

Page 1 of65

TEST REPORT

Product Name	:	Smart Beacon Strip Light
Brand Mark	:	N/A
Model No.	:	50618
FCC ID	:	2AQUQGE50618
Report Number	:	BLA-EMC-202212-A2601
Date of Sample Receipt	:	2022/12/12
Date of Test	:	2022/12/13 to 2022/12/21
Date of Issue	:	2022/12/30
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Globe Electric Company Inc. 150 Oneida, Montreal, Quebec, Canada, H9R 1A8

Prepared by:

BlueAsia Technical Services (Shenzhen) Co.,Ltd. No.41, South of Beihuan Road, Shangwu Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-23059481

Compiled by: Charlie Approved by: Blue Thong

Review by: Sweets 2022/12/30 Date: Services

BlueAsia Technical Services (Shenzhen) Co.,Ltd.

Add: No.41, South of Beihuan Road, Shangwu Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	Date	Description
00	2022/12/30	Original

TABLE OF CONTENTS

1 TEST SUMMARY	5
2 GENERAL INFORMATION	6
3 GENERAL DESCRIPTION OF E.U.T.	6
4 TEST ENVIRONMENT	7
5 TEST MODE	7
6 MEASUREMENT UNCERTAINTY	7
7 DESCRIPTION OF SUPPORT UNIT	8
8 LABORATORY LOCATION	
9 TEST INSTRUMENTS LIST	9
10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	11
10.1 LIMITS	
10.2 BLOCK DIAGRAM OF TEST SETUP	
10.3 PROCEDURE	
10.4 TEST Data	13
11 CONDUCTED BAND EDGES MEASUREMENT	15
11.1 LIMITS	15
11.2 BLOCK DIAGRAM OF TEST SETUP	15
11.3 TEST DATA	
12 RADIATED SPURIOUS EMISSIONS	17
12.1 LIMITS	17
12.2 BLOCK DIAGRAM OF TEST SETUP	
12.3 PROCEDURE	
12.4 TEST DATA	20
13 ANTENNA REQUIREMENT	28
13.1 CONCLUSION	28
14 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	29
14.1 LIMITS	29
14.2 BLOCK DIAGRAM OF TEST SETUP	30
14.3 PROCEDURE	
14.4 TEST Data	32

15 CONDUCTED SPURIOUS EMISSIONS	36
15.1 LIMITS	36
15.2 BLOCK DIAGRAM OF TEST SETUP	36
15.3 TEST DATA	37
16 POWER SPECTRUM DENSITY	38
16.1 LIMITS	38
16.2 BLOCK DIAGRAM OF TEST SETUP	38
16.3 TEST DATA	38
17 CONDUCTED PEAK OUTPUT POWER	
17.1 LIMITS	39
17.2 BLOCK DIAGRAM OF TEST SETUP	
17.3 TEST DATA	
18 MINIMUM 6DB BANDWIDTH	
18.1 LIMITS	
18.2 BLOCK DIAGRAM OF TEST SETUP	
18.3 TEST DATA	41
19 APPENDIX	
19.1 MAXIMUM CONDUCTED OUTPUT POWER	
19.2 -6DB BANDWIDTH	44
19.3 Occupied Channel Bandwidth	46
19.4 Maximum Power Spectral Density Level	48
19.5 BAND EDGE	50
19.6 CONDUCTED RF SPURIOUS EMISSION	53
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	57
APPENDIX B: PHOTOGRAPHS OF EUT	59

1 TEST SUMMARY

57

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass

2 GENERAL INFORMATION

Applicant	Globe Electric Company Inc.	
Address	150 Oneida, Montreal, Quebec, Canada, H9R 1A8	
Manufacturer	Globe Electric Company Inc.	
Address	150 Oneida, Montreal, Quebec, Canada, H9R 1A8	
Factory	Globe Electric Company Inc.	
Address	150 Oneida, Montreal, Quebec, Canada, H9R 1A8	
Product Name	Smart Beacon Strip Light	
Test Model No.	50618	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	1.0
Software Version	1.0
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	1.09dBi

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	DC3.3V

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION		
ТХ	Keep the EUT in transmitting mode		
Demonstry Only the date of the want mode would be recorded in this report			

Remark:Only the data of the worst mode would be recorded in this report.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

Parameter	Expanded Uncertainty (Confidence of 95%)	
Occupied Channel Bandwidth	±5 %	
RF output power, conducted	±1.5 dB	
Power Spectral Density, conducted	±3.0 dB	
Unwanted Emissions, conducted	±3.0 dB	
Temperature	±3 °C	
Supply voltages	±3 %	
Time	±5 %	
Unwanted Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB	
Unwanted Radiated Emission (1GHz ~ 18GHz)	±4.44 dB	

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at: BlueAsia Technical Services (Shenzhen) Co.,Ltd. No.41, South of Beihuan Road, Shangwu Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

Г

٦

9 TEST INSTRUMENTS LIST

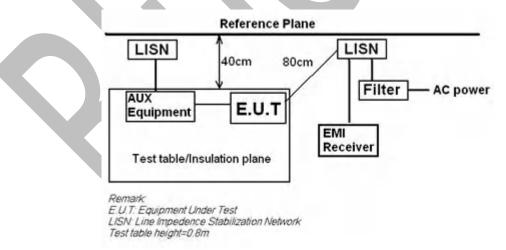
Test Equipn	nent Of Radiated S	purious Emissions			
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber 1	SKET	966	N/A	2020/11/10	2023/11/9
Chamber 2	SKET	966	N/A	2021/07/20	2024/07/19
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14
Receiver	R&S	ESR7	101199	2022/09/15	2023/09/14
Receiver	R&S	ESPI7	101477	2022/07/16	2023/07/15
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/09/15	2023/09/14
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2022/07/16	2023/07/15
Amplifier	SKET	PA-000318G-45	N/A	2022/09/13	2023/09/12
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2022/07/14	2023/07/13
Filter group	SKET	2.4G/5G Filter group r	N/A	2022/07/16	2023/07/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2022/9/14	2025/9/13
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

٦

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)												
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due							
Shield room	SKET	833	N/A	2020/11/25	2023/11/24							
Receiver	R&S	ESPI3	101082	2022/09/14	2023/09/13							
LISN	R&S	ENV216	3560.6550.15	2022/09/14	2023/09/13							
LISN	AT	AT166-2	AKK1806000003	2022/09/14	2023/09/13							
ISN	TESEQ	ISNT8-cat6	53580	2022/09/14	2023/09/13							
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01045	2022/08/17	2023/08/16							
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01075	2022/08/17	2023/08/16							
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A							

Test Equipment	Of RF Conducte	d Test			
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14
Spectrum	Agilent	N9020A	MY49100060	2022/09/07	2023/09/06
Spectrum	KEYSIGHT	N9030A	MY52350152	2022/07/01	2023/06/30
Spectrum	KEYSIGHT	N9010A	MY54330814	2022/07/01	2023/06/30
Signal Generator	Agilent	N5182A	MY47420955	2022/09/07	2023/09/06
Signal Generator	Agilent	E8257D	MY44320250	2022/07/01	2023/06/30
Signal Generator	Agilent	N5181A	MY46240904	2022/08/02	2023/08/01
Signal Generator	R&S	CMW500	132429	2022/09/07	2023/09/06
BluetoothTester	Anritsu	MT8852B	06262047872	2022/09/07	2023/09/06
Power probe	DARE	RPR3006W	14100889SN042	2022/09/07	2023/09/06
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2022/09/14	2023/09/13
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2022/09/14	2023/09/13
Audio Analyzer	Audioprecision	N/A	ATSI-41094	2022/7/1	2023/6/30
2.4GHz/5GHz RF Test software	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A

10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

10.1 LIMITS

Frequency of	Conducted	limit(dBµV)
emission(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
*D 11111	6.1 6	

*Decreases with the logarithm of the frequency.

10.2 BLOCK DIAGRAM OF TEST SETUP

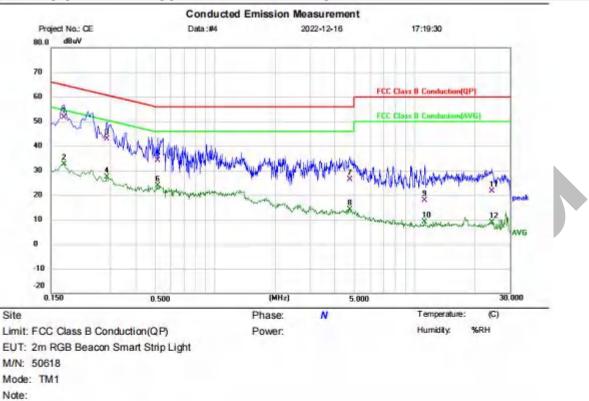
10.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

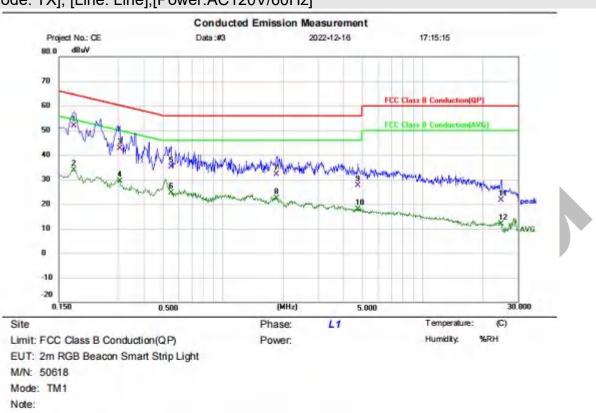
2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

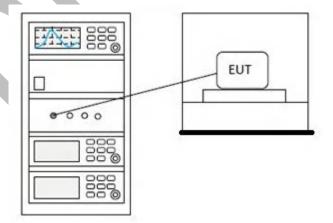

10.4 TEST DATA

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1740	41.11	10.41	51.52	64.77	-13.25	QP	
2		0.1740	22.32	10.41	32.73	54.77	-22.04	AVG	
3		0.2860	32.87	10.07	42.94	60.64	-17.70	QP	
4		0.2860	17.41	10.07	27.48	50.64	-23.16	AVG	
5		0.5140	24.16	10.05	34.21	56.00	-21.79	QP	
6		0.5140	13.85	10.05	23.90	46.00	-22.10	AVG	
7	-	4.7380	16.49	9.84	26.33	56.00	-29.67	QP	
8		4.7380	4.37	9.84	14.21	46.00	-31.79	AVG	
9		11.2420	8.02	9.96	17.98	60.00	-42.02	QP	
10		11.2420	-0.86	9.96	9.10	50.00	-40.90	AVG	
11		24.3300	11.77	9.97	21.74	60.00	-38.26	QP	
12		24.3300	-1.12	9.97	8.85	50.00	-41.15	AVG	

[TestMode: TX]; [Line: Line];[Power:AC120V/60Hz]

N	0.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	_		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1780	41.43	10.51	51.94	64.58	-12.64	QP	
-	2		0.1780	23.32	10.51	33.83	54.58	-20.75	AVG	
	3		0.3020	32.48	10.07	42.55	60.19	-17.64	QP	
	4		0.3020	19.37	10.07	29.44	50.19	-20.75	AVG	
-	5		0.5460	24.99	10.08	35.07	56.00	-20.93	QP	
-	6		0.5460	14.65	10.08	24.73	46.00	-21.27	AVG	
-	7		1.8500	21.76	10.28	32.04	56.00	-23.96	QP	
	8		1.8500	12.16	10.28	22.44	46.00	-23.56	AVG	
-	9		4.7340	17.55	10.04	27.59	56.00	-28.41	QP	
1	0		4.7340	7.91	10.04	17.95	46.00	-28.05	AVG	
1	1		24.7220	11.50	10.02	21.52	60.00	-38.48	QP	
1	2		24.7220	1.90	10.02	11.92	50.00	-38.08	AVG	

Test Result: Pass


11 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Charlie				
Temperature	25°C				
Humidity	60%				

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

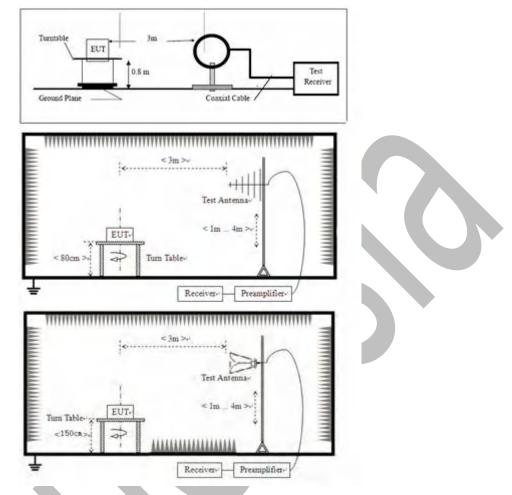
Report No.: BLA-EMC-202212-A2601 Page 16 of 65

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%


12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

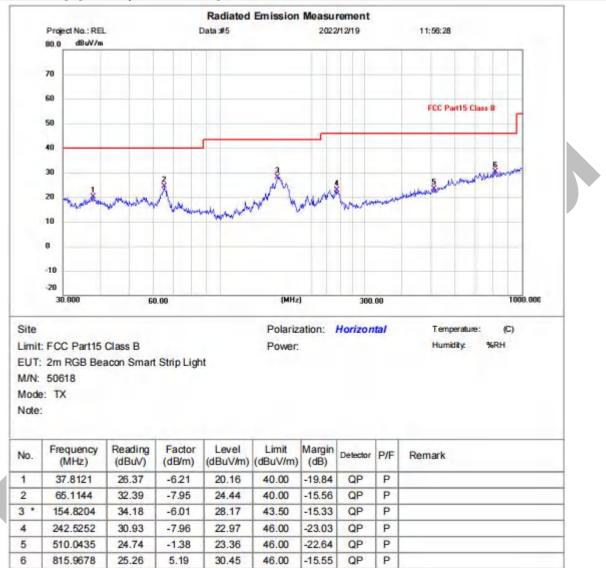
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

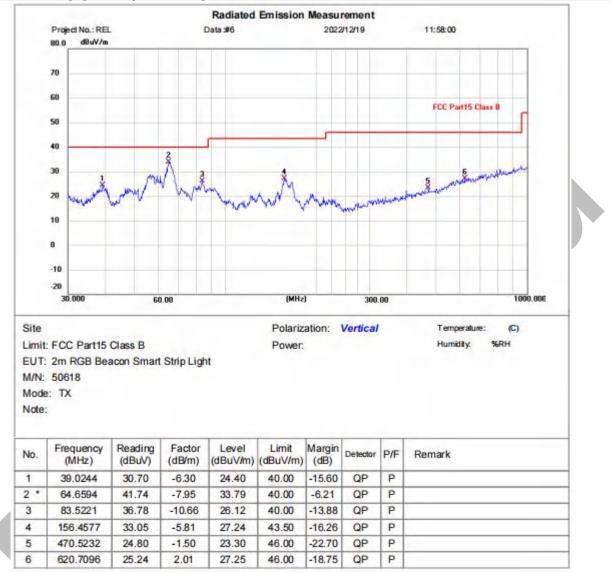
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

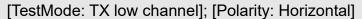
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

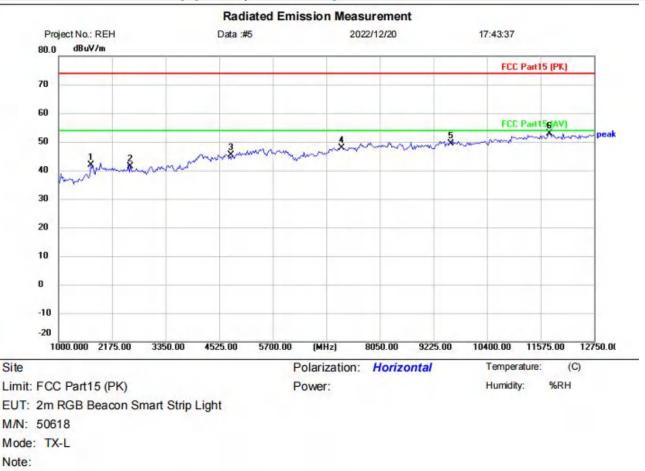
3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.fundamental frequency is blocked by filter, and only spurious emission is shown.

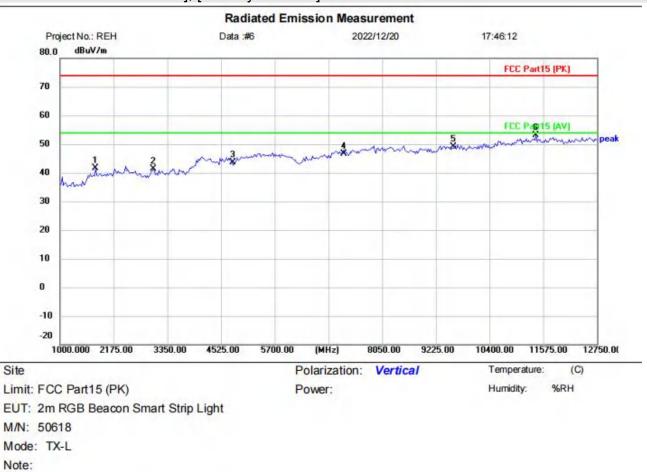

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

12.4 TEST DATA

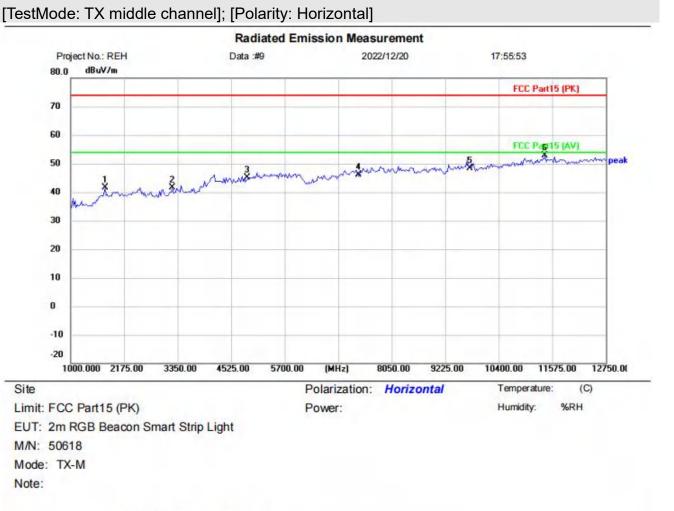

Below 1GHz



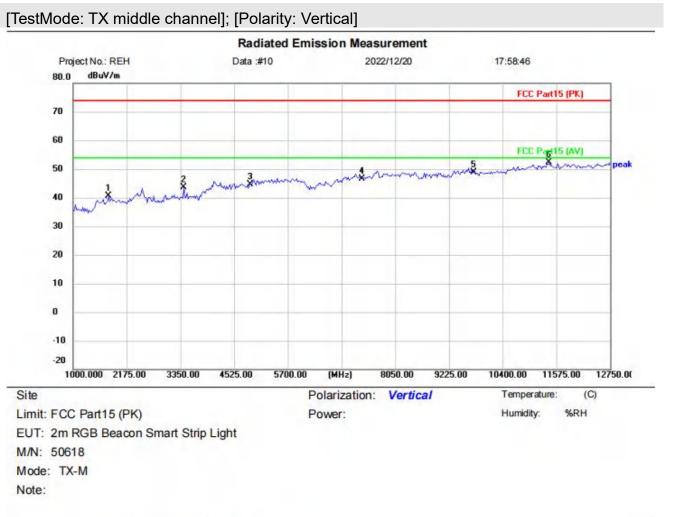

[TestMode: TX]; [Polarity: Vertical]


Above 1GHz:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		1705.000	47.15	-5.22	41.93	74.00	-32.07	peak		
2		2574.500	44.04	-2.63	41.41	74.00	-32.59	peak		
3	-	4804.000	41.45	4.05	45.50	74.00	-28.50	peak		
4		7206.000	39.86	7.93	47.79	74.00	-26.21	peak		
5		9608.000	38.52	10.90	49.42	74.00	-24.58	peak		
6	*	11763.000	39.09	13.80	52.89	74.00	-21.11	peak		
_										

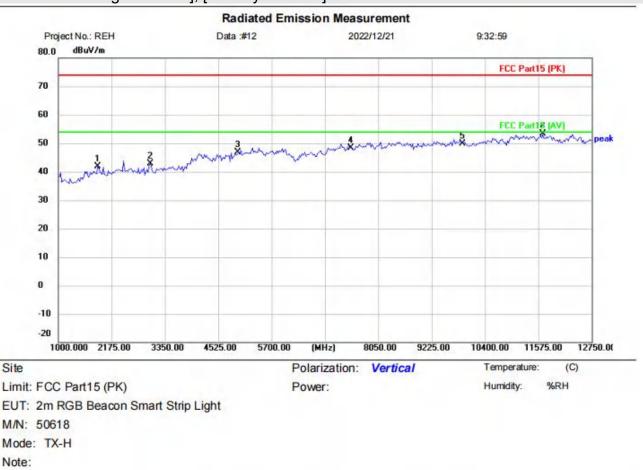


[TestMode: TX low channel]; [Polarity: Vertical]


No.	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		1775.500	46.70	-5.12	41.58	74.00	-32.42	peak		
2		3044.500	43.78	-2.52	41.26	74.00	-32.74	peak		
3		4804.000	39.65	4.05	43.70	74.00	-30.30	peak		
4		7206.000	38.73	7.93	46.66	74.00	-27.34	peak		
5		9608.000	38.17	10.90	49.07	74.00	-24.93	peak		
6	*	11410.500	39.44	13.63	53.07	74.00	-20.93	peak		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		1752.000	46.85	-5.16	41.69	74.00	-32.31	peak		
2		3232.500	44.05	-2.36	41.69	74.00	-32.31	peak		
3		4884.000	40.74	4.37	45.11	74.00	-28.89	peak		
4		7326.000	37.90	8.21	46.11	74.00	-27.89	peak		
5		9768.000	37.12	11.31	48.43	74.00	-25.57	peak		
6	*	11410.500	39.29	13.63	52.92	74.00	-21.08	peak		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	_	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		1775.500	45.73	-5.12	40.61	74.00	-33.39	peak		
2		3420.500	45.31	-1.64	43.67	74.00	-30.33	peak		
3		4884.000	40.29	4.37	44.66	74.00	-29.34	peak		
4		7326.000	38.48	8.21	46.69	74.00	-27.31	peak		
5		9768.000	37.69	11.31	49.00	74.00	-25.00	peak		
6	*	11410.500	38.86	13.63	52.49	74.00	-21.51	peak		



[TestMode: TX High channel]; [Polarity: Horizontal]

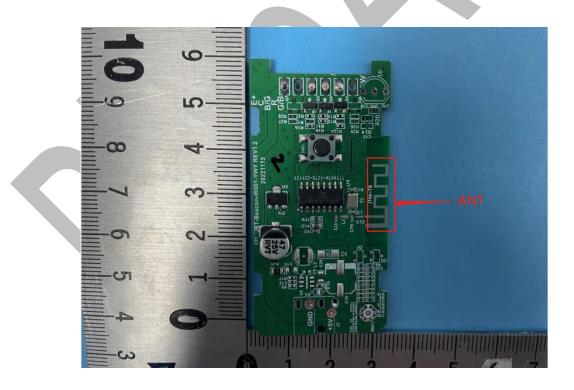
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
-		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		1869.500	48.33	-4.88	43.45	74.00	-30.55	peak	
2		3491.000	44.03	-1.21	42.82	74.00	-31.18	peak	
3		4960.000	41.42	5.42	46.84	74.00	-27.16	peak	
4		7440.000	39.98	8.48	48.46	74.00	-25.54	peak	
5		9920.000	38.74	11.69	50.43	74.00	-23.57	peak	
6	*	12397.500	39.71	13.88	53.59	74.00	-20.41	peak	

[TestMode: TX High channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		1869.500	46.78	-4.88	41.90	74.00	-32.10	peak	
2		3021.000	45.43	-2.53	42.90	74.00	-31.10	peak	
3		4960.000	41.44	5.42	46.86	74.00	-27.14	peak	
4		7440.000	39.85	8.48	48.33	74.00	-25.67	peak	
5		9920.000	38.24	11.69	49.93	74.00	-24.07	peak	
6	*	11669.000	39.57	13.75	53.32	74.00	-20.68	peak	

13 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


13.1 CONCLUSION

Standard Requirement:

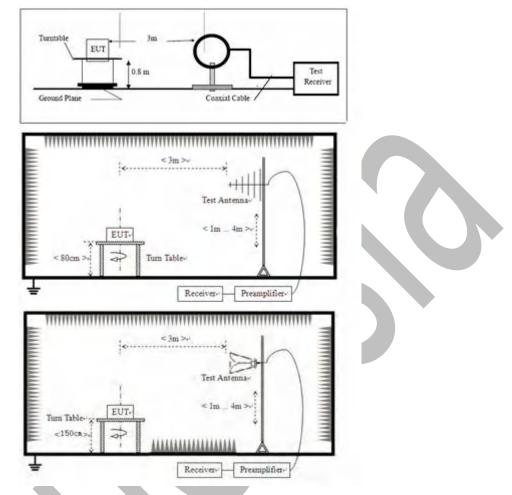
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.09dBi.

14 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%


14.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

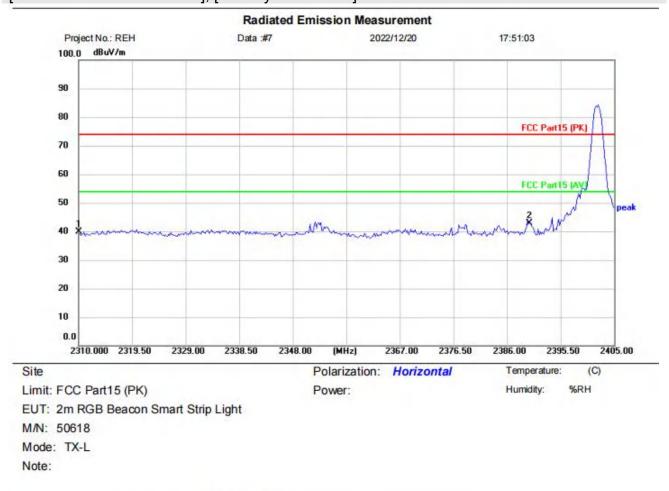
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

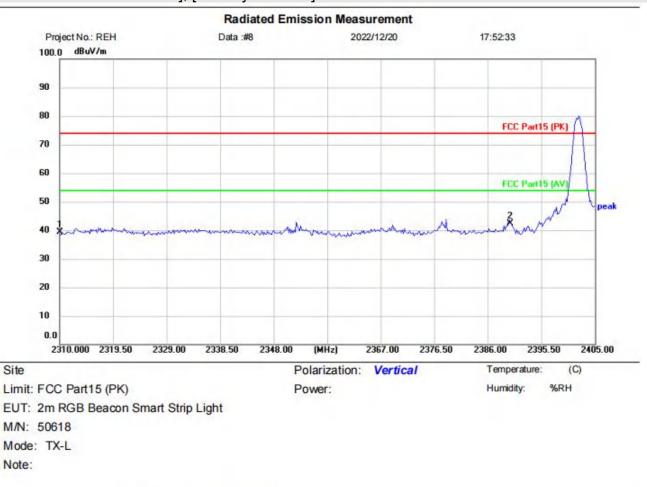
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

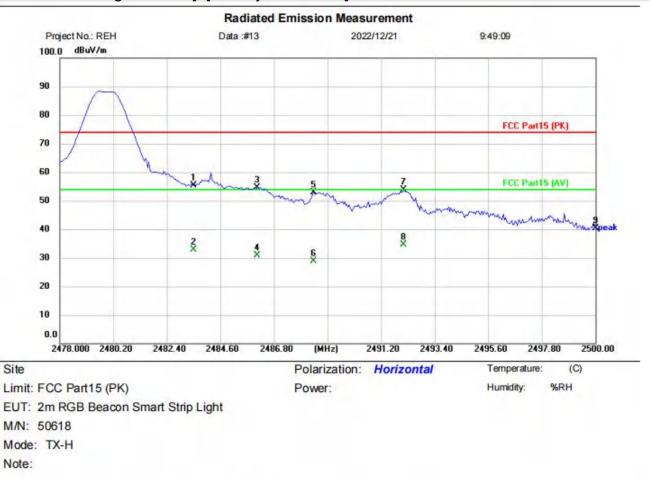
Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


14.4 TEST DATA

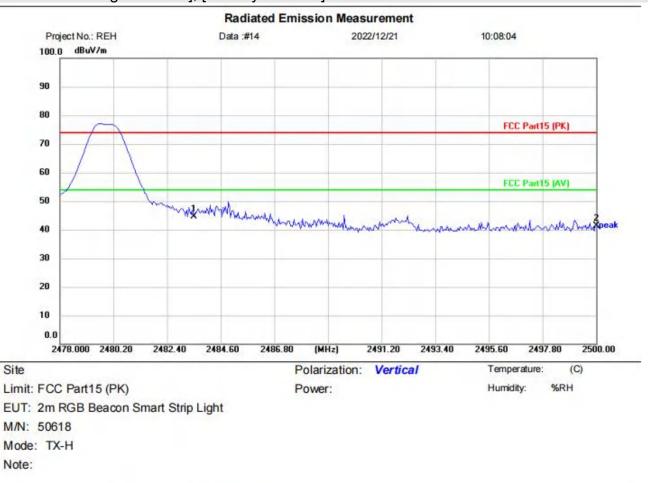
[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	44.15	-4.27	39.88	74.00	-34.12	peak		
2	*	2390.000	46.63	-3.82	42.81	74.00	-31.19	peak		



[TestMode:TX low channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	43.69	-4.27	39.42	74.00	-34.58	peak		
2	*	2390.000	46.16	-3.82	42.34	74.00	-31.66	peak		

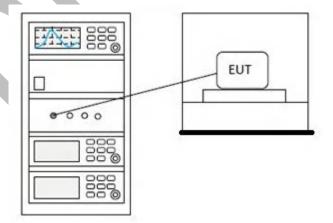


[TestMode: TX High channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	59.24	-3.96	55.28	74.00	-18.72	peak	
2		2483.500	36.80	-3.96	32.84	54.00	-21.16	AVG	
3	_	2486.140	58.72	-3.97	54.75	74.00	-19.25	peak	
4	-	2486.140	34.83	-3.97	30.86	54.00	-23.14	AVG	
5		2488.428	56.94	-3.97	52.97	74.00	-21.03	peak	
6		2488.428	32.87	-3.97	28.90	54.00	-25.10	AVG	
7		2492.124	57.78	-3.98	53.80	74.00	-20.20	peak	
8		2492.124	38.67	-3.98	34.69	54.00	-19.31	AVG	
9		2500.000	44.39	-4.00	40.39	74.00	-33.61	peak	

[TestMode:TX High channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2483.500	48.64	-3.96	44.68	74.00	-29.32	peak		
2		2500.000	45.32	-4.00	41.32	74.00	-32.68	peak		


15 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

15.1 LIMITS

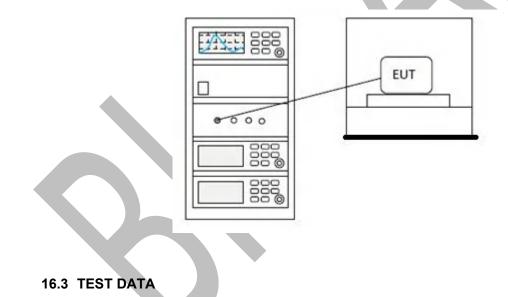
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

15.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202212-A2601 Page 37 of 65

15.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


16 POWER SPECTRUM DENSITY

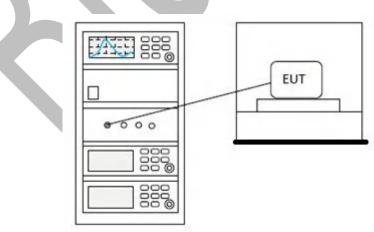
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

16.1 LIMITS

Limit: \leq 8dBm in any 3 kHz band during any time interval of continuous transmission

16.2 BLOCK DIAGRAM OF TEST SETUP

Pass: Please Refer To Appendix: Appendix1 For Details


17 CONDUCTED PEAK OUTPUT POWER

17.2 BLOCK DIAGRAM OF TEST SETUP

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX
Tester	Charlie
Temperature	25 ℃
Humidity	60%
17.1 LIMITS	

17.1 LIMITS

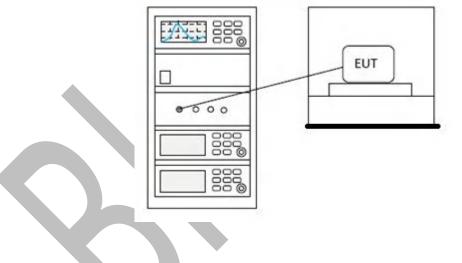
Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for \geq 75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5775 5050	1 for frequency hopping systems and digital
5725-5850	modulation

BlueAsia Technical Services(Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Report No.: BLA-EMC-202212-A2601 Page 40 of 65

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


18 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

18.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

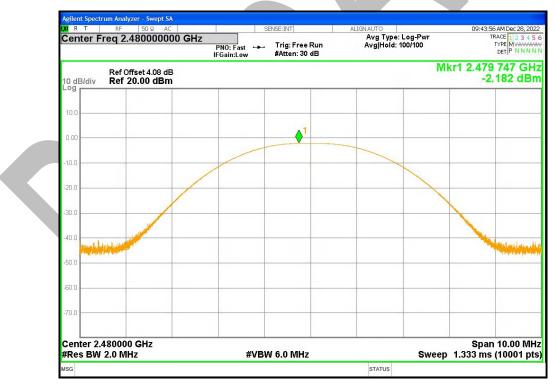
Pass: Please Refer To Appendix: Appendix1 For Details

19 APPENDIX

Appendix1

19.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	-0.469	30	Pass
NVNT	BLE 1M	2442	Ant1	-0.321	30	Pass
NVNT	BLE 1M	2480	Ant1	-2.182	30	Pass


Power NVNT BLE 1M 2402MHz Ant1

Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

19.2 -6DB BANDWIDTH

Condition	Mode	Frequenc	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		y (MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.648	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.662	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.676	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

lent Spectrum Analyzer - Occupied BW R T RF 50 Q AC Priter Freq 2.442000000 (GHz #IFGain:Low	Center Freq: 2.4420000	ALIGN AUTO 000 GHz Avg Hold: 100/100		09:42:37 AM D dio Std: None dio Device: BT	
Ref Offset 4.03 dB dB/div Ref 24.03 dBm				Mkr3	2.44233	
						_
	2					
		al and a second a second a second	man man			
				and many		
man was well					Marian	
	-					
)						
nter 2.442 GHz es BW 100 kHz		#VBW 300 k	Hz		Span Sweep 1.	2 MHz 333 ms
Occupied Bandwidth		Total Power	5.60 dBm			
	339 MHz					
ransmit Freq Error	7.249 kHz	OBW Power	99.00 %			
x dB Bandwidth	662.0 kHz	x dB	-6.00 dB			
3			STATUS			

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.026456719
NVNT	BLE 1M	2442	Ant1	1.013742888
NVNT	BLE 1M	2480	Ant1	1.026466

19.3 OCCUPIED CHANNEL BANDWIDTH

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

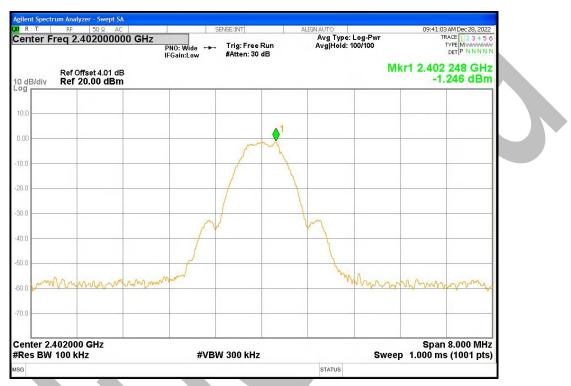
OBW NVNT BLE 1M 2480MHz Ant1

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-1.06	8	Pass
NVNT	BLE 1M	2442	Ant1	-0.979	8	Pass
NVNT	BLE 1M	2480	Ant1	-2.698	8	Pass

19.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

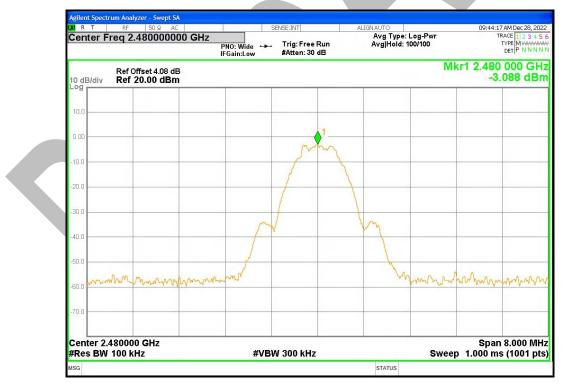
PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1


PSD NVNT BLE 1M 2480MHz Ant1

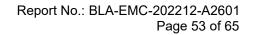
19.5 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-52.21	-30	Pass
NVNT	BLE 1M	2480	Ant1	-51.54	-30	Pass


Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

	pectr		lyzer - Swept							
RT	- 5	RF	50 Ω .		SENS	SE:INT	ALIGNAUTO Avg Type:	Log-Pwr		AM Dec 28, 2022
ente		req 2	2.356000	1		Trig: Free Run #Atten: 30 dB	Avg Hold: 1	00/100		
0 dB/d	div		Offset 4.01 20.00 dB					1		01 8 GHz 542 dBm
3.00										\
0.0										Λ
20.0										
30.0				-						-31.25 dBm
40.0										1
50.0								\wedge	A3	12
	ma	whenthem	American	representation	manshallowers	weather the second	and manufacture of the second	manument	and the states of the second s	word has
70.0										
L				_						
		100 (100 (#VBW	300 kHz		Sweep		40600 GHz ; (1001 pts)
		RC SCL		X	Y	FUNCTION	FUNCTION WIDTH	FL	NCTION VALUE	^
1 N 2 N 3 N 4 N		f f f		2.401 8 GHz 2.400 0 GHz 2.390 0 GHz 2.384 7 GHz	-57.574 dB	m m				
5 6 7										
7 8										
9										
0 1										~
							1 1			>
G							STATUS			


Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

ectrum Analyzer - Swept SA			
RF 50 Ω AC r Freq 2.526000000 GHz IF6ain		ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 100/100	09:44:20 AM Dec 28, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
Ref Offset 4.08 dB iv Ref 20.00 dBm			Mkr1 2.480 3 GHz -3.086 dBm
1			
			-33.09 dBm
2 4 3	uncerenter the start of the sta	mannaphronoutre whill make and	Annor and an and the should many for the
.47600 GHz BW 100 kHz	#VBW 300 kHz	Sw	Stop 2.57600 GHz eep 9.600 ms (1001 pts)
E TRC SCL X f 2.480 3 GHz	Y FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
f 2.480 3 GHz 1 f 2.483 5 GHz 1 f 2.500 0 GHz 1 f 2.490 1 GHz	-56.710 dBm -57.028 dBm -54.636 dBm		
			×
		STATUS	

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-43.08	-30	Pass
NVNT	BLE 1M	2442	Ant1	-43.26	-30	Pass
NVNT	BLE 1M	2480	Ant1	-40.84	-30	Pass

19.6 CONDUCTED RF SPURIOUS EMISSION

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

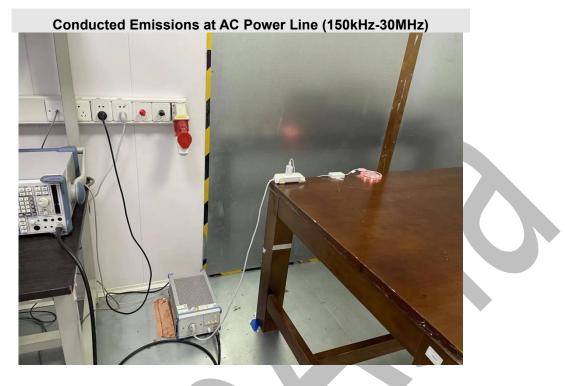
	23456
Ref Offset 4.01 dB Avg Hoid: 10/10 Type Muman 10	23430
Ref 20.00 dB/div -2.145 dE 00 -1 -1	NNNNN
20.0	1
0.00	
	-31.11 dBm
	2
40.0 $\sqrt{3}$ $\sqrt{4}$ $\sqrt{5}$ $\sqrt{3}$ $\sqrt{4}$ $\sqrt{5}$	monde
50.0	
60.0 	
////	
Start 30 MHz Stop 26.50 G #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (1001 p	
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE	^
1 N 1 f 2.412 GHz -2.145 dBm 2 N 1 f 25.600 GHz -44.196 dBm	
3 N 1 f 4.874 GHz -54.185 dBm	
4 N 1 f 7.309 GHz -53.741 dBm 5 N 1 f 9.453 GHz -54.110 dBm 6 9	
6	
9	
10	
11	>
ISG STATUS	9 620)

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission

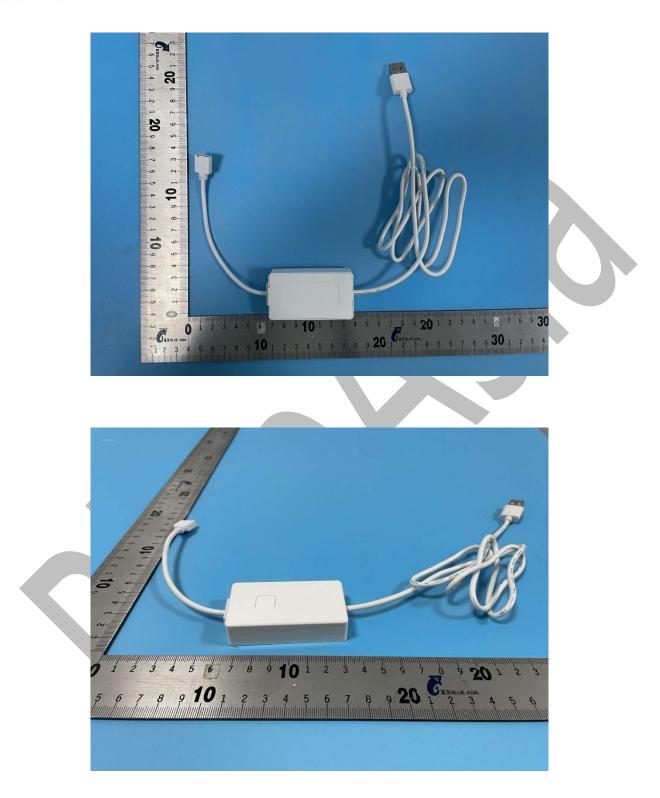
		-					-	zer - Swept SA			
5 AM Dec 28, 2022 RACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	TF	e: Log-Pwr : 10/10	ALIGN AUTO Avg Type Avg Hold	ree Run 30 dB		PNO: Fast ↔ IFGain:Low	Р	50 Ω AC 3.2650000	RF eq 13		a R Cen
.439 GHz .985 dBm								ffset 4.03 dB 20.00 dBm		/div	
											.og
					_						0.00
					2	-					-10.0
										_	-20.0
-30.48 dBm					_						-30.0
					-	-					-40.0
Construction and a second second	man and a strand have	- and any the second	hardwillenetropost	unon degree	5 martine martine	5	A A	he of			-50.0
						a and we are		. Physical Ass	-/0er-	while here	-60.0
											-70.0
26.50 GHz s (1001 pts)	Stop veep 2.530 s	Sw		Hz	VBW 300	#V		łz	Hz 100 k	: 30 M BW	
^	FUNCTION VALUE		INCTION WIDTH	FUNCTION		Y		X		IODE T	
					985 dBm 747 dBm	z -43.74	2.439 GHz 26.209 GHz		f f	N N	1
					014 dBm 014 dBm		5.033 GHz 7.203 GHz		f	N N	3 4
					136 dBm	lz -55.43	9.692 GHz		f	N	5
											67
											8 9
~											10 11
			1 1								<
			STATUS								ISG

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref


Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

nt Spectr	rum A	nalyzer - Swept S. F 50 Ω AC		SENSE:	NT	ALIGN AUTO		09:44:54	AM Dec 28, 2022
nter F	req	13.265000	PNO		g: Free Run ten: 30 dB	Avg Type Avg Hold	≘: Log-Pwr : 10/10	1	ACE 123456 TYPE MWWWW DET PNNNNN
dB/div		ef Offset 4.08 di ef 20.00 dBn							492 GHz 389 dBm
		- 1							
	_	\							
.0		1						_	
1.0									22.01.02
									-33.04 dDm
.0	_	\diamond	3 4	5	hard a second	ender and million	want Armin	maria	monored
1.0	ATU MAN	watthen	and the second when the	elition at the star new range range	and the second s				
.0									
art 30 M es BW				#VBW 30	0 kHz		Swee		26.50 GHz (1001 pts)
R MODE TR	RC SC f		× 2.492 GHz	-2.389 dBm	FUNCTION	FUNCTION WIDTH	FUN	CTION VALUE	^
2 N 3 N	f		25.203 GHz 4.953 GHz	-43.890 dBm -53.749 dBm					
1 N 1	f		4.953 GHz 7.283 GHz 10.062 GHz	-54.305 dBm -53.854 dBm					
N			10.002 GHZ	-55.654 ubm					
3))									
									×
1						STATUS			

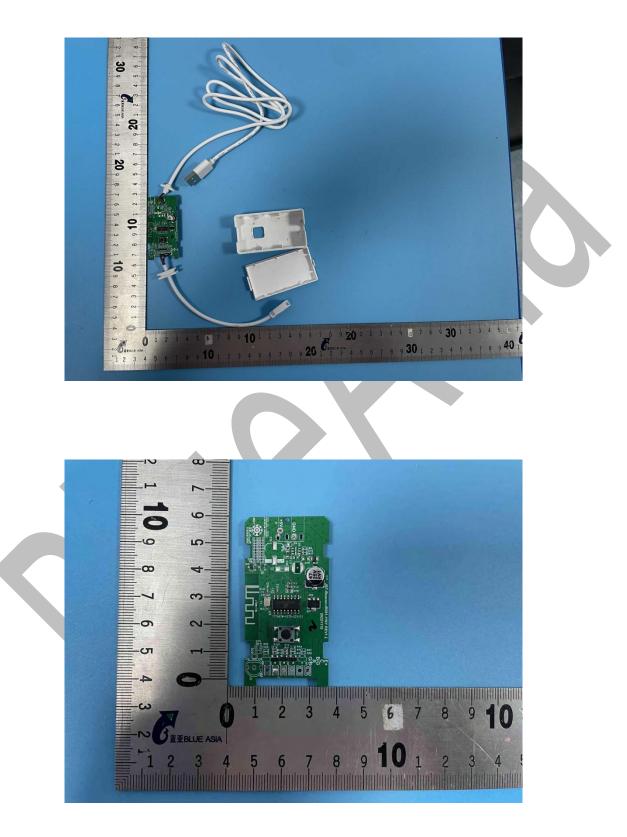
APPENDIX A: PHOTOGRAPHS OF TEST SETUP

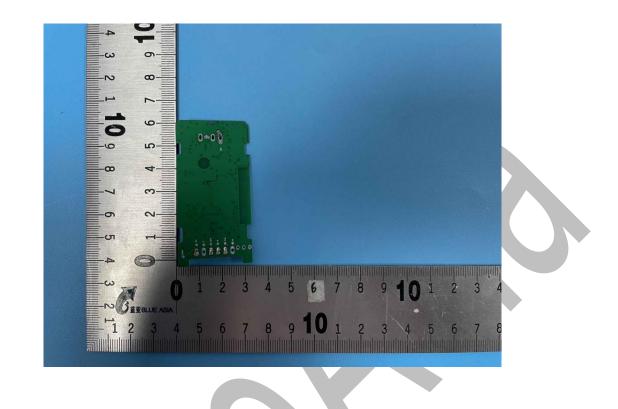

Report No.: BLA-EMC-202212-A2601 Page 59 of 65



Report No.: BLA-EMC-202212-A2601 Page 60 of 65

Report No.: BLA-EMC-202212-A2601 Page 61 of 65




Report No.: BLA-EMC-202212-A2601 Page 62 of 65

Report No.: BLA-EMC-202212-A2601 Page 65 of 65

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.