

FCC Test Report

Report No.: RF160603C09-2

FCC ID: HFS-QTASUN1

Test Model: QTASUN1

Received Date: Jun. 03, 2016

Test Date: Jun. 14, 2016 ~ Jul. 13, 2016

Issued Date: Jul. 25, 2016

Applicant: Quanta Computer Inc.

Address: No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location (1): No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan

Hsien 333, Taiwan, R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: RF160603C09-2 Page No. 1 / 33 Report Format Version: 6.1.1

Table of Contents

Rel	eas	e Control Record	. 4
1	Cert	tificate of Conformity	. 5
2	Sun	nmary of Test Results	. 6
	2.1	Measurement Uncertainty	. 6
		Modification Record	
3	Gen	eral Information	. 7
	3 1	General Description of EUT	7
		Description of Test Modes.	
	O. <u> </u>	3.2.1 Test Mode Applicability and Tested Channel Detail	
	3.3	Description of Support Units	
		3.3.1 Configuration of System under Test	
	3.4	General Description of Applied Standards	.11
4	Test	t Types and Results	12
	4.1	Radiated Emission and Bandedge Measurement	12
		4.1.1 Limits of Radiated Emission and Bandedge Measurement	
		4.1.2 Test Instruments	
		4.1.3 Test Procedures	14
		4.1.4 Deviation from Test Standard	
		4.1.5 Test Set Up	
		4.1.6 EUT Operating Conditions	
		4.1.7 Test Results	
	4.2	Conducted Emission Measurement	
		4.2.2 Test Instruments	
		4.2.3 Test Procedures	
		4.2.4 Deviation from Test Standard	
		4.2.5 TEST SETUP	
		4.2.6 EUT Operating Conditions	
		4.2.7 Test Results	
	4.3	6 dB Bandwidth Measurement	
		4.3.1 Limits of 6 dB Bandwidth Measurement	
		4.3.2 Test Setup	
		4.3.3 Test Instruments	
		4.3.4 Test Procedure	
		4.3.6 EUT Operating Conditions	
		4.3.7 Test Result	
	4.4	Conducted Output Power Measurement	
		4.4.1 Limits of Conducted Output Power Measurement	
		4.4.2 Test Setup	
		4.4.3 Test Instruments	
		4.4.4 Test Procedures	
		4.4.5 Deviation from Test Standard	
		4.4.6 EUT Operating Conditions	
	15	4.4.7 Test Results	
,	4.5	4.5.1 Limits of Power Spectral Density Measurement	
		4.5.2 Test Setup	
		4.5.3 Test Instruments	
		4.5.4 Test Procedure	
		4.5.5 Deviation from Test Standard	27
		4.5.6 EUT Operating Condition	
		4.5.7 Test Results	28

4.6 Conducted Out of Band Emission Measurement	29
4.6.1 Limits of Conducted Out of Band Emission Measurement	29
4.6.2 Test Setup	29
4.6.3 Test Instruments	29
4.6.4 Test Procedure	29
4.6.5 Deviation from Test Standard	29
4.6.6 EUT Operating Condition	
4.6.7 TEST RESULTS	30
5 Pictures of Test Arrangements	32
Appendix – Information on the Testing Laboratories	33

Release Control Record

Issue No.	Description	Date Issued
RF160603C09-2	Original Release	Jul. 25, 2016

Report No.: RF160603C09-2 Page No. 4 / 33 Report Format Version: 6.1.1

1 Certificate of Conformity

Product: 8 inch Tablet

Test Model: QTASUN1

Sample Status: Identical Prototype

Applicant: Quanta Computer Inc.

Test Date: Jun. 14, 2016 ~ Jul. 13, 2016

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Vera Muang	, Date:	Jul. 25, 2016	
	Vera Huang / Specialist			
	Sterley Wu			
Approved by :		, Date:	Jul. 25, 2016	

Stanley Wu / Assistant Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -12.73 dB at 0.61529 MHz.					
15.205 & 209	5.205 & 209 Radiated Emissions		Meet the requirement of limit. Minimum passing margin is -13.07 dB at 193.93 MHz.					
15.247(d)	Band Edge Measurement		Meet the requirement of limit.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.247(a)(2)	6 dB Bandwidth	Pass	Meet the requirement of limit.					
15.247(b)	Conducted power	Pass	Meet the requirement of limit.					
15.247(e)	15.247(e) Power Spectral Density		Meet the requirement of limit.					
15.203 Antenna Requirement		Pass	No antenna connector is used.					

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Dodisted Emissions up to 1 CHz	30 MHz ~ 200 MHz	2.93 dB
Radiated Emissions up to 1 GHz	200 MHz ~1000 MHz	2.95 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	2.26 dB
Radiated Effissions above 1 GHZ	18 GHz ~ 40 GHz	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	8 inch Tablet
Test Model	QTASUN1
Dawer Comply Dating	5.0 Vdc (adapter or host equipment)
Power Supply Rating	3.85 Vdc (Li-ion battery)
Modulation Type	GFSK
Transfer Rate	1 Mbps
Operating Frequency	2402 ~ 2480 MHz
Number of Channel	40
Output Power	1.710 mW
Antenna Type	PIFA antenna with 0.59 dBi gain
Antenna Connector	N/A
Accessory Device	Refer to Note as below
Data Cable Supplied	Refer to Note as below

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter	PI ELECTRONICS	AD2062320	I/P: 100-240 Vac, 50/60 Hz, 0.3 A O/P: 5 Vdc, 2 A
Battery	McNair	MLP29110109	3.85 Vdc, 5100 mAh
USB Cable	Quanta	N/A	1m cable
LTE Chip	Qualcomm	WTR2965	
WLAN Chip	Qualcomm	WCN3680B	

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

Report No.: RF160603C09-2 Page No. 7 / 33 Report Format Version: 6.1.1

3.2 Description of Test Modes

40 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able To	Description.	
Mode	RE≥1G	RE<1G	PLC	APCM	Description
-	V	√	√	V	-

Where RE≥1G: Radiated Emission above 1 GHz RE<1G: Radiated Emission below 1 GHz

PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement

NOTE: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane.

NOTE: "-"means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	0, 19, 39	GFSK	1

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	39	GFSK	1

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

 EUT Configure Mode
 Available Channel
 Tested Channel
 Modulation Type
 Data Rate (Mbps)

 0 to 39
 39
 GFSK
 1

Report No.: RF160603C09-2 Page No. 9 / 33 Report Format Version: 6.1.1

Antenna Port Conducted Measurement:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

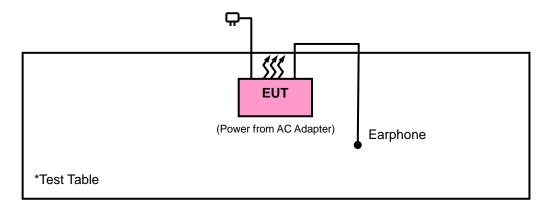
EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	0, 19, 39	GFSK	1

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Getaz Yang
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Getaz Yang
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Toby Tian
APCM	25 deg. C, 65 % RH	3.85 Vdc	Wayne Lin

Report No.: RF160603C09-2 Page No. 10 / 33 Report Format Version: 6.1.1

3.3 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Earphone	N/A	N/A	N/A	N/A

No.	Signal Cable Description Of The Above Support Units
1.	N/A

Note:

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) 558074 D01 DTS Meas Guidance v03r05

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

Report No.: RF160603C09-2 Page No. 11 / 33 Report Format Version: 6.1.1

^{1.} All power cords of the above support units are non-shielded (1.8m).

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Report No.: RF160603C09-2 Page No. 12 / 33 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manaufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Jan. 21, 2016	Jan. 20, 2017
Spectrum Analyzer Agilent	N9010A	MY52220314	Sep. 03, 2015	Sep. 02, 2016
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 17, 2015	Dec. 16, 2016
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Jan. 07, 2016	Jan. 06, 2017
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Jan. 04, 2016	Jan. 03, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Jan. 08, 2016	Jan. 07, 2017
Loop Antenna	EM-6879	269	Jul. 31, 2015	Jul. 30, 2016
Bluetooth Tester	CBT	100980	Apr. 27, 2015	Apr. 26, 2017
Agilent Communications Tester-Wireless	8960 Series 10	MY53201073	Jul. 03, 2015	Jul. 02, 2017
Preamplifier EMCI	EMC 012645	980115	Dec. 21, 2015	Dec. 20, 2016
Preamplifier EMCI	EMC 184045	980116	Dec. 21, 2015	Dec. 20, 2016
Preamplifier EMCI	EMC 330H	980112	Dec. 28, 2015	Dec. 27, 2016
Power Meter Anritsu	ML2495A	1232002	Sep. 21, 2015	Sep. 20, 2016
Power Sensor Anritsu	MA2411B	1207325	Sep. 21, 2015	Sep. 20, 2016
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 12, 2015	Oct. 11, 2016
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 12, 2015	Oct. 11, 2016
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Oct. 12, 2015	Oct. 11, 2016
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 690701.
- 5. The IC Site Registration No. is IC7450F-10.

Report No.: RF160603C09-2 Page No. 13 / 33 Report Format Version: 6.1.1

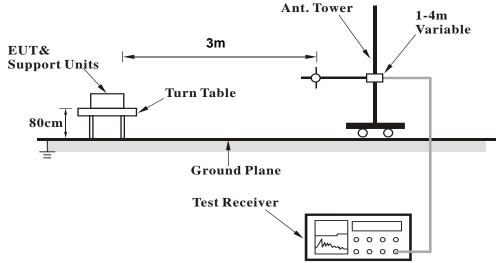
4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

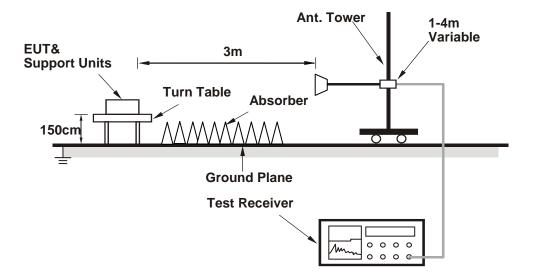
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for RMS Average (Duty cycle < 98 %) for Average detection (AV) at frequency above 1 GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 D€	eviation from	Test Sta	ndard
----------	---------------	----------	-------


No deviation.

Report No.: RF160603C09-2 Page No. 14 / 33 Report Format Version: 6.1.1



4.1.5 Test Set Up

<Frequency Range below 1 GHz>

<Frequency Range above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1 GHz DATA:

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang	

	Antennal Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2380	34.77	41.33	54	-19.23	26.86	4.08	37.5	186	349	Average
2380	56.92	63.48	74	-17.08	26.86	4.08	37.5	186	349	Peak
2402	96.34	102.86			26.91	4.09	37.52	186	349	Average
2402	97.15	103.67			26.91	4.09	37.52	186	349	Peak
2488	35.11	41.07	54	-18.89	27.2	4.16	37.32	186	349	Average
2488	56.54	62.5	74	-17.46	27.2	4.16	37.32	186	349	Peak
		А	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2332	34.23	40.94	54	-19.77	26.72	4.04	37.47	202	259	Average
2332	56.28	62.99	74	-17.72	26.72	4.04	37.47	202	259	Peak
2402	92.25	98.77			26.91	4.09	37.52	202	259	Average
2402	93.13	99.65			26.91	4.09	37.52	202	259	Peak
2494	35.06	40.95	54	-18.94	27.2	4.16	37.25	202	259	Average
2494	56.3	62.19	74	-17.7	27.2	4.16	37.25	202	259	Peak

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2402 MHz: Fundamental frequency.

Report No.: RF160603C09-2 Page No. 16 / 33 Report Format Version: 6.1.1

EUT Test Condition		Measurement Detail		
Channel	Channel 19	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang	

	Antennal Polarity & Test Distance: Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2374	34.53	41.1	54	-19.47	26.86	4.07	37.5	182	349	Average
2374	56.8	63.37	74	-17.2	26.86	4.07	37.5	182	349	Peak
2440	96.89	103.17			27.06	4.12	37.46	182	349	Average
2440	97.65	103.93			27.06	4.12	37.46	182	349	Peak
2500	35.07	40.96	54	-18.93	27.2	4.16	37.25	182	349	Average
2500	56.31	62.2	74	-17.69	27.2	4.16	37.25	182	349	Peak
		А	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2380	34.58	41.14	54	-19.42	26.86	4.08	37.5	202	259	Average
2380	56.67	63.23	74	-17.33	26.86	4.08	37.5	202	259	Peak
2440	93.08	99.36			27.06	4.12	37.46	202	259	Average
2440	93.81	100.09			27.06	4.12	37.46	202	259	Peak
2488	35.23	41.19	54	-18.77	27.2	4.16	37.32	202	259	Average
2488	56.41	62.37	74	-17.59	27.2	4.16	37.32	202	259	Peak

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2440 MHz: Fundamental frequency.

Report No.: RF160603C09-2 Page No. 17 / 33 Report Format Version: 6.1.1

EUT Test Condition		Measurement Detail		
Channel	Channel 39	Frequency Range	1 GHz ~ 25 GHz	
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)	
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang	

		An	tennal Po	larity & T	est Dista	nce: Horiz	ontal at 3	3 m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2388	34.58	41.09	54	-19.42	26.91	4.08	37.5	177	350	Average
2388	56.34	62.85	74	-17.66	26.91	4.08	37.5	177	350	Peak
2480	96.47	102.49			27.15	4.15	37.32	177	350	Average
2480	97.21	103.23			27.15	4.15	37.32	177	350	Peak
2488	35.47	41.43	54	-18.53	27.2	4.16	37.32	177	350	Average
2488	57.14	63.1	74	-16.86	27.2	4.16	37.32	177	350	Peak
		Α	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2378	34.42	40.99	54	-19.58	26.86	4.07	37.5	200	259	Average
2378	56.51	63.08	74	-17.49	26.86	4.07	37.5	200	259	Peak
2480	92.61	98.63			27.15	4.15	37.32	200	259	Average
2480	93.24	99.26			27.15	4.15	37.32	200	259	Peak
2496	35.31	41.2	54	-18.69	27.2	4.16	37.25	200	259	Average
2496	56.09	61.98	74	-17.91	27.2	4.16	37.25	200	259	Peak

Remarks:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2480 MHz: Fundamental frequency.

Report No.: RF160603C09-2 Page No. 18 / 33 Report Format Version: 6.1.1

9 kHz ~ 30 MHz DATA:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz WORST-CASE DATA:

EUT Test Condition		Measurement Detail			
Channel	Channel 39	Frequency Range	30 MHz ~ 1 GHz		
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)		
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang		

Antennal Polarity & Test Distance: Horizontal at 3 m									
Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
25.19	43	43.5	-18.31	12.71	1.12	31.64	102	79	Peak
29.22	48.75	43.5	-14.28	11.1	1.17	31.8	135	141	Peak
30.43	51.1	43.5	-13.07	9.77	1.27	31.71	113	268	Peak
29.01	49.57	43.5	-14.49	9.73	1.33	31.62	123	116	Peak
25.6	43.98	46	-20.4	12.08	1.55	32.01	114	136	Peak
28.87	46.09	46	-17.13	13.01	1.64	31.87	123	150	Peak
	Α	ntennal P	olarity &	Test Dist	ance: Ver	tical at 3	m		
Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
25.13	41.96	40	-14.87	13.56	0.66	31.05	104	259	Peak
20.83	39.16	40	-19.17	12.25	0.77	31.35	119	45	Peak
24.42	42.23	43.5	-19.08	12.71	1.12	31.64	129	30	Peak
26.89	47.48	43.5	-16.61	9.84	1.27	31.7	116	258	Peak
	Level (dBuV/m) 25.19 29.22 30.43 29.01 25.6 28.87 Emission Level (dBuV/m) 25.13 20.83 24.42	Emission Level (dBuV/m) 43 29.22 48.75 30.43 51.1 29.01 49.57 25.6 43.98 28.87 46.09 Emission Read Level (dBuV/m) (dBuV) 25.13 41.96 20.83 39.16 24.42 42.23	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) 25.19 43 43.5 29.22 48.75 43.5 30.43 51.1 43.5 29.01 49.57 43.5 25.6 43.98 46 28.87 46.09 46 Antennal P Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) 25.13 41.96 40 20.83 39.16 40 24.42 42.23 43.5	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) 25.19 43 43.5 -18.31 29.22 48.75 43.5 -14.28 30.43 51.1 43.5 -13.07 29.01 49.57 43.5 -14.49 25.6 43.98 46 -20.4 28.87 46.09 46 -17.13 Antennal Polarity & Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 25.13 41.96 40 -14.87 20.83 39.16 40 -19.17 24.42 42.23 43.5 -19.08	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) 25.19 43 43.5 -18.31 12.71 29.22 48.75 43.5 -14.28 11.1 30.43 51.1 43.5 -13.07 9.77 29.01 49.57 43.5 -14.49 9.73 25.6 43.98 46 -20.4 12.08 28.87 46.09 46 -17.13 13.01 Antennal Polarity & Test Dist Emission Level (dBuV/m) (dBuV) Limit (dBuV/m) (dB) Antenna Factor (dB/m) 25.13 41.96 40 -14.87 13.56 20.83 39.16 40 -19.17 12.25 24.42 42.23 43.5 -19.08 12.71	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) 25.19 43 43.5 -18.31 12.71 1.12 29.22 48.75 43.5 -14.28 11.1 1.17 30.43 51.1 43.5 -13.07 9.77 1.27 29.01 49.57 43.5 -14.49 9.73 1.33 25.6 43.98 46 -20.4 12.08 1.55 28.87 46.09 46 -17.13 13.01 1.64 Emission Level (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) 25.13 41.96 40 -14.87 13.56 0.66 20.83 39.16 40 -19.17 12.25 0.77 24.42 42.23 43.5 -19.08 12.71 1.12	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 25.19 43 43.5 -18.31 12.71 1.12 31.64 29.22 48.75 43.5 -14.28 11.1 1.17 31.8 30.43 51.1 43.5 -13.07 9.77 1.27 31.71 29.01 49.57 43.5 -14.49 9.73 1.33 31.62 25.6 43.98 46 -20.4 12.08 1.55 32.01 28.87 46.09 46 -17.13 13.01 1.64 31.87 Emission Level (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 25.13 41.96 40 -14.87 13.56 0.66 31.05 20.83 39.16 40 -19.17 12.25 0.77 31.35 24.42 42.23 43.5 -19.08 12.71	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Antenna Height (cm) 25.19 43 43.5 -18.31 12.71 1.12 31.64 102 29.22 48.75 43.5 -14.28 11.1 1.17 31.8 135 30.43 51.1 43.5 -13.07 9.77 1.27 31.71 113 29.01 49.57 43.5 -14.49 9.73 1.33 31.62 123 25.6 43.98 46 -20.4 12.08 1.55 32.01 114 28.87 46.09 46 -17.13 13.01 1.64 31.87 123 Emission Level (dBuV/m) (dBuV) Margin (dB) Antenna Factor (dB) Cable Loss (dB) Preamp Factor (dB) Antenna Height (cm) 25.13 41.96 40 -14.87 13.56 0.66 31.05 104 20.83 39.16 40 -19.17	Emission Level (dBuV/m) Read Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Antenna Height (cm) Table Angle (Degree) 25.19 43 43.5 -18.31 12.71 1.12 31.64 102 79 29.22 48.75 43.5 -14.28 11.1 1.17 31.8 135 141 30.43 51.1 43.5 -13.07 9.77 1.27 31.71 113 268 29.01 49.57 43.5 -14.49 9.73 1.33 31.62 123 116 25.6 43.98 46 -20.4 12.08 1.55 32.01 114 136 28.87 46.09 46 -17.13 13.01 1.64 31.87 123 150 Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Antenna Height (cm) Cperee) 25.13 41.96 40 -1

12.96

16.7

31.85

31.91

138

122

203

105

Peak

Peak

1.63

2.02

468.44 Remarks:

300.63

23.43

24.24

40.69

37.43

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

-22.57

-21.76

46

46

Report No.: RF160603C09-2 Page No. 19 / 33 Report Format Version: 6.1.1

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MU=)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

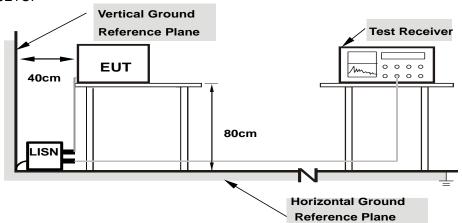
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 16, 2015	Nov. 15, 2016
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Dec. 26, 2015	Dec. 25, 2016
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Feb. 26, 2016	Feb. 25, 2017
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 24, 2015	Jul. 23, 2016
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 TEST SETUP

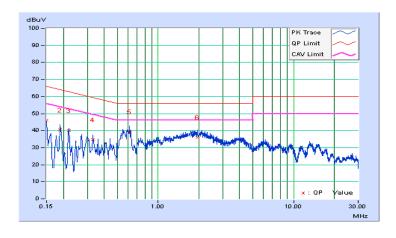
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.2.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

Report No.: RF160603C09-2 Page No. 21 / 33 Report Format Version: 6.1.1

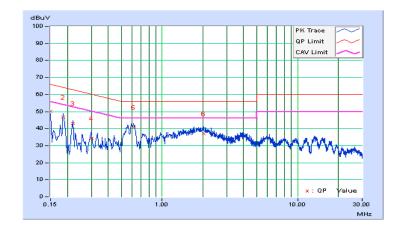

4.2.7 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2016/6/16

	Phase Of Power : Line (L)									
	Frequency	Correction	Readin	Reading Value		Emission Level		Limit		rgin
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.01	35.95	27.95	45.96	37.96	66.00	56.00	-20.04	-18.04
2	0.18910	10.03	30.50	20.64	40.53	30.67	64.08	54.08	-23.55	-23.41
3	0.22024	10.04	29.89	17.71	39.93	27.75	62.81	52.81	-22.88	-25.06
4	0.32986	10.09	24.73	18.29	34.82	28.38	59.45	49.45	-24.63	-21.07
5	0.61543	10.15	29.19	22.12	39.34	32.27	56.00	46.00	-16.66	-13.73
6	1.95251	10.27	25.69	21.00	35.96	31.27	56.00	46.00	-20.04	-14.73

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

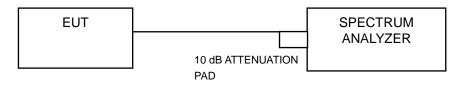


Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2016/6/16

	Phase Of Power : Neutral (N)									
	Frequency	Correction	Readin	g Value	Emission Level		Limit		Mai	rgin
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.03	40.17	31.55	50.20	41.58	66.00	56.00	-15.80	-14.42
2	0.18519	10.04	36.80	28.15	46.84	38.19	64.25	54.25	-17.41	-16.06
3	0.22024	10.05	33.00	22.69	43.05	32.74	62.81	52.81	-19.76	-20.07
4	0.30214	10.09	24.23	18.11	34.32	28.20	60.18	50.18	-25.86	-21.98
5	0.61529	10.16	30.70	23.11	40.86	33.27	56.00	46.00	-15.14	-12.73
6	2.02289	10.28	26.92	21.65	37.20	31.93	56.00	46.00	-18.80	-14.07

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 6 dB Bandwidth Measurement

4.3.1 Limits of 6 dB Bandwidth Measurement

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

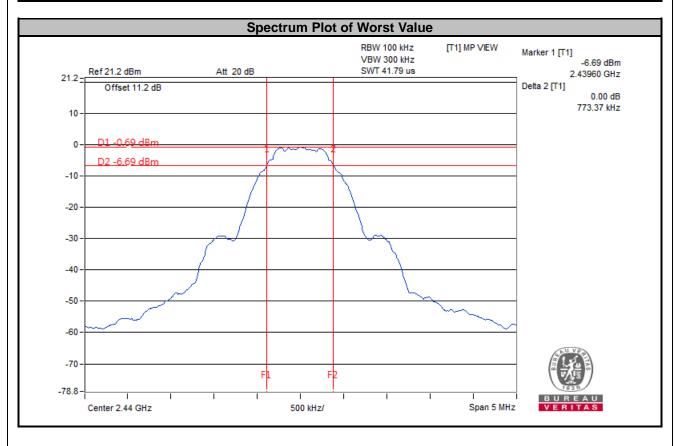
4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100 kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation from Test Standard

No deviation.

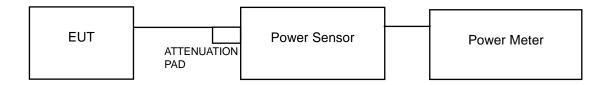
4.3.6 EUT Operating Conditions


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Report No.: RF160603C09-2 Page No. 24 / 33 Report Format Version: 6.1.1

4.3.7 Test Result

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	752.23	0.5	Pass
19	2440	773.37	0.5	Pass
39	2480	731.52	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.4.5 Deviation from Test Standard

No deviation.

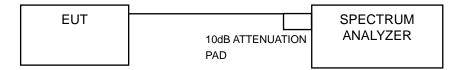
4.4.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.4.7 Test Results

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass / Fail
0	2402	1.687	2.27	30	Pass
19	2440	1.710	2.33	30	Pass
39	2480	1.426	1.54	30	Pass

Report No.: RF160603C09-2 Page No. 26 / 33 Report Format Version: 6.1.1



4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8 dBm.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

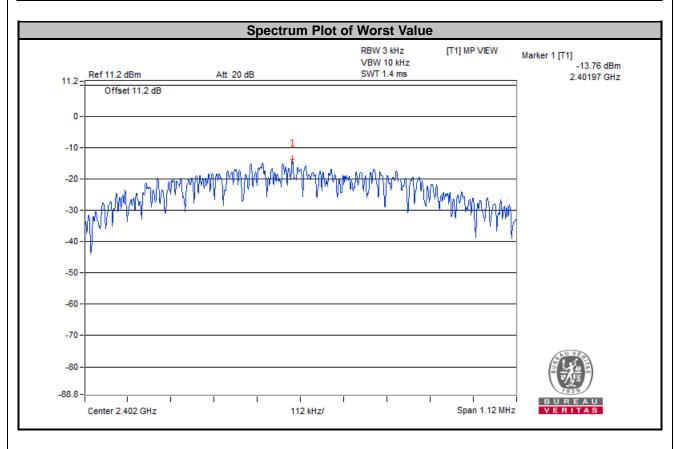
4.5.4 Test Procedure

- a. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- b. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- c. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

4.5.5 Deviation from Test Standard

No deviation.

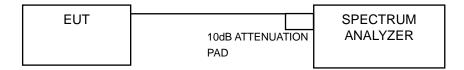
4.5.6 EUT Operating Condition


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Report No.: RF160603C09-2 Page No. 27 / 33 Report Format Version: 6.1.1

4.5.7 Test Results

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass / Fail
0	2402	-13.76	8	Pass
19	2440	-13.79	8	Pass
39	2480	-14.63	8	Pass



4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below –20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

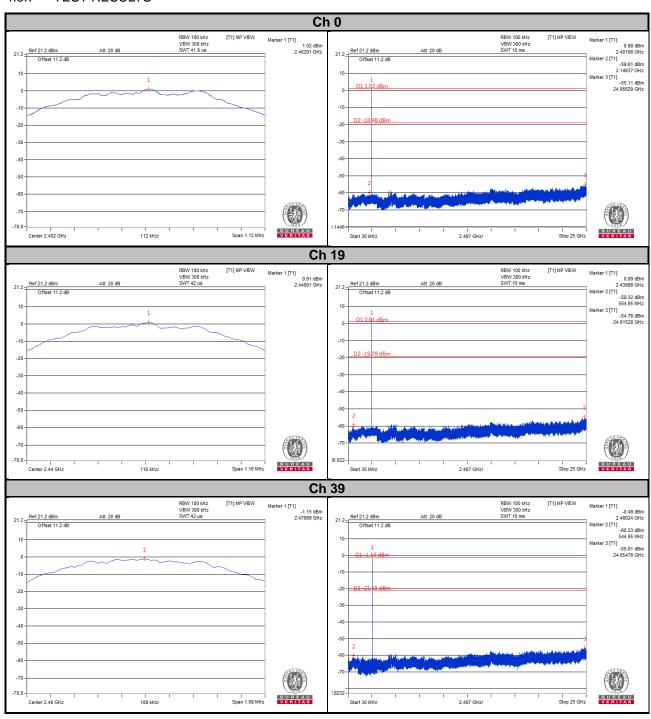
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

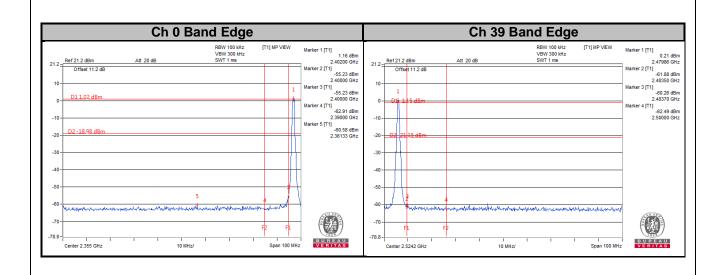
- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 Deviation from Test Standard

No deviation.


4.6.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.


Report No.: RF160603C09-2 Page No. 29 / 33 Report Format Version: 6.1.1

4.6.7 TEST RESULTS

5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Report No.: RF160603C09-2 Page No. 32 / 33 Report Format Version: 6.1.1

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF160603C09-2 Page No. 33 / 33 Report Format Version: 6.1.1