark
_	MHz dBuV/m dB dBuV/m d	BuV dB/m dB —	cm deg ———

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 18 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No. : FR1D2822-13

FCC RF Test Report No.: FR1D2822-13

Note:

- 1. Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$.
- 2. Measured distance is 3m.
- 3. All emissions emit form non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits.

SPORTON INTERNATIONAL INC.

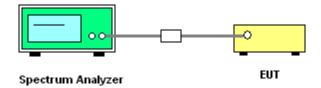
TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 19 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

3.3 20dB Spectrum Bandwidth Measurement

3.3.1 Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553 ~ 13.567MHz).

3.3.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RBW	1 kHz
VBW	3 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

3.3.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

3.3.4 Test Setup Layout

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 20 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

3.3.5 Test Deviation

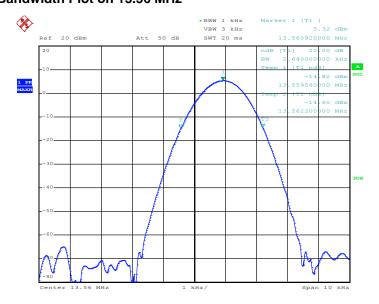
There is no deviation with the original standard.

3.3.6 EUT Operation during Test

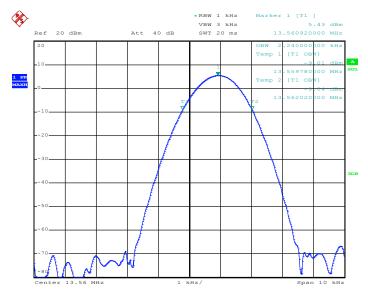
The EUT was programmed to be in continuously transmitting mode.

3.3.7 Test Result of 20dB Spectrum Bandwidth

Final Test Date	May 05, 2014	Test Site No.	TH02-HY
Temperature	22~24°C	Humidity	53~55%
Test Engineer	Tommy Lee	Configurations	Ch. 1


Frequency	20dB BW (kHz)	99% OBW (kHz)	Frequency range (MHz) f _L > 13.553MHz	Frequency range (MHz) f _H < 13.567MHz	Test Result
13.56 MHz	2.640	2.240	13.55956	13.56220	Complies

SPORTON INTERNATIONAL INC.


TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 21 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

20 dB / 99% Bandwidth Plot on 13.56 MHz

Date: 5.MAY.2014 14:41:01

Date: 5.MAY.2014 15:08:45

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 22 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

3.4 Radiated Emissions Measurement

3.4.1 Limit

The field strength of any emissions which appear outside of $13.553 \sim 13.567 \text{MHz}$ band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance			
(MHz)	(μV/m)	(meters)			
0.009~0.490	2400/F(kHz)	300			
0.490~1.705	24000/F(kHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

3.4.2 Measuring Instruments and Setting

Please refer to section 4 of equipment list in this report. The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 23 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

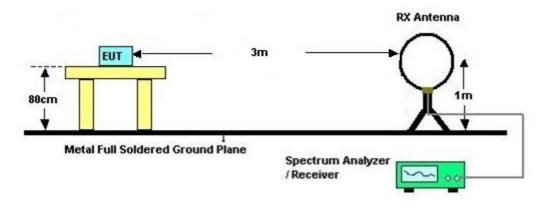
3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8
 meter above ground. The phase center of the receiving antenna mounted on the top of a
 height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

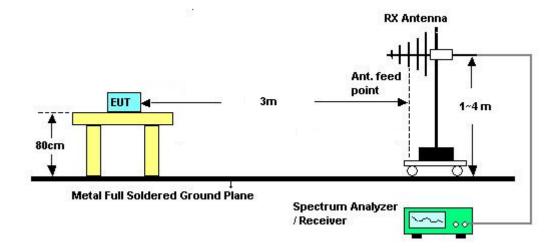
SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Report Issued Date: May 27, 2014
Report Version: Rev. 01

Page Number


: 24 of 36

Report No.: FR1D2822-13



3.4.4 Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.4.5 Test Deviation

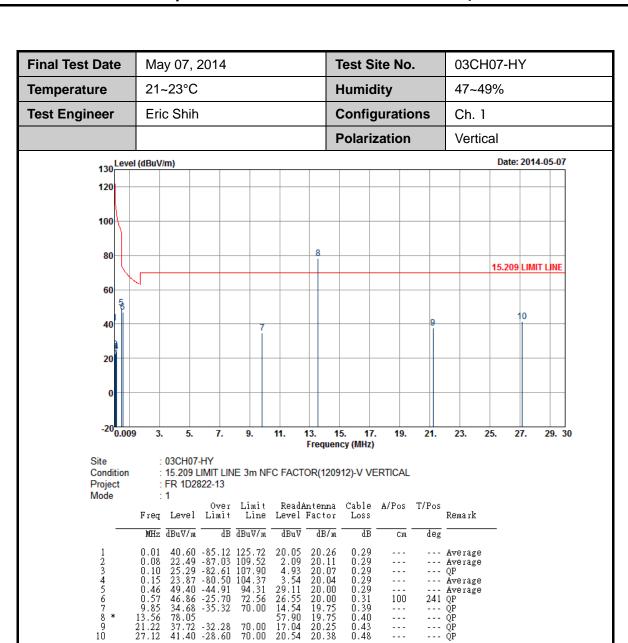
There is no deviation with the original standard.

3.4.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 25 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01


Report No.: FR1D2822-13

3.4.7 Results of Radiated Emissions (9 kHz~30MHz)

Final Test Date	May 07	, 2014				Test S	ite No).	03CF	107-l	ΗY	
Temperature	21~23°	С				Humidity			47~4	9%		
Test Engineer	Eric Sh	ih				Config	guratio	ons	Ch. 1			
							zation)	Horiz	onta	ıl	
130 Leve	el (dBuV/m)									Dat	e: 2014-	05-07
120					-							
100			_									+-
					7							
80										15.20	09 LIMIT	LINE
60												
	6											
40 5	1				-	8		9			10	+
a												
20												+
0					\top							
-20					Щ							
-20 <mark>0.00</mark> 9	9 3. 5	5. 7.	9.			15. 17 ency (MHz)		21.	23.	25.	27.	29. 30
Site	: 03CH		NI		CD(40)	22407 1111	COLTONI					
Condition Project	: FR 10	9 LIMIT LINE D2822-13	⊆ 3m Ivr	CFACIO	JK(12t	J912)-H FI	ORIZONI	AL				
Mode	: 1		Limit			a Cable	A/Pos	T/Pos				
	Freq Leve			Level F					Remark			
	MHz dBuV/		dBuV/m					deg				
1 2 2	0.01 37.3 0.06 21.4	36 -88.12 41 -90.50	125.48	16.81	20.26	6 0.29 1 0.29			Average Average			
5 4 5	0.11 22.0 0.11 21.2 0.45 38.3	08 -84.89 24 -85.35	106.59	0.88	20.0	7 0.29			Äverage			
1 2 3 4 5 6 7 * 8 9	1.33 43.3 13.56 82.3	37 -56.15 39 -21.73	65.12	18.08 23.07 62.19	20.00	1 0.31	100	108	Average QP			
8	15.06 34.7 20.87 37.8 27.38 36.5	4 /7 -35.23 86 -32 14	70.00	14.59	19.7	7 0.41 2 0.43			QP OD			
10	27.38 36.5	33.46	70.00	15.69	20.3	7 0.48						

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 26 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No. : FR1D2822-13

Note:

1. Remark 7 and remark 8 is transmitter's fundamental signal.

-32.28 37.72 -32.28 41.40 -28.60

2. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

70.00 70.00

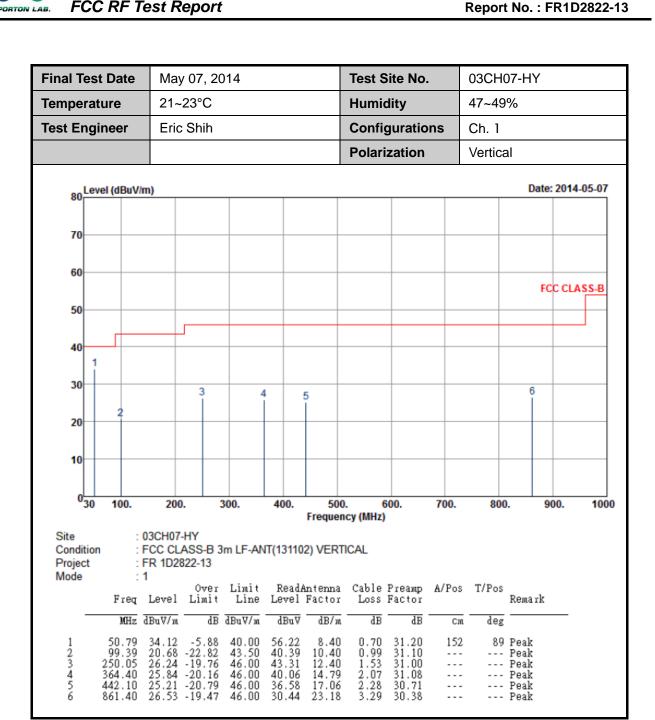
Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G

: 27 of 36 Page Number Report Issued Date: May 27, 2014 Report Version : Rev. 01

Report No.: FR1D2822-13


3.4.8 Results for Radiated Emissions (30MHz~1GHz)

-inal Tes	t Date	May	/ 07, 20	014			Test	Site No		03CH	07-HY		
Гетрега	21~	21~23°C					Humidity		47~49%				
Гest Eng	ineer	Eric	Eric Shih					Configurations		Ch. 1			
							Polar	ization		Horizo	ontal		
Lev	el (dBuV	m)									Dat	e: 2014	-05-07
80	CIQUUI	,											
70													_
60													
											F	CC CLA	SS-B
50													力
40													_
30 1			3	4		5 6							
		2											
20													
10													\dashv
030	100.	200	. :	300.	400.	500	D. (600.	700.	800).	900.	100
						Freque	ncy (MHz)						
Site Condition Project	i :	03CH07- FCC CL/ FR 1D28	ASS-B 3	m LF-AN	NT(13110	2) HORI	ZONTAL						
Mode		1 Level		Limit Line	Read# Level			Preamp Factor	A/Pos	T/Pos	Remark		
_	MHz	dBuV/m	dB	dBuV/m	dBu∀	dB/m	- dB	dB	Cm	deg			
1 2 3 4 5 6	42.96 143.94 250.05 347.60 444.90	31.17 28.61 28.37	-19.57 -14.83 -17.39 -17.63	40.00 43.50 46.00 46.00 46.00	42.33 48.24 43.39 39.66	11.90 11.50 12.40 14.31 17.15	1.20 1.53 1.95 2.29	31.20 31.10 31.00 31.04 30.73	114		Peak Peak Peak Peak Peak		
6	499.50	28.82	-17.18	46.00	38.98	17.99	2.45	30.60			Peak		

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 28 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No. : FR1D2822-13

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 29 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

3.5 Frequency Stability Measurement

3.5.1 Limit

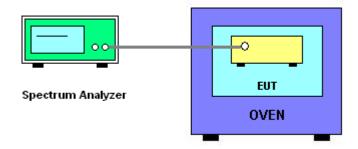
The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

3.5.2 Measuring Instruments and Setting

Please refer to section 4 of equipment list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	1 kHz
VBW	3 kHz
Sweep Time	Auto

3.5.3 Test Procedures


- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 100 ppm.
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is -20°C~50°C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 30 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

3.5.4 Test Setup Layout

3.5.5 Test Deviation

There is no deviation with the original standard.

3.5.6 EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 31 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

3.5.7 Test Result of Frequency Stability

Final Test Date	May 05, 2014	Test Site No.	TH02-HY
Temperature	22~24°C	Humidity	53~55%
Test Engineer	Tommy Lee	Configurations	Ch. 1

Voltage vs. Frequency Stability

Voltage(V)	Measurement Frequency (MHz)
120	13.560880
102	13.560890
138	13.560890
Max. Deviation (MHz)	0.000890
Max. Deviation (ppm)	65.6342

Temperature vs. Frequency Stability

Temperature (°C)	Measurement Frequency (MHz)
-20	13.560900
-10	13.560900
0	13.560900
10	13.560900
20	13.560890
30	13.560880
40	13.560880
50	13.560890
Max. Deviation (MHz)	0.000900
Max. Deviation (ppm)	66.3717

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 32 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

3.6 Antenna Requirements

3.6.1 Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a

standard antenna jack or electrical connector is prohibited.

3.6.2 Antenna Connector Construction

Enbedded in Antenna.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 33 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

4. LIST OF MEASURING EQUIPMENT

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz~40GHz	Jun. 07, 2013	May 05, 2014	Jun. 06, 2014	Conducted (TH02-HY)
Thermal Chamber	Ten Billion	TTH-D3SP	TBN-930701	N/A	Jul. 19, 2013	May 05, 2014	Jul. 18, 2014	Conducted (TH02-HY)
EMI Test Receiver	Rohde & Schwarz	ESCS 30	100356	9kHz ~ 2.75GHz	Nov. 15, 2013	May 05, 2014	Nov. 14, 2014	Conduction (CO05-HY)
LISN (for auxiliary equipment)	Rohde & Schwarz	ENV216	100081	9kHz ~ 30MHz	Dec. 12, 2013	May 05, 2014	Dec. 11, 2014	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz ~ 30MHz	Dec. 04, 2013	May 05, 2014	Dec. 03, 2014	Conduction (CO05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 05, 2014	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Sep. 06, 2013	May 07, 2014	Sep. 05, 2014	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	860004/0001	9 kHz~30 MhZ	Jul. 03, 2012	May 07, 2014	Jul. 02, 2014	Radiation (03CH07-HY)
Bilog Antenna	Schaffner	CBL6111C	2726	30MHz ~ 1GHz	Oct. 10, 2013	May 07, 2014	Oct. 09, 2014	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10 MHz ~ 1000MHz 32dB GAIN	Mar. 17, 2014	May 07, 2014	Mar. 16, 2015	Radiation (03CH07-HY)
Turn Table	ChainTek	ChainTek 3000	N/A	0 ~ 360 degree	N/A	May 07, 2014	N/A	Radiation (03CH07-HY)
Antenna Mast	ChainTek	ChainTek 3000	N/A	N/A	N/A	May 07, 2014	N/A	Radiation (03CH07-HY)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 34 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

5. TEST LOCATION

HWA YA ADD: No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

TEL : 886-3-327-3456 FAX : 886-3-318-0055

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 35 of 36
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No.: FR1D2822-13

6. TAF CERTIFICATE OF ACCREDITATION

Certificate No.: L1190-130110

Report No.: FR1D2822-13

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005

Accreditation Number : 1190

Originally Accredited : December 15, 2003

Effective Period : January 10, 2013 to January 09, 2016

: Testing Field, see described in the Appendix Accredited Scope

: Accreditation Program for Designated Testing Laboratory Specific Accreditation for Commodities Inspection Program

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

Date:January 10, 2013

P1, total 20 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : 36 of 36

Report Issued Date: May 27, 2014

Report Version : Rev. 01

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: B32VX520-G Page Number : A1 of A1
Report Issued Date : May 27, 2014
Report Version : Rev. 01

Report No. : FR1D2822-13

Report Template No.: BU5-FR15CNFC Version 1.0 Report Template No.: BU5-CR210NFC Version 1.0