Shenzhen Glo No.7-101 and 8A- #### Shenzhen Global Test Service Co.,Ltd. No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong ## **FCC PART 27TEST REPORT** ### FCC Part 27 Report Reference No...... GTS20190929003-1-3-8 FCC ID...... RQQHLT-L553TA Compiled by (position+printed name+signature)..: File administrators Jimmy Wang Supervised by (position+printed name+signature)..: Test Engineer Aaron Tan Approved by (position+printed name+signature)..: Manager Jason Hu Representative Laboratory Name .: Shenzhen Global Test Service Co., Ltd. No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Address...... Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong Aaron Tun Jason Hu. Applicant's name...... HYUNDAI CORPORATION Address 25, Yulgok-ro 2-Gil, Jongno-gu, Seoul, South Korea Test specification: FCC CFR Title 47 Part 2, Part 27 Standard EIA/TIA 603-D: 2010 KDB 971168 D01 TRF Originator...... Shenzhen Global Test Service Co.,Ltd. #### Shenzhen Global Test Service Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd.as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd.takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test item description Smart Phone Trade Mark HYUNDAI Manufacturer Shenzhen Tinno Mobile Technology Corp. Model/Type reference...... L553 Listed Models / Modulation Type QPSK, 16QAM LTE Band 2...... 2500~2570 MHz ANT Gain......0dBi Rating: DC 3.80V Hardware version K510AG20181130 V1.0 Result.....: PASS ## TEST REPORT | Test Report No. : | GTS20190929003-1-3-8 | Oct.15.2019 | | | |-------------------|----------------------|---------------|--|--| | rest Report No | G1320190929003-1-3-0 | Date of issue | | | Equipment under Test : Smart Phone Model /Type : L553 Listed Models : / Applicant : HYUNDAI CORPORATION Address : 25, Yulgok-ro 2-Gil, Jongno-gu, Seoul, South Korea Manufacturer : Shenzhen Tinno Mobile Technology Corp. Address : 4/F.,H-3 Building,OCT Eastern Industrial Park. NO.1 XiangShan East Road., Nan Shan District, Shenzhen, P.R. China. | Test Result: | PASS | |--------------|------| | | | The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. ## **Contents** | IEST STANDARDS | <u> 4</u> | |---|-------------| | | | | SUMMARY | 5 | | | | | General Remarks | 5 | | Equipment under Test | 5 | | Short description of the Equipment under Test (EUT) | 5 | | EUT configuration | 5 | | Related Submittal(s) / Grant (s) | 5 | | Modifications | 5 | | Test Environment | 5 | | TEST ENVIRONMENT | 6 | | | | | Address of the test laboratory | 6 | | Environmental conditions | 6 | | Test Description | 6 | | Equipments Used during the Test | 6 | | TEST CONDITIONS AND RESULTS | 8 | | Output Power | 8 | | Peak-to-Average Ratio (PAR) | 13 | | Occupied Bandwidth and Emission Bandwidth | 14 | | Band Edge compliance | 19 | | Spurious Emission on Antenna Port | 24 | | Radiated Spurious Emission | 37 | | Frequency Stability | 41 | | TEST SETUP PHOTOS OF THE EUT | . 43 | | EXTERNAL AND INTERNAL PHOTOS OF THE EUT | <i>1</i> 2 | | EXTERNAL AND INTERNAL FILOTOG OF THE EQUATIONS | <u>. ту</u> | Report No.: GTS20190929003-1-3-8 Page 4 of 43 ## 1. TEST STANDARDS The tests were performed according to following standards: FCC Part 27(10-1-12 Edition): MISCELLANEOUS WIRELESSCOMMUNICATIONS SERVICES TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards. 47 CFR FCC Part 15 Subpart B: - Unintentional Radiators FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REGULATIONS ANSI C63.4:2014: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz FCCKDB971168D01PowerMeasLicenseDigitalSystems Report No.: GTS20190929003-1-3-8 Page 5 of 43 ## 2. SUMMARY #### 2.1. General Remarks | Date of receipt of test sample | : | Sep.15, 2019 | |--------------------------------|---|--------------| | | | | | | | | | Testing commenced on | : | Sep.15, 2019 | | | | | | | | | | Testing concluded on | : | Oct.15, 2019 | ## 2.2. Equipment under Test ### Power supply system utilised | Power supply voltage | : | \circ | 120V/ 60 Hz | 0 | 115V/60Hz | |----------------------|---|---------|-------------------------------|-----|-----------| | | | 0 | 12 V DC | 0 | 24 V DC | | | | • | Other (specified in blank bel | ow) | | #### DC 3.80V ## 2.3. Short description of the Equipment under Test (EUT) This is a Smart Phone . For more details, refer to the user's manual of the EUT. ## 2.4. EUT configuration The following peripheral devices and interface cables were connected during the measurement: - supplied by the manufacturer - O supplied by the lab | 0 | / | M/N : | / | |---|---|---------------|---| | | | Manufacturer: | 1 | ## 2.5. Related Submittal(s) / Grant (s) This submittal(s) (test report) is intended for FCC ID: RQQHLT-L553TAfiling to comply with FCC Part 27, Rules. #### 2.6. Modifications No modifications were implemented to meet testing criteria. #### 2.7. Test Environment | EnvironmentParameter | SelectedValuesDuringTests | | | | | |----------------------|---------------------------|-------|--|--|--| | Relative Humidity | Ambient | | | | | | Temperature | TN Ambient | | | | | | | VL | 3.40V | | | | | Voltage | VN | 3.80V | | | | | | VH | 4.20V | | | | Report No.: GTS20190929003-1-3-8 Page 6 of 43 ## 3. TEST ENVIRONMENT ## 3.1. Address of the test laboratory ## Shenzhen Global Test Service Co.,Ltd. 1F, Building No. 13A, Zhonghaixin Science and Technology City, No.12,6 Road, Ganli Industrial Park, Buji Street, Longgang District, Shenzhen, Guangdong ## 3.2. Environmental conditions During the measurement the environmental conditions were within the listed ranges: | Temperature: | 15-35 ° C | |-----------------------|--------------| | | | | Humidity: | 30-60 % | | | | | Atmospheric pressure: | 950-1050mbar | ## 3.3. Test Description | Test Item | FCCRuleNo. | Requirements | Verdict | |---|---|--|---------| | Effective(Isotropic)Radia tedOutput Power | §2.1046,
§27.50(d) | EIRP ≤ 1W; | Pass | | Peak-AverageRatio | §2.1046,
§27.50(d) | Limit≤13dB | Pass | | ModulationCharacteristi cs | §2.1047 | Digitalmodulation | N/A | | Bandwidth | §2.1049 | OBW: Nolimit.
EBW: Nolimit. | Pass | | BandEdgesCompliance | §2.1051,
§27.53(h) | ≤ -13dBm/1%*EBW,in1MHzbandsimmediately
outsideandadjacent to
Thefrequency block. | Pass | | SpuriousEmissionatAnte nnaTerminals | §2.1051,
§27.53(h) | ≤ -13dBm/1MHz,
from9kHzto10 th harmonicsbutoutsideauthorized
operatingfrequency ranges. | Pass | | Field Strengthof
Spurious
Radiation | Field Strengthof Spurious §2.1055, Spurious Second Strength of the | | Pass | | Frequency Stability | | Pass | | | NOTE 1:For theverdict,the | e"N/A"denotes"no | ot applicable",the"N/T"denotes "nottested". | | ## 3.4. Equipments Used during the Test | Test Equipment | Manufacturer | Model No. | Serial No. | Calibration
Date | Calibration
Due Date | |-------------------|----------------|---------------|--------------|---------------------|-------------------------| | LISN | R&S | ENV216 | 3560.6550.08 | 2019/09/20 | 2020/09/19 | | LISN | R&S | ESH2-Z5 | 893606/008 | 2019/09/20 | 2020/09/19 | | Bilog Antenna | Schwarzbeck | VULB9163 | 976 | 2019/09/20 | 2020/09/19 | | Bilog Antenna | Schwarzbeck | VULB9163 | 979 | 2019/09/20 | 2020/09/19 | | EMI Test Receiver | R&S | ESCI7 | 101102 | 2019/09/20 | 2020/09/19 | | Spectrum Analyzer | Agilent | N9020A | MY48010425 | 2019/09/20 | 2020/09/19 | | Spectrum Analyzer | R&S | FSP40 | 100019 | 2019/09/20 | 2020/09/19 | | Controller | EM Electronics | Controller EM | N/A | N/A | N/A | | | | 1000 | | | | |--------------------------------|------------------|-------------------------------|------------|------------|------------| | Horn Antenna | Schwarzbeck | BBHA 9120D | 01622 | 2019/09/20 | 2020/09/19 | | Horn Antenna | Schwarzbeck | BBHA 9120D | 01652 | 2019/09/20 | 2020/09/19 | | Active Loop
Antenna | SCHWARZBEC
K | FMZB1519 | 1519-037 | 2019/09/20 | 2020/09/19 | | Broadband Horn
Antenna | SCHWARZBEC
K | BBHA 9170 | 971 | 2019/09/20 | 2020/09/19 | | Amplifier | Schwarzbeck | BBV 9743 | #202 | 2019/09/20 | 2020/09/19 | | Amplifier | EMCI | EMC051845B | 980355 | 2019/09/20 | 2020/09/19 | | Temperature/Humidi
ty Meter | Gangxing | CTH-608 | 02 | 2019/09/20 | 2020/09/19 | | High-Pass Filter | K&L | 9SH10-
2700/X12750-
O/O | KL142031 | 2019/09/20 | 2020/09/19 | | High-Pass Filter | K&L | 41H10-
1375/U12750-
O/O | KL142032 | 2019/09/20 | 2020/09/19 | | RF Cable(below
1GHz) | HUBER+SUHNE
R | RG214 | RE01 | 2019/09/20 | 2020/09/19 | | RF Cable(above
1GHz) | HUBER+SUHNE
R | RG214 | RE02 | 2019/09/20 | 2020/09/19 | | Data acquisition card | Agilent | U2531A | TW53323507 | 2019/09/20 | 2020/09/19 | | Power Sensor | Agilent | U2021XA | MY5365004 | 2019/09/20 | 2020/09/19 | | EMI Test Software | R&S | ES-K1 | V1.7.1 | 2019/09/20 | 2020/09/19 | | EMI Test Software | JS Tonscend | JS32-RE | 2.0.1.5 | 2019/09/20 | 2020/09/19 | | EMI Test Software | Audix | E3 | 21.1 | 2019/09/20 | 2020/09/19 | Note: The calibration interval was one year. ## 4. TEST CONDITIONS AND RESULTS ### 4.1. Output Power #### **TEST APPLICABLE** During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits ## 4.1.1. Conducted Output Power #### **TEST CONFIGURATION** ## **TEST PROCEDURE** #### **Conducted Power Measurement:** - a) Place the EUT on a bench and set it in transmitting mode. - b) Connect a low loss RF cable from the antenna port to a CMW500 by an Att. - c) EUT Communicate with CMW500 then selects a channel for testing. - d) Add a correction factor to the display CMW500, and then test. ## **TEST RESULTS** #### Remark: We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; | LTE FDD Band 7 | | | | | | |----------------|-----------|----------------|------------|------------|--| | TX Channel | Frequency | RB Size/Offset | Average Po | ower [dBm] | | | Bandwidth | (MHz) | RB Size/Offset | QPSK | 16QAM | | | | | 1 RB low | 22.15 | 21.39 | | | | | 1 RB mid | 22.26 | 21.42 | | | | | 1 RB high | 22.00 | 21.23 | | | | 2502.5 | 50% RB low | 21.37 | 20.32 | | | | | 50% Rb mid | 21.42 | 20.51 | | | | | 50% RB high | 21.28 | 21.26 | | | | | 100% RB | 21.02 | 20.18 | | | | | 1 RB low | 22.18 | 21.45 | | | | 2535.0 | 1 RB mid | 22.12 | 21.38 | | | | | 1 RB high | 22.32 | 21.47 | | | 5 MHz | | 50% RB low | 21.46 | 20.57 | | | | | 50% Rb mid | 21.56 | 20.62 | | | | | 50% RB high | 21.49 | 20.41 | | | | | 100% RB | 21.12 | 20.17 | | | | | 1 RB low | 22.22 | 21.32 | | | | | 1 RB mid | 22.17 | 21.25 | | | | | 1 RB high | 22.28 | 20.36 | | | | 2567.5 | 50% RB low | 21.62 | 20.69 | | | | | 50% Rb mid | 21.58 | 21.61 | | | | | 50% RB high | 21.72 | 21.78 | | | | | 100% RB | 21.25 | 20.19 | | | 10 MHz | 2505.0 | 1 RB low | 22.42 | 21.51 | | | I U IVIMZ | 2505.0 | 1 RB mid | 22.36 | 21.35 | | | ı | | 4 DD h:-h | 22.24 | 20.40 | |----------|--------|-------------|-------|-------| | | | 1 RB high | 22.31 | 20.42 | | | | 50% RB low | 21.89 | 20.92 | | | | 50% Rb mid | 21.73 | 20.69 | | | | 50% RB high | 21.78 | 20.72 | | | | 100% RB | 21.34 | 20.39 | | | | 1 RB low | 22.37 | 21.30 | | | | 1 RB mid | 22.32 | 21.36 | | | 2525.2 | 1 RB high | 22.45 | 21.48 | | | 2535.0 | 50% RB low | 22.63 | 20.75 | | | | 50% Rb mid | 21.57 | 20.62 | | | | 50% RB high | 21.62 | 20.57 | | | | 100% RB | 21.28 | 20.17 | | | | 1 RB low | 22.38 | 21.43 | | | | 1 RB mid | 22.41 | 21.52 | | | 0505.0 | 1 RB high | 22.33 | 21.39 | | | 2565.0 | 50% RB low | 21.58 | 20.68 | | | | 50% Rb mid | 21.52 | 20.57 | | | | 50% RB high | 21.60 | 20.63 | | | | 100% RB | 21.06 | 20.10 | | | | 1 RB low | 22.35 | 21.45 | | | | 1 RB mid | 22.47 | 21.52 | | | 0507.5 | 1 RB high | 22.29 | 21.32 | | | 2507.5 | 50% RB low | 21.56 | 20.61 | | | | 50% Rb mid | 21.61 | 20.67 | | | | 50% RB high | 21.49 | 20.47 | | | | 100% RB | 21.19 | 20.23 | | | | 1 RB low | 22.39 | 21.31 | | | | 1 RB mid | 22.43 | 21.37 | | 45.541.1 | 0505.0 | 1 RB high | 22.38 | 21.49 | | 15 MHz | 2535.0 | 50% RB low | 21.44 | 20.56 | | | | 50% Rb mid | 21.52 | 20.53 | | | | 50% RB high | 21.39 | 20.48 | | | | 100% RB | 21.15 | 20.22 | | | | 1 RB low | 22.49 | 21.43 | | | | 1 RB mid | 22.55 | 21.64 | | | 0500.5 | 1 RB high | 22.41 | 21.49 | | | 2562.5 | 50% RB low | 21.66 | 20.72 | | | | 50% Rb mid | 21.59 | 20.45 | | | | 50% RB high | 21.51 | 20.59 | | | | 100% RB | 21.22 | 20.28 | | | | 1 RB low | 22.62 | 21.72 | | | | 1 RB mid | 22.57 | 21.69 | | | 0540.0 | 1 RB high | 22.63 | 21.78 | | | 2510.0 | 50% RB low | 21.82 | 20.93 | | | | 50% Rb mid | 21.78 | 20.85 | | | | 50% RB high | 21.71 | 20.69 | | <u> </u> | | 100% RB | 21.43 | 20.59 | | | | 1 RB low | 22.73 | 21.88 | | | | 1 RB mid | 22.82 | 21.89 | | 00 1411 | 0505.0 | 1 RB high | 22.75 | 21.84 | | 20 MHz | 2535.0 | 50% RB low | 21.89 | 21.97 | | | | 50% Rb mid | 21.95 | 20.97 | | | | 50% RB high | 21.83 | 20.92 | | <u> </u> | | 100% RB | 21.53 | 20.59 | | | | 1 RB low | 22.69 | 21.75 | | | | 1 RB mid | 22.76 | 21.83 | | | 0500.0 | 1 RB high | 22.71 | 21.68 | | | 2560.0 | 50% RB low | 21.83 | 20.95 | | | | 50% Rb mid | 21.94 | 20.97 | | | | 50% RB high | 21.79 | 20.81 | | | | 100% RB | 21.57 | 20.62 | Report No.: GTS20190929003-1-3-8 Page 10 of 43 ## 4.1.2. Radiated Output Power #### <u>LIMIT</u> According to §27.50 (d) (4): Fixed, mobile, and portable (hand- held) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP. #### **TEST CONFIGURATION** ## **TEST PROCEDURE** - 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver. - 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (Pr). - 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}- P_{Ag} - P_{cl}+ G_a We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)= P_{Mea} - P_{cl} + G_a - 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi. #### **TEST RESULTS** #### Remark: - 1. We measured all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7. - 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$ - 3. We measured both Horizontal and Vertical direction, recorded worst case direction. ## LTE FDD Band 7_Channel Bandwidth 5MHz_QPSK | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | G _a
Antenna
Gain(dB) | P _{Ag} (dB) | Burst
Average
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|---------------------------------------|----------------------|-----------------------------------|----------------|----------------|--------------| | 2502.5 | -21.80 | 3.06 | 9.68 | 34.8 | 19.62 | 30.00 | 10.38 | V | | 2535 | -21.27 | 3.17 | 9.68 | 34.8 | 20.04 | 30.00 | 9.96 | V | | 2567.5 | -22.57 | 3.22 | 9.75 | 34.8 | 18.76 | 30.00 | 11.24 | V | #### LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | G _a
Antenna
Gain(dB) | P _{Ag}
(dB) | Burst
Average
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|---------------------------------------|-------------------------|-----------------------------------|----------------|----------------|--------------| | 2505 | -22.60 | 3.06 | 9.68 | 34.8 | 18.82 | 30.00 | 11.18 | V | | 2535 | -21.16 | 3.17 | 9.68 | 34.8 | 20.15 | 30.00 | 9.85 | V | | 2565 | -22.74 | 3.22 | 9.75 | 34.8 | 18.59 | 30.00 | 11.41 | V | ### LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl} (dB) | G _a
Antenna
Gain(dB) | P _{Ag}
(dB) | Burst
Average
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|---------------------------------------|-------------------------|-----------------------------------|----------------|----------------|--------------| | 2507.5 | -22.10 | 3.06 | 9.68 | 34.8 | 19.32 | 30.00 | 10.68 | V | | 2535 | -21.00 | 3.17 | 9.68 | 34.8 | 20.31 | 30.00 | 9.69 | V | | 2562.5 | -21.70 | 3.22 | 9.75 | 34.8 | 19.63 | 30.00 | 10.37 | V | #### LTE FDD Band 7 Channel Bandwidth 20MHz QPSK | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl} (dB) | G _a
Antenna
Gain(dB) | P _{Ag} (dB) | Burst
Average
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|---------------------------------------|----------------------|-----------------------------------|----------------|----------------|--------------| | 2510 | -22.09 | 3.06 | 9.68 | 34.8 | 19.33 | 30.00 | 10.67 | V | | 2535 | -21.39 | 3.17 | 9.68 | 34.8 | 19.92 | 30.00 | 10.08 | V | | 2560 | -22.44 | 3.22 | 9.75 | 34.8 | 18.89 | 30.00 | 11.11 | V | LTE FDD Band 7_Channel Bandwidth 5MHz_16QAM | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl} (dB) | G _a
Antenna
Gain(dB) | P _{Ag}
(dB) | Burst
Average
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|---------------------------------------|-------------------------|-----------------------------------|----------------|----------------|--------------| | 2502.5 | -22.34 | 3.06 | 9.68 | 34.8 | 19.08 | 30.00 | 10.92 | V | | 2535 | -21.70 | 3.17 | 9.68 | 34.8 | 19.61 | 30.00 | 10.39 | V | | 2567.5 | -22.79 | 3.22 | 9.75 | 34.8 | 18.54 | 30.00 | 11.46 | V | ## LTE FDD Band 7_Channel Bandwidth 10MHz_16QAM | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl} (dB) | G _a
Antenna
Gain(dB) | P _{Ag} (dB) | Burst
Average
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|---------------------------------------|----------------------|-----------------------------------|----------------|----------------|--------------| | 2505 | -22.67 | 3.06 | 9.68 | 34.8 | 18.75 | 30.0 | 11.25 | V | | 2535 | -22.19 | 3.17 | 9.68 | 34.8 | 19.12 | 30.0 | 10.88 | V | | 2565 | -22.50 | 3.22 | 9.75 | 34.8 | 18.83 | 30.0 | 11.17 | V | ## LTE FDD Band 7_Channel Bandwidth 15MHz_16QAM | Frequency (MHz) | P _{Mea}
(dBm) | P _{cl} (dB) | G _a
Antenna
Gain(dB) | P _{Ag}
(dB) | Burst
Average
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |-----------------|---------------------------|----------------------|---------------------------------------|-------------------------|-----------------------------------|----------------|----------------|--------------| | 2507.5 | -22.67 | 3.06 | 9.68 | 34.8 | 18.75 | 30.0 | 11.25 | V | | 2535 | -22.24 | 3.17 | 9.68 | 34.8 | 19.07 | 30.0 | 10.93 | V | | 2562.5 | -22.50 | 3.06 | 9.68 | 34.8 | 18.92 | 30.0 | 11.08 | V | ## LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl} (dB) | G _a
Antenna
Gain(dB) | P _{Ag} (dB) | Burst
Average
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|---------------------------------------|----------------------|-----------------------------------|----------------|----------------|--------------| | 2510 | -22.30 | 3.06 | 9.68 | 34.8 | 19.12 | 30.0 | 10.88 | V | | 2535 | -21.49 | 3.17 | 9.68 | 34.8 | 19.82 | 30.0 | 10.18 | V | | 2560 | -22.19 | 3.22 | 9.75 | 34.8 | 19.14 | 30.0 | 10.86 | V | ## 4.2. Peak-to-Average Ratio (PAR) #### <u>LIMIT</u> The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB. #### **TEST CONFIGURATION** ## **TEST PROCEDURE** - 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function; - Set resolution/measurement bandwidth ≥ signal's occupied bandwidth; - 3. Set the number of counts to a value that stabilizes the measured CCDF curve; - 4. Set the measurement interval as follows: - 1). for continuous transmissions, set to 1 ms, - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration. - 5. Record the maximum PAPR level associated with a probability of 0.1%. #### **TEST RESULTS** Remark: We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7. | | LTE FDD Band 7 | | | | | | | | | | |------------|----------------|----------------|------|-------|--|--|--|--|--|--| | TX Channel | Frequency | DP Size/Offeet | PAP | R(dB) | | | | | | | | Bandwidth | (MHz) | RB Size/Offset | QPSK | 16QAM | | | | | | | | | 2502.5 | | 2.85 | 2.45 | | | | | | | | 5 MHz | 2535.0 | 1RB#0 | 2.79 | 2.63 | | | | | | | | | 2567.5 | | 2.91 | 2.68 | | | | | | | | | 2505.0 | | 5.09 | 6.16 | | | | | | | | 10 MHz | 2535.0 | 1RB#0 | 5.12 | 6.42 | | | | | | | | | 2565.0 | | 5.75 | 6.25 | | | | | | | | | 2507.5 | | 5.62 | 5.65 | | | | | | | | 15 MHz | 2535.0 | 1RB#0 | 5.58 | 5.75 | | | | | | | | | 2562.5 | | 5.42 | 5.59 | | | | | | | | | 2510.0 | · | 6.68 | 6.75 | | | | | | | | 20 MHz | 2535.0 | 1RB#0 | 6.69 | 6.71 | | | | | | | | | 2560.0 | | 6.51 | 6.86 | | | | | | | ## 4.3. Occupied Bandwidth and Emission Bandwidth #### **LIMIT** N/A ## **TEST CONFIGURATION** #### **TEST PROCEDURE** The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBWwas set to about 1% of emission BW, VBW≥3 times RBW. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace. ## **TEST RESULTS** Remark: We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7. | | LTE FDD Band 7 | | | | | | | | | | |-----------|----------------|--------------------|---------|-----------|-------------|------------------------|--|--|--|--| | TX | | Fraguenov | -26dBc | Emission | 99% Occupie | 99% Occupied bandwidth | | | | | | Channel | RB Size/Offset | Frequency
(MHz) | bandwid | lth (MHz) | (M | Hz) | | | | | | Bandwidth | | (IVITZ) | QPSK | 16QAM | QPSK | 16QAM | | | | | | | | 2502.5 | 5.240 | 5.190 | 4.5255 | 4.5155 | | | | | | 5 MHz | 25RB#0 | 2535.0 | 5.300 | 5.160 | 4.5255 | 4.5155 | | | | | | | | 2567.5 | 5.200 | 5.270 | 4.5155 | 4.5355 | | | | | | | | 2505.0 | 10.300 | 10.100 | 9.0183 | 8.9850 | | | | | | 10 MHz | 50RB#0 | 2535.0 | 10.367 | 10.200 | 9.0183 | 8.9850 | | | | | | | | 2565.0 | 10.300 | 10.267 | 9.0183 | 9.0183 | | | | | | | | 2507.5 | 15.150 | 15.150 | 13.4775 | 13.4775 | | | | | | 15 MHz | 75RB#0 | 2535.0 | 15.300 | 15.150 | 13.5774 | 13.5275 | | | | | | | | 2562.5 | 13.350 | 15.100 | 13.4775 | 13.4775 | | | | | | | | 2510.0 | 20.133 | 20.133 | 18.0366 | 18.0366 | | | | | | 20 MHz | 100RB#0 | 2535.0 | 20.133 | 20.200 | 18.1032 | 18.1032 | | | | | | | | 2560.0 | 20.200 | 20.333 | 8.1032 | 18.0366 | | | | | ## 4.4. Band Edge compliance #### **LIMIT** According to §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB. #### **TEST CONFIGURATION** ## **TEST PROCEDURE** - 1. The transmitter output port was connected to base station. - 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement. - 3. Set EUT at maximum power through base station. - 4. Select lowestand highest channels for each band and different modulation. - 5. Measure Band edge using RMS (Average) detector by spectrum ### **TEST RESULTS** Remark: The EUT supports two SIM card SIM1 and SIM2. For GSM,the SIM 1 and SIM 2 both support GSM.For WCDMA/LTE,Only SIM 1 support WCDMA/LTE.We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7. ## 4.5. Spurious Emission on Antenna Port #### **LIMIT** According to §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB. ## **TEST CONFIGURATION** #### **TEST PROCEDURE** The EUT was setup according to EIA/TIA 603D - a. Place the EUT on a bench and set it in transmitting mode. - b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW 500 by a Directional Couple. - c. EUT Communicate with CMW500, then select a channel for testing. - d. Add a correction factor to the display of spectrum, and then test. - e. The resolution bandwidth of the spectrum analyzer was setsufficient scans were taken to show the out of band Emission if any up to10th harmonic. - f. Please refer to following tables for test antenna conducted emissions. | Working
Frequency | Sub range
(GHz) | RBW | VBW | Sweep time
(s) | |----------------------|--------------------|-------|-------|-------------------| | | 0.000009~0.000015 | 1KHz | 3KHz | Auto | | LTE FDD Band 7 | 0.000015~0.03 | 10KHz | 30KHz | Auto | | LIE FUU Ballu I | 0.03~4 | 1 MHz | 3 MHz | Auto | | | 4~26 | 1 MHz | 3 MHz | Auto | ## **TEST RESULTS** Remark:.We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7. Report No.: GTS20190929003-1-3-8 Page 37 of 43 ## 4.6. Radiated Spurious Emission ### **LIMIT** According to §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB. #### **TEST CONFIGURATION** ## **TEST PROCEDURE** - 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50 meter. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver. - 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r). - 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg PcI+ Ga - 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi. - 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table: | Working
Frequency | Subrange
(GHz) | RBW | VBW | Sweep time
(s) | |----------------------|-------------------|--------|--------|-------------------| | | 0.00009~0.15 | 1KHz | 3KHz | 30 | | | 0.00015~0.03 | 10KHz | 30KHz | 10 | | | 0.03~1 | 100KHz | 300KHz | 10 | | | 1~2 | 1 MHz | 3 MHz | 2 | | | 2~5 | 1 MHz | 3 MHz | 3 | | LTE FDD Band 7 | 5~8 | 1 MHz | 3 MHz | 3 | | | 8~11 | 1 MHz | 3 MHz | 3 | | | 11~14 | 1 MHz | 3 MHz | 3 | | | 14~18 | 1 MHz | 3 MHz | 3 | | | 18~20 | 1 MHz | 3 MHz | 2 | | | 20~26 | 1 MHz | 3 MHz | 2 | ### **TEST LIMITS** According to 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. | Frequency | Channel | Frequency Range | Verdict | |----------------|---------|-----------------|---------| | | Low | 9KHz -26GHz | PASS | | LTE FDD Band 7 | Middle | 9KHz -26GHz | PASS | | | High | 9KHz -26GHz | PASS | ### **Radiated Measurement:** #### Remark: - 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band - 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7 - 2 EIRP=PMea(dBm)-Pcl(dB) +Ga(dBi) - 3 We were not recorded other points as values lower than limits. - 4 Margin = Limit EIRP ## Report No.: GTS20190929003-1-3-8 LTE FDD Band 7_Channel Bandwidth 5MHz_QPSK_ Low Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl} (dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5005.00 | -44.44 | 5.11 | 3.00 | 13.38 | -36.17 | -13.00 | 23.17 | Н | | 7507.50 | -49.69 | 6.02 | 3.00 | 13.98 | -41.73 | -13.00 | 28.73 | Н | | 5005.00 | -45.11 | 5.11 | 3.00 | 13.38 | -36.84 | -13.00 | 23.84 | V | | 7507.50 | -50.96 | 6.02 | 3.00 | 13.98 | -43.00 | -13.00 | 30.00 | V | LTE FDD Band 7_Channel Bandwidth 5MHz_QPSK_ Middle Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5070.00 | -41.96 | 5.11 | 3.00 | 13.38 | -33.69 | -13.00 | 20.69 | Н | | 7605.00 | -49.73 | 6.02 | 3.00 | 13.98 | -41.77 | -13.00 | 28.77 | Н | | 5070.00 | -45.52 | 5.11 | 3.00 | 13.38 | -37.25 | -13.00 | 24.25 | V | | 7605.00 | -51.69 | 6.02 | 3.00 | 13.98 | -43.73 | -13.00 | 30.73 | V | LTE FDD Band 7 Channel Bandwidth 5MHz QPSK High Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5135.00 | -44.65 | 5.11 | 3.00 | 13.38 | -36.02 | -13.00 | 23.02 | Н | | 7702.50 | -48.24 | 6.02 | 3.00 | 13.98 | -42.97 | -13.00 | 29.97 | Н | | 5135.00 | -52.08 | 5.11 | 3.00 | 13.38 | -37.25 | -13.00 | 24.25 | V | | 7702.50 | -53.86 | 6.02 | 3.00 | 13.98 | -44.41 | -13.00 | 31.41 | V | ## LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK_ Low Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl} (dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5010.00 | -47.00 | 5.11 | 3.00 | 13.38 | -38.73 | -13.00 | 25.73 | Н | | 7515.00 | -51.28 | 6.02 | 3.00 | 13.98 | -43.32 | -13.00 | 30.32 | Н | | 5010.00 | -46.06 | 5.11 | 3.00 | 13.38 | -37.79 | -13.00 | 24.79 | V | | 7515.00 | -53.37 | 6.02 | 3.00 | 13.98 | -45.41 | -13.00 | 32.41 | V | LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK_ Middle Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5070.00 | -45.83 | 5.11 | 3.00 | 13.38 | -37.56 | -13.00 | 24.56 | Н | | 7605.00 | -50.61 | 6.02 | 3.00 | 13.98 | -42.65 | -13.00 | 29.65 | Н | | 5070.00 | -48.65 | 5.11 | 3.00 | 13.38 | -40.38 | -13.00 | 27.38 | V | | 7605.00 | -50.87 | 6.02 | 3.00 | 13.98 | -42.91 | -13.00 | 29.91 | V | LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK_ High Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5130.00 | -45.13 | 5.11 | 3.00 | 13.38 | -36.86 | -13.00 | 23.86 | Н | | 7695.00 | -50.33 | 6.02 | 3.00 | 13.98 | -42.37 | -13.00 | 29.37 | Н | | 5130.00 | -48.72 | 5.11 | 3.00 | 13.38 | -40.45 | -13.00 | 27.45 | V | | 7695.00 | -51.94 | 6.02 | 3.00 | 13.98 | -43.98 | -13.00 | 30.98 | V | LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK_ Low Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5015.00 | -46.14 | 5.11 | 3.00 | 13.38 | -37.87 | -13.00 | 24.87 | Н | | 7522.50 | -48.77 | 6.02 | 3.00 | 13.98 | -40.81 | -13.00 | 27.81 | Н | | 5015.00 | -48.28 | 5.11 | 3.00 | 13.38 | -40.01 | -13.00 | 27.01 | V | | 7522.50 | -51.03 | 6.02 | 3.00 | 13.98 | -43.07 | -13.00 | 30.07 | V | LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK_ Middle Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5070.00 | -45.35 | 5.11 | 3.00 | 13.38 | -37.08 | -13.00 | 24.08 | Н | | 7605.00 | -51.66 | 6.02 | 3.00 | 13.98 | -43.70 | -13.00 | 30.70 | Н | | 5070.00 | -46.02 | 5.11 | 3.00 | 13.38 | -37.75 | -13.00 | 24.75 | V | | 7605.00 | -53.70 | 6.02 | 3.00 | 13.98 | -45.74 | -13.00 | 32.74 | V | LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK_ High Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5125.00 | -45.67 | 5.11 | 3.00 | 13.38 | -37.40 | -13.00 | 24.40 | Н | | 7687.50 | -51.86 | 6.02 | 3.00 | 13.98 | -43.90 | -13.00 | 30.90 | Н | | 5125.00 | -46.77 | 5.11 | 3.00 | 13.38 | -38.50 | -13.00 | 25.50 | V | | 7687.50 | -53.69 | 6.02 | 3.00 | 13.98 | -45.73 | -13.00 | 32.73 | V | LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK_ Low Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|-------------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5020.00 | -46.23 | 5.11 | 3.00 | 13.38 | -37.96 | -13.00 | 24.96 | Н | | 7530.00 | -52.88 | 6.02 | 3.00 | 13.98 | -44.92 | -13.00 | 31.92 | Н | | 5020.00 | -48.95 | 5.11 | 3.00 | 13.38 | -40.68 | -13.00 | 27.68 | V | | 7530.00 | -54.96 | 6.02 | 3.00 | 13.98 | -47.00 | -13.00 | 34.00 | V | LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK_ Middle Channel | Frequency
(MHz) | P _{Mea}
(dBm) | P _{cl} (dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5070.00 | -48.29 | 5.11 | 3.00 | 13.38 | -40.02 | -13.00 | 27.02 | Н | | 7605.00 | -51.30 | 6.02 | 3.00 | 13.98 | -43.34 | -13.00 | 30.34 | Н | | 5070.00 | -48.74 | 5.11 | 3.00 | 13.38 | -40.47 | -13.00 | 27.47 | V | | 7605.00 | -51.97 | 6.02 | 3.00 | 13.98 | -44.01 | -13.00 | 31.01 | V | LTE FDD 7_Channel Bandwidth 20MHz_QPSK_ High Channel | Frequency (MHz) | P _{Mea}
(dBm) | P _{cl}
(dB) | Diatance | G _a
Antenna
Gain(dB) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |-----------------|---------------------------|-------------------------|----------|---------------------------------------|-----------------------|----------------|----------------|--------------| | 5120.00 | -47.28 | 5.11 | 3.00 | 13.38 | -39.01 | -13.00 | 26.01 | Н | | 7680.00 | -51.81 | 6.02 | 3.00 | 13.98 | -43.85 | -13.00 | 30.85 | Н | | 5120.00 | -48.19 | 5.11 | 3.00 | 13.38 | -39.92 | -13.00 | 26.92 | V | | 7680.00 | -53.64 | 6.02 | 3.00 | 13.98 | -45.68 | -13.00 | 32.68 | V | Report No.: GTS20190929003-1-3-8 Page 41 of 43 ## 4.7. Frequency Stability #### <u>LIMIT</u> According to §27.54, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm. #### **TEST CONFIGURATION** #### **TEST PROCEDURE** The EUT was setup according to EIA/TIA 603D ### Frequency Stability Under Temperature Variations: In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER. - 1. Measure the carrier frequency at room temperature. - 2. Subject the EUT to overnight soak at -30°C. - 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 4, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements. - 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing. - 6. Subject the EUT to overnight soak at +50°C. - 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements - 9. At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure. #### Frequency Stability Under Voltage Variations: Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, recordthe maximum frequency change. ## **TEST RESULTS** Remark:.We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 7; recorded worst case for each Channel Bandwidth of LTE FDD Band 7. LTE Band 7 5 MHz bandwidth (worst case of all bandwidths) at 1RB#0 for Mid channel | Voltage | Frequency | error (Hz) | Frequency | Limit | | |---------|-----------|------------|-----------|-------|-------| | (V) | QPSK | 16QAM | QPSK | 16QAM | (ppm) | | 3.40 | 25.12 | 24.03 | 0.010 | 0.009 | 2.50 | | 3.80 | 23.85 | 24.30 | 0.009 | 0.010 | 2.50 | | 4.20 | 24.13 | 24.19 | 0.010 | 0.010 | 2.50 | Frequency Error vs Temperature | Temperature | Frequency | error (Hz) | Frequency | Limit | | |-------------|-----------|------------|-----------|--------|-------| | (℃) | QPSK | 16QAM | QPSK | 16QAM | (ppm) | | -30° | 30.42 | -28.62 | 0.012 | -0.011 | 2.50 | | -20° | 24.19 | 30.18 | 0.010 | 0.012 | 2.50 | | -10° | 26.18 | 28.68 | 0.010 | 0.011 | 2.50 | | 0° | -24.78 | -29.37 | -0.010 | -0.012 | 2.50 | | 10° | 19.56 | -30.17 | 0.008 | -0.012 | 2.50 | | 20° | 25.16 | 28.92 | 0.010 | 0.011 | 2.50 | | 30° | -25.19 | -30.28 | -0.010 | -0.012 | 2.50 | | 40° | -25.67 | -29.71 | -0.010 | -0.012 | 2.50 | | 50° | 26.75 | 20.17 | 0.011 | 0.008 | 2.50 | Report No.: GTS20190929003-1-3-8 Page 43 of 43 # 5. Test Setup Photos of the EUT ## 6. External and Internal Photos of the EUT Reference to the test report No. GTS20190929003-1-3-1End of Report.....