1. MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 Client Information

Applicant: Address of applicant:	Shenzhen Chuanghongyu Technology Co., Ltd. 301 Jinjin Building, No. 242 Jihua Road, Jihua Street, Longgang District, Shenzhen, Guangdong Sheng, China
Manufacturer: Address of manufacturer:	Shenzhen Chuanghongyu Technology Co., Ltd. 301 Jinjin Building, No. 242 Jihua Road, Jihua Street, Longgang District, Shenzhen, Guangdong Sheng, China
General Description of EUT	

Product Name:	Driving Recorder
Trade Name:	/
Model No.:	V23
Adding Model(s):	V20,V21,V22,V25,V26,V27
Rated Voltage:	Battery DC3.7V/250mAh
Power Adapter Model:	/
Serial number:	20243698547DD25
FCC ID:	2BFBD-V23

Technical Characteristics of EUT

Support Standards: 802.11b, 802.11g, 802.11n 2412-2462MHz for 802.11b/g/n(HT20) Frequency Range: 2422-2452MHz for 802.11n(HT40) **RF** Output Power: 16.41dBm (Conducted) Type of Modulation: DBPSK, BPSK, DQPSK, QPSK, 16QAM, 64QAM Quantity of Channels: 11 for 802.11b/g/n(HT20); 7 for 802.11n(HT40) Channel Separation: 5MHz Type of Antenna: Integral Antenna Antenna Gain: 2.73dBi

1.2 Standard Applicable

According to §1.1307(b)(1) and KDB 447498 D01 General RF Exposure Guidance v06, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.

Frequency range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	F/300	6
1500-100000	/	/	5	6

(a) Limits for Occupational / Controlled Exposure

(b) Limits for General Population / Uncontrolled Exposure

Frequency range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	F/1500	30
1500-100000	/	/	1	30

Note: f = frequency in MHz: * = Plane-wave equivalents power density

1.3 MPE Calculation Method

- $S = (30*P*G) / (377*R^2)$
- S = power density (in appropriate units, e.g., mw/cm²)
- P = power input to the antenna (in appropriate units, e.g., mw)
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor is normally numeric gain.
- R = distance to the center of radiation of the antenna (in appropriate units, e.g., cm)

1.4 MPE Calculation Result

Maximum peak output power: <u>17.0 (dBm)</u> Maximum peak output power at antenna input terminal: <u>43.75(mW)</u> Prediction distance: <u>>20(cm)</u> Prediction frequency: <u>2437 (MHz)</u> Antenna gain: <u>2.73 (dBi)</u> Directional gain: <u>1.17 (numeric)</u> The worst case is power density at prediction frequency at 20cm: <u>0.01(mw/cm²)</u> MPE limit for general population exposure at prediction frequency: <u>1 (mw/cm²)</u>

 $0.01(mw/cm^2) < 1 (mw/cm^2)$

So the transmitter complies with the RF exposure requirements and the SAR is not required.