
Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

S

S Swiss Calibration Service

Certificate No. D2450V2-960_Mar24

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL

Gyeonggi-do, Republic of Korea

CALIBRATION C	ERTIFICATI				
Object	D2450V2 - SN:96	60			
Calibration procedure(s)	OA CAL-05 v12				
Calibration procedure(s)	QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz				
Calibration date:	March 14, 2024				
This calibration certificate documen	ts the traceability to natio	onal standards, which realize the physical un	its of measurements (SI).		
The measurements and the uncerta	ainties with confidence pr	robability are given on the following pages ar	nd are part of the certificate.		
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°	C and humidity < 70%.		
Calibration Equipment used (M&TE	critical for calibration)				
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24		
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24		
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24		
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24		
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24		
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24		
DAE4	SN: 601	30-Jan-24 (No. DAE4-601_Jan24)	Jan-25		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24		
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24		
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24		
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24		
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24		
	Name	Function	Signature		
Calibrated by:	Krešimir Franjić	Laboratory Technician	X		
Approved by:	Sven Kühn	Technical Manager	Sil		
			Issued: March 15, 2024		

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S

S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled • phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the . nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.07 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.9 Ω + 2.5 jΩ
Return Loss	- 25.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

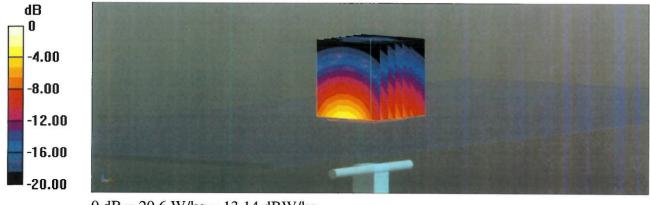
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 14.03.2024

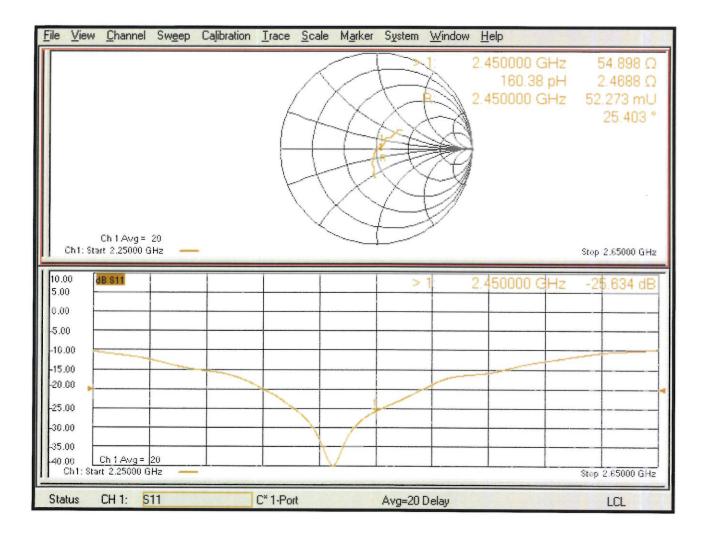
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:960


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 03.11.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2024
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 114.0 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.07 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.8% Maximum value of SAR (measured) = 20.6 W/kg

0 dB = 20.6 W/kg = 13.14 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Certificate No. D2600V2-1178_Apr23

Accreditation No.: SCS 0108

Gyeonggi-do, Republic of Korea

Client UL

CALIBRATION C	ERTIFICAT	E	
Object	D2600V2 - SN:1	178	
Calibration procedure(s)	QA CAL-05.v12 Calibration Proc	edure for SAR Validation Sources	s between 0.7-3 GHz
Calibration date:	April 25, 2023		
The measurements and the uncert	ainties with confidence p ed in the closed laborato	ional standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24 Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24 Mar-24
ype-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24 Mar-24
Reference Probe EX3DV4	SN: 7349	10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
econdary Standards	ID #	Check Date (in house)	Scheduled Check
ower meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
ower sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
letwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	N.W.
pproved by:	Sven Kühn	Technical Manager	A. Koll
			Issued: April 26, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Reading of School

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF N/A	tissue simulating liquid sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.53 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8 Ω - 1.7 jΩ
Return Loss	- 33.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	
(one ancouoli)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

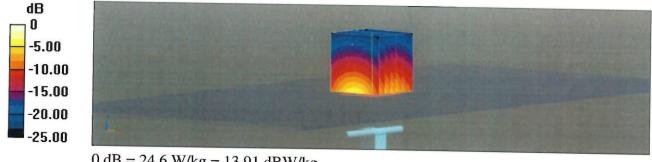
Manufactured by	
	SPEAG
	I SFEAG

DASY5 Validation Report for Head TSL

Date: 25.04.2023

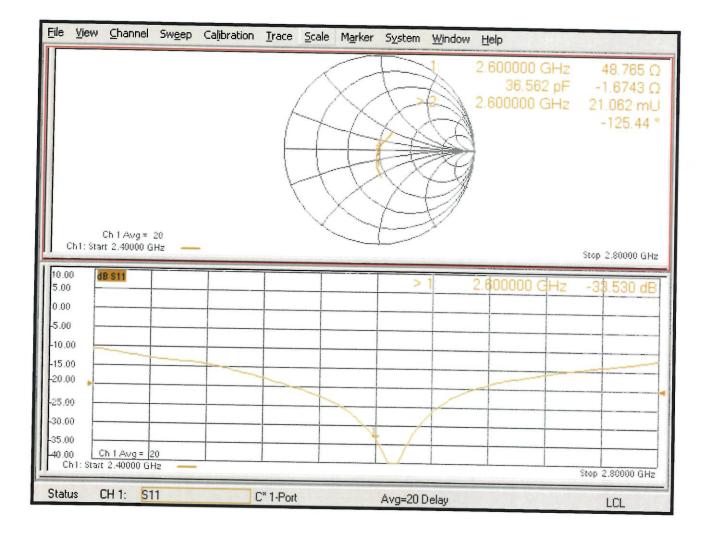
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1178


Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 37.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.68, 7.68, 7.68) @ 2600 MHz; Calibrated: 10.01.2023 •
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022 .
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 •
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 120.8 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 29.3 W/kgSAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.53 W/kgSmallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 50.1%Maximum value of SAR (measured) = 24.6 W/kg

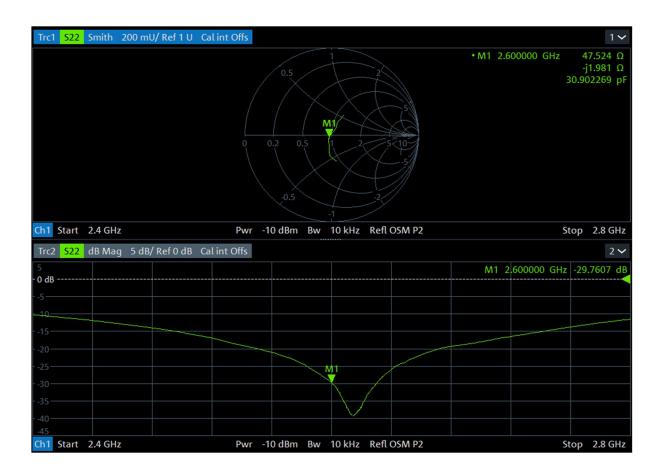
0 dB = 24.6 W/kg = 13.91 dBW/kg

Impedance Measurement Plot for Head TSL

Justification for Extended SAR Dipole Calibrations

Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements

KDB 865664 D01v01r04 requirements


a) return loss : < - 20 dB, within 20% of previous measurement

b) impedance : within 5 Ω from previous measurement

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ
D2600V2-SN : 1178	Head	2023.04.25	-33.530	11.2	48.765	1.241
D2000V2-SN . 1178	пеай	2024.04.02	-29.760	11.2	47.524	1.241

c) extrapolated peak SAR : within 10% of that reported in the calibration data

Dipole Antenna	Head/Body	Date of Measurement	extrapolated peak SAR (W/kg)	Δ%
D2C00V2 CN + 1170	170	2023.04.25	11.72	0 55
D2600V2-SN : 1178	Head	2024.04.22	10.6	9.55

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL

Gyeonggi-do, Republic of Korea

Object	D3500V2 - SN:1075		
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	edure for SAR Validation Sources	s between 3-10 GHz
Calibration date:	May 19, 2023		
The measurements and the uncert	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	nd are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Schedulad Calibration
rimary Standards	ID # SN: 104778	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805)	Scheduled Calibration
imary Standards ower meter NRP2		30-Mar-23 (No. 217-03804/03805)	Mar-24
imary Standards ower meter NRP2 ower sensor NRP-Z91	SN: 104778		Mar-24 Mar-24
imary Standards wer meter NRP2 wer sensor NRP-Z91 wer sensor NRP-Z91 iference 20 dB Attenuator	SN: 104778 SN: 103244	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804)	Mar-24 Mar-24 Mar-24
rimary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination	SN: 104778 SN: 103244 SN: 103245	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809)	Mar-24 Mar-24 Mar-24 Mar-24
rimary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 oference 20 dB Attenuator ope-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
rimary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809)	Mar-24 Mar-24 Mar-24 Mar-24
	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23
rimary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check
imary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ope-N mismatch combination deference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 <u>Scheduled Check</u> In house check: Oct-24
rimary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24
imary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator rpe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A ower sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23
imary Standards ower meter NRP2 ower sensor NRP-Z91 over sensor NRP-Z91 oference 20 dB Attenuator pe-N mismatch combination oference Probe EX3DV4 AE4 condary Standards wer meter E4419B wer sensor HP 8481A wer sensor HP 8481A generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
rimary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter E4419B ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
imary Standards over meter NRP2 over sensor NRP-Z91 over sensor NRP-Z91 eference 20 dB Attenuator upe-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards over meter E4419B over sensor HP 8481A over sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
trimary Standards ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Certificate No. D3500V2-1075_May23

Accreditation No.: SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

Head TSL parameters at 3500 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.48 W/kg

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3500 MHz

Impedance, transformed to feed point	53.2 Ω - 5.8 ϳΩ
Return Loss	- 23.8 dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	
1	Lieutical Delay (one direction)	4.400
- L	, , , , , , , , , , , , , , , , , , ,	1.139 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

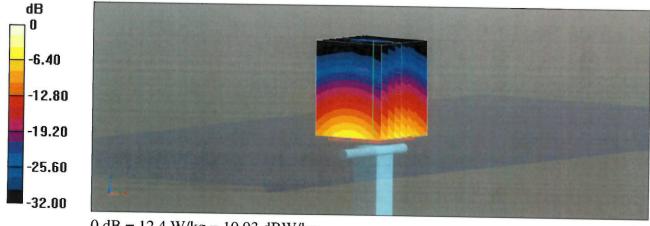
i	Manufactured by	
	Manufactured by	CDEAC
1		SPEAG

DASY5 Validation Report for Head TSL

Date: 19.05.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1075


Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; σ = 2.92 S/m; ϵ_r = 37.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.10 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 6.58 W/kg; SAR(10 g) = 2.48 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.7% Maximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dBW/kg

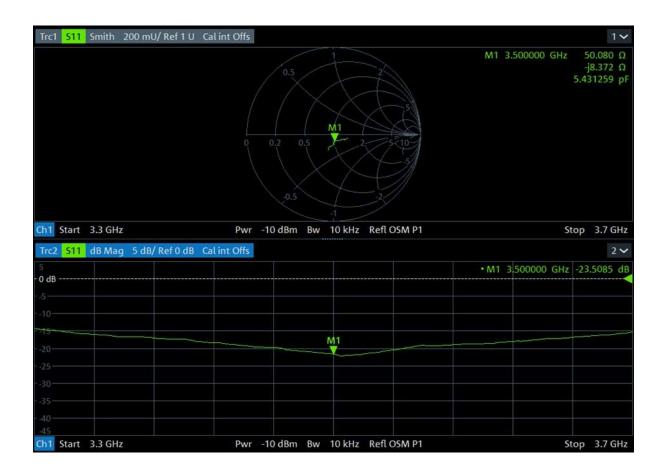
Impedance Measurement Plot for Head TSL

<u>File ⊻</u> iew	/ <u>C</u> hannel	Sw <u>e</u> ep	Calibration	Trace	<u>S</u> cale	Marker	System	Window	Help				
				F	4	X		Z		0000 C 7.7753 0000 C	3 pF	-5. 64.3	3. 160 (8484 (335 ml 38. 372
041.0	Ch 1 Avg =	20		Ę	t			Ì					
UIIT. St	art 3.30000 (GHz —										Stop 3	70000 GH
10.00 [art 3.30000 (dB \$11	3Hz		1	T			1	o dec	000 0		_	70000 GH
10.00 [5.00 -		3Hz	-				>	1	3.500	1000 G	Hz	_	70000 GH 831 dE
10.00 5.00 0.00		3Hz					>	1:	3.500	1000 G	Hz	_	
10.00 (5.00 - 0.00 - 5.00 -		îHz					>	1	3.500	1000 G	Hz	_	
10.00 5.00 0.00 5.00 -10.00		BHz					>	1	3.500	1000 G	Hz	_	
10.00 5.00 - 5.00 - 5.00 - 10.00 - 15.00 -		6Hz					>	1	3.\$00	1000 G	Hz	_	
10.00 5.00 5.00 5.00 -10.00 -15.00 - 20.00		6Hz					>	1	3.500	0000 G	Hz	_	
		6Hz					>	1	3.500	0000 G	Hz	_	
10.00 5.00 -0.00 -10.00 -10.00 -15.00 -20.00 -25.00 -30.00 -35.00	dB \$11						>	1	3.500	1000 G	Hz	_	
10.00 5.00 5.00 -10.00 -10.00 -15.00 -25.00 -25.00 -35.00 -35.00 -40.00		20				1	>		3.\$00	0000 G		-23.	831 dE
10.00 5.00 5.00 -10.00 -10.00 -15.00 -20.00 -25.00 -35.00 -35.00 -40.00	48 S11	20 Hz		C* 1-Port			> 		3.500	1000 G		-23.	

Justification for Extended SAR Dipole Calibrations

Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements

KDB 865664 D01v01r04 requirements


a) return loss : < - 20 dB, within 20% of previous measurement

b) impedance : within 5 Ω from previous measurement

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ
D3500V2-SN : 1075	Hood	2023.05.19	-23.83	1 74	53.16	2 00
D3500V2-SN . 1075	Head	2024.05.21	-23.51	1.34	50.08	3.08

c) peak SAR : within 10% of that reported in the calibration data

Dipole Antenna	Head/Body	Date of Measurement	extrapolated peak SAR (W/kg)	Δ%
D2500V2 CN - 1075	Llood	2023.05.19	6.58	2 10
D3500V2-SN : 1075	Head	2024.08.27	6.37	3.19

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No. D3700V2-1036_May23

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL

Gyeonggi-do, Republic of Korea

CALIBRATION C	ERTIFICAT	E	
Object	D3700V2 - SN:1	036	
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	edure for SAR Validation Sources	s between 3-10 GHz
Calibration date:	May 19, 2023		
The measurements and the uncerta	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical un robability are given on the following pages ar y facility: environment temperature (22 \pm 3)°(nd are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24 Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24 Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Circulture
Calibrated by:	Krešimir Franjić	Laboratory Technician	Signature
Approved by:	Sven Kühn	Technical Manager	Scr
			Issued: May 19, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz	

Head TSL parameters at 3700 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.9 ± 6 %	3.07 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3700 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3700 MHz

Impedance, transformed to feed point	46.3 Ω - 0.1 jΩ
Return Loss	- 28.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 100
Liootidu Delay (one unection)	1.139 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

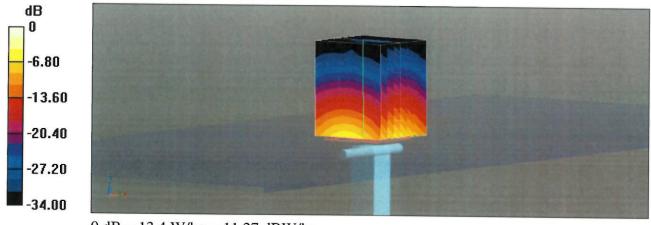
Manufactured by	SPEAG
· · · · · · · · · · · · · · · · · · ·	SFEAG

DASY5 Validation Report for Head TSL

Date: 19.05.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1036


Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.07$ S/m; $\varepsilon_r = 36.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.05 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 6.79 W/kg; SAR(10 g) = 2.46 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74% Maximum value of SAR (measured) = 13.4 W/kg

0 dB = 13.4 W/kg = 11.27 dBW/kg