

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057
Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com

Report No.: SZEM161201085002 Page: 1 of 74

FCC REPORT

Application No.: SZEM1612010850RG

Applicant: Hisense International Co., Ltd.

Manufacturer: Hisense Communications Co., Ltd.

Factory: Hisense Communications Co., Ltd.

Product Name: Smartphone
Model No.(EUT): Hisense F23
Trade Mark: Hisense
FCC ID: 2ADOBF23

Standards: 47 CFR Part 15, Subpart C (2015)

Date of Receipt: 2016-12-27

Date of Test: 2016-12-28 to 2017-01-12

Date of Issue: 2017-01-12

Test Result: PASS *

Authorized Signature:

Derek Yang

Derole yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM161201085002

Page: 2 of 74

2 Version

Revision Record							
Version Chapter Date Modifier Remark							
01		2017-01-12		Original			

Authorized for issue by:		
Tested By	Mike Mu (Mike Hu) /Project Engineer	2017-01-12 Date
Checked By	(Jim Huang) /Reviewer	2017-01-12 Date

Report No.: SZEM161201085002

Page: 3 of 74

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

Report No.: SZEM161201085002

Page: 4 of 74

4 Contents

			Page
1	C	OVER PAGE	1
2	VF	ERSION	2
		EST SUMMARY	
3			
4	CC	ONTENTS	4
5	GF	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	7
	5.6	TEST FACILITY	7
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.11	EQUIPMENT LIST	9
6	TE	EST RESULTS AND MEASUREMENT DATA	11
	6.1	Antenna Requirement	11
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	16
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.9	SPURIOUS RF CONDUCTED EMISSIONS	
	6.10	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
	6.11	RADIATED SPURIOUS EMISSION	
		11.2 Transmitter Emission above 1GHz	
	6.12	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
_		HOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	74
•	P P	TUTURKAPAS - PUT LUNSTRULTUNAL DETAILS	1/2

Report No.: SZEM161201085002

Page: 5 of 74

5 General Information

5.1 Client Information

Applicant:	Hisense International Co., Ltd.			
Address of Applicant:	Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071, China			
Manufacturer: Hisense Communications Co., Ltd.				
Address of Manufacturer:	218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R. China			
Factory:	Hisense Communications Co., Ltd.			
Address of Factory:	218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R.			

5.2 General Description of EUT

Product Name:	Smartphone			
Model No.:	Hisense F23			
Trade Mark:	Hisense			
Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	V4.0 Dual Mode			
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)			
Modulation Type:	GFSK, π/4DQPSK, 8DPSK			
Number of Channel:	79			
Hopping Channel Type:	Adaptive Frequency Hopping systems			
Sample Type:	Portable production			
Antenna Type:	PIFA			
Antenna Gain:	0dBi			
Power Supply	DC3.85V (1 x 3.85V Rechargeable battery) 3000mAh Battery: Charge by DC 5V			
AC adaptor:	Model: CC10-050200U Input: AC100-240V 50/60Hz 0.35A Output:DC5.0V 2A			

Report No.: SZEM161201085002

Page: 6 of 74

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The Lowest channel	2402MHz		
The Middle channel	2441MHz		
The Highest channel	2480MHz		

Report No.: SZEM161201085002

Page: 7 of 74

5.3 Test Environment

Operating Environment				
Temperature: 24.0 °C				
Humidity:	55 % RH			
Atmospheric Pressure:	1005 mbar			

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

Report No.: SZEM161201085002

Page: 8 of 74

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Total RF power, conducted	0.75dB	
2	RF power density, conducted	2.84dB	
3	Spurious emissions, conducted	0.75dB	
		4.5dB (30MHz-1GHz)	
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)	
5	Conduct emission test	3.12 dB(9KHz- 30MHz)	
6	Temperature test	1°C	
7	Humidity test	3%	
8	DC and low frequency voltages	0.5%	

Report No.: SZEM161201085002

Page: 9 of 74

5.11 Equipment List

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2016-09-28	2017-09-28
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2016-09-28	2017-09-28
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	EMC0122	2016-09-28	2017-09-28
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2016-04-25	2017-04-25
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2017-10-09

	RF connected test						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
2	Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-17	2017-10-17	
3	Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25	
4	Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

Report No.: SZEM161201085002

Page: 10 of 74

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-09-16	2017-09-16
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2016-06-14	2017-06-14
6	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2016-10-09	2017-10-09
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM161201085002

Page: 11 of 74

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

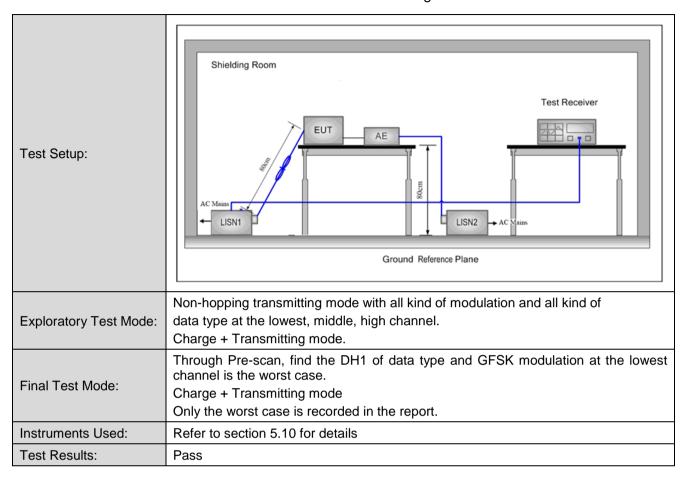
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM161201085002

Page: 12 of 74

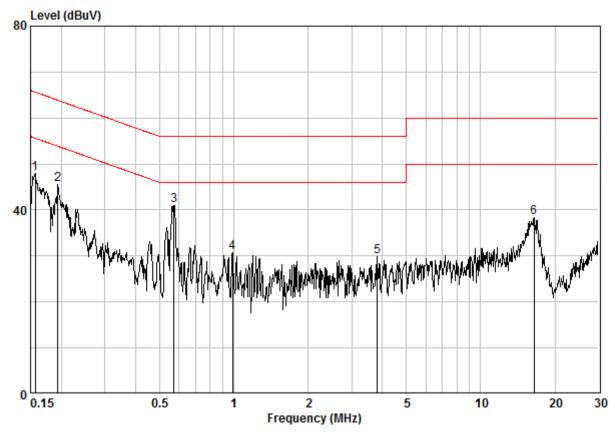

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (dBuV) Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50	Decreas es with the logarith m of the frequen cy.			
1) The mains terminal 2) The EUT was connected to a second reference plane in the measured. A multipe power cables to a sexceeded. 3) The tabletop EUT was ground reference plane in the measured. A multipe power cables to a sexceeded. 4) The test was perform of the EUT shall be vertical ground reference plane. The unit under test and mounted on top of the between the closes the EUT and associon in order to find the requipment and all or stabilization.		to AC power source Network) which provables of all other unium SN 2, which was bosted way as the LISN exet outlet strip was LISN provided the range aced upon a non-meand for floor-standing ground reference playith a vertical ground in from the vertical ground in from the vertical ground a ground reference plane was bonded in N 1 was placed 0.8 and to a ground reference plane was of the LISN 1 and requipment was at leasum emission, the results of the re	anded to the ground I for the unit being used to connect multiple ating of the LISN was no etallic table 0.8m above g arrangement, the EUT ane, d reference plane. The r ound reference plane. T to the horizontal ground m from the boundary of ence plane for LISNs e. This distance was the EUT. All other units ast 0.8 m from the LISN elative positions of st be changed according	ent the Γ was ear The the			

Report No.: SZEM161201085002

Page: 13 of 74

Report No.: SZEM161201085002


Page: 14 of 74

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

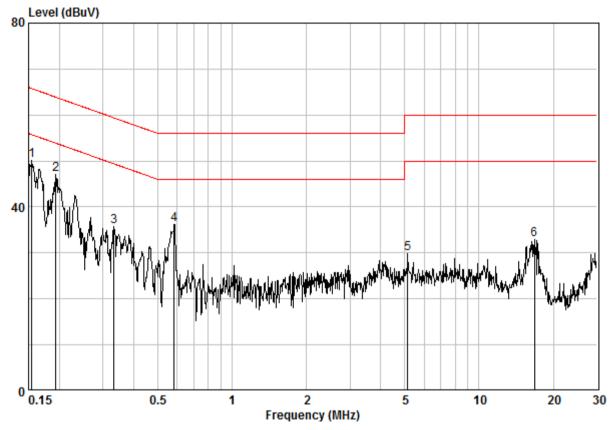
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room Condition : CE LINE Job No. : 10850RG

Test Mode : b

:BT


	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line		Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15649	0.02	9.59	38.24	47.85	55.65	-7.80	Peak
2	0.19344	0.02	9.60	35.88	45.50	53.89	-8.39	Peak
3 @	0.57313	0.02	9.60	31.45	41.07	46.00	-4.93	Peak
4	0.98914	0.03	9.63	21.07	30.73	46.00	-15.27	Peak
5	3.820	0.02	9.63	20.21	29.86	46.00	-16.14	Peak
6	16.486	0.16	9.77	28.46	38.39	50.00	-11.61	Peak

Report No.: SZEM161201085002

15 of 74 Page:

Neutral line:

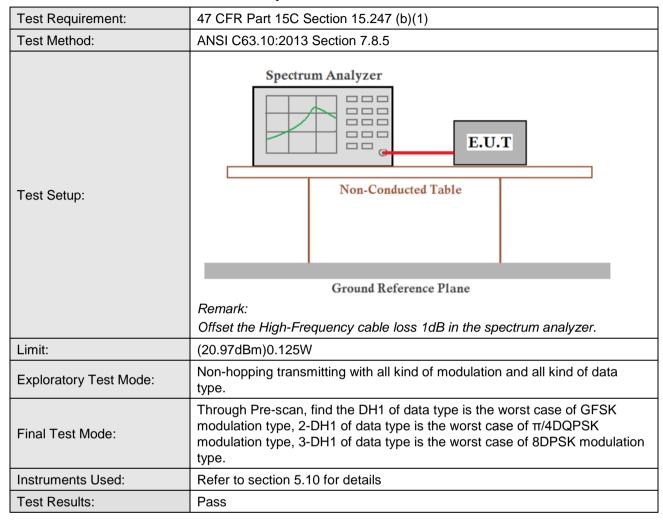
Site : Shielding Room : CE NEUTRAL Condition : 10850RG Job No.

Test Mode : b

:BT

	Freq		LISN Factor				Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1 @	0.15485	0.02	9.61	40.42	50.05	55.74	-5.68	Peak
2	0.19344	0.02	9.62	37.44	47.08	53.89	-6.81	Peak
3	0.33208	0.02	9.62	26.13	35.77	49.40	-13.63	Peak
4	0.58231	0.02	9.63	26.61	36.26	46.00	-9.74	Peak
5	5.139	0.02	9.72	20.06	29.80	50.00	-20.20	Peak
6	16.750	0.16	9.93	22.73	32.82	50.00	-17.18	Peak

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM161201085002

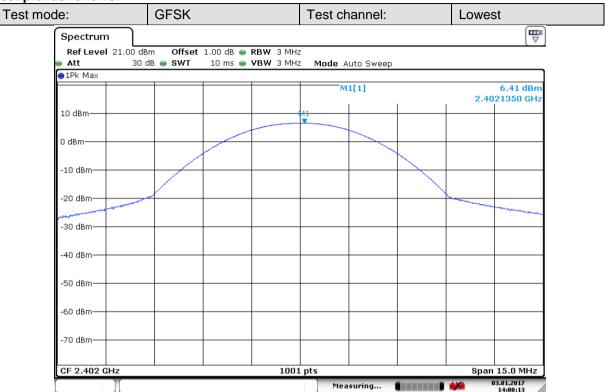
Page: 16 of 74

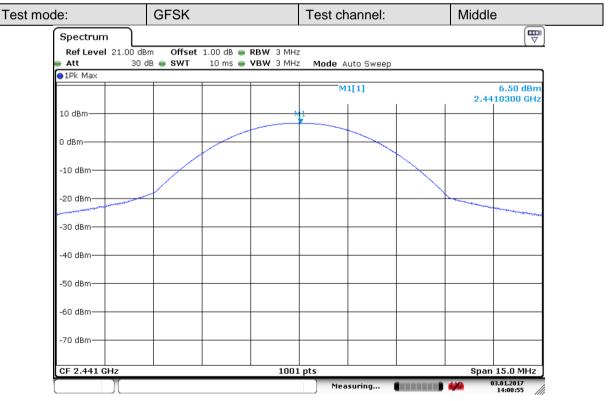
6.3 Conducted Peak Output Power

Report No.: SZEM161201085002

Page: 17 of 74

Measurement Data

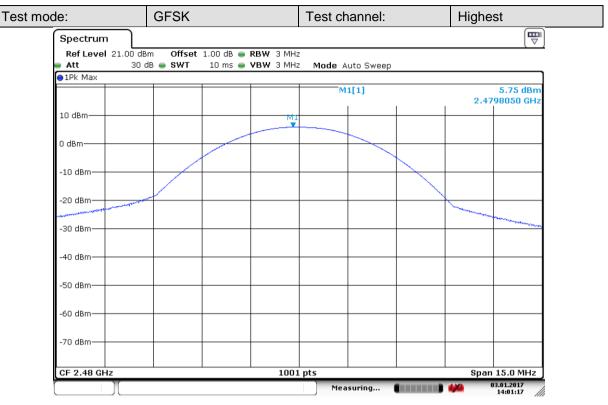

	GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	6.41	20.97	Pass		
Middle	6.50	20.97	Pass		
Highest	5.75	20.97	Pass		
	π/4DQPSK m	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	5.65	20.97	Pass		
Middle	5.82	20.97	Pass		
Highest	5.02	20.97	Pass		
	8DPSK mod	de			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	5.97	20.97	Pass		
Middle	6.09	20.97	Pass		
Highest	5.28	20.97	Pass		


Report No.: SZEM161201085002

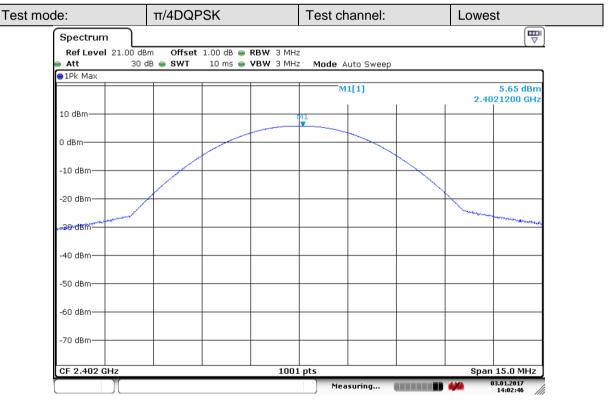
Page: 18 of 74

Test plot as follows:

Date: 3.JAN.2017 14:00:13



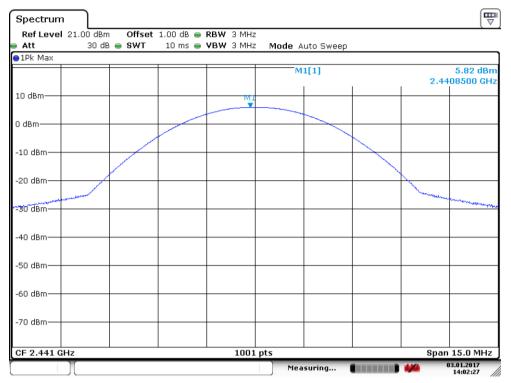
Date: 3.JAN.2017 14:00:56



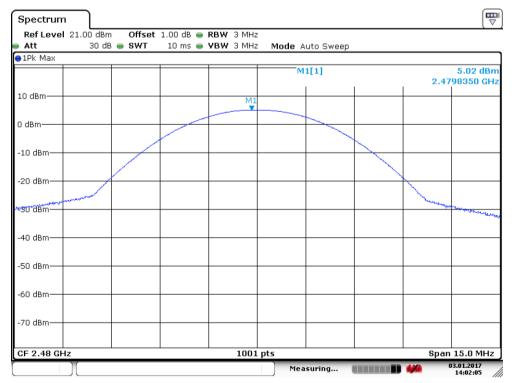
Report No.: SZEM161201085002

Page: 19 of 74

Date: 3.JAN.2017 14:01:18


Date: 3.JAN.2017 14:02:46

Report No.: SZEM161201085002

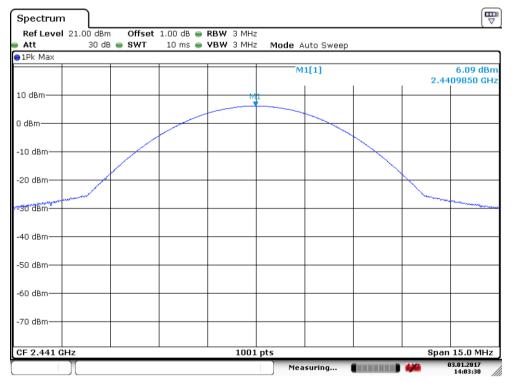

Page: 20 of 74

Test mode: π/4DQPSK Test channel: Middle

Date: 3.JAN.2017 14:02:28

Date: 3.JAN.2017 14:02:05

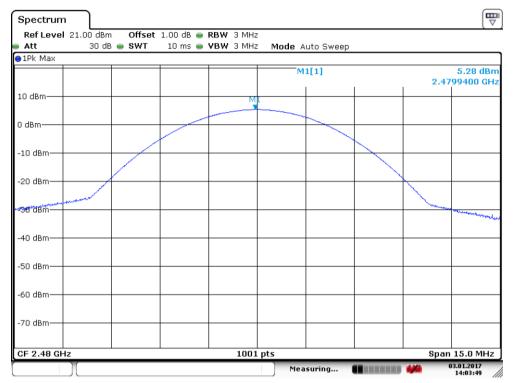
Report No.: SZEM161201085002


Page: 21 of 74

Test mode: 8DPSK Test channel: Lowest

Date: 3.JAN.2017 14:03:10

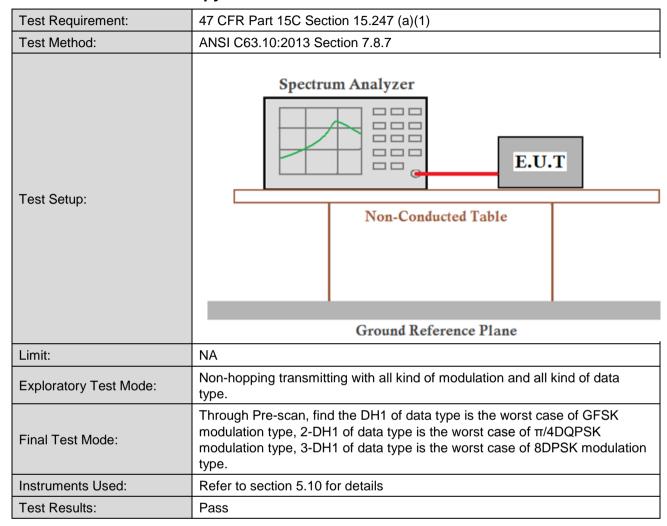
Test mode: 8DPSK Test channel: Middle


Date: 3.JAN.2017 14:03:31

Report No.: SZEM161201085002

Page: 22 of 74

Test mode: 8DPSK Test channel: Highest

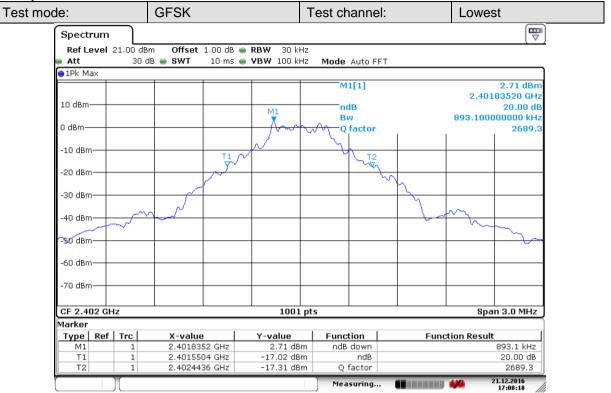

Date: 3.JAN.2017 14:03:49

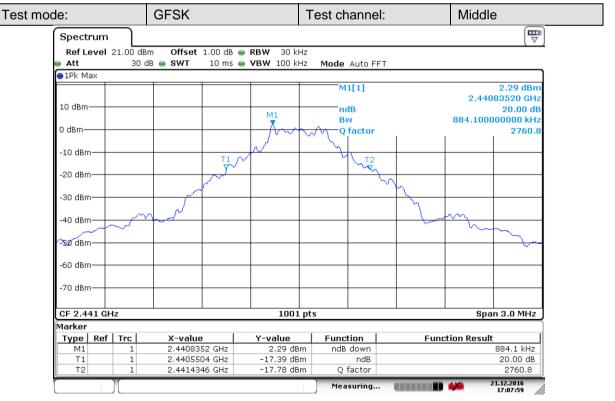
Report No.: SZEM161201085002

Page: 23 of 74

6.4 20dB Occupy Bandwidth

Measurement Data

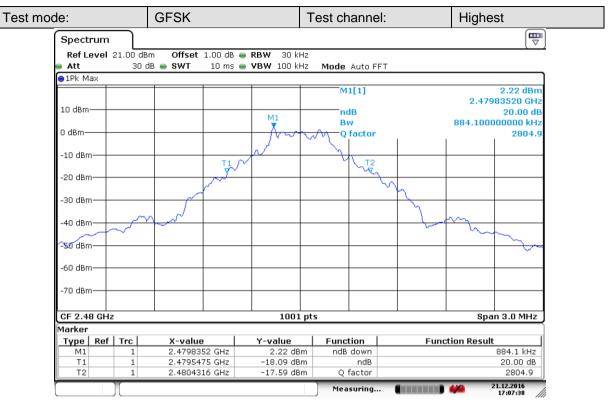

	20dB Occupy Bandwidth (kHz)			
Test channel	GFSK	π/4DQPSK	8DPSK	
Lowest	893.1	1246.8	1258.7	
Middle	884.1	1246.8	1261.7	
Highest	884.1	1249.8	1261.7	


Report No.: SZEM161201085002

Page: 24 of 74

Test plot as follows:

Date: 21.DEC.2016 17:08:18

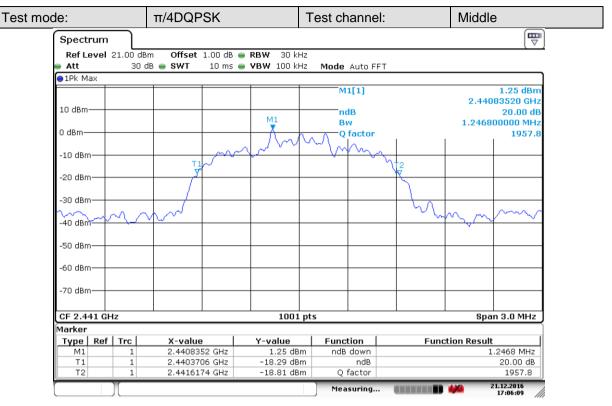


Date: 21.DEC.2016 17:07:59

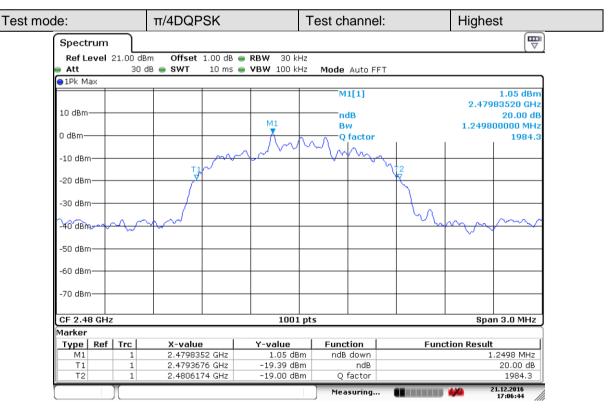
Report No.: SZEM161201085002

Page: 25 of 74

Date: 21.DEC.2016 17:07:38


de:	π/4DQPSK	Т	est channel:		Lowest
Spectrum					
Ref Level 21.00					,
	0 dB 🖷 SWT 10 ms 🖷	VBW 100 kHz	Mode Auto FFT	•	
●1Pk Max					
			M1[1]		1.55 dBm 2.40183520 GHz
10 dBm			ndB		2.40163320 GHZ 20.00 dE
		M1	Bw		1.246800000 MHz
0 dBm		1 A a h	Q factor		1926.5
		7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	James .		
-10 dBm	TI			η ₋₂	
-20 dBm	Σ̈́			₹	
20 00					
-30 dBm	 			+	
200					m m my
-40 dBm	7 4 12				
-50 dBm					
-50 dBill					
-60 dBm					
-70 dBm					
CF 2.402 GHz		1001 pt	s		Span 3.0 MHz
Marker	l wt 1	V	F 1		
Type Ref Trc	X-value 2.4018352 GHz	Y-value 1.55 dBm	Function ndB down	Func	tion Result 1.2468 MHz
T1 1	2.4013706 GHz	-18.20 dBm	ndB		20.00 dB
T2 1	2.4026174 GHz	-18.35 dBm	Q factor		1926.5
			Measuring		21.12.2016 17:05:50

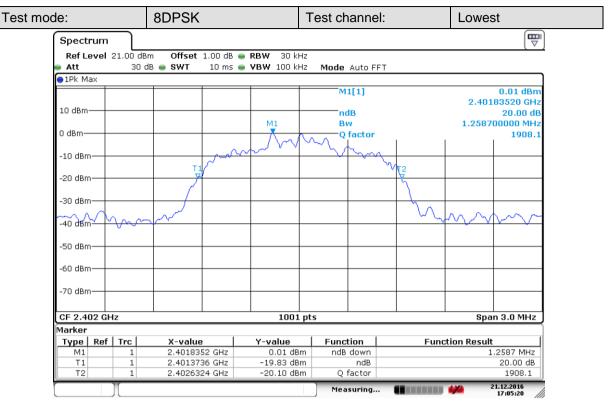
Date: 21.DEC.2016 17:05:49



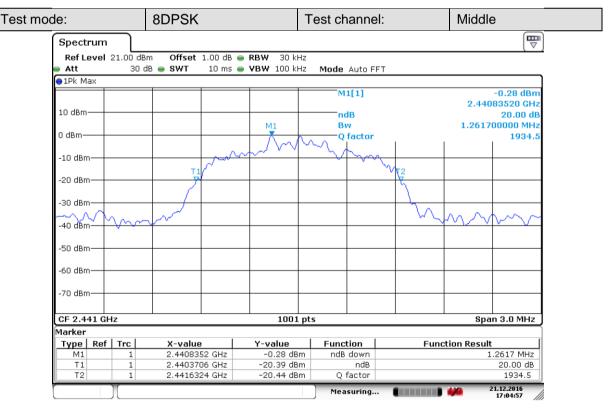
Report No.: SZEM161201085002

Page: 26 of 74

Date: 21.DEC.2016 17:06:09



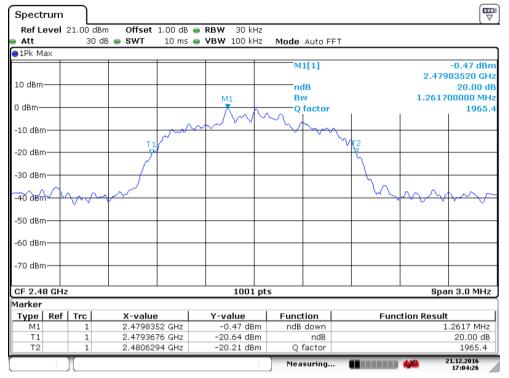
Date: 21.DEC.2016 17:06:44



Report No.: SZEM161201085002

Page: 27 of 74

Date: 21.DEC.2016 17:05:20


Date: 21.DEC.2016 17:04:58

Report No.: SZEM161201085002

Page: 28 of 74

Test mode: 8DPSK Test channel: Highest

Date: 21.DEC.2016 17:04:26

Report No.: SZEM161201085002

Page: 29 of 74

6.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013 Section 7.8.2			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Lineite	2/3 of the 20dB bandwidth			
Limit:	Remark: the transmission power is less than 0.125W.			
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.			
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

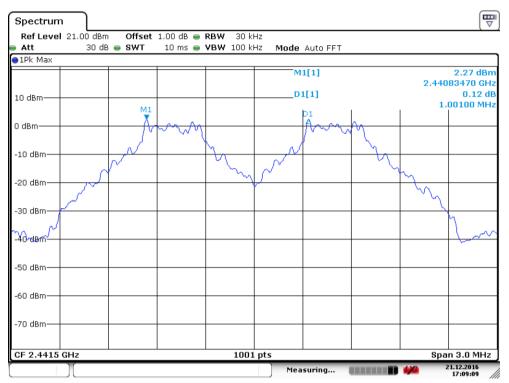
Report No.: SZEM161201085002

Page: 30 of 74

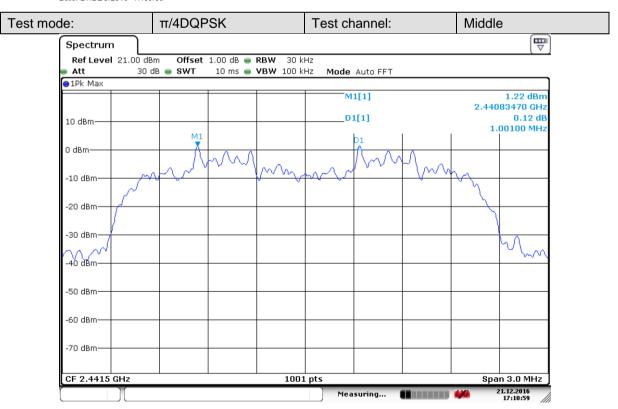
	GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)					
Middle	1001	595.4	Pass			
	π/4DQPSK m	ode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Middle	1001	833.2	Pass			
	8DPSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Middle	1001	841.1 Pass				

Note: According to section 6.4,

Mode	20dB bandwidth (kHz)	Limit (kHz)
Wode	(worse case)	(Carrier Frequencies Separation)
GFSK	893.1	595.4
π/4DQPSK	1249.8	833.2
8DPSK	1261.7	841.1



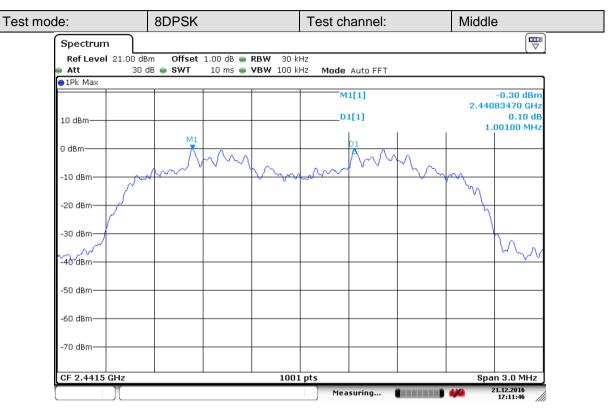
Report No.: SZEM161201085002


Page: 31 of 74

Test plot as follows:

Test mode: GFSK Test channel: Middle

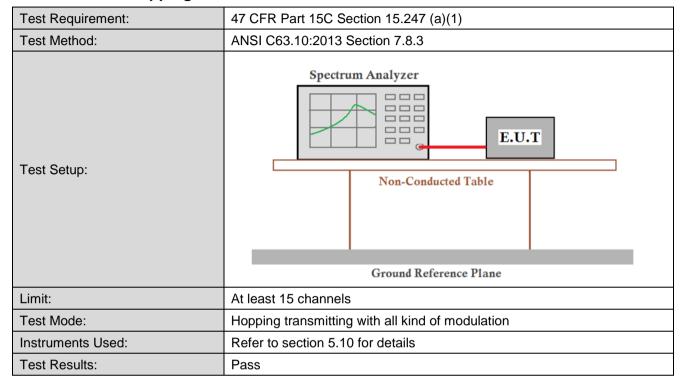
Date: 21.DEC.2016 17:09:09



Date: 21.DEC.2016 17:10:59

Report No.: SZEM161201085002

Page: 32 of 74

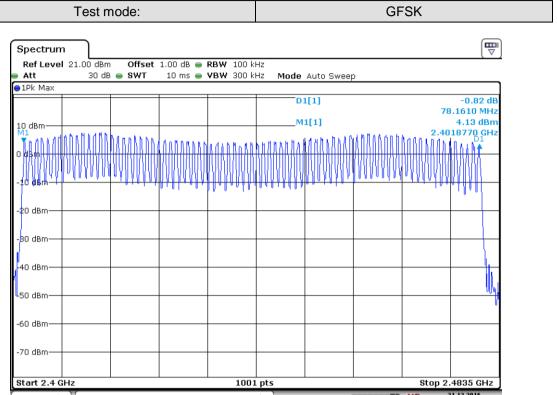

Date: 21.DEC.2016 17:11:47

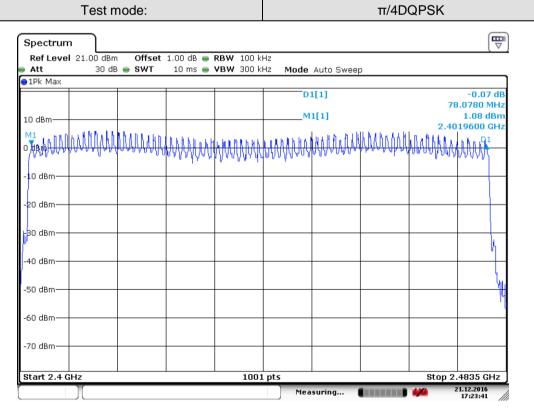
Report No.: SZEM161201085002

Page: 33 of 74

6.6 Hopping Channel Number

Measurement Data

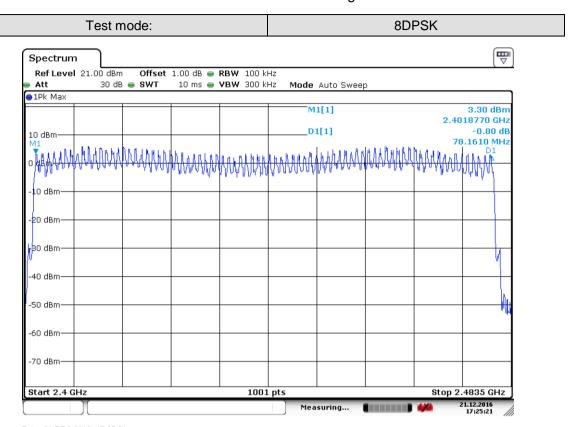

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15


Report No.: SZEM161201085002

Page: 34 of 74

Test plot as follows

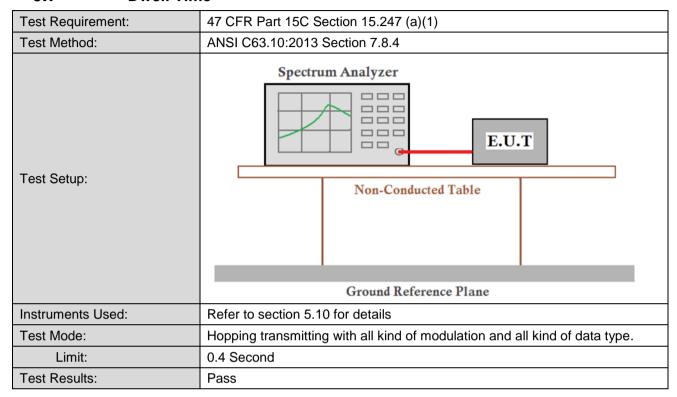
Date: 21.DEC.2016 17:22:03



Date: 21.DEC.2016 17:23:42

Report No.: SZEM161201085002

Page: 35 of 74


Date: 21.DEC.2016 17:25:21

Report No.: SZEM161201085002

Page: 36 of 74

6.7 Dwell Time

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.119	≤0.4
	DH3	0.297	≤0.4
	DH5	0.319	≤0.4
π/4DQPSK	2-DH1	0.125	≤0.4
	2-DH3	0.297	≤0.4
	2-DH5	0.315	≤0.4
8DPSK	3-DH1	0.121	≤0.4
	3-DH3	0.247	≤0.4
	3-DH5	0.348	≤0.4

Report No.: SZEM161201085002

Page: 37 of 74

Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

On (ms)*total number=dwell time (ms)

The middle channel (2441MHz), as below:

DH1 time slot=0.384 (ms)*total number=119.04 (ms)

DH3 time slot= $1.648(ms)^*$ total number = 296.64 (ms)

DH5 time slot=2.903 (ms)* total number = 319.33 (ms)

2-DH1 time slot=0.391 (ms)*total number=125.12 (ms)

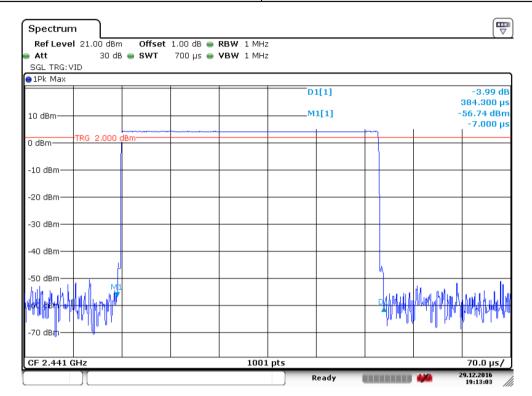
2-DH3 time slot=1.648 (ms)* total number = 296.64 (ms)

2-DH5 time slot=2.903 (ms)* total number = 319.33 (ms)

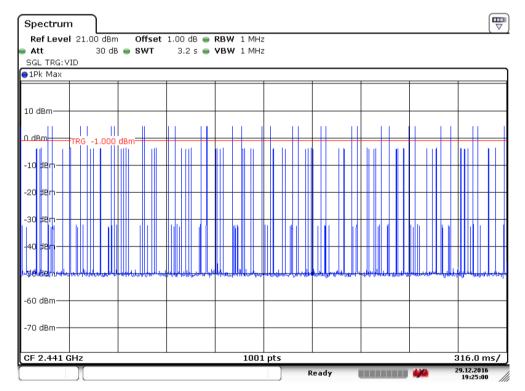
3-DH1 time slot=0.391(ms)*total number=121.21 (ms)

3-DH3 time slot=1.648 (ms)* total number = 247.20 (ms)

3-DH5 time slot=2.903 (ms)* total number = 348.36 (ms)



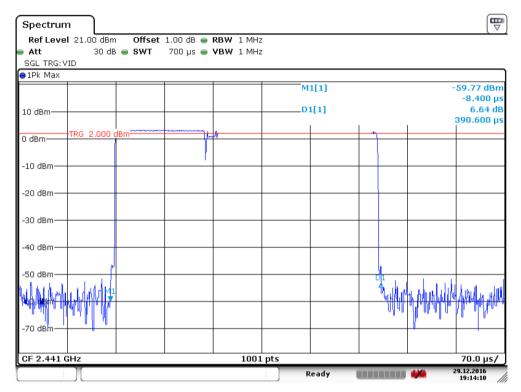
Report No.: SZEM161201085002

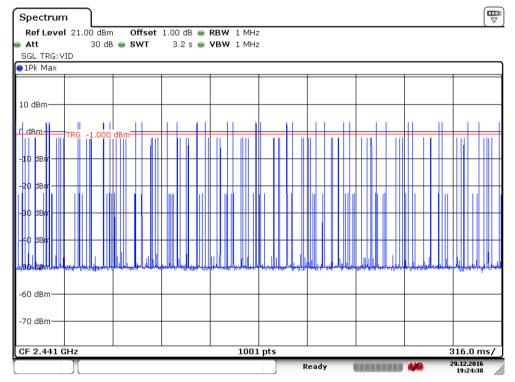

Page: 38 of 74

Test plot as follows:

Date: 29.DEC.2016 19:13:04

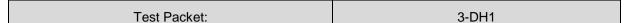


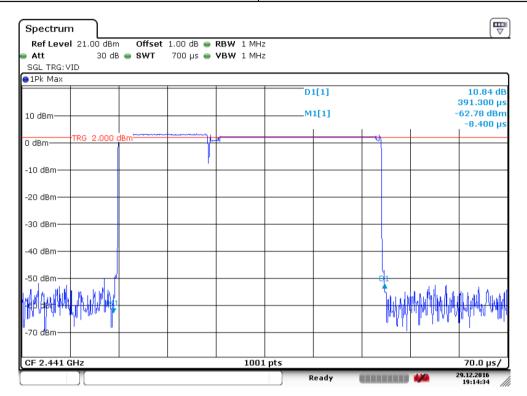

Date: 29.DEC.2016 19:25:00

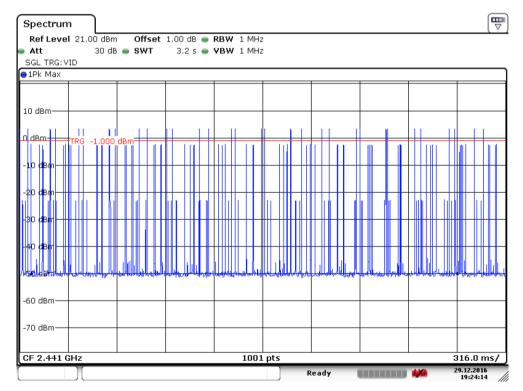

Report No.: SZEM161201085002

Page: 39 of 74

Date: 29.DEC.2016 19:14:10




Date: 29.DEC.2016 19:24:38

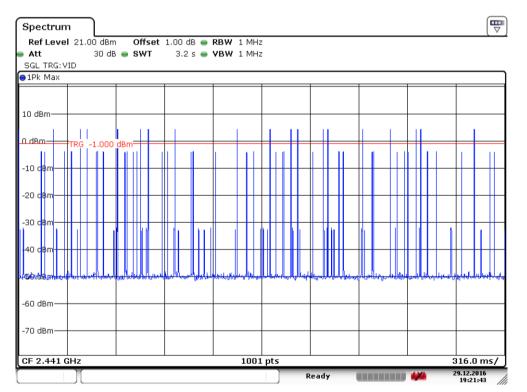

Report No.: SZEM161201085002

Page: 40 of 74

Date: 29.DEC.2016 19:14:34



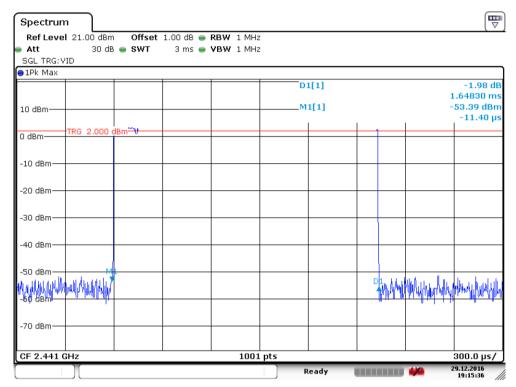
Date: 29.DEC.2016 19:24:15

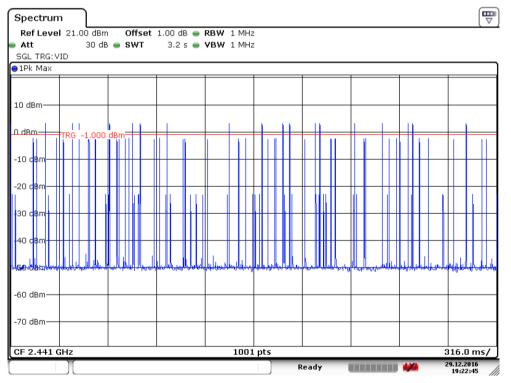


Report No.: SZEM161201085002

Page: 41 of 74

Date: 29.DEC.2016 19:16:01

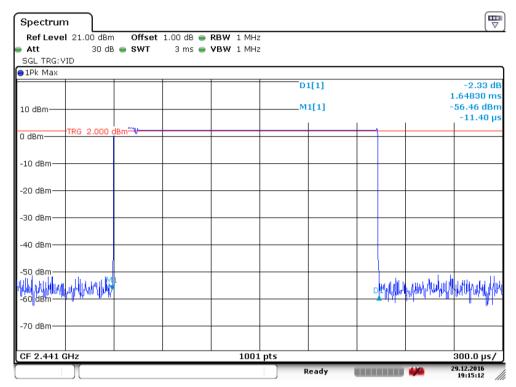

Date: 29.DEC.2016 19:21:43

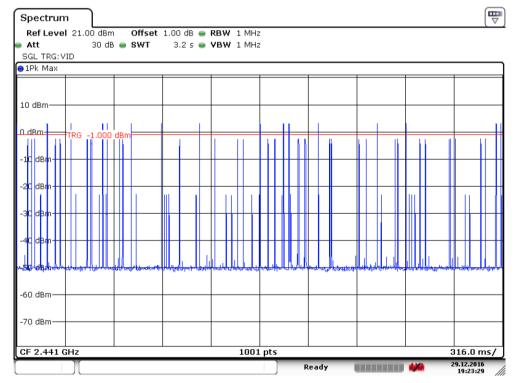

Report No.: SZEM161201085002

Page: 42 of 74

Date: 29.DEC.2016 19:15:37



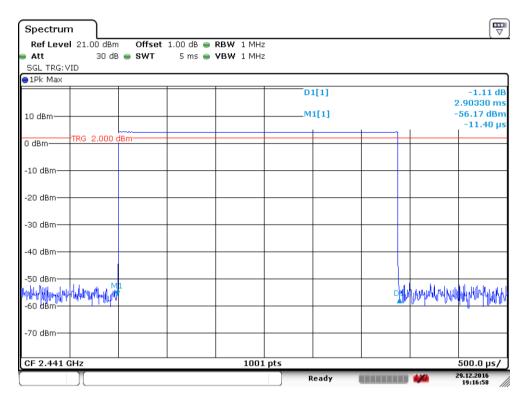

Date: 29.DEC.2016 19:22:45

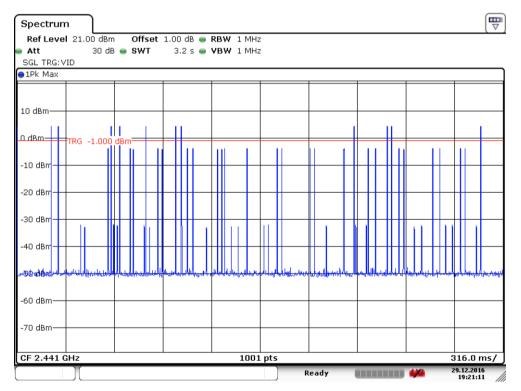

Report No.: SZEM161201085002

Page: 43 of 74

Date: 29.DEC.2016 19:15:13

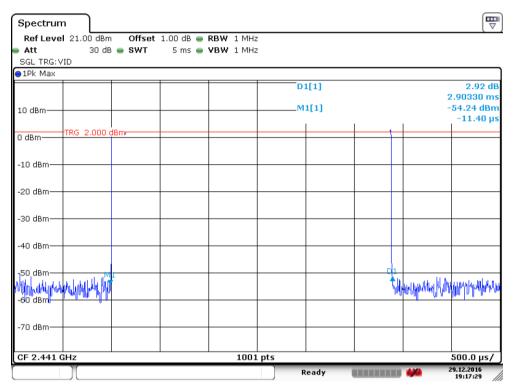


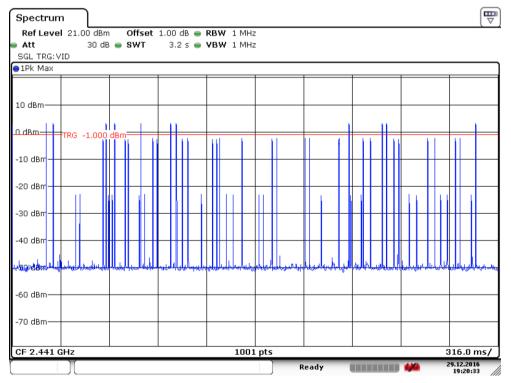

Date: 29.DEC.2016 19:23:29


Report No.: SZEM161201085002

Page: 44 of 74

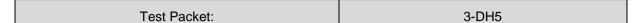
Date: 29.DEC.2016 19:16:59

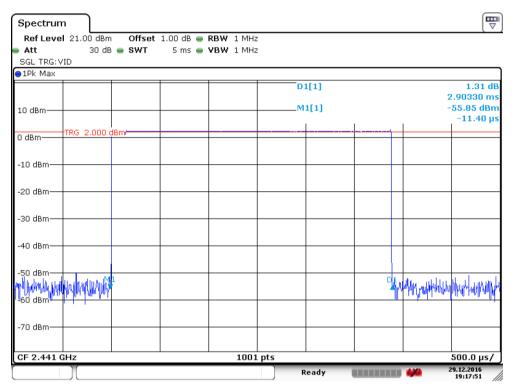

Date: 29.DEC.2016 19:21:11

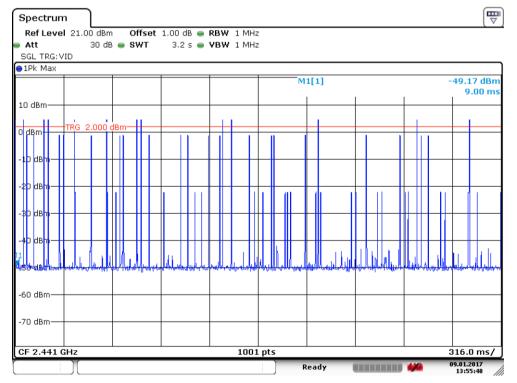

Report No.: SZEM161201085002

Page: 45 of 74

Date: 29.DEC.2016 19:17:29

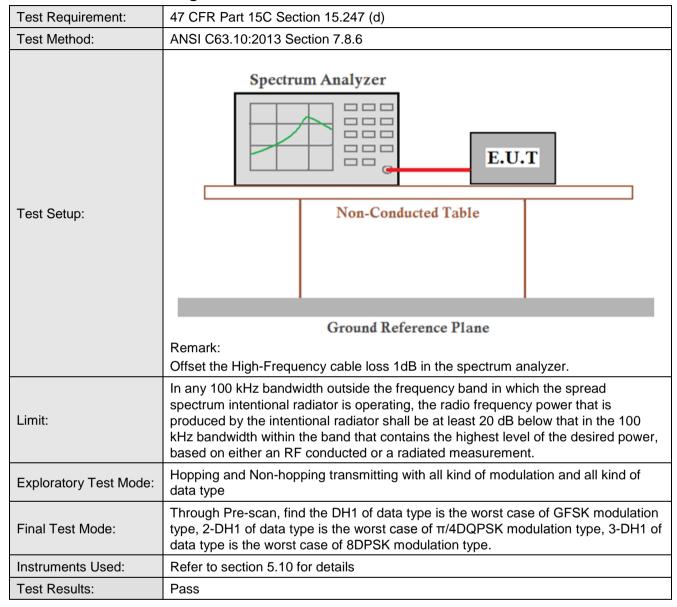



Date: 29.DEC.2016 19:20:34


Report No.: SZEM161201085002

Page: 46 of 74

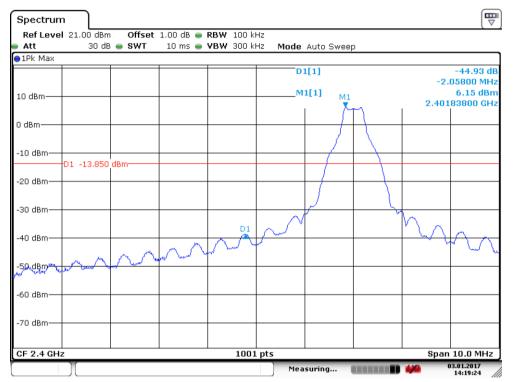
Date: 29.DEC.2016 19:17:51


Date: 9.JAN.2017 13:55:48

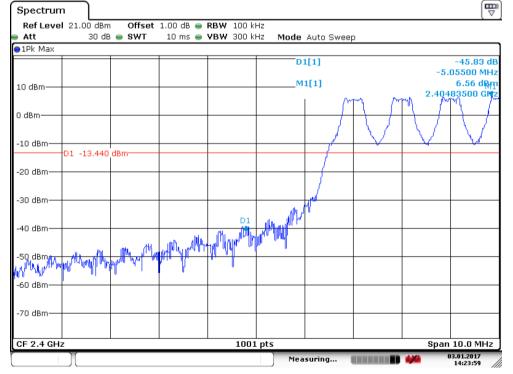
Report No.: SZEM161201085002

Page: 47 of 74

6.8 Band-edge for RF Conducted Emissions



Report No.: SZEM161201085002

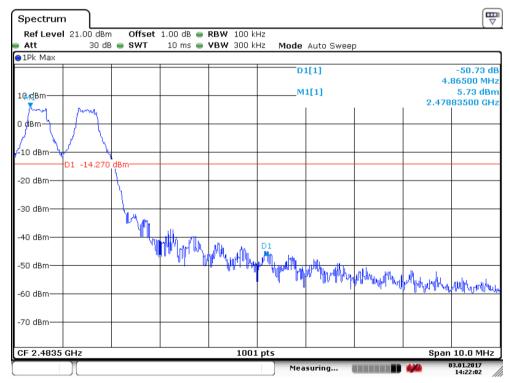

Page: 48 of 74

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Date: 3.JAN.2017 14:19:25

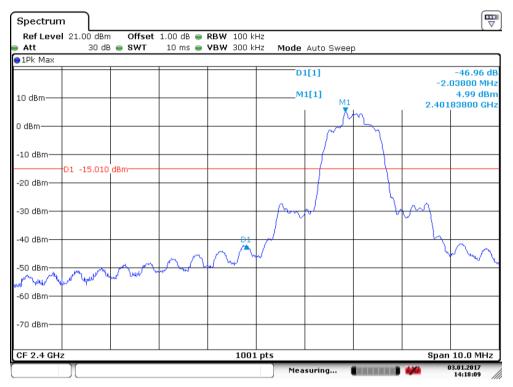
Date: 3.JAN.2017 14:24:00

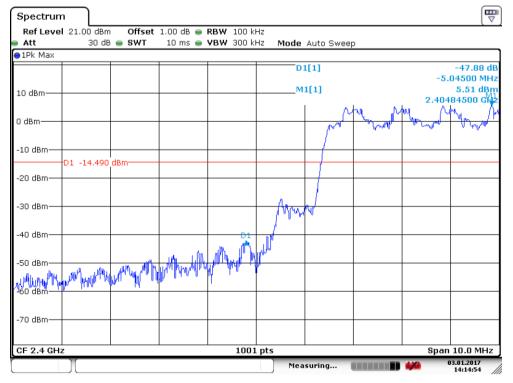

Report No.: SZEM161201085002

Page: 49 of 74

Test mode: GFSK Test channel: Highest

Date: 3.JAN.2017 14:20:17


Date: 3.JAN.2017 14:22:02

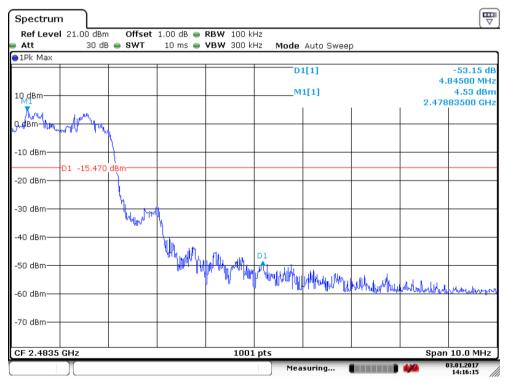

Report No.: SZEM161201085002

Page: 50 of 74

Test mode: $\pi/4$ DQPSK Test channel: Lowest

Date: 3.JAN.2017 14:18:10

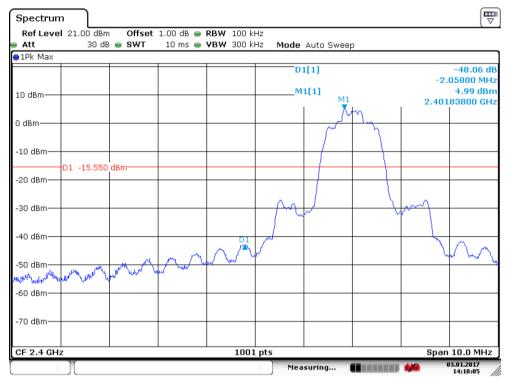
Date: 3.JAN.2017 14:14:54

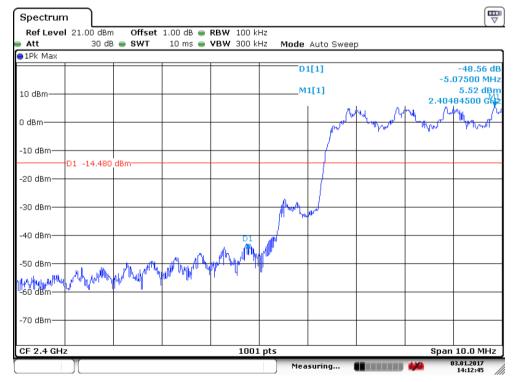

Report No.: SZEM161201085002

Page: 51 of 74

Test mode: π/4DQPSK Test channel: Highest

Date: 3.JAN.2017 14:17:18

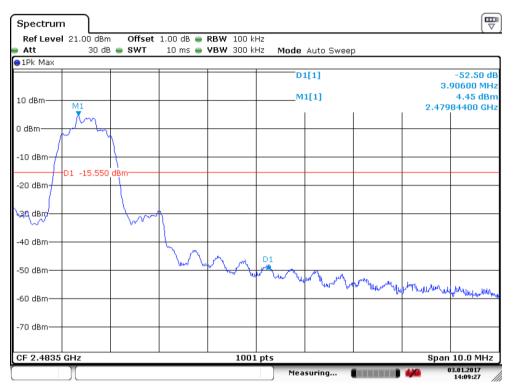

Date: 3.JAN.2017 14:16:15


Report No.: SZEM161201085002

Page: 52 of 74

Test mode: 8DPSK Test channel: Lowest

Date: 3.JAN.2017 14:10:05

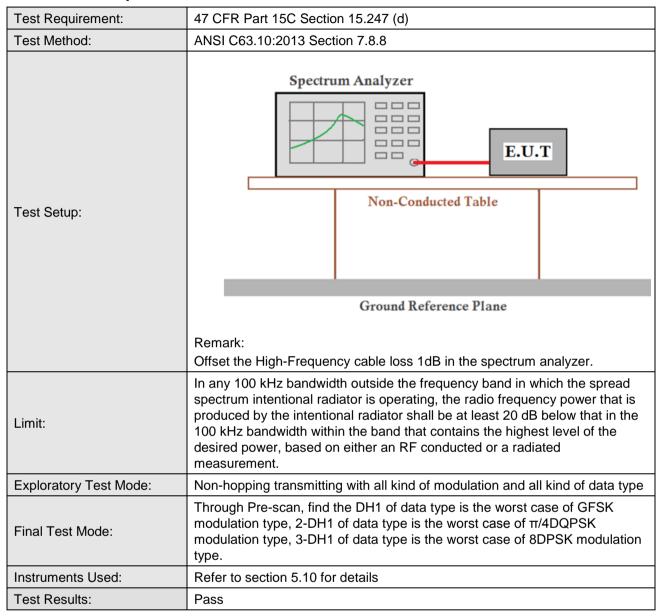

Date: 3.JAN.2017 14:12:45

Report No.: SZEM161201085002

Page: 53 of 74

Test mode: 8DPSK Test channel: Highest

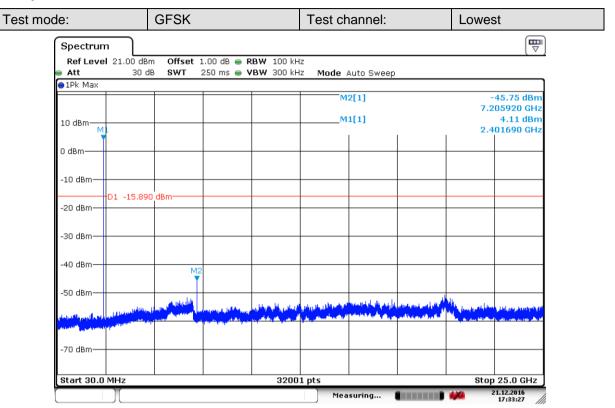
Date: 3.JAN.2017 14:09:28

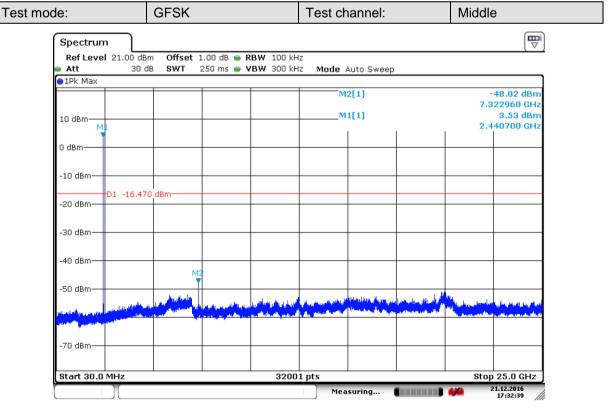

Date: 3.JAN.2017 14:08:17

Report No.: SZEM161201085002

Page: 54 of 74

6.9 Spurious RF Conducted Emissions




Report No.: SZEM161201085002

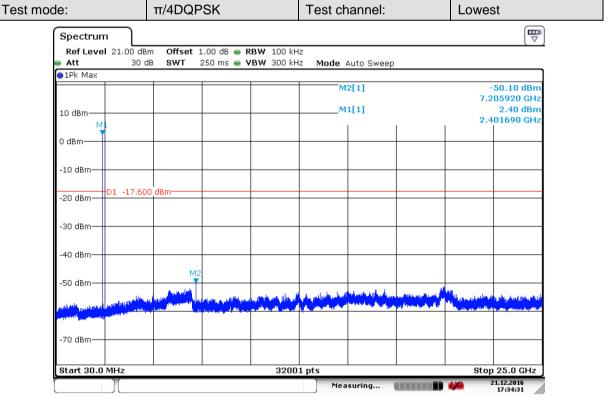
Page: 55 of 74

Test plot as follows:

Date: 21.DEC.2016 17:33:28

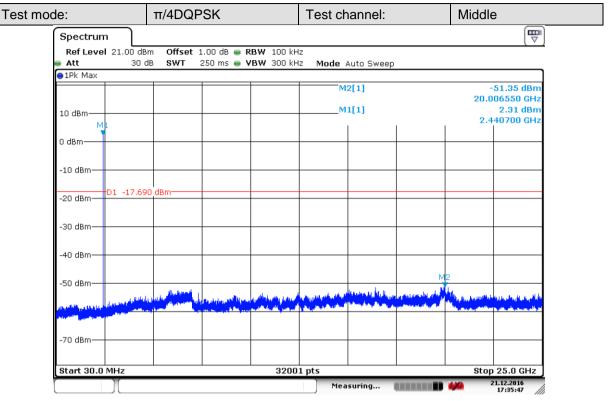
Date: 21.DEC.2016 17:32:39

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

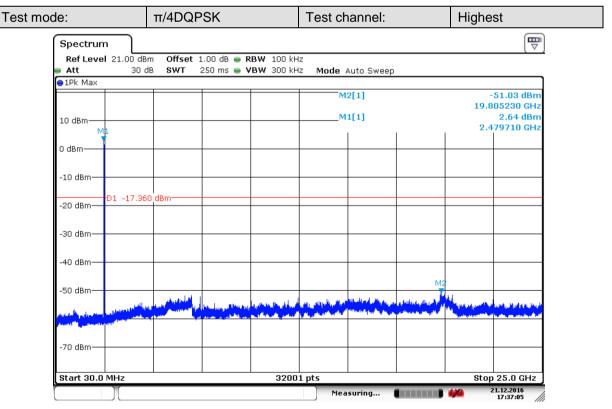


Report No.: SZEM161201085002

Page: 56 of 74



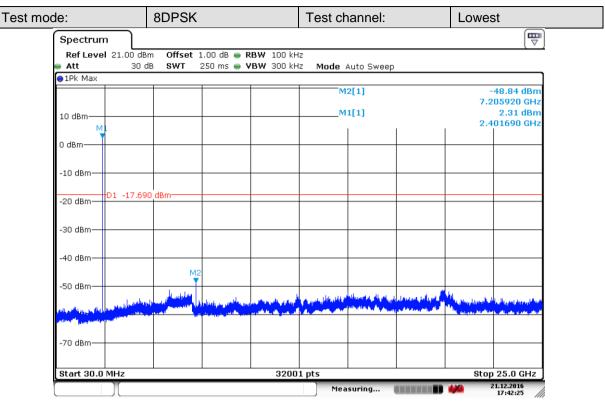
Date: 21.DEC.2016 17:34:32



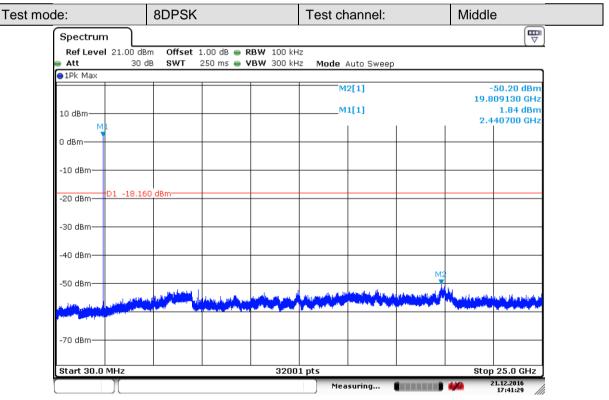
Report No.: SZEM161201085002

Page: 57 of 74

Date: 21.DEC.2016 17:35:48

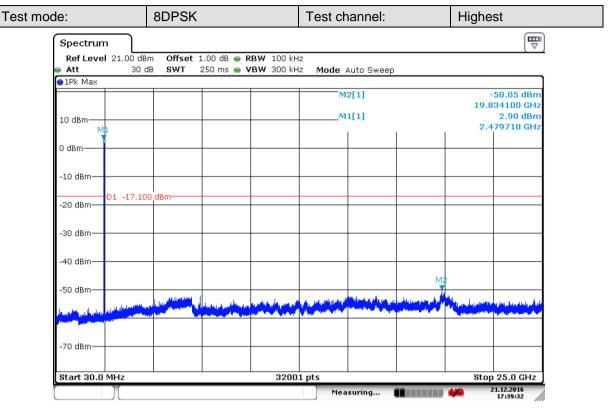


Date: 21.DEC.2016 17:37:06



Report No.: SZEM161201085002

Page: 58 of 74



Date: 21.DEC.2016 17:41:30

Report No.: SZEM161201085002

Page: 59 of 74

Date: 21.DEC.2016 17:39:33

Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported

Report No.: SZEM161201085002

Page: 60 of 74

6.10 Other requirements Frequency Hopping Spread Spectrum System

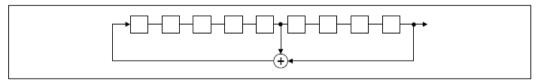
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

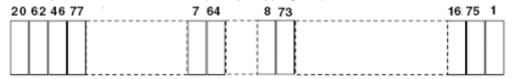
Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized


with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEM161201085002

Page: 61 of 74

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

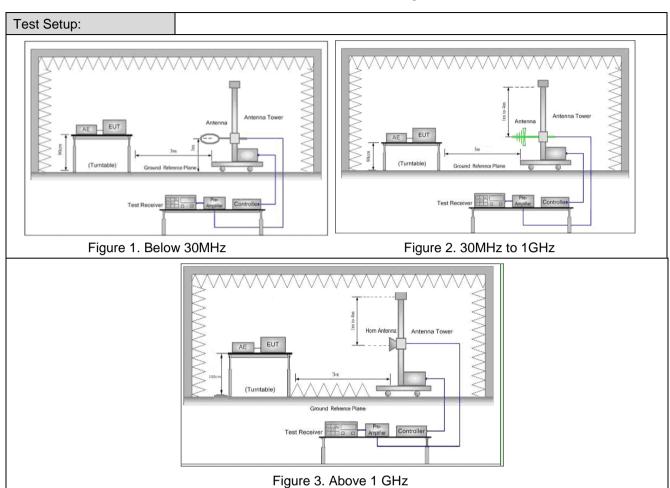
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Report No.: SZEM161201085002

Page: 62 of 74


6.11 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013								
Test Site:	Measurement Distance	e: 3n	n (Semi-Anech	oic Chambe	r)				
	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MH	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak			
Receiver Setup:	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak			
rreceiver detup.	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	3MHz	Peak			
			Peak	1MHz	10Hz	Average			
	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measurement distance (m)			
	.009MHz-0.490MHz	240	0/F(kHz)	-	-	300			
	.490MHz-1.705MHz 240		000/F(kHz)	-	-	30			
	.705MHz-30MHz	30		-	-	30			
	30MHz-88MHz	100)	40.0	Quasi- peak	3			
I imple	88MHz-216MHz	150)	43.5	Quasi- peak	3			
Limit:	216MHz-960MHz	200)	46.0	Quasi- peak	3			
	960MHz-1GHz	500)	54.0	Quasi- peak	3			
	Above 1GHz	500)	54.0	Averag e	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

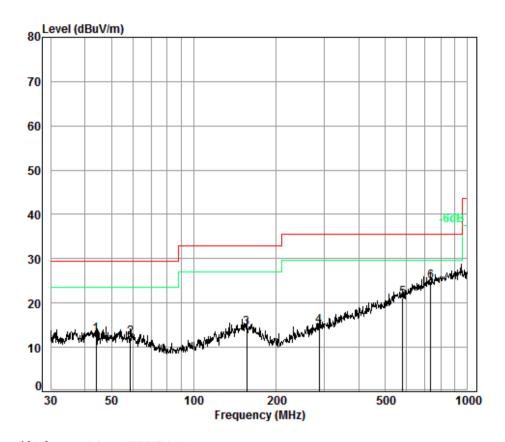
Report No.: SZEM161201085002

Page: 63 of 74

Report No.: SZEM161201085002

Page: 64 of 74

Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2480MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the
	for Transmitting mode, and found the X axis positioning which it is the worst case.
	j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode.
	Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode
Tillal Test Wode.	For below 1GHz part, through pre-scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



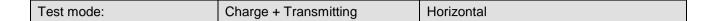
Report No.: SZEM161201085002

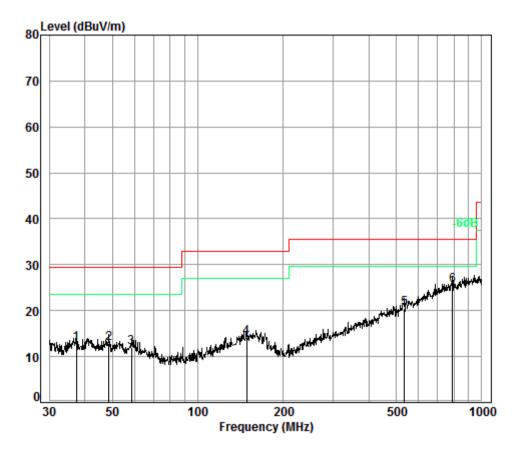
Page: 65 of 74

6.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 10m VERTICAL


Job No. : 10850 Test Mode: BT


	Freq			Preamp Factor				Over Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	43.97	6.80	12.98	32.99	26.10	12.89	29.50	-16.61
2	58.61	7.00	12.10	32.95	25.99	12.14	29.50	-17.36
3	155.91	7.48	13.40	32.74	26.31	14.45	33.00	-18.55
4	286.98	8.02	12.34	32.61	27.14	14.89	35.60	-20.71
5	578.67	8.85	18.26	32.60	26.67	21.18	35.60	-14.42
6 pp	734.49	9.20	20.58	32.60	27.75	24.93	35.60	-10.67

Report No.: SZEM161201085002

Page: 66 of 74

Condition: 10m HORIZONTAL

Job No. : 10850 Test Mode: BT

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	37.42	6.75	12.98	32.98	26.12	12.87	29.50	-16.63
2	48.67	6.87	12.81	33.00	26.18	12.86	29.50	-16.64
3	58.41	7.00	12.12	32.96	25.82	11.98	29.50	-17.52
4	148.44	7.44	13.31	32.74	26.05	14.06	33.00	-18.94
5	533.83	8.74	17.43	32.60	27.03	20.60	35.60	-15.00
6 pp	787.85	9.27	21.15	32.60	27.67	25.49	35.60	-10.11

Report No.: SZEM161201085002

Page: 67 of 74

6.11.2 Transmitter Emission above 1GHz

Test mode:	(GFSK(DH1)	Test	channel:	Lowest	Rema	ırk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3847.726	32.95	7.76	37.98	46.17	48.90	74	-25.10	Vertical
4804.000	34.1	8.87	38.4	43.50	48.07	74	-25.93	Vertical
5896.291	34.44	10.27	38.32	43.89	50.28	74	-23.72	Vertical
7206.000	35.6	10.68	37.11	42.18	51.35	74	-22.65	Vertical
9608.000	37.1	12.5	35.1	38.04	52.54	74	-21.46	Vertical
12033.020	37.62	14.53	35.68	36.84	53.31	74	-20.69	Vertical
3831.060	32.93	7.75	37.98	44.86	47.56	74	-26.44	Horizontal
4804.000	34.1	8.87	38.4	42.69	47.26	74	-26.74	Horizontal
5939.103	34.55	10.39	38.31	43.62	50.25	74	-23.75	Horizontal
7206.000	35.6	10.68	37.11	42.73	51.90	74	-22.10	Horizontal
9608.000	37.1	12.5	35.1	37.84	52.34	74	-21.66	Horizontal
11963.580	37.58	14.52	35.59	36.76	53.27	74	-20.73	Horizontal

Test mode:	(SFSK(DH1)	Tes	t channel:	Middle	Rema	ırk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Cable Loss (dB)	Reading Level (dBµV)	Emission Level (dB _µ V/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3786.970	32.85	7.74	37.98	44.32	46.93	74	-27.07	Vertical
4882.000	34.18	8.98	38.44	41.83	46.55	74	-27.45	Vertical
6256.664	34.8	10.23	38.04	43.60	50.59	74	-23.41	Vertical
7323.000	35.54	10.72	37.01	42.12	51.37	74	-22.63	Vertical
9764.000	37.1	12.58	35.02	37.50	52.16	74	-21.84	Vertical
12120.390	37.66	14.46	35.89	36.85	53.08	74	-20.92	Vertical
3819.990	32.92	7.75	37.98	44.11	46.80	74	-27.20	Horizontal
4882.000	34.18	8.98	38.44	41.72	46.44	74	-27.56	Horizontal
6034.386	34.72	10.52	38.27	44.52	51.49	74	-22.51	Horizontal
7323.000	35.54	10.72	37.01	41.70	50.95	74	-23.05	Horizontal
9764.000	37.1	12.58	35.02	38.28	52.94	74	-21.06	Horizontal
12190.740	37.7	14.4	36.06	37.69	53.73	74	-20.27	Horizontal

Report No.: SZEM161201085002

Page: 68 of 74

Test mode:	G	FSK(DH1)	Test	channel:	Highest	Rema	ırk:	Peak
Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp factor (dB)	Reading Level (dB _µ V)	Emission Level (dB _µ V/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3657.721	32.34	7.69	37.97	45.12	47.18	74	-26.82	Vertical
4960.000	34.26	9.09	38.48	42.58	47.45	74	-26.55	Vertical
6113.481	34.76	10.41	38.19	44.60	51.58	74	-22.42	Vertical
7440.000	35.6	10.77	36.9	40.59	50.06	74	-23.94	Vertical
9920.000	37.22	12.67	34.94	37.75	52.70	74	-21.30	Vertical
12243.770	37.7	14.36	36.19	37.35	53.22	74	-20.78	Vertical
3792.453	32.87	7.74	37.98	44.92	47.55	74	-26.45	Horizontal
4960.000	34.26	9.09	38.48	42.74	47.61	74	-26.39	Horizontal
6034.386	34.72	10.52	38.27	44.43	51.40	74	-22.60	Horizontal
7440.000	35.6	10.77	36.9	40.83	50.30	74	-23.70	Horizontal
9920.000	37.22	12.67	34.94	37.85	52.80	74	-21.20	Horizontal
12243.77	37.7	14.36	36.19	37.87	53.74	74	-20.26	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM161201085002

Page: 69 of 74

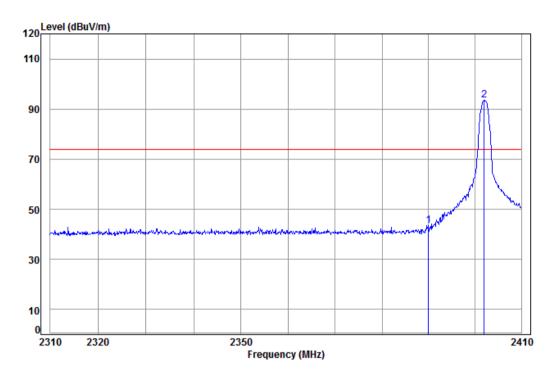
6.12 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013						
Test Site:	Measurement Distance: 3r	Measurement Distance: 3m (Semi-Anechoic Chamber)						
	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
Limit:	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 4011-	54.0	Average Value					
	Above 1GHz	74.0	Peak Value					
Test Setup:								
Test Receiver		Test Receiver	n Antenna Tower Antenna Tower Controller					
:	Hz to 1GHz	Figure 2. Abov						

Report No.: SZEM161201085002

Page: 70 of 74

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report.		
Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode. Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details	Test Procedure:	 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was
Final Test Mode: the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report. Instruments Used: Refer to section 5.10 for details	Exploratory Test Mode:	data type
	Final Test Mode:	the worst case. Pretest the EUT at Charge + Transmitting mode,
Test Results: Pass	Instruments Used:	Refer to section 5.10 for details
	Test Results:	Pass



Report No.: SZEM161201085002

Page: 71 of 74

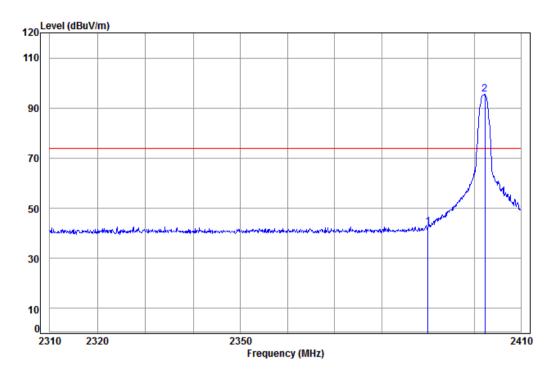
Test plot as follows:

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Vertical

Condition: 3m VERTICAL Job No: : 10850CR

Mode: : 2402 Bandedge

: BT


	Freq			Preamp Factor					Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
рр	2390.000 2401.945								

Report No.: SZEM161201085002

Page: 72 of 74

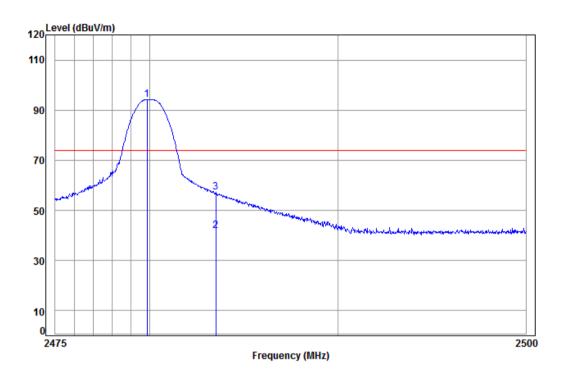
Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No: : 10850CR

Mode: : 2402 Bandedge

: BT


Freq			Preamp Factor					Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2390.000 2402.250								

Report No.: SZEM161201085002

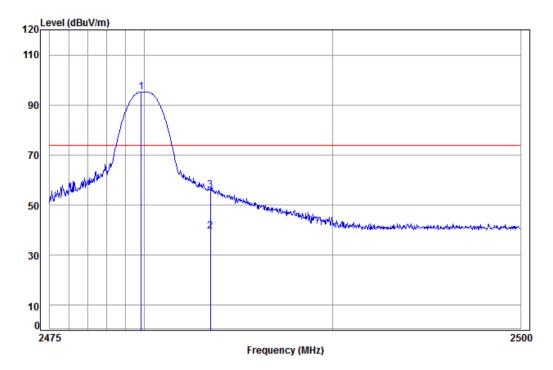
Page: 73 of 74

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical

Condition: 3m VERTICAL Job No: : 10850CR

Mode: : 2480 Bandedge

: BT


	Freq			Preamp Factor					
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2479.855	5.41	28.97	37.95	97.81	94.24	74.00	20.24	
2 av	2483.500	5.41	28.98	37.95	45.43	41.87	54.00	-12.13	Average
3 pk	2483.500	5.41	28.98	37.95	60.71	57.15	74.00	-16.85	Peak

Report No.: SZEM161201085002

Page: 74 of 74

Worse case mode: GFSK(DH5) Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No: : 10850CR

Mode: : 2480 Bandedge

: BT

	Freq			Preamp Factor					
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2479.830	5.41	28.97	37.95	98.84	95.27	74.00	21.27	
2 av	2483.500	5.41	28.98	37.95	43.19	39.63	54.00	-14.37	Average
3 pk	2483.500	5.41	28.98	37.95	59.36	55.80	74.00	-18.20	Peak

Note.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1612010850RG.