APPENDIX C – DIPOLE CALIBRATION CERTIFICATES

Certificate of Calibration Verification

Description of EUT Tuned Dipole Antenna

 EUT Model Number
 D-1800-S-1

 EUT Serial Number
 BCL-049

 Center Frequency
 1800 MHz

Calibration Date: 12 April 2004

Testing conditions:

per P1528/D1.2:2003:

Ambient Temperature (18-25 °C) 23 °C Ambient Humidity 43%

Liquid Temperature at start of measurements:(≤2°C) 21 °C Liquid temperature at end of measurements: 21 °C

Date and time at beginning of test: 2004-04-09-16:20 PST Date and time at beginning of test: 2004-04-09-19:40 PST

Equipment used for measurements

Network Analyzer	HP	8752C	1 Nov 2002
Impedance adapter	AGILENT	43961A	31 Oct 2003
Short Reference	HP	04191-85300	31 Oct 2003
Open Reference	HP	04191-85302	31 Oct 2003
Load Reference	HP	04191-85301	31 Oct 2003
Signal Generator	HP	83650B	29 Feb 2004
Calibration Cable:	SMA Utiflex 3 05	meter cable S/N 9	99E1206 (Number 8)

Phantom Model: SAM

Liquid: 1800 MHz, Head Liquid

Liquid Validation Date: 12 April 2004 Quantity of Liquid in Phantom: 19.8 Liters

Measurement Procedure

In accordance with IEEE P1528/D1.2:2003, 8.3.4, 8.2.3 through 8.2.4

Liquid Validation

Instrument	Manufacture	erModel	Calibrated	
Network Analyzer Dielectric Probe Kit, H ₂ O, 18 M-Ohm	HP Agilent BACL	4396B 85070C	1 Nov 2002 Each Use Each Use	
Probe, SAR 10 kHz - 6 GHz	SPEAG	ES3DV2	9 Oct 2003	

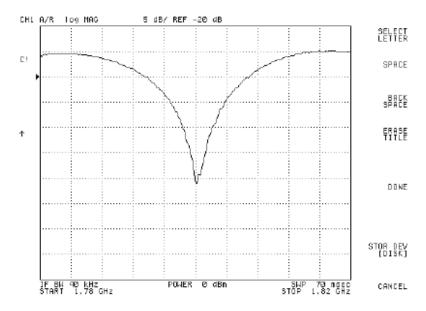
Attestation:

I hereby attest that the equipment are suitable for the performance requirements of IEEE P1528/D1.2:2003 and the personnel operating the test equipment and measurements are properly trained to perform the verification of this calibration procedure set forth in IEEE P1528/D1.2:2003.

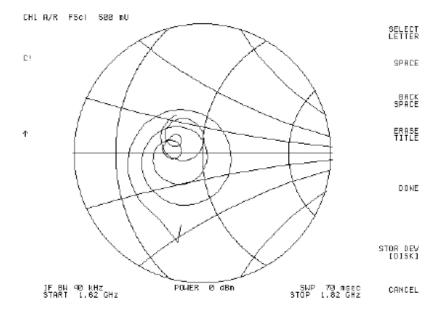
The validation antenna herein meets the minimum requirements of 20 dB insertion loss

# L	2004-04-12	
Hans T. Mellberg Engineering Manager		
Lityineeniig wanagei	Date	

1900 MHZ Body Liquid Validation Ambient Temp = 23 Deg C, Liquid Temp = 22 Deg C, 01/10/2005


Amorem remp = 2	മ Deg U, LAG	[uid temp = 22 Deg C, 01/10/20]
Frequency	e'	e"
1850000000.0000	53.6364	14.1271
1852000000.0000	53.6032	14.1336
1854000000.0000	53.5811	14.1552
1856000000.0000	53.5755	14.1818
1858000000.0000	53.5671	14.1043
1860000000.0000	53.5467	14.1902
1862000000.0000	53.5254	14.1861
1864000000.0000	53.5146	14.1456
1866000000.0000	53.5033	14.1384
1868000000.0000	53.4927	14.1462
1870000000.0000	53.4814	14.1531
1872000000.0000	53.4305	14.1658
1874000000.0000	53.4212	14.1790
1876000000.0000	53.3883	14.1790
1878000000.0000		
1880000000.0000	53.3702	14.2047
	53.3621	14.2968
1882000000.0000	53.3574	14.3039
1884000000.0000	53.3486	14.3440
1886000000.0000	53.3350	14.3521
1888000000.0000	53.3429	14.3578
1890000000.0000	53.3272	14.3625
1892000000.0000	53.3141	14.3822
1894000000.0000	53.3018	14.3774
1896000000.0000	53.3175	14.3650
1898000000.0000	53.3232	14.2836
19000000000.0000	53.3184	14.2579
1902000000.0000	53.3596	14.2923
1904000000.0000	53.3180	14.3568
1906000000.0000	53.3252	14.3670
1908000000.0000	53.3186	14.3664
1910000000.0000	53.3149	14.3590
1912000000.0000	53.3080	14.3642
1914000000.0000	53.2821	14.3561
1916000000.0000	53.2768	14.4582
1918000000.0000	53.2874	14.4774
1920000000.0000	53.2569	14.4886
1922000000.0000	53.2678	14.4709
1924000000.0000	53.2360	14.4635
1926000000.0000	53.2249	14.5513
1928000000.0000	53.2152	14.5360
1930000000.0000	53.2068	14.5289
1932000000.0000	53.1982	14.5324
1934000000.0000	53.1936	14.5180
1936000000.0000	53.1885	14.5243
1938000000.0000	53.1719	14.5168
1940000000.0000	53.1859	14.5242
1942000000.0000	53.1940	14.5351
1944000000.0000	53.2008	14.5145
1946000000.0000	53.2161	14.5236
1948000000.0000	53.2253	14.5318
1950000000.0000	53.2201	14.5376
		EMETATO

1900 MHZ Head Liquid Validation


Ambient Temp = 23 Deg C, Liquid Temp = 22 Deg C, 01/10/2005

rimorom romp	m n ob o , r	andere remb	TTT OP
Frequency e'	e"		
1850000000.0000	39.6525	13.1521	
1852000000.0000	39.6489	13.1664	
1854000000.0000	39.6134	13.1495	
1856000000.0000	39.6359	13.1573	
1858000000.0000	39.6478	13.1954	
1860000000.0000	39.6484	13.1860	
1862000000.0000	39.6475	13.2085	
1864000000.0000	39.6332	13.1927	
1866000000.0000	39.6548	13.2034	
1868000000.0000	39.6265	13.21.59	
1870000000.0000	39.6146	13.2068	
1872000000.0000	39.6423	13.2173	
1874000000.0000	39.5806	13.2357	
1876000000.0000	39.5768	13.2268	
1878000000.0000	39.5629	13.2154	
1880000000.0000	39.5561	13.2271	
1882000000.0000	39.5149	13.2339	
1884000000.0000	39.4852	13.2487	
1886000000.0000	39.4794	13.2550	
1888000000.0000	39.4607	13.2782	
1890000000.0000	39.4563	13.2841	
1892000000.0000	39.4435	13.2965	
1894000000.0000	39.3883	13.3008	
1896000000.0000	39.3606	13.3242	
1898000000.0000	39.3528	13.3495	
19000000000.0000	39.3209	13.3568	
1902000000.0000	39.3193	13.3383	
1904000000.0000	39.2669	13.3059	
1906000000.0000	39.2535	13.2616	
1908000000.0000	39.2312	13.2747	
1910000000.0000	39.1927	13.2826	
1912000000.0000	39.1275	13.2957	
1914000000.0000	39.1863	13.3023	
1916000000.0000	39.1765	13.3063	
1918000000.0000	39.0324	13.3294	
1920000000.0000	39.0203	13.3469	
1922000000.0000	39.0522	13.3758	
1924000000.0000	39.0761	13.3672	
1926000000.0000	39.0832	13.3781	
1928000000.0000	39.0960	13.3847	
1930000000.0000	39.0355	13.3959	
1932000000.0000	39.1282	13.3936	
1934000000.0000	39.1338	13.4052	
1936000000.0000	39.1805	13.4298	
1939000000.0000	39.1928	13.4470	
1940000000.0000	39.2283	13.4512	
1942000000.0000	39.2545	13.5161	
1944000000.0000	39.3374	13.5257	
1946000000.0000	39.3653	13.5458	
1948000000.0000	39.4068	13.5640	
1950000000.0000	39.4570	13.5828	

Insertion Loss Plot S11

Smith Chart

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

Client

Bay Area Comp. Lab (BACL)

CALIBRATION CERTIFICATE Object(s) D900V2 - SN:122 QA CAL-05.v2 Calibration procedure(s) Calibration procedure for dipole validation kits October 3, 2003 Calibration date: In Tolerance (according to the specific calibration document) Condition of the calibrated item This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard. All calibrations have been conducted in the closed laboratory facility; environment temperature 22 +/- 2 degrees Celsius and humidity < 75%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Calibrated by, Certificate No.) Model Type 18-Oct-02 (Agilent, No. 20021018) Oct-04 Power sensor HP 8481A MY41092317 US37292783 30-Oct-02 (META3, No. 252-0236) Oct-03 Power sensor HP 8481A Oct-03 30-Oct-02 (METAS, No. 252-0236) Power meter EPM E442 GB37480704 27-Mar-2002 (R&S, No. 20-92389) In house check: Mar-05 RF generator R&S SML-03 100698 In house check: Oct 03 Network Analyzer HP 8753E US37390585 18-Oct-01 (Agilent, No. 24BR1033101) Function Signature Name Judith Mueller Technician Calibrated by: Laboratory Director Katja Pokovic Approved by:

Date issued: October 9, 2003

This collibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Report #R0501054Sa Page 53 of 71 SAR Evaluation Report

APPENDIX D - TEST SYSTEM VERIFICATIONS SCANS

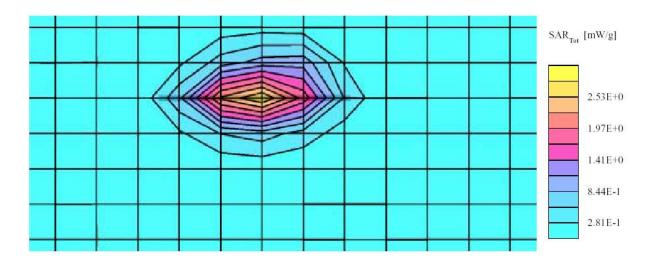
Liquid Measurement Result

2005-1-10

Simulant	Freq [MHz]	Parameters	Liquid Temp [°C]	Target Value	Measured Value	Deviation	Limits [%]
		$\epsilon_{\rm r}$	22.0	53.3	53.4	0.19	±5
Body	1900	σ	22.0	1.52	1.50	-1.32	±5
		1g SAR	22.0	24.97	24.89	-0.32	±10
		$\epsilon_{ m r}$	22.0	40.0	39.3	-2.00	±5
Head	1900	σ	22.0	1.4	1.41	0.71	±5
		1g SAR	22.0	39.7	38.64	-2.67	±10

 ε_r = relative permittivity, σ = conductivity and ρ =1000kg/m³

Body Forward Power = 20.3 dBm = 107.15 mW Head Forward Power = 20.17 dBm = 103.99 mW


1900 MHz Head Liquid System Validation (Ambient Temp = 23 Deg C, Liquid Temp = 22 Deg C, Forwar Power = 20.17 dBm, 01/10/2005)

SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1900 MHz

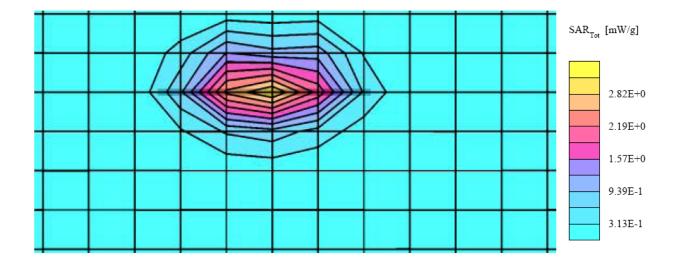
Probe: ES3DV2 - SN3019; ConvF(4.70,4.70,4.70); Crest factor: 1.0; Head 1900 MHz: $\sigma = 1.41 \text{ mho/m} \, \epsilon_r = 39.3 \, \rho = 1.00 \, \text{g/cm}^3$

Cube 5x5x7: SAR (1g): 4.13 $\,$ mW/g, SAR (10g): 2.08 $\,$ mW/g, (Worst-case extrapolation) Coarse: Dx = 12.0, Dy = 14.0, Dz = 10.0 $\,$

Powerdrift: 0.03 dB

<ENTER HERE YOUR COMPANY NAME>

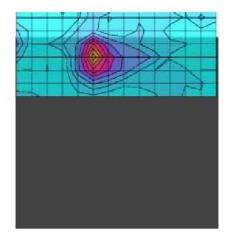
1900 MHz Body Liquid System Validation (Ambient Temp = 23 Deg C, Liquid Temp = 22 Deg C, Forwar Power = 20.3 dBm, 01/10/2005)

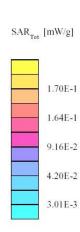

SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1900 MHz

Probe: ES3DV2 - SN3019; ConvF(4.60,4.60,4.60); Crest factor: 1.0; Body 1900 MHz: σ = 1.51 mho/m ϵ_r = 53.3 ρ = 1.00 g/cm³

Cube 5x5x7: SAR (1g): 2.79 mW/g, SAR (10g): 1.41 mW/g, (Worst-case extrapolation)

Coarse: Dx = 12.0, Dy = 14.0, Dz = 10.0


Powerdrift: -0.01 dB



APPENDIX E - EUT SCANS

BBK, Model: BKGP-302 (Bottom touching to flat phantom, Ambient Temp = 23 Deg C, Liquid Temp = 22 Deg C, Middle Channel, 01/10/2005) SAM Phantom; Flat Section; Position: (90°,90°); Frequency: 1880 MHz

SAW Hallion, Part Section, 10stroin, (93.9), Trequency, 1880 MHz: $\sigma = 1.51$ mho/m $\epsilon_r = 53.3$ $\rho = 1.00$ g/cm³ Cube 5x5x7: SAR (1g): 0.178 mW/g, SAR (10g): 0.096 mW/g, (Worst-case extrapolation) Coarse: Dx = 12.0, Dy = 14.0, Dz = 10.0 Powerdrift: -0.03 dB

<ENTER HERE YOUR COMPANY NAME>

Report #R0501054Sa SAR Evaluation Report Page 57 of 71

APPENDIX F – CONDUCTED OUTPUT POWER MEASUREMENT

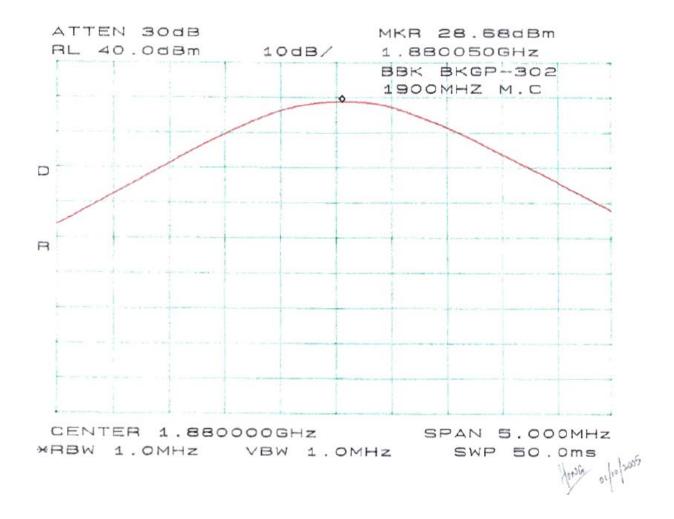
Provision Applicable

According to FCC §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts. According to FCC § 24.232(b), EIRP peak power for mobile/portable stations are limited to 2 watts.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Test equipment

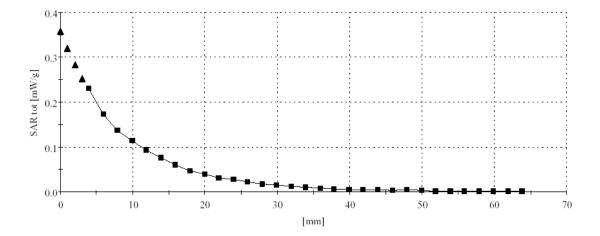

Hewlett Packard HP8564E Spectrum Analyzer, Calibration Due Date: 2005-08-01. Hewlett Packard HP 7470A Plotter, Calibration not required. A.H. Systems SAS200 Horn Antenna, Calibration Due Date: 2005-05-31 Com-Power AB-100 Dipole Antenna, Calibration Due Date: 2005-09-05

Test Results

GSM:

Frequency (MHz)	Output Power in dBm	Output Power in W	Limit (W)
1880.00	28.68	0.738	2

Please refer to the following plots.



APPENDIX G - Z-AXIS PLOT

BBK, Model: BKGP-302 (Ambient Temp = 23 Deg C, Liquid Temp = 22 Deg C, 01/10/2005)

SAM Phantom; Section; Position: ; Frequency: 1880 MHz

Probe: ET3DV2 - SN3019; ConvF(4.60,4.60,4.60); Crest factor: 8.0; Body Liquid 1900 MHz: $\sigma = 1.51 \text{ mho/m} \ \epsilon_r = 53.0 \ \rho = 1.00 \ g/cm^3$; , () Z-Axis: Dx = 12.0, Dy = 14.0, Dz = 10.0

<ENTER HERE YOUR COMPANY NAME>

APPENDIX H – EUT TEST POSITION PHOTOS

Bottom Touching Flat Phantom

APPENDIX I – EUT & ACCESSORIES PHOTOS

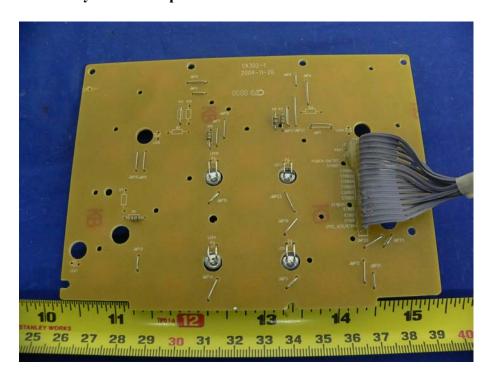
EUT – Front View

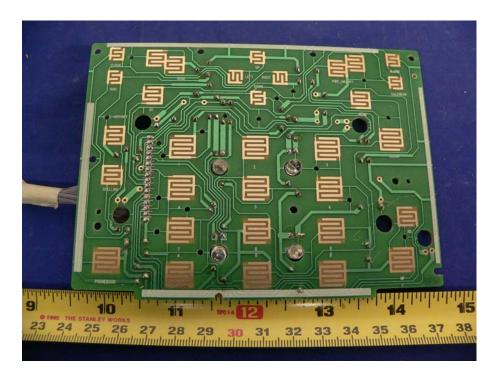
EUT – Rear View

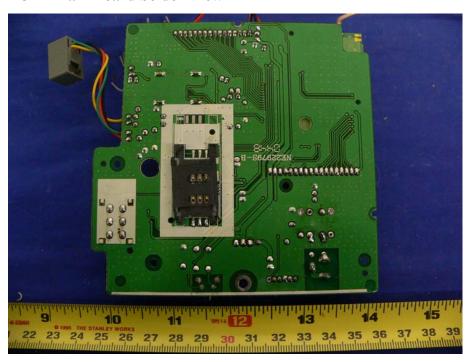
EUT - Port View

EUT – Headset View

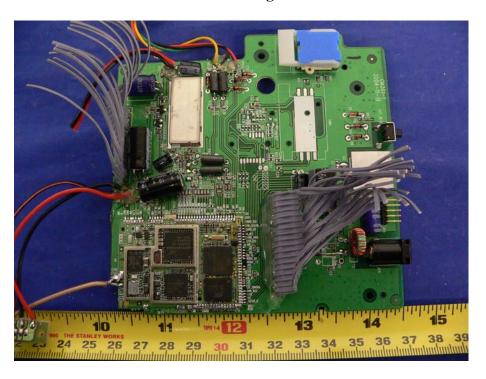
EUT –Charger View

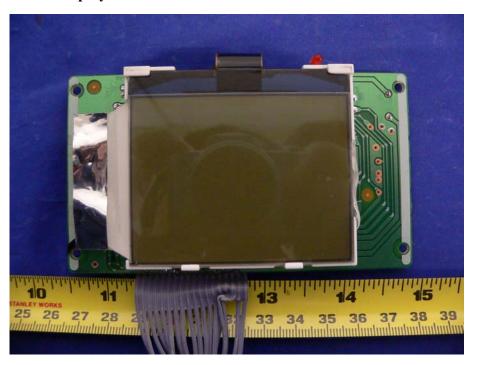

EUT –Uncover View

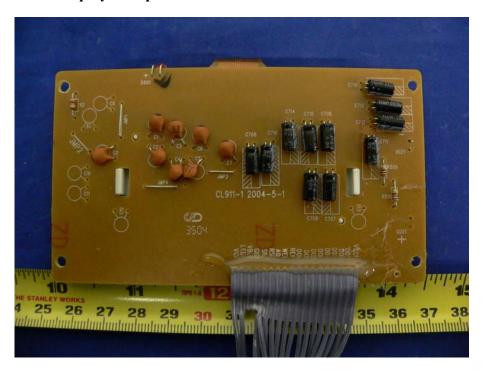

EUT – Headset Uncover View


EUT - Keyboard Component View

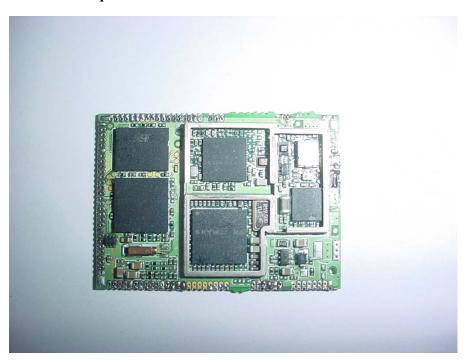
EUT - Keyboard Solder View


EUT - Main Board Solder View


EUT - Main Board View


EUT – Main Board Without Shielding View

EUT –Display View


EUT –Display Components View

EUT -Battery View

RF Board Top View

RF Board Bottom View

APPENDIX J - INFORMATIVE REFERENCES

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 {652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120-24.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The depen-dence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.