FCC Test Report

for

433MHz FSK module

Trade Name : Uniform

Model No. : PCT 433MHz TX/RX Module

FCC ID : TFJFSK7108

Report Number: RF-U010-1401-161

Date of Receipt: January 21, 2014

Date of Report : April 11, 2014

Prepared for

Uniform Industrial Corp.

47436 Fremont Blvd., Fremont, CA 94538-6512, USA

Prepared by

Central Research Technology Co. EMC Test Laboratory

No.11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

NVLAP LAB CODE 200575-0

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by NVLAP, NIST or any U.S. government agency. The test result in the report applies only to the sample tested.

Verification of Compliance

Equipment under Test: 433MHz FSK module

Model No. : PCT 433MHz TX/RX Module

FCC ID : TFJFSK7108

Manufacturer: Uniform Industrial Corp.

Applicant: Uniform Industrial Corp.

Address: 47436 Fremont Blvd., Fremont, CA 94538-6512, USA

Date of Testing: April 9, 2014 (Conducted Emission test)

January 22~23, 2014 (Other tests)

Applicable Standards : 47 CFR part 15, Subpart C

Deviation : N/A

Condition of Test Sample: Mass Production

We, **Central Research Technology Co**., hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

PREPARED BY : ____

(Cathy Chen/ Technical Manager)

APPROVED BY

, DATE :

Apr. 17. 201K

(Tsun-Yu Shih/General Manager)

Contents

1	General Description	4
1.1	General Description of EUT	4
1.2	Test Methodology	4
1.3	Applied standards	5
1.4	The Support Units	7
1.5	Layout of Setup	7
1.6	Test Capability	8
1.7	Measurement Uncertainty	10
2	Radiated Emission	17
2.1	Applied standard	17
2.2	Test Instruments	18
2.3	Measurement Procedure	20
2.4	Test configuration	21
2.5	Test Data	22
3	Bandwidth	32
3.1	Applied standard	32
3.2	Test Instruments	32
3.3	Measurement Procedure	33
3.4	Test configuration	33
3.5	Test Data	34
4	Dwell Time	35
4.1	Applied standard	35
4.2	Test Instruments	35
4.3	Measurement Procedure	36
4.4	Test configuration	36
4.5	Test Data	37

Attachment 1 – Photographs of the Test Configurations

Attachment 2 - External Photographs of EUT

Attachment 3 -Internal Photographs of EUT

1 General Description

1.1 General Description of EUT

Equipment underTest: 433MHz FSK module

Model No. : PCT 433MHz TX/RX Module

Power in : DC 3V

Test Voltage : DC 3 (Battery*1)

Manufacturer : Uniform Industrial Corp.

Channel Numbers : 1

Frequency Range : 433.44 MHz

Function Modulation: FSK

Function Description:

The EUT is used to transmit control command only. Please refer to the user's manual for the details.

1.2 Test Methodology

For this E.U.T., the radiated emissions measurement performed according to the procedures illustrated in ANSI C63.4:2003 and other required were illustrated in separate sections of this test report for detail.

Since the EUT is considered a potable unit, it was pre-tested on the positioned in each of 3 axes. Therefor only the test data of the worse case- x axis was used for Radiated test.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.3 Applied standards

(1) Radiated Emission Requirement

The field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental	Field Strength of	Field Strength of
Frequency	Fundament	Spurious Emission
(MHz)	(uV/m)	(uV/m)
40.66 - 40.70	1,000	100
70 – 130	500	50
130 – 174	500 to 1500**	50 to 150**
174 – 260	1500	150
260 - 470	1500 to 5000**	150 to 500**
Above 470	5000	500

^{**} linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 22.72727(F) - 2454.545; for the band 260-470 MHz, μ V/m at 3 meters = 16.6667(F) - 2833.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

(2) Bandwidth

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

(3) Dwell Time

Automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

(4) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
² 1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(5) Conduction Emission Requirement

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

	Conducted Limit (dBuV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu

Page:6/37

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

² Above 38.6

1.4 The Support Units

No.	Unit	Model No./ Serial No.	Teade Name	PowerCode	Supported by lab.
NA	*	*	*	*	*

1.5 Layout of Setup

EUT

Connecting Cables:

No.	Cable	Length	Shielded	Core	Shielded Backshell	Supported by lab.	Note
NA	*	*	*	*	*	*	*

Justification:

For both conducted and radiated emission below 1GHz, the system was configured for typical fashion as a customer could normal use it.

For radiated emission, measurement of radiated emission from digital circuit is performed with normal transmitting.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.6 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4, CISPR16-2-3 and ANSI C63.4:2003.

Test Room	Type of Test Room	Descriptions	
TR1	10m semi-anechoic chamber		
11(1	(23m×14m×9m)	Complying with the NSA requirements in	
TR11	3m semi-anechoic chamber	documents CISPR 22 and ANSI	
$(9m \times 6m \times 6m)$		C63.4:2003. For the radiated emission	
TR300	3m fully-anechoic chamber	measurement.	
18300	$(8m \times 5m \times 5m)$		
TR13	Test site	For the RF conducted emission	
rest site		measurement.	
TR5	Shielding Room	For the conducted emission	
110	(8m×5m×4m)	measurement.	

Page:8/37

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Laboratory Competence Information

Central Research Technology Co. has been accredited/filed/authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark
	USA	NVLAP	200575-0	ISO/IEC 17025
	R.O.C.	TAF	0905	ISO/IEC 17025
	(Taiwan)	IAI	0903	100/120 17020
Accreditation			SL2-IN-E-0033,	
Certificate			SL2-IS-E-0033,	
	R.O.C.	BSMI	SL2-R1/R2-E-0033,	ISO/IEC 17025
	(Taiwan)		SL2-A1-E-0033	
			SL2-L1-E-0033	
	USA	FCC	474046 TW1053	Test facility list
	USA		474046, TW1053	& NSA Data
Site Filing	Canada	IC	4699A-1,-3	Test facility list
Document	Cariaua	2	4099A-1,-3	& NSA Data
	Japan	VCCI	R-1527,C-1609,T-1441, G-10,	Test facility list
	Japan	V 001	C-4400, G-614, T-1334	
Authorization	Germany	TUV	10021687	ISO/IEC 17025
Certificate	Norway	Nemko	ELA212	ISO/IEC 17025

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

1.7 Measurement Uncertainty

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2.

Test Item	Measurement Uncertainty
Radiated Emission: (30MHz~200MHz)	Horizontal: 3.3dB;Vertical: 4.1dB
Radiated Emission: (200MHz~1GHz)	Horizontal: 3.8dB;Vertical: 5.1dB
Radiated Emission: (1GHz~18GHz)	Horizontal: 3.4dB; Vertical: 3.6dB

Page:10/37

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Conducted Emission Measurement

Test Data: Pass

2.1 Limits for Emission Measurement

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Francisco of Emission (MIII-)	Conducted Limit (dBuV)		
Frequency of Emission (MHz)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

Note:

For a device with a permanent antenna operating at or below 30 MHz, the FCC will accept measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) perform the AC line conducted tests with the permanent antenna to determine compliance with the Section 15.207 limits outside the transmitter's fundamental emission band; (2) retest with a dummy load in lieu of the permanent antenna to determine compliance with the Section 15.207 limits within the transmitter's fundamental emission band.

CENTRAL RESEARCH TECHNOLOGY CO.

FAX.: 886-2-25984546

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542

Page:11/37

2.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration	
Equipment	Manufacturer	Serial No.	Calibration Date	Due Date	
Test Receiver	R&S	ESCS 30/	lan 15 2014	Jan. 15, 2015	
rest Receiver	Καδ	836858/021	Jan. 15, 2014		
LICNI	Dec	ESH2-Z5/	March 15, 2014	March 15, 2015	
LISN	R&S	880669/039	March 15, 2014	March 15, 2015	
2 nd LISN	Dec	ENV4200/	March 20, 2014	March 20, 2015	
2 LISIN	R&S	833209/010	March 29, 2014	March 29, 2015	
500 to making atom	N1/A	N/A/	Aug. 19, 2013	Aug. 19, 2014	
50Ω terminator	N/A	001			
DE Conitab	N1/A	RSU28/	Aug. 19, 2013	Aug. 19, 2014	
RF Switch	N/A	338965/002	Aug. 19, 2013	Aug. 19, 2014	
DE Cable	NI/A	N/A/	Aug. 19, 2013	Aug. 19, 2014	
RF Cable	N/A	C0052 ~ 56	Aug. 19, 2013	Aug. 19, 2014	
Decreased and	NI/A	50Ω 1/4W	NCR	NCR	
Dummy Load	N/A	Resistance	NOIX	NCK	
Took Coffmore	۸ ها: . د	e3/	NOD	NCR	
Test Software	Audix	Ver. 5.2004-2-19k	NCR		
TR5	ETS	TR5/	NOD	NOD	
shielded room	LINDGREN	15353-F	NCR	NCR	

Note:

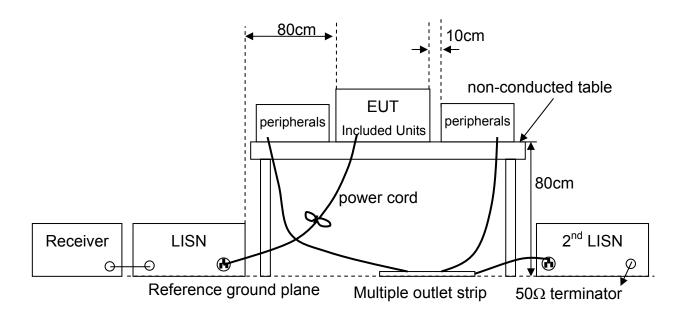
- 1. The calibrations are traceable to NML/ROC.
- NCR : No Calibration Required.

Instrument Setting

IF BW	Measurement Time	Detector	Trace	Comment
9kHz	1 second	Quasi-Peak / Average	Maxhold	

Climatic Condition

Ambient Temperature : 25°C; Relative Humidity : 67%

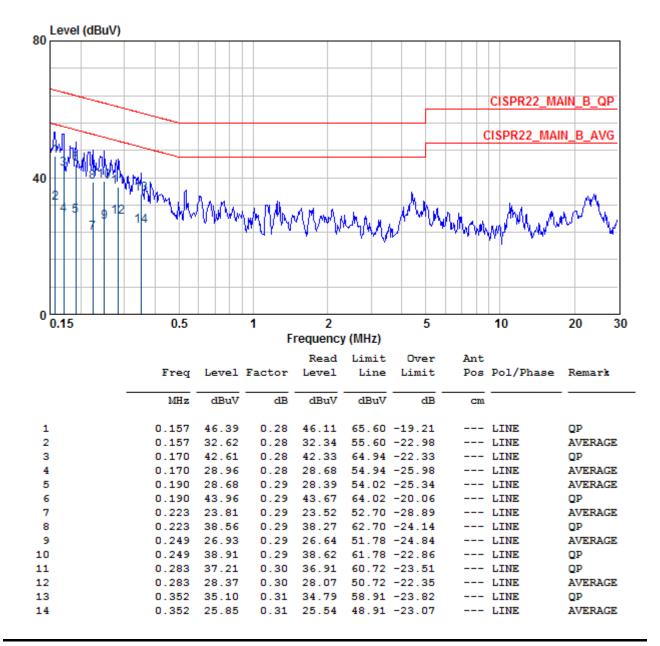

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.3 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a non-conducted table with a height of 0.8 meters above the reference ground plane and 0.4 meters from the conducting wall of the shielded room. Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane.
- c. Connect the EUT's power source to the appropriate power mains through the LISN.
- d. All the other peripherals are connected to the 2nd LISN, if any.
- e. The LISN was placed 0.8 meters from the EUT and at least 0.8 meters from other units and other metal planes.
- f. Measure the conducted emissions on each power line (Neutral Line and Line 1 Hot side) of the EUT's power source by using the test receiver connected to the coupling RF output port of LISN.
- g. Rapidly scan the signal from 150kHz to 30MHz by using the receiver through the Maximum-Peak detector to determine those frequencies associated with higher emission levels for each measured line.
- h. Then measure the maximum level of conducted disturbance for each frequency found from step g. by using the receiver through the Quasi-Peak and Average detectors per CISPR 16-1.
- i. Record the level for each frequency and compare with the required limit.

2.4 Test Configurations

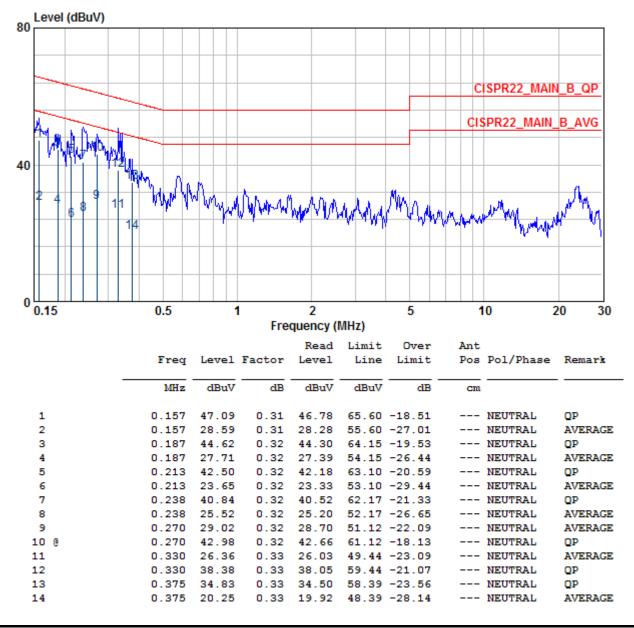


2.5 Test Data

Test Mode : Continuous Transmitting

Tester : Der-Jan Ken Frequency Range : 150kHz~30MHz

Phase : Line


Note:

- Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.

Test Mode : Continuous Transmitting

Tester : Der-Jan Ken Frequency Range : 150kHz~30MHz

Phase : Neutral

Note:

- Emission Level = reading value + correction factor.
- Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.

Page:16/37

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Radiated Emission

Test Result: Pass

3.1 Applied standard

According to 15.231(e), In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental	Field Strength of	Field Strength of
Frequency	Fundament	Spurious Emission
(MHz)	(uV/m)	(uV/m)
40.66 - 40.70	1,000	100
70 – 130	500	50
130 – 174	500 to 1500**	50 to 150**
174 – 260	1500	150
260 – 470	1500 to 5000**	150 to 500**
Above 470	5000	500

^{**} linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μV/m at 3 meters = 22.72727(F) - 2454.545; for the band 260-470 MHz, μ V/m at 3 meters = 16.6667(F) -2833.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

CENTRAL RESEARCH TECHNOLOGY CO.

FAX.: 886-2-25984546

3.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration Due	
Equipment	Manufacturer	Serial No.	Calibration Date	Date	
EMI Test	R&S	ESCI/	June 7, 2013	l	
Receiver	κασ	100019	June 7, 2013	June 7, 2014	
Spectrum	Agilent	E4407B/	May 20, 2012	May 20, 2014	
Analyzer	rigilorit	MY45106795	May 29, 2013	May 29, 2014	
Broadband	EMCO	3142C/	May 27, 2013	May 27, 2014	
Antenna	EIVICO	52088	Way 27, 2013	May 27, 2014	
Horn Antenna	EMCO	3117/	Nov. 20, 2013	Nov. 20, 2014	
110111 Antenna	EIVICO	82847	100. 20, 2013		
Pre-Amplifier	Mini-circuit	ZKL-2/	Aug. 3, 2013	Feb. 3, 2014	
Pre-Amplinei	Will in Oil Odic	004	Aug. 3, 2013	Feb. 3, 2014	
Pre-Amplifier	MITEQ	AFS6-02001800-3	Nov. 20, 2013	Nov. 20, 2014	
	2	5-10P-6/949196			
RF Cable	N/A	N/A/ C0080	Aug. 3, 2013	Feb. 3, 2014	
	_	e3/			
Test Software	Audix	ARD-SPR-000282	NCR	NCR	
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	May 11, 2013	May 11, 2014	

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required.
- The calibration date of the semi-anechoic chamber listed above is the date of NSA measurement.

Page:18/37

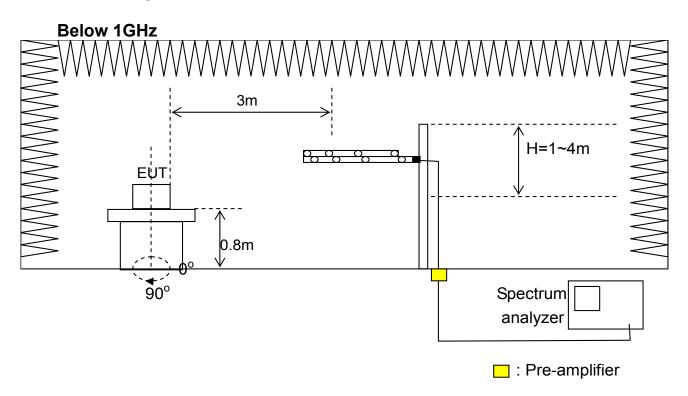
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

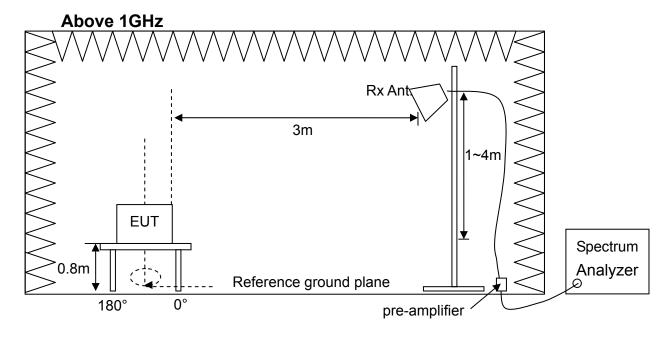
Instrument Setting

RBW	VBW	Detector	Trace	Comment
100KHz	N/A	Peak/Average	Maxhold	Field Strength of Fundament
120kHz	N/A	Quasi-Peak	Maxhold	Below 1GHz
1MHz	1MHz/10Hz	Peak	Maxhold	Above 1GHz Peak/Average

Climatic Condition

Ambient Temperature: 18°C; Relative Humidity: 45%


Page:19/37


CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit and receive data.
- c. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- d. The EUT was set 3m away from the interference receiving antenna.
- e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine at least six frequencies associated with higher emission levels and record them.
- g. Then measure each frequency found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- h. For measurement of frequency above 1000MHz, the beamwidth of receiving horn antenna should keep covering EUT when the receiving horn antenna height varied.
- i. For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or Average to find out the maximum level occurred, if any.
- j. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.
- k. Change the receiving antenna to another polarization to measure radiated emission by following step e. to j. again.
- If the peak emission level below 1000MHz measured from step f. is 4dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate Q.P. value will be measured and presented.
- m. If the peak emission level above 1000MHz measured from step f. is 20dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate A.V. value will be measured and presented.

3.4 Test configuration

3.5 Test Data

Field Strength of Fundament

Test Mode : Continuous Transmitting

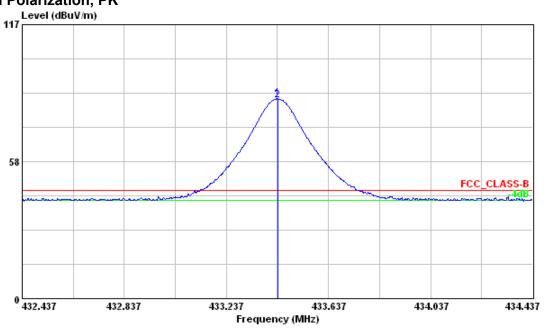
Tester: Liu

Frequency (MHz)	Polarization	Reading Data (dBuV)		Correction Factor	tor (dBuV/m)		Lim (dBµ\		Mar (d	_
(141112)		PK	AV	(dB/m)	PK AV		PK	AV	PK	AV
433.44	Н	93.48	N/A	-8.22	85.26	65.26	92.85	72.85	7.59	7.59
433.44	V	88.91	N/A	-8.22	80.69	60.69	92.85	72.85	12.16	12.16

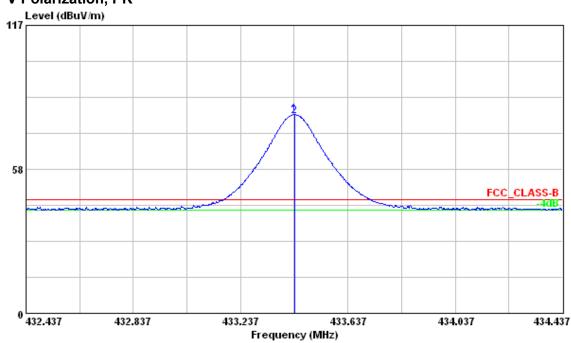
Note:

1. Correction Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier

2. Field Strength (dBuV/m) = Reading Data + Correction Factor


3. Margin (dB) = Limit – Field Strength

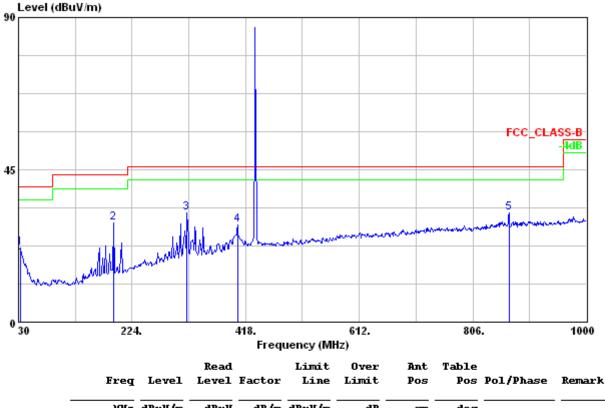
4. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula:


20log(Duty cycle) = 20log
$$\frac{6}{100}$$
 < -20dB

The total time is longer than 100ms, so the total time uses 100ms to express. please see page 26 for plotted duty cycle.

H Polarization, PK

V Polarization, PK



Radiated Emission Measurement below 1000MHz

Test Mode : Continuous Transmitting

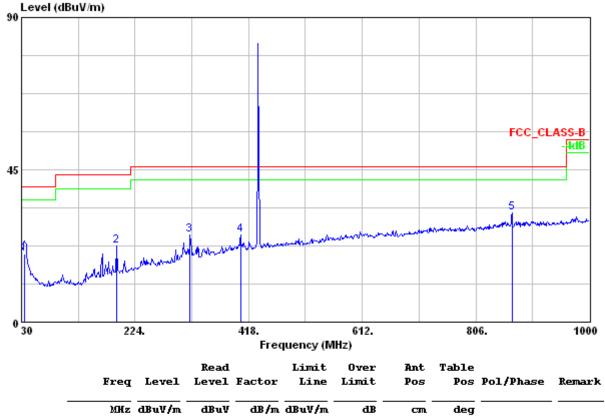
Tester : Liu Frequency Range : 30MHz~1GHz

Polarization: Horizontal

	Freq	Level	Level	Factor	Line	Limit	Pos	Pos	Pol/Phase	Remark
	MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm -	deg		
1	32.680	21.84	32.08	-10.24	40.00	-18.16			HORI ZONTAL	Peak
2	192.140	29.43	45.38	-15.95	43.50	-14.07			HORIZONTAL	Peak
3 @	318.237	32.24	43.58	-11.34	46.00	-13.76	100	115	HORIZONTAL	QP
4	403.860	28.84	37.73	-8.89	46.00	-17.16			HORIZONTAL	Peak
5	868.080	32.15	33.63	-1.48	46.00	-13.85			HORI ZONTAL	Peak

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor


CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

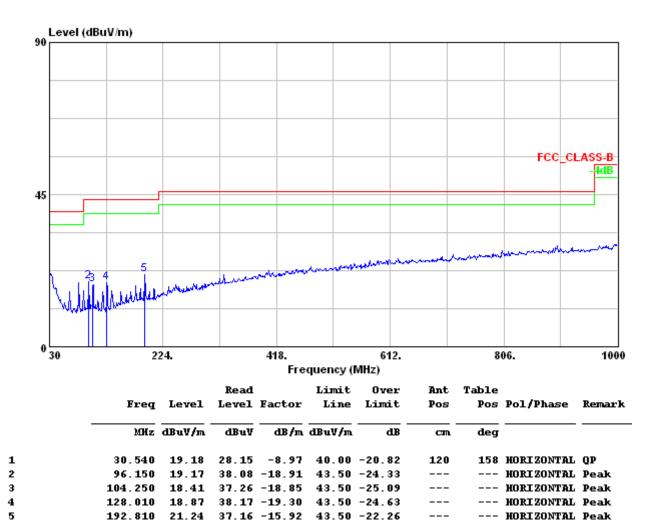
Test Mode : Continuous Transmitting

Tester : Liu Frequency Range : 30MHz~1GHz

Polarization : Vertical

	Freq	Level	Level	Factor	Line	Limit	Pos	Pos	Pol/Phase	Remark
	MHz	dBuV/m	dBuV	dB/m	dBuV/m	- dB	cm.	deg		
1	34.690	20.10	31.53	-11.43	40.00	-19.90	100	290	VERTICAL	QP
2	192.140	22.46	38.41	-15.95	43.50	-21.04			VERTICAL	Peak
3	318.100	25.71	37.05	-11.34	46.00	-20.29			VERTICAL	Peak
4	403.860	25.63	34.52	-8.89	46.00	-20.37			VERTICAL	Peak
5	868.080	32.15	33.63	-1.48	46.00	-13.85			HORIZONTAL	Peak

Note:


- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

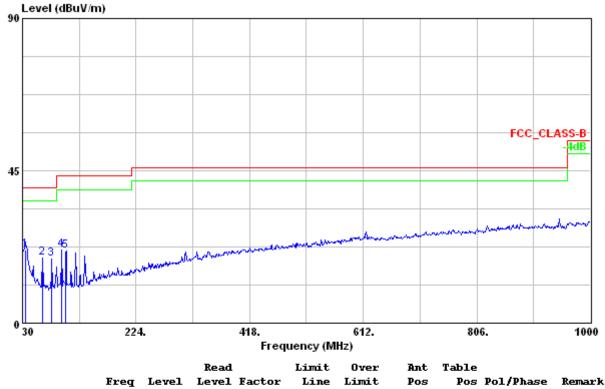
Test Mode : Continuous Receiving

Tester : Liu Frequency Range : 30MHz~1GHz

Polarization: Horizontal

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor


Page:26/37

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

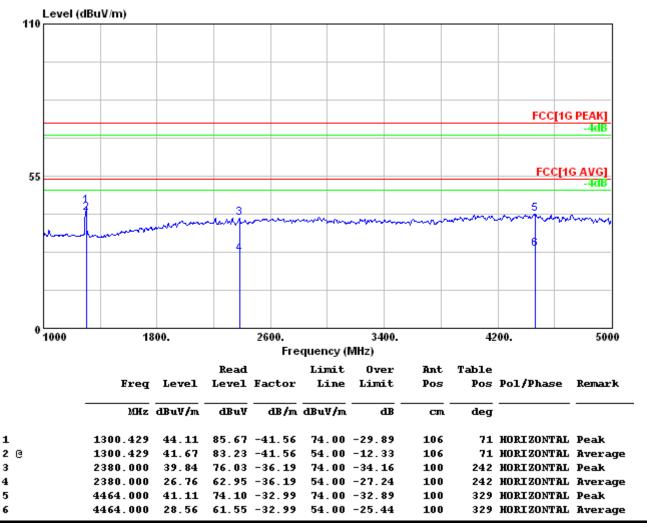
Test Mode : Continuous Receiving

Tester : Liu Frequency Range : 30MHz~1GHz

Polarization : Vertical

	rreq	Deser	Deset	Factor	TIME	шшс	FUS	FUS	ror/rnase	Kenat K
	МНг	dBuV/m	dBuV	dB/m	dBuV/m	dB		deg		
1 @	34.590	21.58	32.95	-11.37	40.00	-18.42	100	192	VERTICAL	QP
2	64.290	19.31	39.02	-19.71	40.00	-20.69			VERTICAL	Peak
3	79.950	18.86	38.92	-20.06	40.00	-21.14			VERTICAL	Peak
4	96.150	21.51	40.42	-18.91	43.50	-21.99			VERTICAL	Peak
5	104.250	21.18	40.03	-18.85	43.50	-22.32			VERTICAL	Peak

Note:


- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

Radiated Emission Measurement above 1000MHz

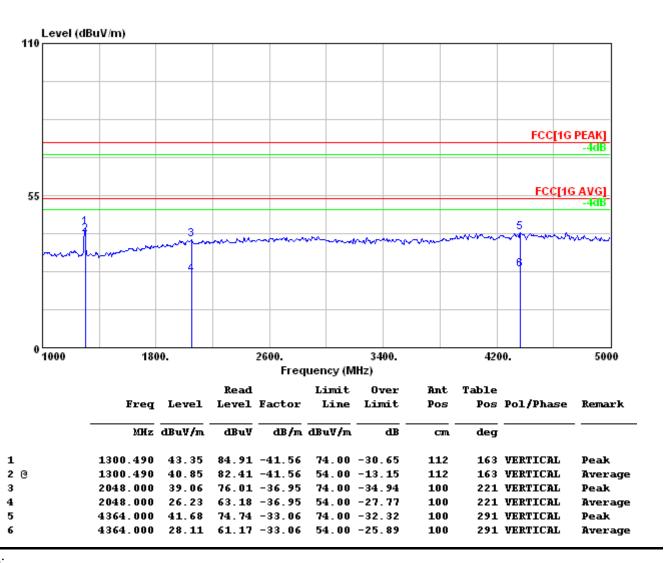
Test Mode : Continuous Transmitting

Tester : Liu Frequency Range : 1GHz~5GHz

Polarization : Horizontal

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier.

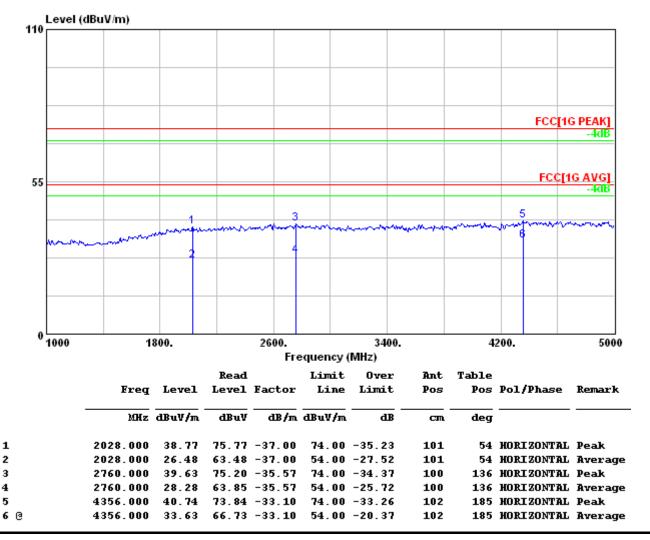

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : Continuous Transmitting

Tester : Liu Frequency Range : 1GHz~5GHz

Polarization : Vertical


Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier.

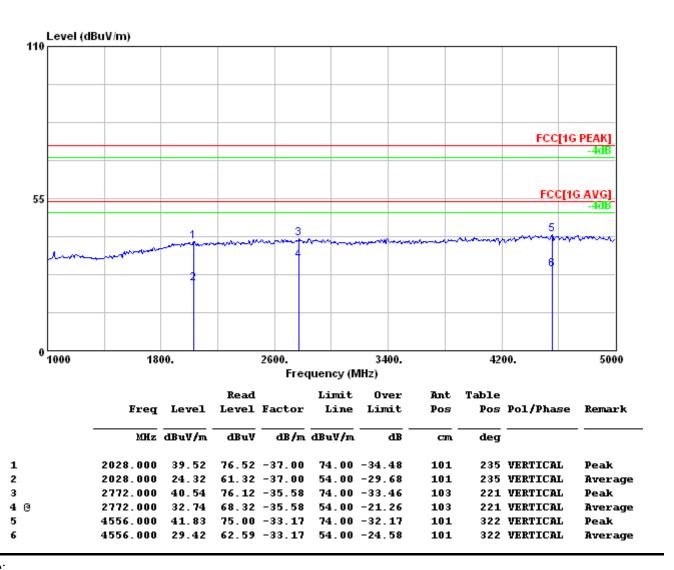
Test Mode : Continuous Receiving

Tester : Liu Frequency Range : 1GHz~5GHz

Polarization : Horizontal

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier.


CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : Continuous Receiving

Tester : Liu Frequency Range : 1GHz~5GHz

Polarization : Vertical

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

4 Bandwidth

Test Result: Pass

4.1 Applied standard

According to 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

4.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration
Equipment	Wandlacturer	Serial No.	Calibration Data	Due Data
Spectrum Analyzer	Agilent	E4405B/ MY45106706	April 9, 2013	April 9, 2014
Test Site	N.A.	TR13	NCR	NCR

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

Instrument Setting

RBW	VBW	Span	Detector	Comment
30kHz	100kHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature : 20°C; Relative Humidity : 54%

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11 Lane 41 Fushuen St. Jungshan Chir

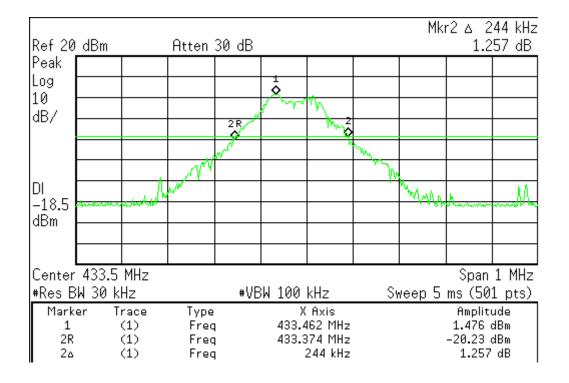
Page:32/37

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542

4.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. The Transmitter output of EUT was tested by the spectrum analyzer.
- c. Measure the bandwidth and compare with the required limit.

4.4 Test configuration



CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

4.5 Test Data

Test Mode : Continuous Transmitting

Tester : Jun

Measured 20dB bandwidth is 244kHz < 433.44 MHzX0.25% = 1083.6kHz.

Page:34/37

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

5 Dwell Time

Test Result: Pass

5.1 Applied standard

According to 15.231(e), each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

.

5.2 Test Instruments

Test Site and Equipment	Manufacturer	Model No./ Serial No.	Last Calibration Data	Calibration Due Data
Spectrum Analyzer	Agilent	E4405B/ MY45106706	April 9, 2013	April 9, 2014
Test Site	N.A.	TR13	NCR	NCR

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
100KHz	300kHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature: 20°C; Relative Humidity: 54%

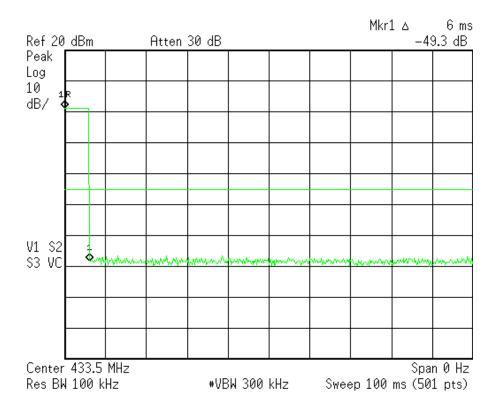
CENTRAL RESEARCH TECHNOLOGY CO.

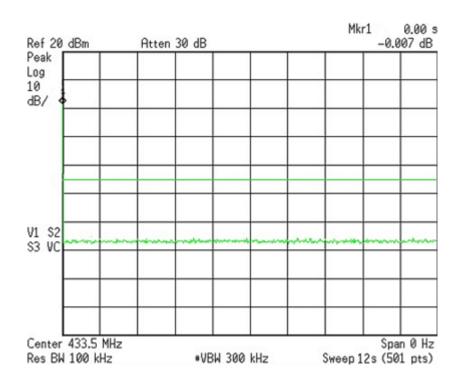
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

5.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. The Transmitter output of EUT was tested by the spectrum analyzer through an attenuator.
- c. Measure the dwell time and compare with the required limit.

5.4 Test configuration




CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

5.5 Test Data

Test Mode : Continuous Transmitting

Tester : Jun

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.