

L RF 50 Ω DC isplay Line -16.00 dBm	PNO: Fast FGain:Low	Trig: Free Run #Atten: 22 dB	ALIGN AUTO Avg Type: I Avg Hold:>	RMS 100/100	TR	AM Oct 25, 2018 ACE 1 2 3 4 5 DET A NNNN
Ref Offset 41.8 dB dB/div Ref 51.80 dBm					Mkr1 8 37.	78.6 MHz 213 dBm
.8						
.8						
.8						
80						
10						
2						DL1 -16.00 dBr
2		\sim	\sim		~~~	
2						
art 30 MHz tes BW 1.0 MHz	#VBW	3.0 MHz*	1	Sweep	Stop 15.33 ms	9.000 GHz (10000 pts

Figure 8.4-31: Conducted spurious emissions for 10 MHz mid channel with 60 W configuration at Port A

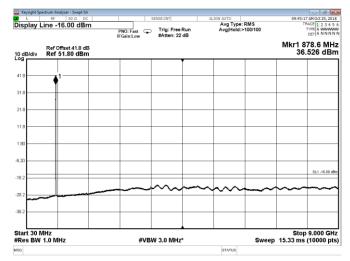
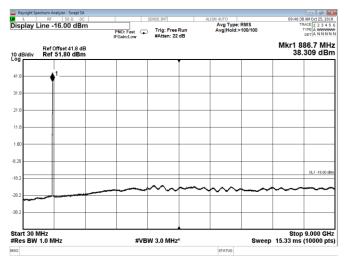
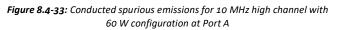
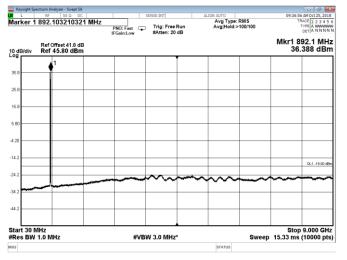
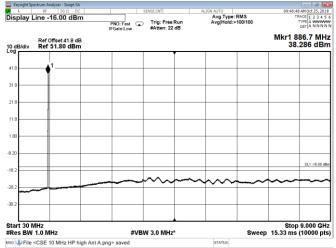





Figure 8.4-32: Conducted spurious emissions for 10 MHz mid channel with 60 W configuration at Port C



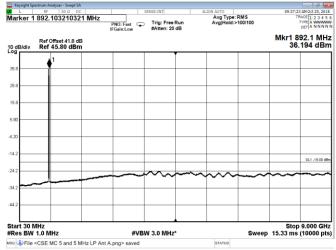
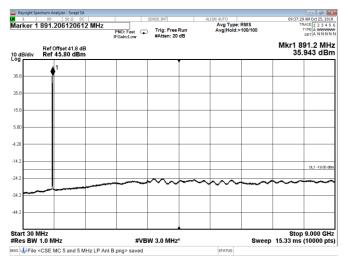


Figure 8.4-35: Conducted spurious emissions for MC 2×5 MHz channel with 40 W configuration at Port A



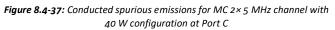
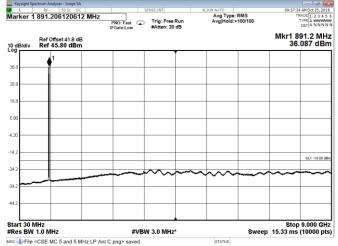
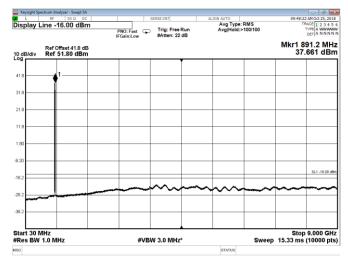

Figure 8.4-34: Conducted spurious emissions for 10 MHz high channel with 60 W configuration at Port C

Figure 8.4-36: Conducted spurious emissions for MC 2×5 MHz channel with 40 W configuration at Port B





L RF 50 Ω DC isplay Line -16.00 dBm	PNO: Fast G	Trig: Free Run #Atten: 22 dB	ALIGN AUTO Avg Type: R Avg Hold:>1	MS 00/100	TRAC TVI	M Oct 25, 2018 2E 1 2 3 4 5 PE A WWWW ET A NNNN
Ref Offset 41.8 dB					Mkr1 89 37.6	1.2 MHz 94 dBm
1.8						
.8						
1.8						
1.8						
80						
3.2						DL1 -16.00 dBm
		$\sim\sim\sim\sim$	~~~~		~~~	~~~
12						
art 30 MHz Res BW 1.0 MHz	#VB	W 3.0 MHz*		Sweep	Stop 9 15.33 ms (1	.000 GHz

Figure 8.4-39: Conducted spurious emissions for MC 2×5 MHz channel with 60 W configuration at Port A

Figure 8.4-38: Conducted spurious emissions for MC 2×5 MHz channel with 40 W configuration at Port D

Figure 8.4-40: Conducted spurious emissions for MC 2×5 MHz channel with 60 W configuration at Port C

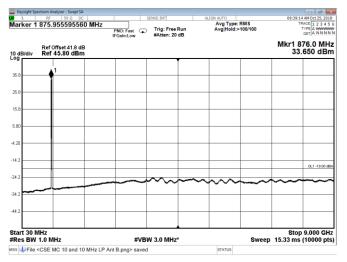


Figure 8.4-41: Conducted spurious emissions for MC 2× 10 MHz channel with 40 W configuration at Port A

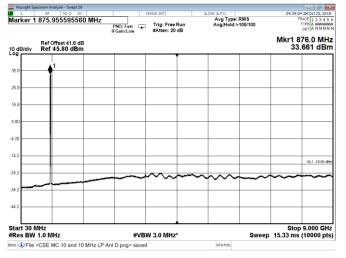
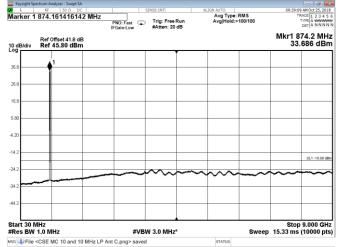
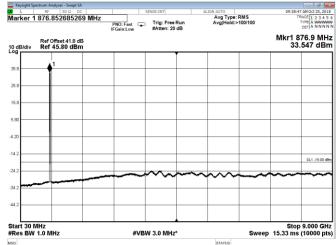
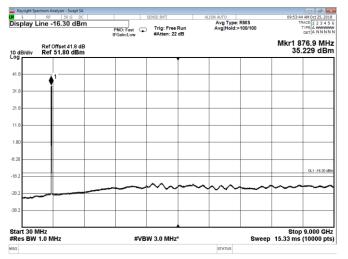


Figure 8.4-43: Conducted spurious emissions for MC 2× 10 MHz channel with 40 W configuration at Port C

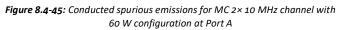
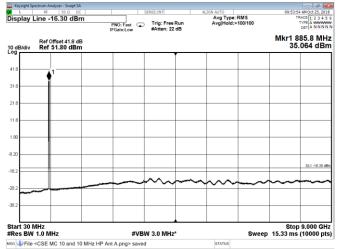
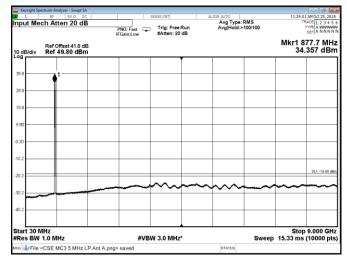

Figure 8.4-42: Conducted spurious emissions for MC 2× 10 MHz channel with 40 W configuration at Port B

Figure 8.4-44: Conducted spurious emissions for MC 2× 10 MHz channel with 40 W configuration at Port D

L	RF 50 Ω DC Ch Atten 20 dB	P	NO: Fast Gain:Low	SENSE:INT Trig: Free #Atten: 20	Run	IGN AUTO Avg Type: Avg Hold:>	RM S 100/100	TR	AM Oct 25, 2018 ACE 1 2 3 4 5 6 DET A NNNN N
0 dB/div og	Ref Offset 41.8 dB Ref 49.80 dBm		Guinteow					Mkr1 8 34.	76.0 MHz 524 dBm
19.8	 1								
9.8									
9.8									
.20									
0.2									DL1 -19.00 dBm
0.2				\sim	~~~~	\sim	~	~~~	
0.2									
tart 30 M Res BW			#VB	W 3.0 MHz			Sweep	Stop 15.33 ms	9.000 GHz (10000 pts)
5G						STATUS			

Figure 8.4-47: Conducted spurious emissions for MC 3×5 MHz channel with 40 W configuration at Port A

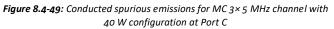
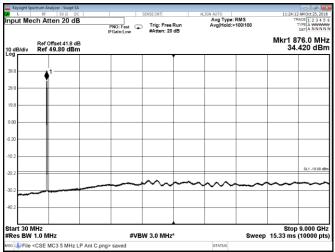
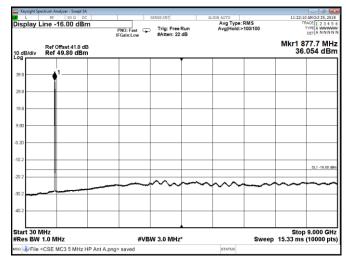

Figure 8.4-46: Conducted spurious emissions for MC 2× 10 MHz channel with 60 W configuration at Port C

Figure 8.4-48: Conducted spurious emissions for MC 3×5 MHz channel with 40 W configuration at Port B





L L	trum Analyzer - Swept SA RF 50 Ω DC ne -16.00 dBm	PNO: Fast	Trig: Free Run	ALIGN AUTO Avg Type: Avg Hold:>	RMS 100/100	TF	AM Oct 25, 2018 AACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNN
10 dB/div	Ref Offset 41.8 dB Ref 49.80 dBm	IFGain:Low	#Atten: 22 dB			Mkr1 8	77.7 MHz 085 dBm
39.8	1						
29.8							
19.8							
9.80							
1.20							
10.2							DL1 -16.00 dBm
10.2			~~~~~	~~~~~		~~	
30.2							
40.2							
tart 30 Mi Res BW 1		#VB	W 3.0 MHz*		Sweep	Stop 15.33 ms	9.000 GHz (10000 pts)
sg				STATUS			

Figure 8.4-51: Conducted spurious emissions for MC 3×5 MHz channel with 60 W configuration at Port A

Figure 8.4-50: Conducted spurious emissions for MC 3×5 MHz channel with 40 W configuration at Port D

Figure 8.4-52: Conducted spurious emissions for MC 3×5 MHz channel with 60 W configuration at Port C

Keysight Spectrum Analyzer - Chan L RF 50 Ω		CENTER IN	-			01.22.42	
enter Freq 869.0000		SENSE:IN	er Freg: 869.000	ALIGN AUTO		Radio Std: N	
niter Freq 809.0000		Trig:	Free Run	Avg Hold:	>100/100		
	#IFGain:Lo	w #Atte	en: 28 dB			Radio Device	BTS
dB/div Ref 39.80 9 9 18 18 19 10 10 10 12 12 1 1 1 1 1 1 1 1 1 1 1 1	dBm						
2			~				
2							
enter 869 MHz Res BW 10 kHz			#VBW 300	kHz		Spa Sweep	an 10 M 118.8
Channel Power		Po	wer Spec	tral Densit	y		
-22.55 dB	m / 100 kHz		-72.5	5 dBm /	Hz		

Figure 8.4-53: Conducted band edge emission at 869 MHz, 5 MHz channel
with 40 W configuration at Port A

L RF 50 Ω DC		SENSE:INT	ALIGN AUTO		01:25:0	4 PM Oct 24, 2018
		Center Freq: 869 Trig: Free Run	.000000 MHz Avg Hold: 4	1/100	Radio Std: N	lone
	#IFGain:Low	Trig: Free Run #Atten: 28 dB	Avginoid.		Radio Devic	e: BTS
dB/div Ref 39.80 dBm						
98						
18						
80				- T		
20						
12		/				
.2						
12						
1.2		and the second second				
	water and a start and a start and a start a st					
enter 869 MHz						an 10 MH
Res BW 10 kHz		#VBW 3	OO KHZ		Swee	o 118.8 m
Channel Power		Bower Sp	ostral Danaity			
Channel Power		Power sp	ectral Density			
-22.84 dBm /	400 1411-	72	84 dBm /н	-		
-22.04 ubiii /		-12.		z		

Figure 8.4-55: Conducted band edge emission at 869 MHz, 5 MHz channel with 40 W configuration at Port C

L RF 50 Ω C Center Freq 869.00000			q: 869.000000		01:24:45 PM Od Radio Std: None	24, 20
	#IFGain:Lo	Trig: Free I #Atten: 28		Avg Hold: 93/100	Radio Device: BTS	;
0 dB/div Ref 39.80 d	1Bm					
.og 29.8						
19.8			410-00000			
9.80				1		
1.20			1			
10.2			/			
20.2			1			
30.2			1			
0.2	advanced and a subscription of the subscriptio	and the second s				
50.2						
Center 869 MHz					Span 1	0 MH
Res BW 10 kHz		#VB	W 300 kH	z	Sweep 11	8.8 r
Channel Power		Power	Spectra	I Density		
-22.95 dBr	n / 100 kHz	-	72.95	dBm /Hz		

Figure 8.4-54: Conducted band edge emission at 869 MHz, 5 MHz channel with 40 W configuration at Port B

L L	am Analyzer - Chann RF 50 Ω 0	DC		SENSE:INT	reg: 869.000	ALIGN AUTO		01:25: Radio Std:	7 PM Oct 24, 20
			#IFGain:Low	Talas Fas	eRun	Avg Hold:>100	/100	Radio Stu.	
0 dB/div	Ref 39.80 (dBm						_	_
.og 29.8									ļ
19.8	_	_							
9.80		_					1		- 1
.20	_				11/				-
10.2									
10.2	-	+	-		1			-	
30.2				-	1				-
40.2	****	-		- margan					
50.2					11				
enter 869								s	pan 10 MH
Res BW 1	0 kHz			#\	BW 300	kHz		Swee	p 118.8 n
Channe	l Power			Powe	er Spect	ral Density			
-22	2.34 dBi	m / 100	kHz		-72.34	dBm /Hz			

Figure 8.4-56: Conducted band edge emission at 869 MHz, 5 MHz channel with 40 W configuration at Port D

1:32:22 PM Oct 24, 2018

Keysight S	RF 50	hannel Power	_	SENSE:INT		ALIGN AUTO		01-72-	44 PM Oct 24, 201
an 10	.000 MHz	n 00		Center Fr	req: 869.000	000 MHz		Radio Std:	
				Trig: Fre		Avg Hold:>	100/100		
			#IFGain:Low	#Atten: 2	8 dB			Radio Devi	ce: BTS
dB/div	Ref 39.	80 dBm							
g									
1.8			_		11				
1.8					11 para				
80				_	₩ }	_			
20					/				+ 1
12					11/				
12					1				
12					1				
					1				
1.2					#				
0.2						_		-	+
antar (B69 MHz				111				pan 10 MH
	09 WHZ			#1	BW 300 I	(H7			pan 10 Min p 118.8 m
	TORIE			<i>w</i> •	511 0001			Onec	p 110.011
~.				-					
Chan	nel Powe	r		Powe	r Spect	ral Density			
		_							
-	20.59 d	Bm / 100) kHz		-70.59) dBm /н	z		
-	<lbe 5="" h<="" mhz="" td=""><td>P Ant C ppg></td><td>aved</td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></lbe>	P Ant C ppg>	aved			STATUS			
	-LDE 3 WHZ P	in an oppige:	avou			arnina.			

9.8		-	-	-						
9.8						1		T		
20										\vdash
).2			_			W				
0.2						1				
).2		+			-	4			+	
12 ~							-	1	-	
0.2										
	er 869 M BW 10				#VI	BW 300 KI	Hz		SI Swee	oan 10 MH p 118.8 m
Ch	annel	Power			Powe	r Spectr	al Density	y		
	-21.	35 dBi	m / 100	kHz		71.35	dBm /	Hz		

Figure 8.4-57: Conducted band edge emission at 869 MHz, 5 MHz channel with 60 W configuration at Port A

L RF 50 Ω DC pan 10.000 MHz		SENSE:INT Center Freq: 894.0000		01:41:27 PM Oct 24, 201 Radio Std: None
	#IFGain:Lov	W #Atten: 28 dB	Avg Hold:>100/100	Radio Device: BTS
dB/div Ref 39.80 dE	3m			
9.8	L			
9.8				
80	_ '			
20				
0.2				
0.2				
0.2		1		
1.2		have been and the second secon		
12				
enter 894 MHz Res BW 10 kHz		#VBW 3001		Span 10 MH Sweep 118.8 m
		#VDVV 3001		Sweep 116.6 II
Channel Power		Power Spect	ral Density	
-23.21 dBm) / 100 kHz	-73.21	dBm /Hz	
-20.21 UDII				
-20.21 UDII				
-20.21 001				
-20.21 000				
-20.21 UBI				
-23.21 UBI			STATUS	

Figure 8.4-59: Conducted band edge emission at 894 MHz, 5 MHz channel with 40 W configuration at Port A

Figure 8.4-58: Conducted band edge emission at 869 MHz, 5 MHz channel with 60 W configuration at Port C

Keysight Spectrum Ana L RF	50 Ω DC		SENSE:INT		ALIGN AUTO	01:41:54 PM Oct 24, 20
oan 10.000 M			Center Fre	q: 894.000	000 MHz	Radio Std: None
		#IFGain:Low	Trig: Free Run Avg Hold:>100/100			Radio Device: BTS
dB/div Re 99 88 80 20 20	rf 39.80 dBm					
1.2						
enter 894 MH			#VI	3W 300	kH7	Span 10 MH Sweep 118.8 m
Channel P			Powe	r Spect	ral Density	
-23.1	8 dBm / 10	00 kHz			dBm /Hz	
	File <ube 5="" a.png="" ant="" lp="" mhz=""> saved</ube>					

Figure 8.4-60: Conducted band edge emission at 894 MHz, 5 MHz channel with 40 W configuration at Port B

Keysight Spectrum Analyzer - Channe L RF 50 Ω E	C C		ENSE:INT		ALIGN AUTO		01:42:2	PM Oct 24, 20
oan 10.000 MHz				ea: 894.000			Radio Std: N	
Jan 10.000 Minz	#1	FGain:Low	Trig: Free #Atten: 20	Run	Avg Hold:>10	00/100	Radio Devic	e: BTS
d dB/div Ref 39.80 c								
20								
0.2								
1.2								
1.2						د. مەرىيەر بەرىيە		~~~~~~~~~~
enter 894 MHz							Pr	an 10 Mi
Res BW 10 kHz			#V	BW 300	kHz		Sweep	o 118.8 r
Channel Power			Powe	r Spect	ral Density			
-24.07 dBm / 100 kHz				74.07	7 dBm /Hz			

Operation Trig: Free Run #FGain.Low Avg Hold:>100/100 Radio Device: BTS 00 dBidiy Ref 39.80 dBm Image: State of the state	span 10.0	rum Analyzer - Channe RF 50 Ω D		SENSE:INT	req: 894.000	ALIGN AUTO		01:42:33 PM Oct 24, 2 Radio Std: None
Channel Power Spectral Density	pan 10.0	00 mm2	#FGain:	' 😱 Trig: Fr	ee Run	Avg Hold:>	100/100	Radio Device: BTS
198 198 198 198	IO dB/div	Ref 39.80 d	Bm					
0.00 0.00 0.01 0.01 0.02 0.01 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
200 Image: Constraint of the second			The second se					
2022 202 2022 2	1							
02 02 02 02 02 02 02 02	10.2							
D2 D2 D2	20.2				1	-		
D2 Span 1 Lenter 894 MHz Span 1 Res BW 10 kHz #VBW 300 kHz Sweep 111 Channel Power Power Spectral Density					N.			
Lenter 894 MHz Span 1 Res BW 10 kHz #VBW 300 kHz Sweep 11 Channel Power Power Spectral Density								
Res BW 10 kHz #VBW 300 kHz Sweep 11: Channel Power Power Spectral Density								
,				#	/BW 300	kHz		Span 10 M Sweep 118.8 i
-23.85 dBm / 100 kHz -73.85 dBm /Hz	Channe	Channel Power		Pow	er Spec	tral Density		
	-23	-23.85 dBm / 100 kHz			-73.8	z		
GUBE 5 MHz LP Ant C.png> saved STATUS			10					

Figure 8.4-61: Conducted band edge emission at 894 MHz, 5 MHz channel with 40 W configuration at Port C

pan 20.0		DC		SENSE:INT	ALIGN AUTO	Ra	01:37:49 PM Oct 24, 201 dio Std: None
pan 20.0	00 mm12	#	FGain:Low		Avg Hold:>100/1	00	dio Device: BTS
) dB/div	Ref 39.80	dBm					
9.8							
9.8							
80							
20							
0.2							
1.2							
0.2							
0.2		L					
0.2					****		
enter 89 Res BW				#VBW 3	00 kHz		Span 20 MH Sweep 237.6 m
Chann	el Power			Power Spe	ectral Density		
-32.87 dBm / 100 kHz			Hz	-82.	87 dBm /нz		

Figure 8.4-63: Conducted band edge emission at 894 MHz, 5 MHz channel with 60 W configuration at Port A

Figure 8.4-62: Conducted band edge emission at 894 MHz, 5 MHz channel with 40 W configuration at Port D

L RF 5	Ω DC	· · · · · ·	SENSE:INT	ALIGN AUTO		01:38:07 PM	- @
an 20.000 MHz			Center Freq: 8 Trig: Free Run	94.000000 MHz	>100/100	Radio Std: Non	e
		#FGain:Low	#Atten: 28 dB			Radio Device: B	TS
B/div Ref 39	.80 dBm						
1							
}							
1							
nter 894 MHz s BW 10 kHz			#VBW	300 kHz		Span Sweep 2	
hannel Powe	er		Power S	pectral Densit	/		
-32 87 6	Bm / 100	kH7	-82	2.87 dBm //	-17		
02.07							
File <ube 5="" mhz<="" p=""></ube>		wood		STATUS			

Figure 8.4-64: Conducted band edge emission at 894 MHz, 5 MHz channel with 60 W configuration at Port C

Keysight Spectrum Analyzer - Chi

a X

Keysight Spectrum Analyzer - Channe L RF 50 Ω	el Power DC	crass-taxt			01:28:48 PM Oct 24, 20		
oan 20.000 MHz	20	SENSE:INT	a: 869.00000	LIGN AUTO	Radio Std: None		
5an 20.000 MH2		Trig: Free I		Avg Hold:>100/100	Radio Sta. Hone		
	#IFGain:Low	#Atten: 28	dB	-	Radio Device: BTS		
dB/div Ref 39.80 (JBm						
3.8							
9.8							
80				···· · ·			
20					1 1 1		
			1				
0.2			/				
0.2			/				
1.2			1				
.2		Tara Maria Maria Cara					
0.2							
enter 869 MHz					Span 20 Mi		
Res BW 10 kHz		#VB	W 300 kH	z	Sweep 237.6 r		
Channel Power		Dower	Spectra	I Density			
channel Fower		FOWER	Specia	Density			
	-27.67 dBm / 100 kHz		-77.67 dBm /Hz				
-27.67 dBi	m / 100 kHz	-	11.01				
-27.67 dBı	m / 100 kHz	-	11.01				
-27.67 dBı	m / 100 kHz	-	11.01				
-27.67 dBı	m / 100 kHz	-	11.01				
-27.67 dBı	m / 100 kHz	-	11.01				
-27.67 dBı	m / 100 kHz	-	11.01				
-27.67 dBı	m / 100 kHz	-	11.01				
-27.67 dBı	m / 100 kHz	-	11.01	STATUS			

L RF 50Ω D Span 20.000 MHz		SENSE:INT Center Fro Trig: Free	eq: 869.00000	ALIGN AUTO MHz Avg Hold:>	100/100	Radio Std: N	PM Oct 24, 20 one
	#IFGain:Low	#Atten: 28	3 dB			Radio Device	E BTS
	_						
0 dB/div Ref 39.80 d	Bm						
29.8			<u> </u>				
19.8							
9.80			-				
1.20			1				
10.2		_	1/				
20.2		_	/				
30.2			1				
0.2			4				
50.2		-					
Center 869 MHz #Res BW 10 kHz		#\/	BW 300 kH	17		Sp	an 20 MH 237.6 n
Res DW TO KHZ		#1	544 300 KI	12		Sweep	257.01
Channel Power		Powe	r Spectra	al Density			
-27.57 dBm / 100 kHz			77 57	dBm /н	7		
-21.57 GBIII / 100 KHZ			-				
sg		STATUS					

Figure 8.4-65: Conducted band edge emission at 869 MHz, 10 MHz channel with 40 W configuration at Port A

Keysight Spectrum Analyzer - Cha	DC DC		ENSE:INT		LIGN AUTO		01-27-3	7 PM Oct 24, 201
pan 20.000 MHz	00			a: 869.00000			Radio Std:	
puil 20.000 Mill2			Trig: Free	Run	Avg Hold:>1	00/100		
	#IFG	ain:Low	#Atten: 28	dB			Radio Devic	ce: BTS
D dB/div Ref 39.8(98) dBm					****		
0.2								
0.2								
0.2								
enter 869 MHz Res BW 10 kHz			#VE	W 300 kH	z			pan 20 MH p 237.6 m
Channel Power			Power	Spectra	I Density			
-28.19 dBm / 100 kHz			-78.19 dBm /Hz					
-28.19 dE	8m / 100 kH	z	-	/8.19		2		
-28.19 dE	3m / 100 kH	Z	-	78.19		2		
-28.19 dE	3 m / 100 kH	z	-	78.19		2		
-28.19 dE	3 m / 100 kH	Z	-	/8.19		2		

Figure 8.4-67: Conducted band edge emission at 869 MHz, 10 MHz channel with 40 W configuration at Port C

Figure 8.4-66: Conducted band edge emission at 869 MHz, 10 MHz channel with 40 W configuration at Port B

pan 20.00	RF 50Ω DC DO MHz	#FGain:Low	SENSE:INT Center Freq Trig: Free R #Atten: 28 d	: 869.000000 M un	GN AUTO MHz Avg Hold:>100/100	01:27:02 PM 0 Radio Std: None Radio Device: BT	
							-
0 dB/div	Ref 39.80 dBr	n					
29.8			_				
19.8							
.80					T		
20				1			_
0.2			_	/			
0.2							
0.2			/				
0.2							
50.2							
Center 869 Res BW 1			-	N 300 kHz		Span 2	
Res BW 1			#۷БИ	V JUU KHZ		Sweep 23	7.0 1
Channe	el Power		Power	Spectral	Density		
-27.30 dBm / 100 kHz			-7	7 30 d	IBm /Hz		
-21	-27.30 UBIT / 100 KH2		-	1.00 0			

Figure 8.4-68: Conducted band edge emission at 869 MHz, 10 MHz channel with 40 W configuration at Port D

L RF	lyzer - Channel Power		SENSE:INT		ALIGN AUTO		01-31-07	@ PM Oct 24, 20	
pan 20.000 M				eg: 869.0000			Radio Std: N		
Jui 20.000 M			Trig: Free	Run	Avg Hold:>10	0/100			
		#FGain:Low	#Atten: 2	BdB			Radio Device	E: BTS	
-									
dB/div Re	f 39.80 dBm								
9.8									
9.8				(****			
80		_				•			
20									
				1					
0.2				1/					
0.2		_		1			-		
1.2				V.					
				4					
				t					
0.2									
enter 869 MH								an 20 M	
Res BW 10 kH	z		#V	BW 300 k	Hz		Sweep	237.6 1	
Channel B	ower		Dowo	r Sportr	Power Spectral Density				
Channel P	ower		Powe	r Spectr	al Density				
					-				
		0 kHz			dBm /Hz				
	ower 8 dBm / 10	0 kHz			-				
		0 kHz			-				
		0 kHz			-				
		0 kHz			-				
		0 kHz			-				
		0 kHz			-				
		0 kHz			-				

Keysight Spectrum Analyzer - Channel I L RF 50 Ω DC Span 20.000 MHz		SENSE:INT Center Freq: 869.00	ALIGN AUTO	01:31:31 PM Oct 24, 20 Radio Std: None
#FGai		Trig: Free Run #Atten: 28 dB	Radio Device: BTS	
0 dB/div Ref 39.80 dB	Bm			
29.8				
19.8				
9.80				
1.20				
10.2		/		
20.2		/		
30.2				
0.2				
50.2				
Center 869 MHz Res BW 10 kHz		#VBW 300) kHz	Span 20 Mi Sweep 237.6 r
Channel Power		Power Spec	tral Density	
-25.00 dBm	1 / 100 kHz	-75.0	0 dBm /Hz	
ig 🜙 File <lbe 10="" a<="" hp="" mhz="" td=""><td></td><td></td><td>STATUS</td><td></td></lbe>			STATUS	

Figure 8.4-69: Conducted band edge emission at 869 MHz, 10 MHz channel with 60 W configuration at Port A

Keysight Spectrum Analyzer - Channe L RF 50 Ω E Dan 20.000 MHz	oc	SENSE:INT Center Freq: 894.		01:44:45 PM Oct 24, 201 Radio Std: None
	#IFGain:	J Trig: Free Run Low #Atten: 28 dB	Avg Hold:>100/10	0 Radio Device: BTS
dB/div Ref 39.80 c	1Bm			
9.8				
8.8	*****			
80				
20				
1.2				
1.2				
1.2				
.2				
0.2				
enter 894 MHz				Span 20 MH
tes BW 10 kHz		#VBW 30	00 kHz	Sweep 237.6 m
Channel Power		Power Spe	ectral Density	
-28.36 dBr	m / 100 kHz	-78	36 dBm /Hz	
-20.00 001	11 / 100 KHZ	-70.		
File <ube 10="" lp<="" mhz="" td=""><td>Ant B ones could</td><td></td><td>STATUS</td><td></td></ube>	Ant B ones could		STATUS	

Figure 8.4-71: Conducted band edge emission at 894 MHz, 10 MHz channel with 40 W configuration at Port A

Figure 8.4-70: Conducted band edge emission at 869 MHz, 10 MHz channel with 60 W configuration at Port C

Keysight Spectrum Analyzer - Char L RF 50 Ω an 20.000 MHz	DC		SENSE:INT Center Freq: 8	ALIGN AUTO 94.000000 MHz		01:44 Radio Std	+:37 PM Oct 24, 20	
	#1F	Gain:Low	Trig: Free Run #Atten: 28 dB	Avg Hold	>100/100	Radio Device: BTS		
dB/div Ref 39.80	dBm							
IS								
.8		** • • • • • • • • • • •			_			
80					-			
0								
2								
2								
2	_							
2								
enter 894 MHz							Span 20 MH	
es BW 10 kHz			#VBW	Swe	ep 237.6 n			
Channel Power			Power S	pectral Densit	у			
-28.27 dB	m / 100 ki	Hz	-78	3.27 dBm /	Hz			
File <ube 10="" li<="" mhz="" p=""></ube>	File <ube 10="" ant="" c.png="" lp="" mhz=""> saved</ube>			STATUS				

Figure 8.4-72: Conducted band edge emission at 894 MHz, 10 MHz channel with 40 W configuration at Port B

Span 20.000 MHz

01:44:13 PM Oct 24, 2018 Radio Std: None

Radio Device: BTS

Keysight Spectrum Analyzer			SENSE:INT		ALTON AUTO	01:44:30 PM Oct 2		
oan 20.000 MHz			Center Fre Trig: Free	q: 894.00000 Run		Radio Std: None		
		#IFGain:Low	#Atten: 28	dB		Radio Device: BTS		
	.80 dBm							
9 .8								
9.8								
80	1							
20		-						
12								
1.2								
1.2								
0.2								
enter 894 MHz						Span 20		
tes BW 10 kHz	es BW 10 kHz		#VE	300 ki	Sweep 237.	.6 n		
Channel Pow	er		Power	Spectra	al Density			
-28.24 (1Bm / 100	kHz	-	78.24				
3 🜙 File <ube 10="" mh<="" td=""><td>z I P Ant D nng> s</td><td>aved</td><td></td><td></td><td>STATUS</td><td></td><td></td></ube>	z I P Ant D nng> s	aved			STATUS			

3				
/	kHz			
nter 894 MHz es BW 10 kHz		#VBW 300	Span 20 Sweep 237.	
Channel Power		Power Spec		
-27.88 dBm /	100 kHz	-77.8		

#IFGain:Lov

 SENSE:INT
 ALIGN AUTO

 Center Freq: 894.000000 MHz
 Trig: Free Run Avg|Hold:>100/100

 #Atten: 28 dB
 Aug

Figure 8.4-73: Conducted band edge emission at 894 MHz, 10 MHz channel with 40 W configuration at Port C

Ceysight Spectrum Analyzer - Chanr L RF 50 Q	DC		SENSE:INT		LIGN AUTO		02:41:	42 PM Oct 24, 20
an 20.000 MHz	be			a: 894.00000			Radio Std:	
arr 20.000 minz			Trig: Free I	Run	Avg Hold:>1	00/100		
	#1F	Gain:Low	#Atten: 28	dB			Radio Devi	ce: BTS
Bildiv Ref 39.80	dBm	ala kasar da						
			\					
	_		1					
	_			-				
2	-							
nter 894 MHz es BW 10 kHz			#VB		Span 20 M Sweep 237.6			
Channel Power			Power	Spectra	I Density			
-26.80 dB	m / 100 ki	Hz	_	76.80	dBm /н	z		

Figure 8.4-75: Conducted band edge emission at 894 MHz, 10 MHz channel with 60 W configuration at Port A **Figure 8.4-74:** Conducted band edge emission at 894 MHz, 10 MHz channel with 40 W configuration at Port D

L	ctrum Analyzer - Chann RF 50 Ω	DC		SENSE:INT		ALIGN AUTO		03:42	26 PM Oct 24, 2
an 20.0	000 MHz		· _ ·	Center Fre	eq: 894.00000	00 MHz		Radio Std:	
arr Eorr				Trig: Free		Avg Hold:>	100/100		
			#IFGain:Low	#Atten: 28	dB			Radio Dev	ice: BTS
	Ref 39.80	18m							
2					Lan				
2									
nter 89				#1/8	BW 300 k			S	pan 20 M
es DW	es BW 10 kHz			#VE	244 JUU K	Swee	p 237.0		
Chanr	nel Power			Power	Spectr	al Density	(
-2	26.96 dBi	n / 100	kHz	-	76.96	dBm /H	z		
	File <ube 10="" a.png="" ant="" hp="" mhz=""> saved</ube>				STATUS				

Figure 8.4-76: Conducted band edge emission at 894 MHz, 10 MHz channel with 60 W configuration at Port C

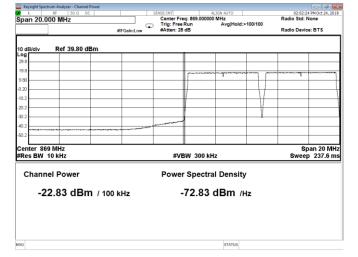
Keysight Spectrum Analyzer - Channe L RF 50 Ω D	el Power	SENSE:INT	41.16	N AUTO		02:05:07	PM Oct 24, 20	
pan 20.000 MHz		Center F	reg: 869.000000 M			Radio Std: N		
pun 20.000 minz		🚽 👝 Trig: Fre	e Run	Avg Hold:>10	00/100			
	#IFGain:	Low #Atten: :	28 dB			Radio Device	E: BTS	
0 dB/div Ref 39.80 c	IBm		permation of the second	-1000 at 1040 miles				
0.2			1		-			
0.2			1		-V-			
0.2			1		-			
0.2			~					
0.2								
enter 869 MHz Res BW 10 kHz		#\	#VBW 300 kHz					
Channel Power		Powe	er Spectral	Density				
-24.83 dBr	n / 100 kHz		-74.83 dBm /Hz					
1				STATUS				

Keysight Spectrum Analyze	50 Ω DC		SENSE:INT	a: 869.00000	LIGN AUTO		02:05:1 Radio Std:	7 PM Oct 24, 20	
pari 20.000 MH2		#IFGain:Low	Trig: Free # #Atten: 28	Run	Avg Hold:>	100/100	Radio Device: BTS		
0 dB/div Ref 3	9.80 dBm								
.og									
19.8				[·······	T				
9.80									
.20				1					
10.2		-		1					
10.2						ι v			
0.2			-						
10.2									
50.2		-					-		
Center 869 MHz Res BW 10 kHz			#\/R	W 300 kH	17			oan 20 MH p 237.6 n	
Res BW TO KHZ			#VD	44 300 KH	12		Swee	5 237.01	
Channel Pov	ver		Power	Spectra	I Density	/			
-24.93	dBm / 100	kHz	-	74.93	dBm /ŀ	Ηz			
File <lbe 5="" a.png="" ant="" lp="" mc="" mhz=""> saved</lbe>			STATUS						

Figure 8.4-77: Conducted band edge emission at 869 MHz, MC 2×5 MHz channel with 40 W configuration at Port A

Keysight Spectrum An	alyzer - Channel Power 50 Ω DC		SENSE:INT		IGN AUTO		02-05-5	5 PM Oct 24, 201	
pan 20.000 M				Freg: 869.000000			Radio Std: N		
5an 20.000 h	1112		😱 Trig: Fr	ee Run	Avg Hold:>	>100/100			
		#IFGain:Lov	#Atten:	28 dB			Radio Devic	e: BTS	
0 dB/div R 9 9 9.8 8.8 80 20 0.2	ef 39.80 dBm								
0.2				1					
0.2									
1.2				~					
0.2									
enter 869 MH Res BW 10 ki			#	VBW 300 kH	z			oan 20 MH 0 237.6 m	
Channel P	ower		Pow	er Spectra	I Density	/			
-24.7	3 dBm / 1	00 kHz	-74.73 dBm /Hz						

Figure 8.4-79: Conducted band edge emission at 869 MHz, MC 2×5 MHz channel with 40 W configuration at Port C


Figure 8.4-78: Conducted band edge emission at 869 MHz, MC 2×5 MHz channel with 40 W configuration at Port B

ef 39.80 dBm		Sain:Low	Trig: Free #Atten: 2		Avg Hold:>		Radio Devic	e: BTS
ef 39.80 dBm						neering frame		
				1				and the sector of
				1				
				1		V		
				-		L V		
	A			4				
				-				
iz					44-			an 20 M
es BW 10 kHz			#V	Swee	5 237.0			
ower			Powe	er Spect	ral Density	,		
7 dBm /	/ 100 kH	Iz		-74.77	dBm /ዞ	iz		
IC 5 MHz I P An	t C nna> sa	ved			STATUS			
	lower 7 dBm /	^н z rower 7 dBm / 100 кн	łz	łz ≇v 'ower Powe 7 dBm / 100 kHz	4z #VBW 300 ↓ ower Power Spect 7 dBm / 100 kHz -74.77	Hz #VBW 300 kHz rower Power Spectral Density 7 dBm / 100 kHz -74.77 dBm /H	Hz #VBW 300 kHz Fower Power Spectral Density 7 dBm / 100 kHz -74.77 dBm /Hz	Hz #VBW 300 kHz Sweer Tower Power Spectral Density 7 dBm / 100 kHz -74.77 dBm /Hz

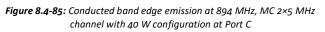
Figure 8.4-80: Conducted band edge emission at 869 MHz, MC 2×5 MHz channel with 40 W configuration at Port D

Keysight Spectrum Analyzer - Ch			SENSE:INT		ALIGN AUTO		02:02:4	- @ (PM Oct 24, 20
oan 20.000 MHz		· · · ·	Center Fre	q: 869.0000			Radio Std: N	
		#IFGain:Low	Trig: Free #Atten: 28		Avg Hold:>	>100/100	Radio Devic	e BTS
		#IFGaIn:Low	#Atten: 20	00			Radio Devic	6.013
dB/div Ref 39.8	0 dBm							
a a a a a a a a a a a a a a a a a a a								
				[a
80								
20				1	-			
.2				li -		+ V		
1.2				1		<u> </u>		
1.2					_			
.2				1				
12								
enter 869 MHz								an 20 MH
les BW 10 kHz			#VE	Sweep) 237.6 n			
Channel Power			Powe	r Spectr	al Density	,		
-22.75 dE	3m / 100		_	72 75	dBm //	1-		
-22.75 ut	Sili / 100	KHZ	-	12.15		12		
File <lbe 5="" ant="" c.png="" hp="" mc="" mhz=""> saved</lbe>								

Figure 8.4-81: Conducted band edge emission at 869 MHz, MC 2×5 MHz channel with 60 W configuration at Port A

an 20.000	8F 50Ω DC DMHz				q: 894.00000	MHz AvgiHold:	400/400	01:53 Radio Std:	23 PM Oct 24, 20 None
		#IF	Gain:Low 두	#Atten: 28		Avginoid:	>100/100	Radio Dev	ice: BTS
g	Ref 39.80 dE	sm							
8									
B	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·					
1				1					
1	-			1					
1				1					
	-	V							-
	-				mada				
	-								
nter 894 I	MHz							5	pan 20 Mi
s BW 10 kHz			#VE	Sweep 237.6					
Channel	Power			Power	Spectra	I Densit	y		
05	05 JD				75 05	-10			
-25	.25 dBm	1 / 100 kł	-IZ	-	/5.25	dBm /	Ηz		
				STATUS					

Figure 8.4-83: Conducted band edge emission at 894 MHz, MC 2×5 MHz channel with 40 W configuration at Port A


Figure 8.4-82: Conducted band edge emission at 869 MHz, MC 2×5 MHz channel with 60 W configuration at Port C

Keysight Spect	rum Analyzer - Channe RF 50 Ω E	el Power		SENSE:INT		GN AUTO		01:52	
an 20.0		~			: 894.000000 M			Radio Std:	
un 20.0	00 11112	#1	FGain:Low		un	Avg Hold:>1	00/100	Radio Devi	ce: BTS
dB/div 9 8 8 8 0 0 2 2	Ref 39.80 c								
2								• • • • • • • • • • • • • • • • • • •	
nter 894 es BW				#VB\	N 300 kHz			Swee	pan 20 MH p 237.6 n
Chann	el Power			Power	Spectral	Density			
-2	5.20 dBr	n / 100 k	Hz	-7	75.20 d	IBm /Ha	z		
	File <ube 5="" ant="" c.png="" lp="" mc="" mhz=""> saved</ube>								

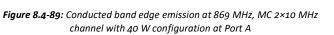
Figure 8.4-84: Conducted band edge emission at 894 MHz, MC 2×5 MHz channel with 40 W configuration at Port B

L	m Analyzer - Channe RF 50 Ω D			SENSE:INT		LIGN AUTO		09 PM Oct 24, 20
oan 20.00	0 MHz			Center Freq:			Radio Std	None
		#1	FGain:Low	Trig: Free Ri #Atten: 28 di	in B	Avg Hold:>100/100	Radio Dev	ice: BTS
0 dB/div 0 dB/d	Ref 39.80 c							
0.2		V						
0.2								
enter 894 Res BW 10				#VBV	V 300 kH	Iz		an 20 MH p 237.6 m
Channe	I Power			Power	Spectra	I Density		
-25	.15 dBr	n / 100 k	Hz	-7	5.15	dBm /Hz		

an 20.000 MHz Content Free: 84.00000 MHz Radio Std: None Radio	Ceysight Spectrum Analyzer - Channe L RF 50 Ω E		SE	NSE:INT	ALIGN AUTO			02 PM Oct 24, 20
Bldiv Ref 39.80 dBm	an 20.000 MHz				000000 MHz AvaiHold:	>100/100	Radio Std:	None
ter 894 MHz s BW 10 kHz s BW 10 kHz thannel Power the span 20 kHz thannel Power than the span 20 kHz than the span 20 kHz that the span		#IFG			Anglitoid.	- 100/100	Radio Devi	ce: BTS
ter 894 MHz Span 20 M ss BW 10 kHz #VBW 300 kHz Span 20 M Sweep 237.6 Channel Power Power Spectral Density								
nter 894 MHz 25 BW 10 kHz #VBW 300 kHz Span 20 N 26 BW 10 kHz #VBW 300 kHz Sweep 237.6 Channel Power Power Spectral Density		4						
ter 894 MHz Span 20 k s BW 10 kHz #VBW 300 kHz Sweep 237.6 Channel Power Power Spectral Density					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			*****
es BW 10 kHz #VBW 300 kHz Sweep 237.6 Channel Power Power Spectral Density								
······				#VBW 30	00 kHz			
-23.56 dBm / 100 kHz -73.56 dBm /Hz	Channel Power			Power Spe	ectral Densit	y		- -
	-23 56 dBr	n / 100 kH	7	-73	56 dBm /	47		
	20.00 001		-					
					STATUS			

Figure 8.4-87: Conducted band edge emission at 894 MHz, MC 2×5 MHz channel with 60 W configuration at Port A

L RF 50 Ω pan 20.000 MHz	DC	SENSE:INT ALIGN AUTO Center Freq: 894.000000 MHz Trig: Free Run Avg H	loid:>100/100	01:52:55 PM Oct 24, 20 Radio Std: None
	#IFGain:Low	#Atten: 28 dB		Radio Device: BTS
0 dB/div Ref 39.80	dBm			
9.8				
9.8				
80	were housed	[managed and a second s		
20				
0.2				
0.2	Y			
0.2	1	L L		
0.2		The second second		****
0.2				
enter 894 MHz				Span 20 MH
Res BW 10 kHz		#VBW 300 kHz		Sweep 237.6 n
Channel Power		Power Spectral Den	sity	
-25.01 dB	m / 100 kHz	-75.01 dBm)/Hz	


Figure 8.4-86: Conducted band edge emission at 894 MHz, MC 2×5 MHz channel with 40 W configuration at Port D

20.000 MHz Center Free: 84.00000 MHz BFGaln.Low Trig: Free Res 28.0000 MHz iv Ref 39.80 dBm	z Radio Std: N Vrg Hold:>100/100 Radio Device
#IFGain:Low #Atten: 28 dB	
x Ref 39.80 dBm	
7 Ref 39.80 dBm	
894 MHz	Sp
N 10 kHz #VBW 300 kHz	Sweep
nnel Power Spectral D	ensity
iner Fower Opecual D	charty
00 70 JD	
23.73 dBm / 100 кнг -73.73 dB	Sm /Hz

Figure 8.4-88: Conducted band edge emission at 894 MHz, MC 2×5 MHz channel with 60 W configuration at Port C

	DC		SENSE:INT		ALIGN AUTO			6 PM Oct 24, 201
pan 40.000 MHz			Toley Freed	rq: 869.00000	0 MHz Avg Hold:>	100/100	Radio Std:	None
		#IFGain:Low	#Atten: 28		Anglinoid.2	100/100	Radio Devie	e: BTS
dB/div Ref 39.80	dBm							
	авт						1	
9.8								
3.8								
80								
20				1				
0.2				/		V		
0.2						V		
0.2				-		1		
0.2								
0.2								
enter 869 MHz Res BW 10 kHz			#1/5	300 ki				pan 40 MH p 475.1 m
			#VE	544 300 K	nz		Swee	p 4/ 5.1 li
			_					
Channel Power			Power	Spectr	al Density			
-29.01 dB	m / 100	kHz	-	79.01	dBm /H	z		

L RF 50 an 40.000 MHz	DC DC	#IFGain:Low	SENSE:INT Center F Trig: Fre #Atten:		ALIGN AUTO 000 MHz Avg Hold:	>100/100	Radio Std: N	
B/div Ref 39	.80 dBm			,				
		_		+	_			
				+				
				1/		+		
						V		
						l l		
· ··· · ·· · · · · · ·								
nter 869 MHz s BW 10 kHz			#\	/BW 300	kH7			oan 40 N 0 475.1
o Dir To lain			"	2			-	
Channel Powe	er		Powe	er Spect	ral Densit	y		
-29.06 c								

Figure 8.4-91: Conducted band edge emission at 869 MHz, MC 2×10 MHz channel with 40 W configuration at Port C

pan 40.00	RF 50 Ω DC		Center Freq: 86 Trig: Free Run		d:>100/100	02:10:21 PM Oct 24, Radio Std: None
		#FGain:Low	#Atten: 28 dB	Cualition		Radio Device: BTS
0 dB/div .og	Ref 39.80 dBm	<u> </u>				
29.8						
19.8						
9.80	-					
1.20						
10.2					+ $+$ $+$ $+$	
20.2					- V	
30.2					- ¥	
40.2					,	
50.2						
enter 869	MUT					Span 40 M
Res BW 10			#VBW 3	300 kHz		Sweep 475.1
0.			D 0	and Devel	4 .	
Channe	Power		Power Sp	ectral Densi	ty	
-29	.05 dBm	100 647	-79	.05 dBm	/11-	
-23	.05 0.511	100 KHZ	-15	.05 0.511	/nz	
	BE MC 10 MHz LP A			STATUS		

Figure 8.4-90: Conducted band edge emission at 869 MHz, MC 2×10 MHz channel with 40 W configuration at Port B

L pan 40.000	RF 50Ω DC DMHz	#FGain:Low	SENSE:INT Center Fre Trig: Free #Atten: 28		o Hold:>100/100	02:09:58 PM O Radio Std: None Radio Device: BT	
0 dB/div	Ref 39.80 dBm	1					
.og 29.8							
19.8							
.80						· ····· ·· ···	
.20							
0.2				/	//		
0.2				1	V-		
0.2					¥		
0.2							
10.2							
enter 869 l						Span -	10.84
Res BW 10			#VE	300 kHz		Sweep 47	
Channel	Power		Power	Spectral Der	nsity		
-29	.09 dBm	/ 100 kHz	-	79.09 dBn	n /Hz		

Figure 8.4-92: Conducted band edge emission at 869 MHz, MC 2×10 MHz channel with 40 W configuration at Port D

Keysight Spectrum Analyzer - Cha L RF 50 Ω			INSE:INT	ALIGN AUTO		01-50-41	- @ PM Oct 24, 20
enter Freq 869.000			Center Freq: 869.			Radio Std: N	
511c1 Freq 809.000			Trig: Free Run	Avg Hold:	>100/100		
	#IFGai	n:Low	#Atten: 28 dB			Radio Devic	e: BTS
Bidiu Ref 39.8i 9) dBm						
1.2			- í		1 V		
0.2						-	
0.2							
0.2							
enter 869 MHz Res BW 10 kHz			#VBW 3	00 kHz			an 40 Mi 9 475.1 r
Channel Power			Power Spe	ectral Densit	y		
-26.25 dE	3m / 100 kHz		-76.	25 dBm /	Hz		

Figure 8.4-93: Conducted band edge emission at 869 MHz, MC 2×10 MHz channel with 60 W configuration at Port A

Keysight Spectr	um Analyzer - Chann							- 6
L	RF 50 Ω	DC		Center Freq: 894	ALIGN AUTO		01:49: Radio Std:	28 PM Oct 24, 20
an 40.00	JU MHZ			Center Freq: 894 Trig: Free Run	Avg Hold	>100/100	Radio Std:	None
		#IFG	ain:Low	#Atten: 28 dB			Radio Devi	ce: BTS
dB/div	Ref 39.80	dBm						
8								

lí –				1				
/								
1				<u> </u>				
1	_	- V -						
		Y		1				
		V V		1				
nter 894								pan 40 Mi
esBW 1	0 KHZ			#VBW 3	00 KHZ		Swee	p 475.1 r
hanne	el Power			Power Sp	ectral Densit	v		
						,		
-				70	40 JD			
-28	3.42 aB	m / 100 kH	z	-/8.	.42 dBm /	Hz		

Figure 8.4-95: Conducted band edge emission at 894 MHz, MC 2×10 MHz channel with 40 W configuration at Port A

L RF 50 Ω Center Freq 869.000			ter Freq: 869.000 : Free Run	ALIGN AUTO 0000 MHz Avg Hold:	>100/100	Radio Std: No	M Oct 24, 20 ne
	#IFGa		en: 28 dB			Radio Device:	BTS
0 dB/div Ref 39.8	0 dBm						
og							
29.8					-		
19.8						·	~
9.80					+ + + -		
0.20							
10.2			/		$+$ \vee		
20.2	-		-		- V		
30.2					+ ₹	++	
40.2			-				
50.2							
Center 869 MHz						Sna	n 40 Mi
Res BW 10 kHz			#VBW 300	kHz		Sweep	
Channel Power		Po	wer Spec	tral Densit	у		
-26.51 dE	3m / 100 kHz		-76.5 ⁻	1 dBm /	Hz		

Figure 8.4-94: Conducted band edge emission at 869 MHz, MC 2×10 MHz channel with 60 W configuration at Port C

RF 50 Ω DC		SENSE:INT Center Freg: 894	ALIGN AUTO	01:49:47 PM Oct Radio Std: None
40.000 MHz			Avg Hold:>100/100	Radio Std: None
	#IFGain:Lov			Radio Device: BTS
liv Ref 39.80 dB	m			
·········				
	V			
	V			
	1			
r 894 MHz				Span 4
BW 10 kHz		#VBW 3	Sweep 475.1	
			0 Heep 410.1	
annel Power		Power Sp	ectral Density	
		i onci op	could benoty	
-28.50 dBm	(100 kHz	-79	50 dBm /Hz	
-20.30 ubiii	/ 100 KHZ	-70.		
File <ube 5="" <="" lp="" mc="" mhz="" td=""><td>Ant A.png> saved</td><td></td><td>STATUS</td><td></td></ube>	Ant A.png> saved		STATUS	

Figure 8.4-96: Conducted band edge emission at 894 MHz, MC 2×10 MHz channel with 40 W configuration at Port B

Keysight Spectrum Analyzer - Channe L RF 50 Ω D	C C	SENSE:INT	ALIGN AUTO		01:50:20 PM Oct 24, 20
oan 40.000 MHz		Center Freq: 8	94.000000 MHz		Radio Std: None
101000 Millin		Trig: Free Run	Avg Hold:>1	00/100	
	#IFGain:L	#Atten: 28 dB			Radio Device: BTS
dB/div Ref 39.80 (
1.2	V				
2	¥				
.2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
12					
enter 894 MHz Res BW 10 kHz		#VBW	300 kHz		Span 40 M Sweep 475.1 r
Channel Power		Power S	pectral Density		
-28.75 dB		70	3.75 dBm /н		
-28.75 081	TI / 100 KHZ	-/ 6	з. / 5 ав т /н	z	
			STATUS		

د pan 40.0	RF 50 Ω DC		SENSE:INT	g: 894.00000	ALIGN AUTO		01:50:29 PM Oct 24, Radio Std: None
pan 40.0		#IFGain:Low	Trig: Free	Run	Avg Hold:>100	0/100	Radio Device: BTS
		#IFGall.Low					Table Device. D To
0 dB/div	Ref 39.80 dB	m					
29.8							
9.8			_				
.80							
20							
0.2			1				
0.2		V					
0.2		¥		~			
0.2							
enter 894							Span 40 M
Res BW			#VE	W 300 k	Hz		Sweep 475.1
Chann	el Power		Power	Spectr	al Density		
-2	8.81 dBm	/ 100 kHz	_	78.81	dBm /Hz		
_							
	JBE MC 5 MHz LP	Ant C png> saved			STATUS		

Figure 8.4-97: Conducted band edge emission at 894 MHz, MC 2×10 MHz channel with 40 W configuration at Port C

L RF 5	0Ω DC		SENSE:INT Center Freq: 89			01:57 Radio Std	27 PM Oct 24, 201
		#IFGain:Low	Trig: Free Run #Atten: 28 dB	Avg Hold:	>100/100	Radio Dev	rice: BTS
Def 0	9.80 dBm						
g	9.80 aBm						
3.8							
80							
20							
1.2			{				
12	V		1				
1.2	Y						
1.2	ť						
12			\sim				******
enter 894 MHz Res BW 10 kHz			#VBW 3				Span 40 MH ep 475.1 m
Kes BW TU KHZ			#VDW	300 KH2		SWe	ep 475.11
Channel Pow	er		Power Sp	ectral Densit	y		
07.04							
-27.04 (dBm / 100	kHz	-//	.04 dBm /	Hz		

Figure 8.4-99: Conducted band edge emission at 894 MHz, MC 2×10 MHz channel with 60 W configuration at Port A

Figure 8.4-98: Conducted band edge emission at 894 MHz, MC 2×10 MHz channel with 40 W configuration at Port D

ctrum Analyzer - Chan RF 50 Q			SENSE:INT		ALIGN AUTO	01:57:	- @
	,	· · · ·	Center Fre	q: 894.00000	0 MHz		
]					Avg Hold:>100/100	Radio Devi	ce: BTS
Ref 39.80							
				~			
94 MHz 10 kHz			#VE	 3W 300 k	Hz		pan 40 Mi p 475.1 r
nel Power			Power	r Spectr	al Density		
6.99 dB	m / 100 i	KHz	-	76.99	dBm /Hz		
	8 50 2 00 MHz Ref 39.80 4 MHz 10 kHz tel Power	80 a pc 000 MHz Ref 39.80 dBm	Image: Solution of the	so o cc constraint com co	W SOURCE SOURCENT DOD MHZ Centers Free: 884.0000 BEFGint.ow Free Run Ref 39.80 dBm States: 28 dB At MHZ #VBW 300 k 10 kHz #VBW 300 k Hel Power Power Spectr	NO NO ALION AND DOD MHZ Center Freq: 58-0000 MHz Alion AND BIG BIG States ArgitHold>100100 ArgitHold>100100 Ref 39.80 dBm Trig: Freq BR ArgitHold>100100 A MHZ Freq: States ArgitHold>100100 4 MHZ #VBW 300 kHz Hel Power	W SO D C DEMECHIT ALDMAND DE 137 DOD MHZ Center Freq: SN-000 MHz Radio Std: Radio Std: #FGaint.ow #FGaint.ow Freq: SN-000 MHz Radio Std: Ref 39.80 dBm Trig: Free Run AvgiHeid.>100/100 Radio Std: At the Auron of the

Figure 8.4-100: Conducted band edge emission at 894 MHz, MC 2×10 MHz channel with 60 W configuration at Port C

8.5 Spurious emissions at RF antenna connector (multi band B5 and B12A)

8.5.1 Definitions and limits

FCC P27, FCC P22, RSS-130 and RSS-132

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

8.5.2 Test sum	mary
Test date	October 25, 2018

8.5.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to the $10^{\rm th}$ harmonic.

All measurements were performed using a RMS detector.

For compensation of 40 W MIMO 4×4 application limit lines were adjusted by 6 dB1 to –19 dBm

For compensation of 60 W MIMO 2×2 application limit lines were adjusted by 3 dB² to –16 dBm

 $^{1}10 \times Log_{10}(4) = -6 \text{ dB}$ $^{2}10 \times Log_{10}(2) = -3 \text{ dB}$

8.5.4 Test data

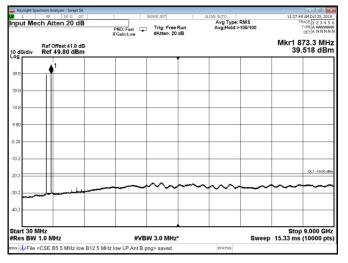
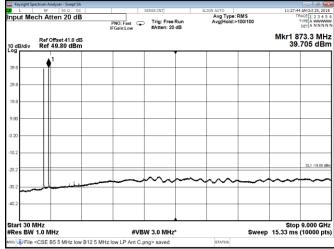
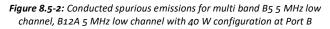




Figure 8.5-1: Conducted spurious emissions for multi band B5 5 MHz low channel, B12A 5 MHz low channel with 40 W configuration at Port A

L put Me	RF 50 Ω DC ch Atten 20 dB	PNO: Fast Gain:Low	SENSE:INT Trig: Free #Atten: 20	Run	IGN AUTO Avg Type: Avg Hold:>	RMS 100/100	TR	3 AM Oct 25, 2018 RACE 1 2 3 4 5 TYPE A WWWW DET A NNNN
dB/div	Ref Offset 41.8 dB Ref 49.80 dBm			_			Mkr1 8 39.	73.3 MH: .569 dBn
	≜ ¹			Ī				
.8								
.8								
80								
20								
1.2								
2								DL1 -19.00 dB
		 	\sim		\sim		~~~	
¹²								<u> </u>
1.2								
art 30 M	//Hz						Stop	9.000 GH
	1.0 MHz	#VB	W 3.0 MHz	•		Sweep		(10000 pts

Figure 8.5-3: Conducted spurious emissions for multi band B5 5 MHz low channel, B12A 5 MHz low channel with 40 W configuration at Port C

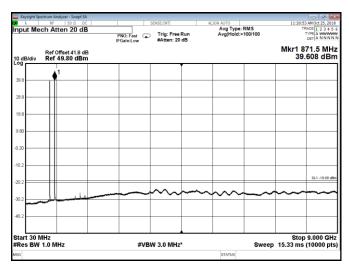
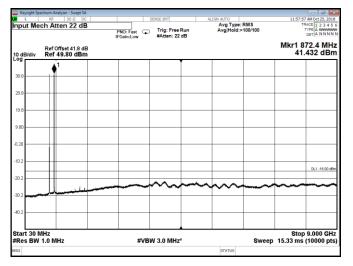
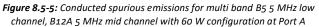




Figure 8.5-4: Conducted spurious emissions for multi band B5 5 MHz low channel, B12A 5 MHz low channel with 40 W configuration at Port D

L	RF 50 Q DC		PNO: Fast	SENSE:INT	Run	IGN AUTO Avg Type: Avg Hold:>	RMS 100/100	TF	AM Oct 25, 2018
0 dB/div	Ref Offset 41.8 dB Ref 49.80 dBm	1	FGain:Low	#Atten: 20	dB	-		Mkr1 8	82.2 MHz 411 dBm
39.8	↓ 1								
29.8									
19.8									
9.80									
.20									
0.2									DL1 -19.00 dB
0.2	يليب ال		~~~~	\sim	~~~~	\sim		\sim	
0.2	-								
tart 30 N Res BW			#VB	W 3.0 MHz	*		Sweep	Stop 15.33 ms	9.000 GH2 (10000 pts
5G						STATUS			

Figure 8.5-7: Conducted spurious emissions for multi band B5 5 MHz mid channel, B12A 5 MHz mid channel with 40 W configuration at Port A

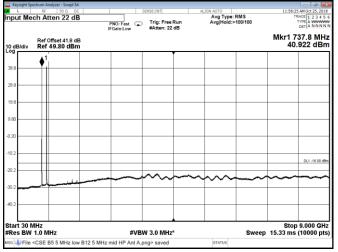


Figure 8.5-6: Conducted spurious emissions for multi band B5 5 MHz low channel, B12A 5 MHz mid channel with 40 W configuration at Port C

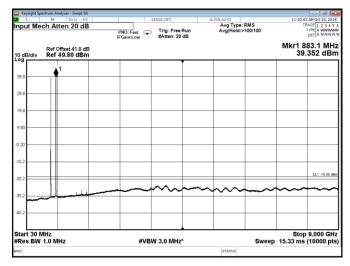
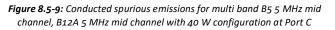



Figure 8.5-8: Conducted spurious emissions for multi band B5 5 MHz mid channel, B12A 5 MHz mid channel with 40 W configuration at Port B

9.8					
0.2					
0.2		~~~	 	 	DL1 -19.00 dE

Keysight Spe	ectrum Analyzer - Swept SA RF 50 Ω DC		SENSE:INT		LIGN AUTO		11,67,67	- @ EX
nput Mee	ch Atten 22 dB	PNO: Fast Gain:Low		Run	Avg Type: Avg Hold:>	RMS 100/100	TF	ACE 1 2 3 4 5 1
0 dB/div	Ref Offset 41.8 dB Ref 49.80 dBm						Mkr1 8 41.	72.4 MHz 432 dBm
39.8	∮ 1							
29.8								
19.8								
9.80								
1.20								
10.2								DL1 -16.00 dBr
30.2	سسال	 	~~~	~~~~	\sim		~~~	
40.2								
Start 30 N	AHz						Stop	9.000 GHz
Res BW		#VB	W 3.0 MHz	•	STATUS	Sweep	15.33 ms	(10000 pts
24					arATUS			

Figure 8.5-11: Conducted spurious emissions for multi band B5 5 MHz mid channel, B12A 5 MHz mid channel with 60 W configuration at Port A

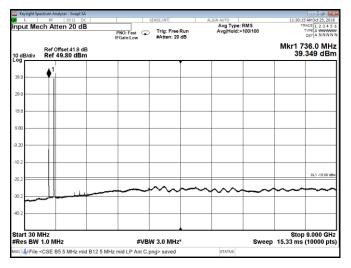


Figure 8.5-10: Conducted spurious emissions for multi band B5 5 MHz mid channel, B12A 5 MHz mid channel with 40 W configuration at Port D

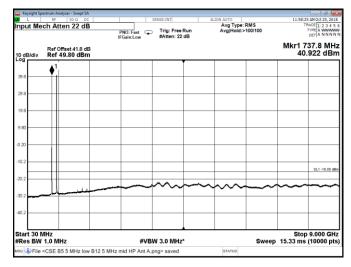
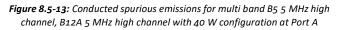
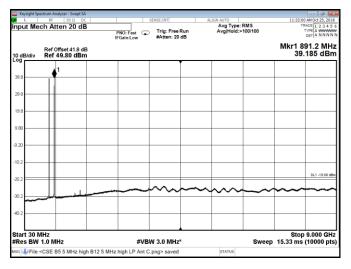
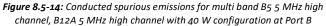



Figure 8.5-12: Conducted spurious emissions for multi band B5 5 MHz mid channel, B12A 5 MHz mid channel with 60 W configuration at Port C




	RF 50 Ω DC Atten 20 dB		PNO: Fast Gain:Low	SENSE:INT Trig: Free #Atten: 20	Run	IGN AUTO Avg Type: Avg Hold:>	RMS 100/100	TR	AM Oct 25, 2018 ACE 1 2 3 4 5 DIPE A WWWW DET A NNNN
dB/div R	tef Offset 41.8 dB tef 49.80 dBm		- Gameon		_			Mkr1 74 39.	44.1 MHz 193 dBm
19.8	∳ ¹								
9.8									
.80									
20									
0.2									DL1 -19.00 dBr
0.2		****		\sim	~~~~	\sim		~~~	~~~
0.2									
tart 30 MHz Res BW 1.0				W 3.0 MHz			Sweep	Stop 15.33 ms	9.000 GHz (10000 pts

Keysight Spectrum Analyzer - Swept SA L RF 50 Ω DC Dut Mech Atten 20 dB	PNO: Fast Trig: Free IFGaint.ow #Atten: 20	ALIGN AUTO Avg Type: Run Avg Hold:>	
Ref Offset 41.8 dB 0 dB/div Ref 49.80 dBm	Indani.Low Indani. 20		Mkr1 891.2 MH 39.301 dBn
1			
29.8			
3.80			
.20			
0.2			DL1 -19.00 dB
0.2			
tart 30 MHz Res BW 1.0 MHz	#VBW 3.0 MHz	*	Stop 9.000 GHz Sweep 15.33 ms (10000 pts

Figure 8.5-15: Conducted spurious emissions for multi band B5 5 MHz high channel, B12A 5 MHz high channel with 40 W configuration at Port C

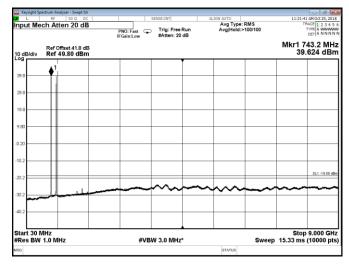
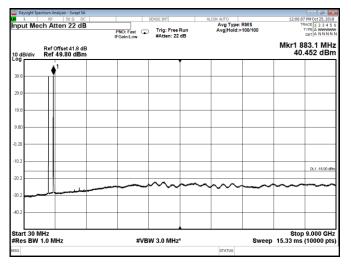
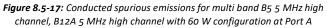
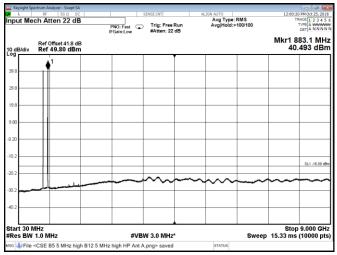
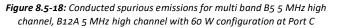




Figure 8.5-16: Conducted spurious emissions for multi band B5 5 MHz high channel, B12A 5 MHz high channel with 40 W configuration at Port D





L RF 50 Ω D		SENSE:INT	ALIGN AUTO		11:33:27 AM 0	d 25, 2018
nput Mech Atten 20 d			n Avg Typ	e:RMS d:>100/100	TRACE	2 3 4 5 1 A NNNN
Ref Offset 41.8 d 0 dB/div Ref 49.80 dBr	.в m				Mkr1 735. 36.734	1 MHz IdBm
39.8 • • ¹						
29.8						
19.8						
9.80						
0.2						
10.2					DL	1 -19.00 dBr
0.2					~~~~	مريومينية. مريوما
40.2						
tart 30 MHz Res BW 1.0 MHz	#	VBW 3.0 MHz*		Sweep	Stop 9.0 15.33 ms (100	00 GHz 000 pts
sg			STATUS			

Figure 8.5-19: Conducted spurious emissions for multi band B5 10 MHz low channel, B12A 10 MHz low channel with 40 W configuration at Port A

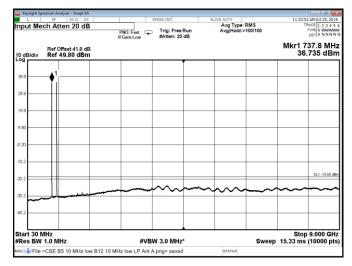


Figure 8.5-20: Conducted spurious emissions for multi band B5 10 MHz low channel, B12A 10 MHz low channel with 40 W configuration at Port B