

TEST REPORT

Test Report No.: UL-RPT-RP14370604-116A

Manufacturer : Sound Devices LLC

Model No. / HVIN : 9295W

PMN : A20-MINI

FCC ID : 2AKLX-9295W

ISED Certification

No.

IC: 22225-9295W

Technology : SRD

Test Standard(s) : FCC Parts 15.209(a) & 15.247;

Innovation, Science and Economic Development Canada RSS-247 Issue 2 February 2017 & RSS-Gen Issue 5 February

2021

 This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.

- 2. The results in this report apply only to the sample(s) tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.
- 5. Version 2.0 supersedes all previous versions.

Date of Issue: 02 November 2022

Checked by:

Ben Mercer Lead Project Engineer, Radio Laboratory

Company Signatory:

Sarah Williams

Sarah Williams RF Operations Leader, Radio Laboratory

This laboratory is accredited by the United Kingdom Accreditation Service (UKAS). UKAS is one of the signatories to the International Laboratory Accreditation Cooperation (ILAC) Arrangement for the mutual recognition of test reports. The tests reported herein have been performed in accordance with its terms of accreditation.

Telephone: +44 (0)1256 312000 Facsimile: +44 (0)1256 312001

ISSUE DATE: 02 NOVEMBER 2022

Customer Information

Company Name:	Sound Devices LLC
Address:	PO Box 576, E7556 State Rd 23-33, Reedsburg, WI 53959, United States

Report Revision History

Version Number	Issue Date	Revision Details	Revised By
1.0	13/07/2022	Initial Version	Ben Mercer
2.0	02/11/2022	Updated antenna gain	Ben Mercer

Page 2 of 30 UL International (UK) Ltd

Table of Contents

Customer Information	2
Report Revision History	2
Table of Contents	
1. Attestation of Test Results	4
1.1. Description of EUT	4
1.2. General Information	4
1.3. Summary of Test Results	5
1.4. Deviations from the Test Specification	5
2. Summary of Testing	6
2.1. Facilities and Accreditation	6
2.2. Methods and Procedures	6
2.3. Measurement Uncertainty & Decision Rule	7 8
2.4. Test and Measurement Equipment	_
3. Equipment Under Test (EUT)	
3.1. Identification of Equipment Under Test (EUT)	10
3.2. Modifications Incorporated in the EUT	10
3.3. Additional Information Related to Testing	11 11
3.4. Description of Available Antennas3.5. Description of Test Setup	12
·	
4. Test Results	
4.1. Transmitter Minimum 6 dB Bandwidth	15 17
4.2. Transmitter 99% Occupied Bandwidth4.3. Transmitter Maximum Peak Output Power	17
4.4. Transmitter Power Spectral Density	22
4.5. Transmitter Radiated Emissions <1 GHz	24
4.6. Transmitter Radiated Emissions >1 GHz	26
4.7 Transmitter Band Edge Radiated Emissions	29

UL International (UK) Ltd Page 3 of 30

1. Attestation of Test Results

1.1. Description of EUT

The Equipment Under Test was a professional (body-worn) miniature microphone transmitter operating in the 902 MHz to 928 MHz frequency band.

1.2. General Information

Specification Reference:	47CFR15.247
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Section 15.247
Specification Reference:	47CFR15.209
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Section 15.209
Specification Reference:	RSS-Gen Issue 5 February 2021
Specification Title:	General Requirements for Compliance of Radio Apparatus
Specification Reference:	RSS-247 Issue 2 February 2017
Specification Title:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
Site Registration:	FCC: 685609, ISEDC: 20903
FCC Lab. Designation No.:	UK2011
ISEDC CABID:	UK0001
Location of Testing:	Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, G24 8AH, United Kingdom
Test Dates:	14 June 2022 to 17 June 2022

Page 4 of 30 UL International (UK) Ltd

ISSUE DATE: 02 NOVEMBER 2022

1.3. Summary of Test Results

FCC Reference (47CFR)	ISED Canada Reference	Measurement	Result
Part 15.247(a)(2)	RSS-Gen 6.7 / RSS-247 5.2(a)	Transmitter Minimum 6 dB Bandwidth	②
N/A	RSS-Gen 6.7	Transmitter 99% Occupied Bandwidth	②
Part 15.247(b)(3)	RSS-Gen 6.12 / RSS-247 5.4(d)	Transmitter Maximum Peak Output Power	②
Part 15.247(e)	RSS-247 5.2(b)	Transmitter Power Spectral Density	②
Part 15.247(d) / 15.209(a)	RSS-Gen 6.13 / RSS-247 5.5	Transmitter Radiated Emissions	②
Part 15.247(d) / 15.209(a)	RSS-Gen 6.13 / RSS-247 5.5	Transmitter Band Edge Radiated Emissions	②
Key to Results			

= Complied = Did not comply

1.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

UL International (UK) Ltd Page 5 of 30

2. Summary of Testing

2.1. Facilities and Accreditation

The test site and measurement facilities used to collect data are located at Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom. The following table identifies which facilities were utilised for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

Site 1	X
Site 2	
Site 17	X

UL International (UK) Ltd is accredited by UKAS. The tests reported herein have been performed in accordance with its terms of accreditation.

2.2. Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Reference:	KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules

Page 6 of 30 UL International (UK) Ltd

2.3. Measurement Uncertainty & Decision Rule

Overview

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

The decision rule applied is based upon the accuracy method criteria. The measurement uncertainty is met and the result is considered in conformance with the requirement criteria if the observed value is within the prescribed limit.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Minimum 6 dB Bandwidth	902 MHz to 928 MHz	95%	±4.59 %
99% Occupied Bandwidth	902 MHz to 928 MHz	95%	±3.92 %
Maximum Peak Output Power	902 MHz to 928 MHz	95%	±1.13 dB
Power Spectral Density	902 MHz to 928 MHz	95%	±1.13 dB
Radiated Spurious Emissions	9 kHz to 30 MHz	95%	±5.32 dB
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±3.30 dB
Radiated Spurious Emissions	1 GHz to 9.3 GHz	95%	±2.94 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

UL International (UK) Ltd Page 7 of 30

2.4. Test and Measurement Equipment

Test Equipment Used for Conducted Tests

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2071	Thermohygrometer	Testo	608-H1	45258132	08 Dec 2022	12
M2077	Test Receiver	Rhode & Schwarz	ESW44	102026	15 Feb 2023	12
G217350	Vector Signal Generator	Rhode & Schwarz	SMM100A	101777	04 Apr 2025	36
A3118	Attenuator	AtlanTecRF	AN18-10	237378#2	Calibrated Before use	-

<u>Test Equipment Used for Transmitter Radiated Emissions Tests</u>

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0001	3m RSE Chamber	Rainford EMC	N/A	N/A	06 Sep 2022	12
M2040	Thermohygrometer	Testo	608-H1	45124934	09 Dec 2022	12
M2044	Test Receiver	Rohde & Schwarz	ESU26	100122	29 Apr 2023	12
A3154	Pre Amplifier	Com Power	PAM-103	18020012	24 Aug 2022	12
A3155	Pre Amplifier	Com Power	PAM-118A	18040037	24 Aug 2022	12
A3179	Pre Amplifier	Agilent	8449B	3008A00934	24 Aug 2022	12
A3198	Antenna	ETS-Lindgren	6502	00221887	12 Aug 2022	12
A3138	Antenna	Schwarzbeck	BBHA 9120 B	00702	27 Aug 2022	12
A3139	Antenna	Schwarzbeck	HWRD750	00027	27 Aug 2022	12
A2467	High Pass Filter	Wainwright	WHJE5-920- 1000-4000- 60EE	2	01 Nov 2022	12
A3093	High Pass Filter	AtlanTecRF	AFH-03000	18051800077	27 Jan 2023	12
A3095	High Pass Filter	AtlanTecRF	AFH-07000	18051600012	27 Mar 2023	12
K0017	3m RSE Chamber	Rainford	N/A	N/A	26 Oct 2022	12
M2003	Thermohygrometer	Testo	608-H1	45046641	09 Dec 2022	12
A2916	Attenuator	AtlanTecRF	AN18W5-10	832827#1	26 Jan 2023	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	12 Oct 2022	12
A490	Antenna	Chase	CBL6111A	1590	14 Sep 2022	12

Page 8 of 30 UL International (UK) Ltd

Test and Measurement Equipment (continued)

<u>Test Equipment Used for Transmitter Band Edge Radiated Emissions Tests</u>

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0001	5m RSE Chamber	Rainford EMC	N/A	N/A	06 Sep 2022	12
M2040	Thermohygrometer	Testo	608-H1	45124934	09 Dec 2022	12
M2044	Test Receiver	Rohde & Schwarz	ESU26	100122	29 Apr 2023	12
A3154	Pre Amplifier	Com Power	PAM-103	18020012	24 Aug 2022	12
A2523	Attenuator	AtlanTecRF	AN18W5-10	832827#1	27 Jan 2023	12
A553	Antenna	Chase	CBL6111A	1593	23 Nov 2022	12

UL International (UK) Ltd Page 9 of 30

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	A20-MINI
Model Name or Number / PMN:	9295W
Test Sample Serial Number:	GE9922068000
Hardware Version / HVIN:	5
Firmware Version:	5.00.C1
FCC ID:	2AKLX-9295W
ISED Certification Number:	IC: 22225-9295W

3.2. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

Page 10 of 30 UL International (UK) Ltd

3.3. Additional Information Related to Testing

Tested Technology:	Short Range Device (Short Range Device (Digital Transmission System)		
Power Supply Requirement:	Nominal	Nominal 3.6 VDC		
Type of Unit:	Transceiver	Transceiver		
Modulation:	COFDM	COFDM		
Data Rate	1.339 Mbps	1.339 Mbps		
Maximum Output Power:	18.1 dBm	18.1 dBm		
Transmit Frequency Range:	902 MHz to 928 MHz	902 MHz to 928 MHz		
Transmit Channels Tested:	Channel ID	Channel ID Channel Frequency (MHz)		
	Bottom	Bottom 902.400		
	Middle		915.000	
	Тор		927.600	

3.4. Description of Available Antennas

The radio utilizes an external whip antenna with the maximum gain stated below:

Frequency Range (MHz)	Antenna Gain (dBi)
902-928	3.47

UL International (UK) Ltd Page 11 of 30

VERSION 2.0

ISSUE DATE: 02 NOVEMBER 2022

3.5. Description of Test Setup

Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Laptop PC
Brand Name:	Dell
Model Name or Number:	Precision M6800
Serial Number:	86BSM12

Description:	Lavaliere Microphone	
Brand Name:	Not marked or stated	
Model Name or Number:	VT506WA-1934	
Serial Number:	Not marked or stated	

Page 12 of 30 UL International (UK) Ltd

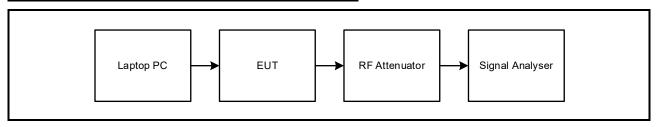
Operating Modes

The EUT was tested in the following operating mode(s):

 Continuously transmitting at maximum power with a modulated carrier on bottom, middle and top channels as required.

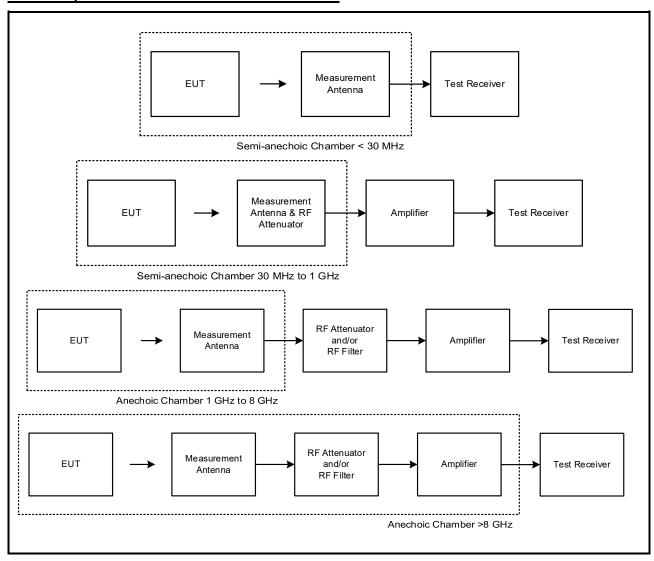
Configuration and Peripherals

The EUT was tested in the following configuration(s):


- Controlled in test mode using a software application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission and to select the test channels as required. The customer supplied a document containing the setup instructions 'Set-Up_Instructions_v5.5.pdf. The laptop PC was connected to the EUT via USB-C cable.
- The power setting was set to 40 mW.
- Radiated emissions tests were performed with the EUT in the worst case orientation/position with respect to the emission levels. A lavaliere microphone was connected to the EUT.
- The EUT was powered from 3 x 1.5 V AAA alkaline batteries.
- The external whip antenna was removed to enable conducted measurements.

UL International (UK) Ltd Page 13 of 30

Test Setup Diagrams


Conducted Tests:

Test Setup for all Transmitter Conducted RF Tests

Radiated Tests:

Test Setup for Transmitter Radiated Emissions:

Page 14 of 30 UL International (UK) Ltd

4. Test Results

4.1. Transmitter Minimum 6 dB Bandwidth

Test Summary:

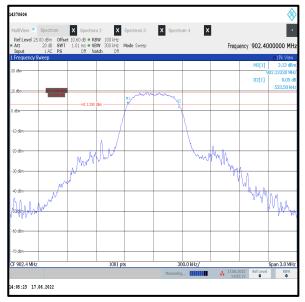
Test Engineer:	Jose Bayona	Test Date:	17 June 2022
Test Sample Serial Number:	GE9922068000		

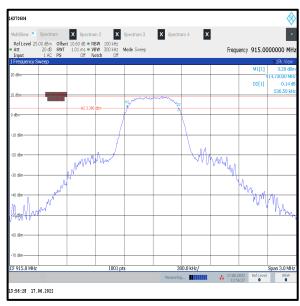
FCC Reference:	Part 15.247(a)(2)
ISED Canada Reference:	RSS-Gen 6.7 / RSS-247 5.2(a)
Test Method Used:	FCC KDB 558074 Section 8.2 referencing ANSI C63.10 Section 11.8.1

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	46

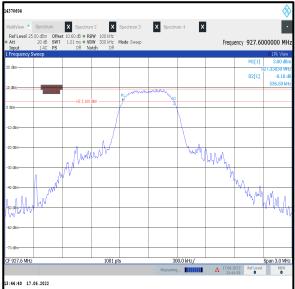
Note(s):


- 6 dB DTS bandwidth tests were performed using a test receiver in accordance with ANSI C63.10 Section 11.8.1 Option 1 measurement procedure. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The DTS bandwidth was measured at 6 dB down from the peak of the signal.
- 2. The test receiver was connected to the RF port on the EUT using suitable attenuation and RF cable.


UL International (UK) Ltd Page 15 of 30

Transmitter Minimum 6 dB Bandwidth (continued)

Results:


Channel	6 dB Bandwidth (kHz)	Limit (kHz)	Margin (kHz)	Result
Bottom	533.500	≥500	33.500	Complied
Middle	536.500	≥500	36.500	Complied
Тор	536.500	≥500	36.500	Complied

Bottom Channel

Middle Channel

Top Channel

Page 16 of 30 UL International (UK) Ltd

4.2. Transmitter 99% Occupied Bandwidth

Test Summary:

Test Engineer:	Jose Bayona	Test Date:	17 June 2022
Test Sample Serial Number:	GE9922068000		

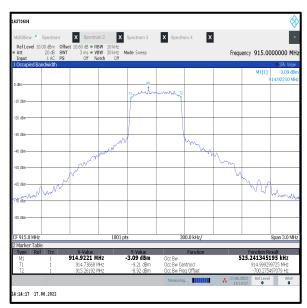
FCC Reference:	N/A
ISED Canada Reference:	RSS-Gen 6.7
Test Method Used:	RSS-Gen 6.7

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	46

Note(s):

- 1. The 99% emission bandwidth was measured using the test receiver's occupied bandwidth function. The resolution bandwidth was set in the range of 1% to 5% of the occupied bandwidth and the video bandwidth set to 3 times the resolution bandwidth. The span was set to capture all products of the modulation process including emission skirts.
- 2. The test receiver's resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 3 MHz.
- 3. The test receiver was connected to the RF port on the EUT using suitable attenuation and RF cable.


UL International (UK) Ltd Page 17 of 30

Transmitter 99% Occupied Bandwidth (continued)

Results:

Channel	99% Occupied Bandwidth (kHz)
Bottom	525.021
Middle	525.241
Тор	525.054

Bottom Channel

Middle Channel

Top Channel

Page 18 of 30 UL International (UK) Ltd

4.3. Transmitter Maximum Peak Output Power

Test Summary:

Test Engineer:	Jose Bayona	Test Date:	17 June 2022
Test Sample Serial Number:	GE9922068000		

FCC Reference:	Part 15.247(b)(3)
ISED Canada Reference:	RSS-Gen 6.12 / RSS-247 5.4(d)
Test Method Used:	FCC KDB 558074 Section 8.3.1.1 referencing ANSI C63.10 Section 11.9.1.1

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	46

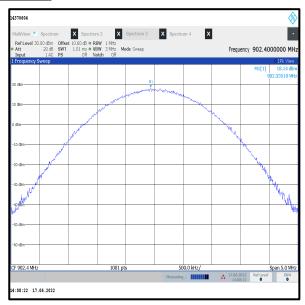
Note(s):

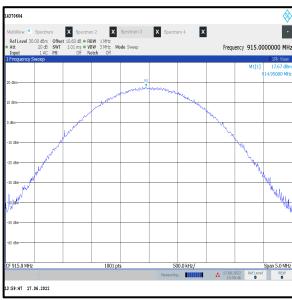
- 1. 1. Conducted power tests were performed using a signal analyser in accordance with ANSI C63.10 Section 11.9.1.1 with the RBW ≥ DTS bandwidth procedure.
- 2. The signal analyser resolution bandwidth was set to 1 MHz and video bandwidth of 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 5 MHz. A marker was placed at the peak of the signal and the results recorded in the tables below.
- The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable. An RF level offset was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.
- 4. The conducted power was added to the declared antenna gain to obtain the EIRP.

UL International (UK) Ltd Page 19 of 30

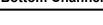
Transmitter Maximum Peak Output Power (continued)

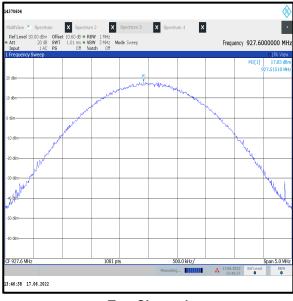
Results:


Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	18.1	30.0	11.9	Complied
Middle	17.7	30.0	12.3	Complied
Тор	17.8	30.0	12.2	Complied


Channel	Conducted Peak Power (dBm)	Measured Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	18.1	3.47	21.6	36.0	14.4	Complied
Middle	17.7	3.47	21.2	36.0	14.8	Complied
Тор	17.8	3.47	21.3	36.0	14.7	Complied

Page 20 of 30 UL International (UK) Ltd


Transmitter Maximum Peak Output Power (continued)


Results:

Bottom Channel

Top Channel

Middle Channel

UL International (UK) Ltd Page 21 of 30

ISSUE DATE: 02 NOVEMBER 2022

4.4. Transmitter Power Spectral Density

Test Summary:

Test Engineer:	Jose Bayona	Test Date:	17 June 2022
Test Sample Serial Number:	GE9922068000		

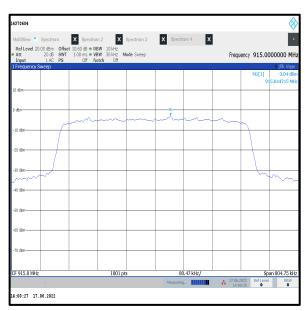
FCC Reference:	Part 15.247(e)
ISED Canada Reference:	RSS-247 5.2(b)
Test Method Used:	FCC KDB 558074 Section 8.4 referencing ANSI C63.10 Section 11.10.2

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	46

Note(s):

- 1. Transmitter Power Spectral Density tests were performed using a signal analyser in accordance with ANSI C63.10 Section 11.10.2.
- 2. The signal analyser resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz. A Peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 1.5 times the measured DTS bandwidth. A marker was placed at the peak of the signal and the results recorded in the table below.
- 3. The signal analyser was connected to the RF port on the EUT using suitable attenuation and RF cable. An RF level offset was entered on the signal analyser to compensate for the loss of the attenuator and RF cable.


Page 22 of 30 UL International (UK) Ltd

Transmitter Power Spectral Density (continued)

Results:

Channel	PSD (dBm / 10 kHz)	Limit (dBm / 3 kHz)	Margin (dB)	Result
Bottom	-2.4	8.0	10.4	Complied
Middle	-3.0	8.0	11.0	Complied
Тор	-3.0	8.0	11.0	Complied

Bottom Channel

Middle Channel

Top Channel

UL International (UK) Ltd Page 23 of 30

VERSION 2.0

ISSUE DATE: 02 NOVEMBER 2022

4.5. Transmitter Radiated Emissions <1 GHz

Test Summary:

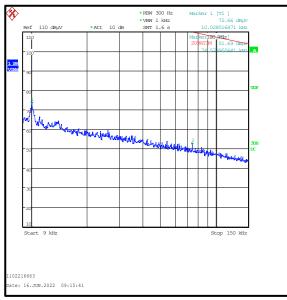
Test Engineer:	John Ferdinand	Test Dates:	15 June 2022 to 16 June 2022
Test Sample Serial Number:	GE9922068000		

FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-Gen 6.13 / RSS-247 5.5
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.5
Frequency Range	9 kHz to 1000 MHz

Environmental Conditions:

Temperature (°C):	23 to 24
Relative Humidity (%):	43 to 44

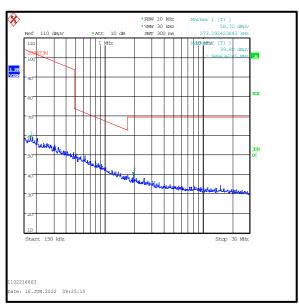
Note(s):


- 1. The emission at 915.0 MHz shown on the 30 MHz to 1 GHz plot is the EUT fundamental.
- 2. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 3. Measurements below 30 MHz were performed in a semi-anechoic chamber (Asset Number K0001) at 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Limits below 30 MHz are specified at a test distance of 30 metres, whilst below 0.49 MHz they are specified at a test distance of 300 metres. However, as specified by FCC Section 15.31 (f)(2), measurements may be performed at a closer distance and the measured level corrected to the specified measurement distance by using the square of an inverse linear distance extrapolation factor (40dB/decade).
- 4. Measurements between 30 MHz to 1 GHz were performed in a semi-anechoic chamber (Asset Number K0017) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the middle channel only.
- The emissions observed between 9 kHz to 30 MHz on the pre-scan plots were investigated and found to be ambient emissions.
- 7. The plots below display an incorrect job number.

Page 24 of 30 UL International (UK) Ltd

Transmitter Radiated Emissions (continued)

Results:


Frequency (MHz)	Antenna Polarity	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
500.000	Vertical	26.4	46.0	19.6	Complied
549.998	Vertical	24.2	46.0	21.8	Complied
614.196	Vertical	26.2	46.0	19.8	Complied

9 kHz to 150 kHz / peak detector / measured in a semi-anechoic chamber at 3 metres

30 MHz to 1 GHz / peak detector / measured in a semianechoic chamber at 3 metres

150 kHz to 30 MHz / peak detector / in a semianechoic chamber at 3 metres

UL International (UK) Ltd Page 25 of 30

ISSUE DATE: 02 NOVEMBER 2022

4.6. Transmitter Radiated Emissions >1 GHz

Test Summary:

Test Engineer:	John Ferdinand	Test Date:	15 June 2022
Test Sample Serial Number:	GE9922068000		

FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-Gen 6.13 & 8.9 / RSS-247 5.5
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.6
Frequency Range	1 GHz to 9.3 GHz

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	44

Note(s):

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. All other emissions shown on the pre-scan plots were investigated and found to be ambient, >20 dB below the applicable limit or below the measurement system noise floor.
- 3. Measurements above 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 4. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their respective detectors during the pre-scan measurements.
- 5. *In accordance with ANSI C63.10 Section 6.6.4.3, Note 1, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 6. ** -30 dBc limit.
- 7. The plots below display an incorrect job number.

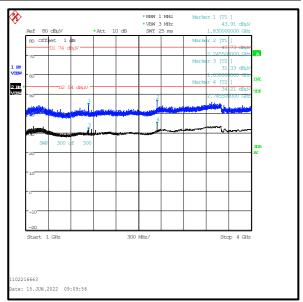
Page 26 of 30 UL International (UK) Ltd

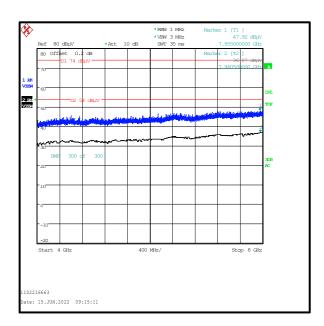
Transmitter Radiated Emissions (continued

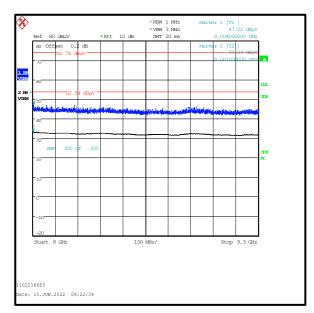
Results: Bottom Channel

Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
1804.758	Vertical	36.5	68.6**	32.1	Complied
2706.988	Vertical	52.1	54.0*	1.9	Complied

Results: Middle Channel


Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
1830.039	Vertical	37.8	72.7**	34.9	Complied
2745.180	Vertical	50.4	54.0*	3.6	Complied


Results: Top Channel


Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
1855.203	Vertical	35.8	66.2**	30.4	Complied
2783.328	Vertical	50.6	54.0*	3.4	Complied

UL International (UK) Ltd Page 27 of 30

Transmitter Radiated Emissions (continued)

Note: These plots are prescans and for indication purposes only. For final measurements, see accompanying tables.

Page 28 of 30 UL International (UK) Ltd

4.7. Transmitter Band Edge Radiated Emissions

Test Summary:

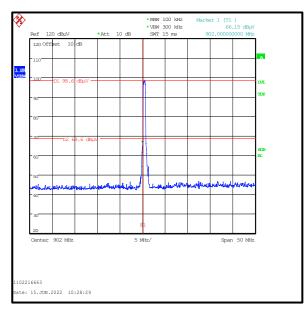
Test Engineer:	John Ferdinand	Test Date:	15 June 2022
Test Sample Serial Number:	GE9922068000		

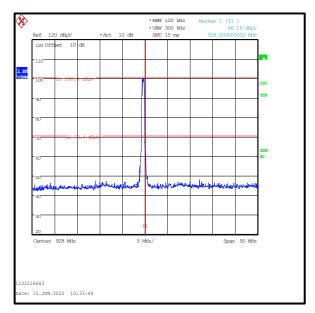
FCC Reference:	Parts 15.247(d) & 15.209(a)
ISED Canada Reference:	RSS-Gen 6.13 / RSS-247 5.5
Test Method Used:	ANSI C63.10 Section 6.10

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	44

Note(s):


- 1. The final measured value, for the given emissions, in the tables below incorporates the calibrated antenna factor and cable loss.
- 2. As both band edges are adjacent to non-restricted bands, only peak measurements are required. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.


UL International (UK) Ltd Page 29 of 30

Transmitter Band Edge Radiated Emissions (continued)

Results:

Frequency (MHz)	Peak Level (dBµV/m)	-30 dBc Limit (dBµV/m)	Margin (dB)	Result
902.000	66.2	68.6	2.4	Complied
928.000	66.2	70.4	4.2	Complied

Lower Band Edge / Bottom Channel

Upper Band Edge / Top Channel

--- END OF REPORT ---

Page 30 of 30 UL International (UK) Ltd