

# **RADIO TEST REPORT**

S

\$

# Report No:STS1806136W03

Issued for

KINGTA TECHNOLOGY CO., LTD

4F, Building 2, HaoJingDa Science Park, Shangmugu, Shenzhen, China

| Product Name:  | Bluetooth Speaker                             |
|----------------|-----------------------------------------------|
| Brand Name:    | N/A                                           |
| Model Name:    | A1                                            |
| Series Model:  | TY-WSP100,TY-WSP101,BLG-SUBMARINE,<br>TE1-SUB |
| FCC ID:        | N7KA1                                         |
| Test Standard: | FCC Part 15.247                               |

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL





Page 2 of 71

Report No.: STS1806136W03

# **TEST RESULT CERTIFICATION**

| Applicant'sname     | KINGTA TECHNOLOGY CO., LTD                                          |
|---------------------|---------------------------------------------------------------------|
| Address             | 4F, Building 2, HaoJingDa Science Park,Shangmugu,Shenzhen,<br>China |
| Manufacture's Name: | KINGTA TECHNOLOGY CO., LTD                                          |
| Address             | 4F, Building 2, HaoJingDa Science Park,Shangmugu,Shenzhen,<br>China |
| Product description |                                                                     |
| Product Name:       | Bluetooth Speaker                                                   |
| Brand Name:         | N/A                                                                 |
| Model Name:         | A1                                                                  |
| Series Model:       | TY-WSP100, TY-WSP101, BLG-SUBMARINE, TE1-SUB                        |
| Test Standards      | FCC Part15.247                                                      |
| Test procedure      | : ANSI C63.10-2013                                                  |

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document...

Date of Test.....

Date (s) of performance of tests .: 14 June 2018 ~21 June 2018

Date of Issue .....: 22 June 2018

Test Result ..... Pass

Testing Engineer

(Chris chen)

Technical Manager

(Sean she)



Authorized Signatory :

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 3 of 71

Report No.: STS1806136W03



| Table of Contents                                           | Page |
|-------------------------------------------------------------|------|
| 1. SUMMARY OF TEST RESULTS                                  | 6    |
| 1.1 TEST FACTORY                                            | 7    |
| 1.2 MEASUREMENT UNCERTAINTY                                 | 7    |
| 2. GENERAL INFORMATION                                      | 8    |
| 2.1 GENERAL DESCRIPTION OF EUT                              | 8    |
| 2.2 DESCRIPTION OF TEST MODES                               | 10   |
| 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING            | 10   |
| 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 11   |
| 2.5 DESCRIPTION OF SUPPORT UNITS                            | 12   |
| 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS                      | 13   |
| 3. EMC EMISSION TEST                                        | 15   |
| 3.1 CONDUCTED EMISSION MEASUREMENT                          | 15   |
| 3.2 RADIATED EMISSION MEASUREMENT                           | 19   |
| 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION                  | 31   |
| 4.1 REQUIREMENT                                             | 31   |
| 4.2 TEST PROCEDURE                                          | 31   |
| 4.3 TEST SETUP                                              | 31   |
| 4.4 EUT OPERATION CONDITIONS                                | 31   |
| 4.5 TEST RESULTS                                            | 32   |
| 5. NUMBER OF HOPPING CHANNEL                                | 44   |
| 5.1 APPLIED PROCEDURES / LIMIT                              | 44   |
| 5.2 TEST PROCEDURE                                          | 44   |
| 5.3 TEST SETUP                                              | 44   |
| 5.4 EUT OPERATION CONDITIONS                                | 44   |
| 5.5 TEST RESULTS                                            | 45   |
| 6. AVERAGE TIME OF OCCUPANCY                                | 46   |
| 6.1 APPLIED PROCEDURES / LIMIT                              | 46   |
| 6.2 TEST PROCEDURE                                          | 46   |
| 6.3 TEST SETUP                                              | 46   |
| 6.4 EUT OPERATION CONDITIONS                                | 46   |
| 6.5 TEST RESULTS                                            | 47   |
| 7. HOPPING CHANNEL SEPARATION MEASUREMEN                    | 53   |
| 7.1 APPLIED PROCEDURES / LIMIT                              | 53   |

Page 4 of 71

Report No.: STS1806136W03



| Table of Contents              | Page |
|--------------------------------|------|
| 7.2 TEST PROCEDURE             | 53   |
| 7.3 TEST SETUP                 | 53   |
| 7.4 EUT OPERATION CONDITIONS   | 53   |
| 7.5 TEST RESULTS               | 54   |
| 8. BANDWIDTH TEST              | 60   |
| 8.1 APPLIED PROCEDURES / LIMIT | 60   |
| 8.2 TEST PROCEDURE             | 60   |
| 8.3 TEST SETUP                 | 60   |
| 8.4 EUT OPERATION CONDITIONS   | 60   |
| 8.5 TEST RESULTS               | 61   |
| 9. OUTPUT POWER TEST           | 67   |
| 9.1 APPLIED PROCEDURES / LIMIT | 67   |
| 9.2 TEST PROCEDURE             | 67   |
| 9.3 TEST SETUP                 | 67   |
| 9.4 EUT OPERATION CONDITIONS   | 67   |
| 9.5 TEST RESULTS               | 68   |
| 10. ANTENNA REQUIREMENT        | 69   |
| 10.1 STANDARD REQUIREMENT      | 69   |
| 10.2 EUT ANTENNA               | 69   |
|                                |      |

=#



Page 5 of 71

Report No.: STS1806136W03

# **Revision History**

| Rev. | Issue Date   | Report NO.    | Effect Page | Contents      |
|------|--------------|---------------|-------------|---------------|
| 00   | 22 June 2018 | STS1806136W03 | ALL         | Initial Issue |
|      |              |               |             |               |



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: DA 00-705

| FCC Part 15.247,Subpart C     |                                            |          |        |  |
|-------------------------------|--------------------------------------------|----------|--------|--|
| Standard<br>Section           | Test Item                                  | Judgment | Remark |  |
| 15.207                        | Conducted Emission                         | PASS     |        |  |
| 15.247(a)(1)                  | Hopping Channel Separation                 | PASS     |        |  |
| 15.247(a)(1)&(b)(1)           | Output Power                               | PASS     |        |  |
| 15.247(d)                     | Radiated Spurious Emission                 | PASS     |        |  |
| 15.247(d)                     | Conducted Spurious & Band Edge<br>Emission | PASS     |        |  |
| 15.247(a)(iii)                | Number of Hopping Frequency                | PASS     |        |  |
| 15.247(a)(iii)                | Dwell Time                                 | PASS     |        |  |
| 15.247(a)(1)                  | Bandwidth                                  | PASS     |        |  |
| 15.205                        | Restricted Band Edge Emission PA           |          |        |  |
| Part 15.247(d)/part 15.209(a) | Band Edge Emission PASS                    |          |        |  |
| 15.203                        | Antenna Requirement                        | PASS     |        |  |

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.



1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China CNAS Registration No.: L7649; FCC Registration No.: 625569 IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

## **1.2 MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement  $y \pm U$  · where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2** · providing a level of confidence of approximately **95** % °

Page 7 of 71

| No. | Item                                     | Uncertainty |
|-----|------------------------------------------|-------------|
| 1   | Conducted Emission (9KHz-150KHz)         | ±2.88dB     |
| 2   | Conducted Emission (150KHz-30MHz)        | ±2.67dB     |
| 3   | RF power,conducted                       | ±0.71dB     |
| 4   | Spurious emissions, conducted            | ±0.63dB     |
| 5   | All emissions,radiated (9KHz-30MHz)      | ±3.02dB     |
| 6   | All emissions,radiated (30MHz-200MHz)    | ±3.80dB     |
| 7   | All emissions, radiated (200MHz-1000MHz) | ±3.97dB     |
| 8   | All emissions,radiated(>1G)              | ±3.03dB     |

Shenzhen STS Test Services Co., Ltd.



# 2. GENERAL INFORMATION

# 2.1 GENERAL DESCRIPTION OF EUT

| Product Name            | Bluetooth Speaker                                                                       |
|-------------------------|-----------------------------------------------------------------------------------------|
| Trade Name              | N/A                                                                                     |
| Model Name              | A1                                                                                      |
| Series Model            | TY-WSP100,TY-WSP101,BLG-SUBMARINE,TE1-SUB                                               |
| Model Difference        | Only different in model name                                                            |
| Channel List            | Please refer to the Note 2.                                                             |
| Bluetooth               | Frequency:2402 – 2480 MHz<br>Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps),<br>8DPSK(3Mbps) |
| Battery                 | Battery(rating):<br>Rated Voltage: 3.7V<br>Charge Limit: 4.2V<br>Capacity: 2000mAh      |
| Hardware version number | A1-3254-8326C-MAIN V4                                                                   |
| Software version number | 2527                                                                                    |
| Connecting I/O Port(s)  | Please refer to the User's Manual                                                       |

#### Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page 9 of 71



2.

|         |                    | Chanr   | nel List           |         |                    |
|---------|--------------------|---------|--------------------|---------|--------------------|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 00      | 2402               | 27      | 2429               | 54      | 2456               |
| 01      | 2403               | 28      | 2430               | 55      | 2457               |
| 02      | 2404               | 29      | 2431               | 56      | 2458               |
| 03      | 2405               | 30      | 2432               | 57      | 2459               |
| 04      | 2406               | 31      | 2433               | 58      | 2460               |
| 05      | 2407               | 32      | 2434               | 59      | 2461               |
| 06      | 2408               | 33      | 2435               | 60      | 2462               |
| 07      | 2409               | 34      | 2436               | 61      | 2463               |
| 08      | 2410               | 35      | 2437               | 62      | 2464               |
| 09      | 2411               | 36      | 2438               | 63      | 2465               |
| 10      | 2412               | 37      | 2439               | 64      | 2466               |
| 11      | 2413               | 38      | 2440               | 65      | 2467               |
| 12      | 2414               | 39      | 2441               | 66      | 2468               |
| 13      | 2415               | 40      | 2442               | 67      | 2469               |
| 14      | 2416               | 41      | 2443               | 68      | 2470               |
| 15      | 2417               | 42      | 2444               | 69      | 2471               |
| 16      | 2418               | 43      | 2445               | 70      | 2472               |
| 17      | 2419               | 44      | 2446               | 71      | 2473               |
| 18      | 2420               | 45      | 2447               | 72      | 2474               |
| 19      | 2421               | 46      | 2448               | 73      | 2475               |
| 20      | 2422               | 47      | 2449               | 74      | 2476               |
| 21      | 2423               | 48      | 2450               | 75      | 2477               |
| 22      | 2424               | 49      | 2451               | 76      | 2478               |
| 23      | 2425               | 50      | 2452               | 77      | 2479               |
| 24      | 2426               | 51      | 2453               | 78      | 2480               |
| 25      | 2427               | 52      | 2454               |         |                    |
| 26      | 2428               | 53      | 2455               |         |                    |

# 3. Table for Filed Antenna

| Ant | Brand | Model<br>Name | Antenna Type | Connector | Gain (dBi) | NOTE          |
|-----|-------|---------------|--------------|-----------|------------|---------------|
| 1   | N/A   | A1            | PCB Antenna  | N/A       | 0          | BT<br>Antenna |

F



## 2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Description | Data Rate/Modulation                                                                                                                                                                                                                                    |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TX CH00     | 1Mbps/GFSK                                                                                                                                                                                                                                              |  |
| TX CH39     | 1Mbps/GFSK                                                                                                                                                                                                                                              |  |
| TX CH78     | 1Mbps/GFSK                                                                                                                                                                                                                                              |  |
| TX CH00     | 2 Mbps/π/4-DQPSK                                                                                                                                                                                                                                        |  |
| TX CH39     | 2 Mbps/π/4-DQPSK                                                                                                                                                                                                                                        |  |
| TX CH78     | 2 Mbps/π/4-DQPSK                                                                                                                                                                                                                                        |  |
| TX CH00     | 3 Mbps/8DPSK                                                                                                                                                                                                                                            |  |
| TX CH39     | 3 Mbps/8DPSK                                                                                                                                                                                                                                            |  |
| TX CH78     | 3 Mbps/8DPSK                                                                                                                                                                                                                                            |  |
|             | TX CH00         TX CH39         TX CH78         TX CH00         TX CH39         TX CH39         TX CH78         TX CH78         TX CH78         TX CH78         TX CH78         TX CH78         TX CH39         TX CH78         TX CH00         TX CH39 |  |

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz

and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report

#### For AC Conducted Emission

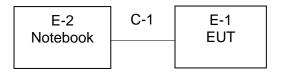
|              | Test Case               |
|--------------|-------------------------|
| AC Conducted | Mode 10 : Keeping BT TX |
| Emission     |                         |

# 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

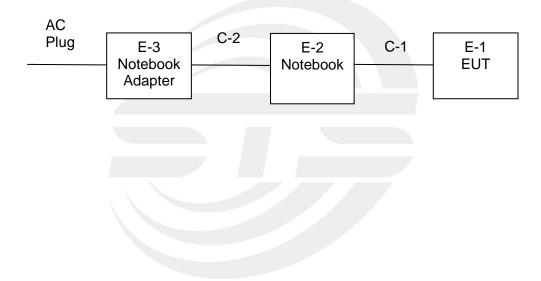
During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

| Test software Version                             | Test program: Bluetooth                                             |                                                                     |                                                                     |  |  |
|---------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Frequency                                         | 2402 MHz 2441 MHz 2480 MHz                                          |                                                                     |                                                                     |  |  |
| (Power control software)<br>Parameters(1/2/3Mbps) | Power class:<br>1 M rate:4:27<br>2 M rate:11:183<br>3 M rate:15:339 | Power class:<br>1 M rate:4:27<br>2 M rate:11:183<br>3 M rate:15:339 | Power class:<br>1 M rate:4:27<br>2 M rate:11:183<br>3 M rate:15:339 |  |  |




Page 11 of 71

Report No.: STS1806136W03


#### 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Radiated Spurious EmissionTest



# Conducted Emission Test



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment        | Mfr/Brand | Model/Type No. | Serial<br>No. | Note |
|------|------------------|-----------|----------------|---------------|------|
| E-2  | Notebook         | HP        | 500-320cx      | N/A           | N/A  |
| E-3  | Notebook Adapter | HP        | HSTNN-CA15     | N/A           | N/A  |
|      |                  |           |                |               |      |
|      |                  |           |                |               |      |

| Item | Shielded Type | Ferrite Core | Length | Note |
|------|---------------|--------------|--------|------|
| C-1  | USB Cable     | NO           | 100cm  | N/A  |
| C-2  | DC Cable      | NO           | 90cm   | N/A  |
|      |               |              |        |      |

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <sup>r</sup> Length <sup>a</sup> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".



# 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

#### Radiation Test equipment

| Kind of Equipment                   | Manufacturer | Type No.     | Serial No. | Last calibration | Calibrated until |  |  |
|-------------------------------------|--------------|--------------|------------|------------------|------------------|--|--|
| EMI Test Receiver                   | R&S          | ESCI         | 102086     | 2017.10.15       | 2018.10.14       |  |  |
| Bilog Antenna                       | TESEQ        | CBL6111D     | 34678      | 2017.11.02       | 2018.11.01       |  |  |
| Horn Antenna                        | Schwarzbeck  | BBHA 9120D   | 9120D-1343 | 2017.10.27       | 2018.10.26       |  |  |
| SHF-EHF Horn<br>Antenna (18G-40GHz) | A-INFO       | LB-180400-KF | N/A        | 2018.03.11       | 2019.03.10       |  |  |
| Temperature &<br>Humitidy           | HH660        | Mieo         | N/A        | 2017.10.15       | 2018.10.14       |  |  |
| Temperature &<br>Humitidy           | HH660        | Mieo         | N/A        | 2017.10.15       | 2018.10.14       |  |  |
| Pre-mplifier<br>(0.1M-3GHz)         | EM           | EM330        | 60538      | 2018.03.11       | 2019.03.10       |  |  |
| PreAmplifier<br>(1G-26.5GHz)        | Agilent      | 8449B        | 60538      | 2017.10.15       | 2018.10.14       |  |  |
| Passive Loop<br>(9K30MHz)           | ZHNAN        | ZN3090C      | 16035      | 2018.03.11       | 2019.03.10       |  |  |
| Low frequency cable                 | EM           | R01          | N/A        | 2018.03.11       | 2019.03.10       |  |  |
| Low frequency cable                 | EM           | R06          | N/A        | 2018.03.11       | 2019.03.10       |  |  |
| High frequency cable                | SCHWARZBECK  | R04          | N/A        | 2018.03.11       | 2019.03.10       |  |  |
| High frequency cable                | SCHWARZBECK  | R02          | N/A        | 2018.03.11       | 2019.03.10       |  |  |
| Semi-anechoic<br>chamber            | Changling    | 966          | N/A        | 2017.10.15       | 2018.10.14       |  |  |
| trun table                          | EM           | SC100_1      | 60531      | N/A              | N/A              |  |  |
| Antnna mast                         | EM           | SC100        | N/A        | N/A              | N/A              |  |  |
| Max-full Antenna Corp               | MF           | MFA-440H     | N/A        | N/A              | N/A              |  |  |

#### Conduction Test equipment

| Kind of Equipment         | Manufacturer | Type No. | Serial No. | Last calibration | Calibrated until |
|---------------------------|--------------|----------|------------|------------------|------------------|
| Test Receiver             | R&S          | ESCI     | 101427     | 2017.10.15       | 2018.10.14       |
| LISN                      | R&S          | ENV216   | 101242     | 2017.10.15       | 2018.10.14       |
| conduction Cable          | EM           | C01      | N/A        | 2018.03.11       | 2019.03.10       |
| Temperature &<br>Humitidy | Mieo         | HH660    | N/A        | 2017.10.15       | 2018.10.14       |

# Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



# Page 14 of 71

#### Report No.: STS1806136W03

#### **RF** Connected Test

| Kind of Equipment   | Manufacturer | Type No. | Serial No.    | Last calibration | Calibrated until |
|---------------------|--------------|----------|---------------|------------------|------------------|
| USB RF power sensor | DARE         | RPR3006W | 15100041SNO03 | 2017.10.15       | 2018.10.14       |
| Power Meter         | R&S          | NRP      | 100510        | 2017.10.15       | 2018.10.14       |
| Spectrum Analyzer   | Agilent      | N9020A   | MY51110105    | 2018.03.08       | 2019.03.07       |
| Signal Analyzer     | Agilent      | N9020A   | MY49100060    | 2017.10.15       | 2018.10.14       |



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 15 of 71



#### **3. EMC EMISSION TEST**

# 3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

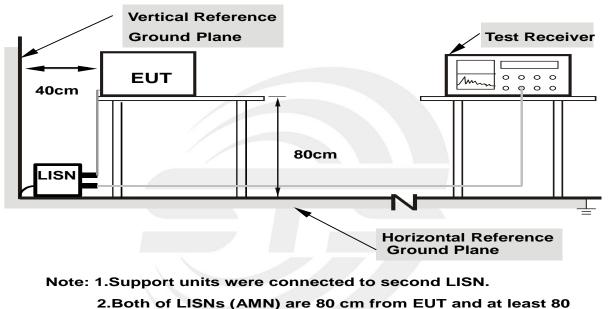
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

| FREQUENCY (MHz) | Conducted Emissionlimit (dBuV) |           |  |
|-----------------|--------------------------------|-----------|--|
|                 | Quasi-peak                     | Average   |  |
| 0.15 -0.5       | 66 - 56 *                      | 56 - 46 * |  |
| 0.50 -5.0       | 56.00                          | 46.00     |  |
| 5.0 -30.0       | 60.00                          | 50.00     |  |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


| Receiver Parameters | Setting  |  |  |
|---------------------|----------|--|--|
| Attenuation         | 10 dB    |  |  |
| Start Frequency     | 0.15 MHz |  |  |
| Stop Frequency      | 30 MHz   |  |  |
| IF Bandwidth        | 9 kHz    |  |  |

Page 16 of 71



# 3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.



#### 3.1.3 TEST SETUP

#### 3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

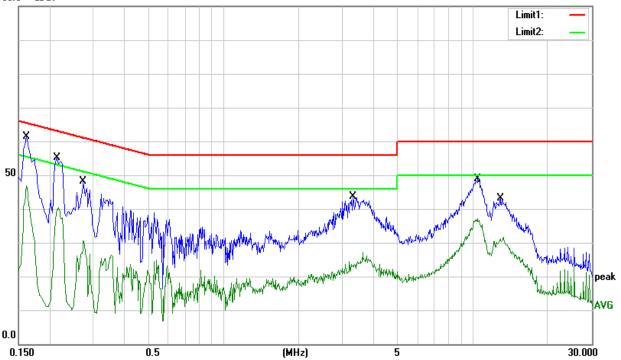
from other units and other metal planes

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 3.1.5 TEST RESULT

| Temperature:  | <b>25.5℃</b> | Relative Humidity: | 63% |
|---------------|--------------|--------------------|-----|
| Test Voltage: | AC 120V/60Hz | Phase:             | L   |
| Test Mode:    | Mode 10      |                    |     |


| Frequency | Reading | Correct    | Result | Limit  | Margin | Demeril |
|-----------|---------|------------|--------|--------|--------|---------|
| (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   | Remark  |
| 0.1620    | 51.47   | 9.79       | 61.26  | 65.36  | -4.10  | QP      |
| 0.1620    | 37.02   | 9.79       | 46.81  | 55.36  | -8.55  | AVG     |
| 0.2140    | 45.25   | 9.84       | 55.09  | 63.05  | -7.96  | QP      |
| 0.2140    | 30.57   | 9.84       | 40.41  | 53.05  | -12.64 | AVG     |
| 0.2740    | 37.98   | 10.11      | 48.09  | 61.00  | -12.91 | QP      |
| 0.2740    | 20.48   | 10.11      | 30.59  | 51.00  | -20.41 | AVG     |
| 3.2980    | 33.83   | 9.82       | 43.65  | 56.00  | -12.35 | QP      |
| 3.2980    | 13.40   | 9.82       | 23.22  | 46.00  | -22.78 | AVG     |
| 10.4940   | 38.64   | 10.21      | 48.85  | 60.00  | -11.15 | QP      |
| 10.4940   | 26.07   | 10.21      | 36.28  | 50.00  | -13.72 | AVG     |
| 12.9020   | 32.85   | 10.22      | 43.07  | 60.00  | -16.93 | QP      |
| 12.9020   | 20.08   | 10.22      | 30.30  | 50.00  | -19.70 | AVG     |

#### Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor )–Limit

100.0 dBu¥



Shenzhen STS Test Services Co., Ltd.

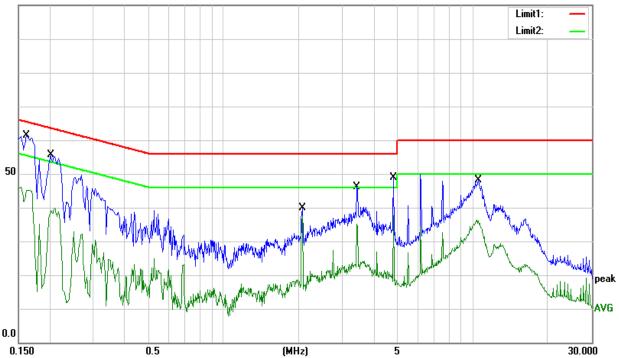
 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Page 18 of 71

Report No.: STS1806136W03


| Temperature:  | <b>23.5</b> ℃ | Relative Humidity: | 63% |
|---------------|---------------|--------------------|-----|
| Test Voltage: | AC 120V/60Hz  | Phase:             | N   |
| Test Mode:    | Mode 10       |                    |     |

| Frequency | Reading | Correct    | Result | Limit  | Margin | Remark |
|-----------|---------|------------|--------|--------|--------|--------|
| (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   | Remark |
| 0.1620    | 51.52   | 9.79       | 61.31  | 65.36  | -4.05  | QP     |
| 0.1620    | 35.24   | 9.79       | 45.03  | 55.36  | -10.33 | AVG    |
| 0.2020    | 45.93   | 9.79       | 55.72  | 63.53  | -7.81  | QP     |
| 0.2020    | 29.20   | 9.79       | 38.99  | 53.53  | -14.54 | AVG    |
| 2.0660    | 30.14   | 9.79       | 39.93  | 56.00  | -16.07 | QP     |
| 2.0660    | 27.85   | 9.79       | 37.64  | 46.00  | -8.36  | AVG    |
| 3.4300    | 36.23   | 9.82       | 46.05  | 56.00  | -9.95  | QP     |
| 3.4300    | 25.38   | 9.82       | 35.20  | 46.00  | -10.80 | AVG    |
| 4.8060    | 39.06   | 9.85       | 48.91  | 56.00  | -7.09  | QP     |
| 4.8060    | 27.86   | 9.85       | 37.71  | 46.00  | -8.29  | AVG    |
| 10.5460   | 37.89   | 10.21      | 48.10  | 60.00  | -11.90 | QP     |
| 10.5460   | 24.98   | 10.21      | 35.19  | 50.00  | -14.81 | AVG    |

## Remark:

All readings are Quasi-Peak and Average values.
 Margin = Result (Result = Reading + Factor )–Limit

100.0 dBuV



1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 3.2 RADIATED EMISSION MEASUREMENT

# 3.2.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

# LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

| FREQUENCY (MHz) | (dBuV/m) (at 3M) |         |  |
|-----------------|------------------|---------|--|
|                 | PEAK             | AVERAGE |  |
| Above 1000      | 74               | 54      |  |

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### For Radiated Emission

| Spectrum Parameter              | Setting                         |
|---------------------------------|---------------------------------|
| Attenuation                     | Auto                            |
| Detector                        | Peak                            |
| Start Frequency                 | 1000 MHz(Peak/AV)               |
| Stop Frequency                  | 10th carrier hamonic(Peak/AV)   |
| RB / VB (emission in restricted |                                 |
| band)                           | PK=1MHz / 1MHz, AV=1 MHz /10 Hz |

#### For Band edge

| Spectrum Parameter                    | Setting                           |  |
|---------------------------------------|-----------------------------------|--|
| Detector                              | Peak                              |  |
|                                       | Lower Band Edge: 2300 to 2403 MHz |  |
| Start/Stop Frequency                  | Upper Band Edge: 2479 to 2500 MHz |  |
| RB / VB (emission in restricted band) | PK=1MHz / 1MHz, AV=1 MHz / 10 Hz  |  |

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Page 20 of 71

Report No.: STS1806136W03

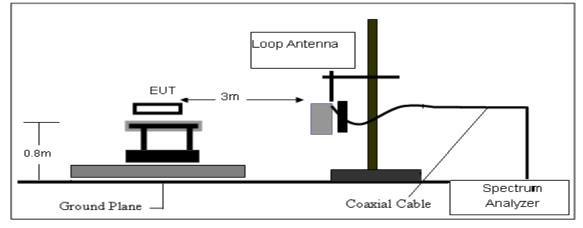
| Receiver Parameter     | Setting                              |
|------------------------|--------------------------------------|
| Attenuation            | Auto                                 |
| Start ~ Stop Frequency | 9kHz~90kHz / RB 200Hz for PK & AV    |
| Start ~ Stop Frequency | 90kHz~110kHz / RB 200Hz for QP       |
| Start ~ Stop Frequency | 110kHz~490kHz / RB 200Hz for PK & AV |
| Start ~ Stop Frequency | 490kHz~30MHz / RB 9kHz for QP        |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP     |

#### 3.2.2 TEST PROCEDURE

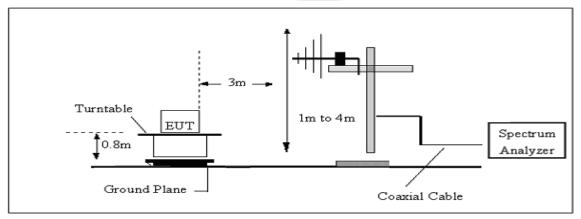
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

# 3.2.3 DEVIATION FROM TEST STANDARD


No deviation






# 3.2.4 TESTSETUP


# (A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz



(C) Radiated Emission Test-Up Frequency Above 1GHz



# 3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Page 22 of 71

# 3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

| Frequency | FS       | RA       | AF   | CL   | AG   | Factor |
|-----------|----------|----------|------|------|------|--------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB) | (dB) | (dB) | (dB)   |
| 300       | 40       | 58.1     | 12.2 | 1.6  | 31.9 | -18.1  |

Factor=AF+CL-AG



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Report No.: STS1806136W03

# 3.2.7 TEST RESULTS

#### (9KHz-30MHz)

| Temperature:  | <b>25.5</b> ℃        | Relative Humidity: | 63%     |
|---------------|----------------------|--------------------|---------|
| Test Voltage: | DC 3.7V from battery | Test Mode:         | TX Mode |

| Freq. | Reading  | Limit    | Margin | State | Toot Docult |
|-------|----------|----------|--------|-------|-------------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   | Test Result |
|       |          |          |        |       | PASS        |
|       |          |          |        |       | PASS        |

#### Note:

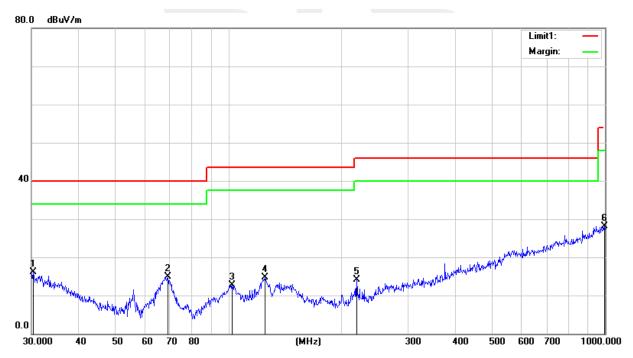
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.






# (30MHz-1000MHz)

| Temperature:  | <b>25.5</b> ℃                                | Relative Humidity: | 62%        |  |
|---------------|----------------------------------------------|--------------------|------------|--|
| Test Voltage: | DC 3.7V from battery                         | Phase:             | Horizontal |  |
| Test Mode:    | Mode 1/2/3/4/5/6/7/8/9(Mode 1-1M worst mode) |                    |            |  |

| Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----------|---------|--------------|----------|----------|--------|--------|
| (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 30.3173   | 27.43   | -11.35       | 16.08    | 40.00    | -23.92 | QP     |
| 69.1141   | 39.00   | -24.12       | 14.88    | 40.00    | -25.12 | QP     |
| 102.3597  | 31.71   | -18.99       | 12.72    | 43.50    | -30.78 | QP     |
| 125.0066  | 32.26   | -17.61       | 14.65    | 43.50    | -28.85 | QP     |
| 219.0753  | 33.28   | -19.18       | 14.10    | 46.00    | -31.90 | QP     |
| 996.4996  | 28.22   | -0.09        | 28.13    | 54.00    | -25.87 | QP     |

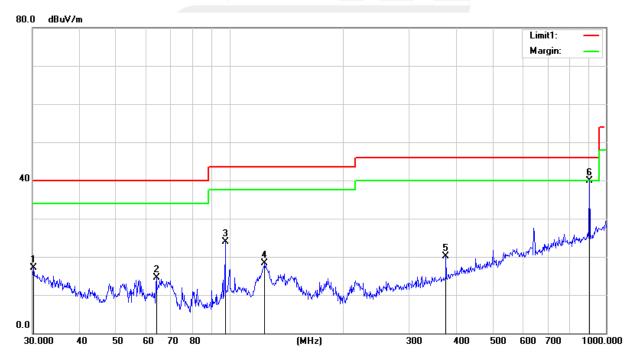
#### Remark:

1. Margin = Result (Result = Reading + Factor )–Limit





# Page 25 of 71


#### Report No.: STS1806136W03

| Temperature:  | <b>25.5</b> ℃               | Relative Humidity: | 62%      |
|---------------|-----------------------------|--------------------|----------|
| Test Voltage: | DC 3.7V from battery        | Phase:             | Vertical |
| Test Mode:    | Mode 1/2/3/4/5/6/7/8/9(Mode | 1-1M worst mode)   |          |

| Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----------|---------|--------------|----------|----------|--------|--------|
| (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 30.2111   | 28.31   | -11.30       | 17.01    | 40.00    | -22.99 | QP     |
| 63.9828   | 38.70   | -24.25       | 14.45    | 40.00    | -25.55 | QP     |
| 97.4560   | 43.32   | -19.44       | 23.88    | 43.50    | -19.62 | QP     |
| 124.1330  | 35.95   | -17.64       | 18.31    | 43.50    | -25.19 | QP     |
| 375.9385  | 32.88   | -12.73       | 20.15    | 46.00    | -25.85 | QP     |
| 903.3094  | 42.03   | -2.14        | 39.89    | 46.00    | -6.11  | QP     |

#### Remark:

1. Margin = Result (Result = Reading + Factor )-Limit





Page 26 of 71

Report No.: STS1806136W03

# (1GHz~25GHz) Restricted band and Spurious emission Requirements

# **GFSK Low Channel**

|           |         |               |       | Antenna         | Corrected       | Emission |          |        |          |            |
|-----------|---------|---------------|-------|-----------------|-----------------|----------|----------|--------|----------|------------|
| Frequency | Reading | Amplifier     | Loss  | Factor          | Factor          | Level    | Limits   | Margin | Detector | Comment    |
| (MHz)     | (dBµV)  | ( <b>dB</b> ) | (dB)  | ( <b>dB/m</b> ) | ( <b>dB</b> )   | (dBµV/m) | (dBµV/m) | (dB)   | Туре     |            |
|           |         |               |       | Low             | Channel (2402 I | MHz)     |          |        |          |            |
| 3264.84   | 49.12   | 44.70         | 6.70  | 28.20           | -9.80           | 39.32    | 74.00    | -34.68 | PK       | Vertical   |
| 3264.84   | 38.53   | 44.70         | 6.70  | 28.20           | -9.80           | 28.73    | 54.00    | -25.27 | AV       | Vertical   |
| 3264.84   | 48.09   | 44.70         | 6.70  | 28.20           | -9.80           | 38.29    | 74.00    | -35.71 | PK       | Horizontal |
| 3264.84   | 38.14   | 44.70         | 6.70  | 28.20           | -9.80           | 28.34    | 54.00    | -25.66 | AV       | Horizontal |
| 4804.44   | 58.25   | 44.20         | 9.04  | 31.60           | -3.56           | 54.69    | 74.00    | -19.31 | PK       | Vertical   |
| 4804.44   | 38.36   | 44.20         | 9.04  | 31.60           | -3.56           | 34.80    | 54.00    | -19.20 | AV       | Vertical   |
| 4804.38   | 59.51   | 44.20         | 9.04  | 31.60           | -3.56           | 55.95    | 74.00    | -18.05 | PK       | Horizontal |
| 4804.38   | 38.91   | 44.20         | 9.04  | 31.60           | -3.56           | 35.35    | 54.00    | -18.65 | AV       | Horizontal |
| 5359.64   | 45.19   | 44.20         | 9.86  | 32.00           | -2.34           | 42.85    | 74.00    | -31.15 | PK       | Vertical   |
| 5359.64   | 37.90   | 44.20         | 9.86  | 32.00           | -2.34           | 35.56    | 54.00    | -18.44 | AV       | Vertical   |
| 5359.57   | 46.25   | 44.20         | 9.86  | 32.00           | -2.34           | 43.91    | 74.00    | -30.09 | PK       | Horizontal |
| 5359.57   | 37.27   | 44.20         | 9.86  | 32.00           | -2.34           | 34.93    | 54.00    | -19.07 | AV       | Horizontal |
| 7205.86   | 50.60   | 43.50         | 11.40 | 35.50           | 3.40            | 54.00    | 74.00    | -20.00 | PK       | Vertical   |
| 7205.86   | 33.97   | 43.50         | 11.40 | 35.50           | 3.40            | 37.37    | 54.00    | -16.63 | AV       | Vertical   |
| 7205.75   | 50.93   | 43.50         | 11.40 | 35.50           | 3.40            | 54.33    | 74.00    | -19.67 | PK       | Horizontal |
| 7205.75   | 33.59   | 43.50         | 11.40 | 35.50           | 3.40            | 36.99    | 54.00    | -17.01 | AV       | Horizontal |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Page 27 of 71

Report No.: STS1806136W03

# **GFSK Mid Channel**

|           |         |           |       | Antenna         | Corrected       | Emission |          |        |          |            |
|-----------|---------|-----------|-------|-----------------|-----------------|----------|----------|--------|----------|------------|
| Frequency | Reading | Amplifier | Loss  | Factor          | Factor          | Level    | Limits   | Margin | Detector |            |
| (MHz)     | (dBµV)  | (dB)      | (dB)  | ( <b>dB/m</b> ) | ( <b>dB</b> )   | (dBµV/m) | (dBµV/m) | (dB)   | Туре     | Comment    |
|           |         |           |       | Mid             | Channel (2441 M | //Hz)    |          |        |          |            |
| 3264.84   | 48.42   | 44.70     | 6.70  | 28.20           | -9.80           | 38.62    | 74.00    | -35.38 | PK       | Vertical   |
| 3264.84   | 39.76   | 44.70     | 6.70  | 28.20           | -9.80           | 29.96    | 54.00    | -24.04 | AV       | Vertical   |
| 3264.84   | 48.38   | 44.70     | 6.70  | 28.20           | -9.80           | 38.58    | 74.00    | -35.42 | PK       | Horizontal |
| 3264.84   | 38.16   | 44.70     | 6.70  | 28.20           | -9.80           | 28.36    | 54.00    | -25.64 | AV       | Horizontal |
| 4882.54   | 58.40   | 44.20     | 9.04  | 31.60           | -3.56           | 54.84    | 74.00    | -19.16 | PK       | Vertical   |
| 4882.54   | 38.29   | 44.20     | 9.04  | 31.60           | -3.56           | 34.73    | 54.00    | -19.27 | AV       | Vertical   |
| 4882.45   | 58.72   | 44.20     | 9.04  | 31.60           | -3.56           | 55.16    | 74.00    | -18.84 | PK       | Horizontal |
| 4882.45   | 38.12   | 44.20     | 9.04  | 31.60           | -3.56           | 34.56    | 54.00    | -19.44 | AV       | Horizontal |
| 5359.64   | 46.34   | 44.20     | 9.86  | 32.00           | -2.34           | 44.00    | 74.00    | -30.00 | PK       | Vertical   |
| 5359.64   | 38.21   | 44.20     | 9.86  | 32.00           | -2.34           | 35.87    | 54.00    | -18.13 | AV       | Vertical   |
| 5359.81   | 45.34   | 44.20     | 9.86  | 32.00           | -2.34           | 43.00    | 74.00    | -31.00 | PK       | Horizontal |
| 5359.81   | 38.09   | 44.20     | 9.86  | 32.00           | -2.34           | 35.75    | 54.00    | -18.25 | AV       | Horizontal |
| 7313.94   | 51.85   | 43.50     | 11.40 | 35.50           | 3.40            | 55.25    | 74.00    | -18.75 | PK       | Vertical   |
| 7313.94   | 33.56   | 43.50     | 11.40 | 35.50           | 3.40            | 36.96    | 54.00    | -17.04 | AV       | Vertical   |
| 7313.83   | 51.42   | 43.50     | 11.40 | 35.50           | 3.40            | 54.82    | 74.00    | -19.18 | PK       | Horizontal |
| 7313.83   | 33.61   | 43.50     | 11.40 | 35.50           | 3.40            | 37.01    | 54.00    | -16.99 | AV       | Horizontal |

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



Page 28 of 71

Report No.: STS1806136W03

# **GFSK High Channel**

|           |         |           |       | Antenna         | Corrected     | Emission |          |        |          |            |
|-----------|---------|-----------|-------|-----------------|---------------|----------|----------|--------|----------|------------|
| Frequency | Reading | Amplifier | Loss  | Factor          | Factor        | Level    | Limits   | Margin | Detector |            |
| (MHz)     | (dBµV)  | (dB)      | (dB)  | ( <b>dB/m</b> ) | ( <b>dB</b> ) | (dBµV/m) | (dBµV/m) | (dB)   | Туре     | Comment    |
|           |         |           |       | High            | Channel (2480 | MHz)     |          |        |          |            |
| 3264.67   | 48.68   | 44.70     | 6.70  | 28.20           | -9.80         | 38.88    | 74.00    | -35.12 | PK       | Vertical   |
| 3264.67   | 39.27   | 44.70     | 6.70  | 28.20           | -9.80         | 29.47    | 54.00    | -24.53 | AV       | Vertical   |
| 3264.57   | 47.78   | 44.70     | 6.70  | 28.20           | -9.80         | 37.98    | 74.00    | -36.02 | PK       | Horizontal |
| 3264.57   | 39.26   | 44.70     | 6.70  | 28.20           | -9.80         | 29.46    | 54.00    | -24.54 | AV       | Horizontal |
| 4960.36   | 58.45   | 44.20     | 9.04  | 31.60           | -3.56         | 54.89    | 74.00    | -19.11 | PK       | Vertical   |
| 4960.36   | 38.60   | 44.20     | 9.04  | 31.60           | -3.56         | 35.04    | 54.00    | -18.96 | AV       | Vertical   |
| 4960.42   | 59.26   | 44.20     | 9.04  | 31.60           | -3.56         | 55.70    | 74.00    | -18.30 | PK       | Horizontal |
| 4960.42   | 38.81   | 44.20     | 9.04  | 31.60           | -3.56         | 35.25    | 54.00    | -18.75 | AV       | Horizontal |
| 5359.70   | 45.33   | 44.20     | 9.86  | 32.00           | -2.34         | 42.99    | 74.00    | -31.01 | PK       | Vertical   |
| 5359.70   | 38.39   | 44.20     | 9.86  | 32.00           | -2.34         | 36.05    | 54.00    | -17.95 | AV       | Vertical   |
| 5359.58   | 45.73   | 44.20     | 9.86  | 32.00           | -2.34         | 43.39    | 74.00    | -30.61 | PK       | Horizontal |
| 5359.58   | 38.11   | 44.20     | 9.86  | 32.00           | -2.34         | 35.77    | 54.00    | -18.23 | AV       | Horizontal |
| 7439.78   | 51.55   | 43.50     | 11.40 | 35.50           | 3.40          | 54.95    | 74.00    | -19.05 | PK       | Vertical   |
| 7439.78   | 32.69   | 43.50     | 11.40 | 35.50           | 3.40          | 36.09    | 54.00    | -17.91 | AV       | Vertical   |
| 7439.74   | 51.08   | 43.50     | 11.40 | 35.50           | 3.40          | 54.48    | 74.00    | -19.52 | PK       | Horizontal |
| 7439.74   | 32.69   | 43.50     | 11.40 | 35.50           | 3.40          | 36.09    | 54.00    | -17.91 | AV       | Horizontal |

Note:

3)

1) Scan with GFSK, π/4-DQPSK,8DPSK,the worst case is GFSK Mode

2) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

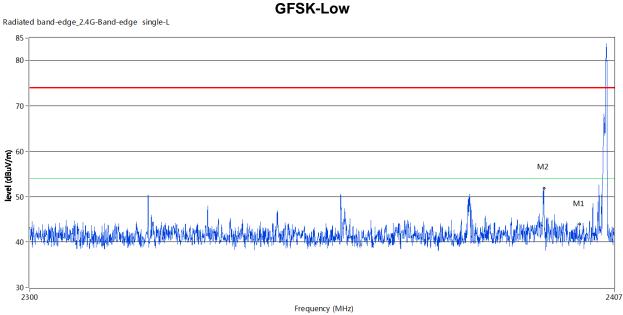
Emission Level = Reading + Factor

The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency

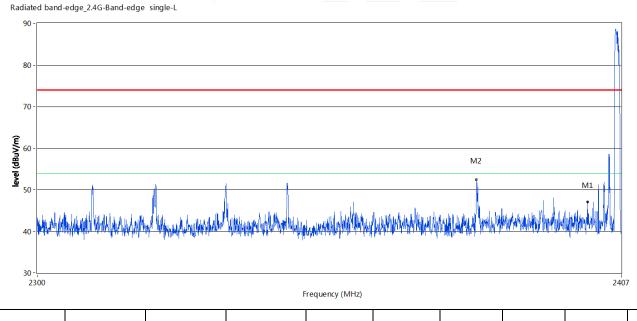
emission is mainly from the environment noise.

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




Page 29 of 71

Report No.: STS1806136W03

# Band edge Requirements



| Frequency<br>(MHz) | Results<br>(dBuV/m) | Factor<br>(dB) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detecto<br>r | Table<br>(o) | Height<br>(cm) | ANT        | Verdict |
|--------------------|---------------------|----------------|-------------------|----------------|--------------|--------------|----------------|------------|---------|
| 2400.048           | 44.04               | 13.25          | 74.0              | 29.96          | Peak         | 6.00         | 100            | Horizontal | Pass    |
| 2393.846           | 51.55               | 13.50          | 74.0              | 22.45          | Peak         | 5.00         | 100            | Horizontal | Pass    |

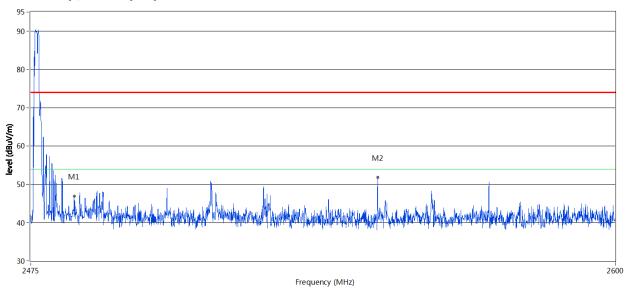


| Frequency<br>(MHz) | Results<br>(dBuV/m) | Factor<br>(dB) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Table<br>(o) | Height<br>(cm) | ANT      | Verdict |
|--------------------|---------------------|----------------|-------------------|----------------|----------|--------------|----------------|----------|---------|
| 2400.690           | 46.70               | 13.20          | 74.0              | 27.30          | Peak     | 6.00         | 100            | Vertical | Pass    |
| 2380.049           | 51.98               | 13.28          | 74.0              | 22.02          | Peak     | 14.00        | 100            | Vertical | Pass    |

Shenzhen STS Test Services Co., Ltd.

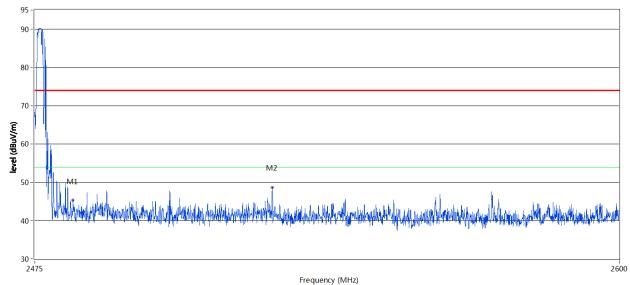
 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




Page 30 of 71

Report No.: STS1806136W03


# **GFSK-High**

Radiated band-edge\_2.4G-Band-edge single-H



| Frequency<br>(MHz) | Results<br>(dBuV/m) | Factor<br>(dB) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Table<br>(o) | Height<br>(cm) | ANT        | Verdi<br>ct |
|--------------------|---------------------|----------------|-------------------|----------------|----------|--------------|----------------|------------|-------------|
| 2483.458           | 46.85               | 14.28          | 74.0              | 27.15          | Peak     | 9.00         | 100            | Horizontal | Pass        |
| 2548.463           | 51.83               | 13.40          | 74.0              | 22.17          | Peak     | 12.00        | 100            | Horizontal | Pass        |

Radiated band-edge\_2.4G-Band-edge single-H



| Frequency<br>(MHz) | Results<br>(dBuV/m) | Factor (dB) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Table<br>(o) | Height<br>(cm) | ANT      | Verdict |
|--------------------|---------------------|-------------|-------------------|----------------|----------|--------------|----------------|----------|---------|
| 2482.996           | 45.35               | 14.31       | 74.0              | 28.65          | Peak     | 6.00         | 100            | Vertical | Pass    |
| 2525.037           | 48.69               | 13.20       | 74.0              | 25.31          | Peak     | 7.00         | 100            | Vertical | Pass    |

Note: GFSK,  $\pi$ /4-DQPSK,8DPSK of the nohopping and hopping mode all have been test, the worst case is GFSK of the nohopping mode, this report only show the worst case.

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

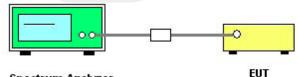


# 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

## 4.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### 4.2 TEST PROCEDURE


| Spectrum Parameter                    | Setting                         |
|---------------------------------------|---------------------------------|
| Detector                              | Peak                            |
| Start/Stop Frequency                  | 30 MHz to 10th carrier harmonic |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                 |
| Trace-Mode:                           | Max hold                        |

#### For Band edge

| Spectrum Parameter                    | Setting                          |
|---------------------------------------|----------------------------------|
| Detector                              | Peak                             |
| Start/Stop Eroguanau                  | Lower Band Edge: 2300– 2403 MHz  |
| Start/Stop Frequency                  | Upper Band Edge: 2479 – 2500 MHz |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                  |
| Trace-Mode:                           | Max hold                         |

Remark : Hopping on and Hopping off mode all have been tested, only worst case hopping off is reported.

#### 4.3 TEST SETUP



#### Spectrum Analyzer

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

#### 4.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



# 4.5 TEST RESULTS

| Temperature: | <b>25</b> ℃             | Relative Humidity: | 50%     |
|--------------|-------------------------|--------------------|---------|
| Test Mode:   | GFSK(1Mbps)-00/39/78 CH | Test Voltage:      | DC 3.7V |

# 00 CH

| Re           0 dB/div         Re           0 g         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.8         0.8           0.9         0.8 <th>12.51500000</th> <th></th> <th>C: Fast</th> <th>Trig: Free R<br/>#Atten: 30 d</th> <th></th> <th>Avg Type:</th> <th>Log-Pwr</th> <th></th> <th>TRACE 12 3 4 4<br/>TYPE IM WWW<br/>DET P P P P P<br/>0.795 dB</th> | 12.51500000    |                                                  | C: Fast                                              | Trig: Free R<br>#Atten: 30 d |                          | Avg Type:  | Log-Pwr |                | TRACE 12 3 4 4<br>TYPE IM WWW<br>DET P P P P P<br>0.795 dB |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|------------------------------------------------------|------------------------------|--------------------------|------------|---------|----------------|------------------------------------------------------------|
| 0 dB/div Re<br>99<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08<br>08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f -0.80 dBm    | 3                                                |                                                      |                              |                          |            |         |                | 0.795 dBi                                                  |
| 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 3                                                |                                                      |                              |                          |            |         |                | 30.80 d                                                    |
| 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 3                                                |                                                      |                              | N COMPANY I NO TRANSPORT |            |         |                | -30.80 d                                                   |
| 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 3                                                |                                                      |                              |                          |            |         |                | -30.80 c                                                   |
| 0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>0.8<br>tart 30 MHz<br>Res BW 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                  |                                                      |                              |                          |            |         |                |                                                            |
| art 30 MHz<br>Res BW 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                  |                                                      |                              |                          |            |         |                |                                                            |
| 0.8<br>0.8<br>0.8<br>tart 30 MHz<br>Res BW 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                  |                                                      |                              |                          |            |         |                |                                                            |
| 0.8<br>0.8<br>tart 30 MHz<br>Res BW 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                  |                                                      |                              |                          |            |         |                |                                                            |
| tart 30 MHz<br>Res BW 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                  |                                                      |                              |                          |            |         |                |                                                            |
| tart 30 MHz<br>Res BW 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                  |                                                      |                              |                          |            |         |                |                                                            |
| Res BW 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                  |                                                      |                              |                          |            |         |                |                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kHz            |                                                  | #VBW                                                 | 300 kHz                      |                          |            | Sw      |                | op 25.00 GI<br>s (40001 p                                  |
| XE MODE TRC SC<br>1 N 1 f<br>2 N 1 f<br>3 N 1 f<br>4 N 1 f<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.<br>3.<br>5. | 402 2 GHz<br>327 9 GHz<br>170 1 GHz<br>647 9 GHz | -10.795 dE<br>-51.696 dE<br>-56.257 dE<br>-48.305 dE | m                            | TION FUNC                | TION WIDTH | F       | FUNCTION VALUE | E                                                          |
| 6<br>7<br>8<br>9<br>0<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                  |                                                      |                              |                          |            |         |                |                                                            |

# 39 CH

|                    |                                          | lyzer - Swept Si           |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
|--------------------|------------------------------------------|----------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------|------------|-----------------|-----------------------------------------------------------------|
| enter F            | RF<br>req 1                              | 50 Ω AC<br><b>2.515000</b> | 000 GHz                     | NO: Fast 🕞<br>Gain:Low                                                                                          | SENSE:INT<br>Trig: Fre<br>#Atten: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | ALIG    | NAUTO<br>Avg Typ | e: Log-Pwr | 11:             | 38:40 AM Jun 20, :<br>TRACE 1 2 3 4<br>TYPE MWWW<br>DET P P P F |
| dB/div             |                                          | Offset 0.5 dB<br>4.52 dBm  |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 | .440 9 G<br>-5.477 dE                                           |
| 48                 |                                          | 1                          |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| 5.5                |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| .5                 |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 | -25.46                                                          |
| .5                 |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| .5                 |                                          | $\bigcirc^2$               | 3                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| .5                 | an a |                            |                             | and an electric design                                                                                          | the state of the s |         |         |                  | the states |                 |                                                                 |
| .5                 |                                          |                            |                             | and the second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| .5                 |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _       |         |                  |            |                 |                                                                 |
| .5                 |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| art 30 I<br>tes BW |                                          | (Hz                        |                             | #VB                                                                                                             | W 300 KH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Iz      | ·       |                  | S          | St<br>weep 2.39 | op 25.00 G<br>Is (40001                                         |
| R MODE T           |                                          |                            | ×<br>2.440 9 GHz            | ү<br>-5,477                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INCTION | FUNCTIO | N WIDTH          |            | FUNCTION VALU   | IE                                                              |
| 2 N .              | 1 f<br>1 f                               |                            | 3.327 9 GHz                 | -50.644                                                                                                         | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |                  |            |                 |                                                                 |
| N 1                | 1 f<br>1 f                               |                            | 4.881 7 GHz<br>24.759 0 GHz | -53.006<br>-47.438                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| i                  |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| 1                  |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| 1                  |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
|                    |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| 2                  |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |                  |            |                 |                                                                 |
| 6                  |                                          |                            |                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | STATUS           |            |                 |                                                                 |



# 78 CH

| ilent Spect<br>RL  | rum Ana<br>RF | l <mark>yzer - Swep</mark><br>50 Ω | AC                         |                    | SENSE:INT                           |                | AL II          | GNAUTO    |                     | 09/53/0           | 14 AM Jun 21, 2                           |
|--------------------|---------------|------------------------------------|----------------------------|--------------------|-------------------------------------|----------------|----------------|-----------|---------------------|-------------------|-------------------------------------------|
|                    |               |                                    | 00000 GHz                  | PNO: Fast Gain:Low | T                                   |                | ALI            | Avg Type: | Log-Pwr             | TI                | RACE 1 2 3 4<br>TYPE M WWW<br>DET P P P P |
| dB/div             |               | Offset 0.5<br>5.55 dB              |                            |                    |                                     |                |                |           |                     | Mkr1 2.4<br>-4.   | 80 2 GI<br>446 dB                         |
| 45                 |               | )1                                 |                            |                    |                                     |                |                |           |                     |                   |                                           |
| 4.5                |               |                                    |                            |                    |                                     |                |                |           |                     |                   | -24.45                                    |
| 1.5                |               |                                    |                            |                    |                                     |                |                |           |                     |                   | -24.45                                    |
| 4.5                |               | 2                                  |                            |                    |                                     |                |                |           |                     |                   |                                           |
| 4.5                |               | A LINE                             | <b>3</b>                   | an als i i davar   | and the states of the second states | والمر والمعاشر | a language and |           | a the second second | and the second    |                                           |
| .5                 |               | And the second                     |                            |                    |                                     |                | ******         |           |                     |                   |                                           |
| 1.5                |               |                                    |                            |                    |                                     |                |                |           |                     |                   |                                           |
| 4.5                |               |                                    |                            |                    |                                     |                |                |           |                     |                   |                                           |
| art 30  <br>Res BW |               | κHz                                |                            | #VB                | W 300 KH                            | z              |                |           | Swe                 | Stop<br>ep 2.39 s | 25.00 G<br>(40001 p                       |
| (r Mode 1          |               |                                    | х                          | Ŷ                  |                                     | NCTION         | FUNCTI         | ON WIDTH  | FL                  | INCTION VALUE     |                                           |
|                    | 1 f<br>1 f    |                                    | 2.480 2 GHz<br>2.507 0 GHz | -4.446<br>-48.472  |                                     |                |                |           |                     |                   |                                           |
| 3 N                | 1 f           |                                    | 6.014 1 GHz                | -55.717            | dBm                                 |                |                |           |                     |                   |                                           |
| 5                  | 1 f           |                                    | 24.764 7 GHz               | -48.421            | dBm                                 |                |                |           |                     |                   |                                           |
| 5                  |               |                                    |                            |                    |                                     |                |                |           |                     |                   |                                           |
| 3                  |               |                                    |                            |                    |                                     |                |                |           |                     |                   |                                           |
| 9                  |               |                                    |                            |                    |                                     |                |                |           |                     |                   |                                           |
| 1                  |               |                                    |                            |                    |                                     |                |                |           |                     |                   |                                           |
| 2                  |               |                                    |                            |                    |                                     |                |                |           |                     |                   |                                           |
| 2                  |               |                                    |                            |                    |                                     |                |                | STATUS    |                     |                   |                                           |



=

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# For Band edge

00 CH

|                    |           | yzer - Swept SA                  |                               |                                     |               |                         |              |                       |                                 |
|--------------------|-----------|----------------------------------|-------------------------------|-------------------------------------|---------------|-------------------------|--------------|-----------------------|---------------------------------|
| RL                 | RF        | 50 Ω AC                          | -                             | SENSE:INT                           |               | ALIGNAUTO<br>Avg Type:  | Lon Dum      |                       | 0 AM Jun 20, 21<br>RACE 1 2 3 4 |
| enter F            | req 2     | .351500000 GH                    | IZ<br>PNO: Fast<br>IFGain:Low |                                     | e Run<br>0 dB | Avg Type:               | Log-Pwr      | 1                     | TYPE MWWW<br>DET P P P P        |
| dB/div             |           | Dffset 0.5 dB<br>6.66 dBm        |                               |                                     |               |                         | М            | kr1 2.401<br>-3.      | 970 GH<br>340 dB                |
| 9<br>34            |           |                                  |                               |                                     |               |                         |              |                       |                                 |
| .3                 |           |                                  |                               |                                     |               |                         |              |                       |                                 |
| .3                 |           |                                  |                               |                                     |               |                         |              |                       | -23.3                           |
| .3                 |           |                                  |                               |                                     |               |                         |              | 2                     |                                 |
| .3                 |           |                                  |                               |                                     |               |                         | Uhunharrigha | and the work          | whereared                       |
| .3                 | مراجعهارم | moutenter                        | manymouth                     | ungent man and the                  | mound         | Ballonfolistingstration |              |                       |                                 |
| .3                 |           |                                  |                               |                                     |               |                         |              |                       |                                 |
| .3                 |           |                                  |                               |                                     |               |                         |              |                       |                                 |
|                    |           |                                  |                               |                                     |               |                         |              |                       |                                 |
| art 2.30<br>les BW |           |                                  | :                             | #VBW 300 kH                         | z             |                         | Swe          | Stop 2.<br>ep 9.87 ms | 40300 G<br>s (1001 p            |
| R MODE TI          | RC SCL    | ×                                |                               |                                     | INCTION       | FUNCTION WIDTH          | F            | UNCTION VALUE         |                                 |
| N 1<br>N 1         | f         | 2.401 97<br>2.390 02<br>2.398 67 | 2 GHz -46                     | 1.340 dBm<br>1.905 dBm<br>1.434 dBm |               |                         |              |                       |                                 |
|                    |           |                                  |                               |                                     |               |                         |              |                       |                                 |
|                    |           |                                  |                               |                                     |               |                         |              |                       |                                 |
| )                  |           |                                  |                               |                                     |               |                         |              |                       |                                 |
| 2                  |           |                                  |                               |                                     |               |                         |              |                       |                                 |
|                    |           |                                  | 1                             |                                     |               | STATUS                  |              |                       |                                 |
|                    |           |                                  |                               |                                     |               |                         |              |                       |                                 |

78 CH

| RF                        | 50Ω AC                         | SENSE:I           | NT                         | ALIGN AUTO       |         |                     | 49 AM Jun 21          |
|---------------------------|--------------------------------|-------------------|----------------------------|------------------|---------|---------------------|-----------------------|
| er Freq 2                 |                                |                   | g: Free Run<br>tten: 30 dB | Avg Type:        | Log-Pwr | 1                   | TYPE MWA<br>DET P P P |
|                           | Offset 0.5 dB<br>6.53 dBm      |                   |                            |                  | М       | kr1 2.479<br>-3     | 840 C<br>.469 d       |
|                           |                                |                   |                            |                  |         |                     |                       |
| /                         | ~ <del>2</del>                 |                   |                            |                  |         |                     | -23                   |
| $\sim$ $\downarrow$       | monday water water             | 3                 |                            |                  |         |                     |                       |
|                           |                                | untrecommentation |                            | when the work we | woon    | han                 | mon                   |
|                           |                                |                   |                            |                  |         |                     |                       |
|                           |                                |                   |                            |                  |         |                     |                       |
| t 2.47900 G<br>s BW 100 k |                                | #VBW 30           | 0 kHz                      |                  | Swe     | Stop 2<br>ep 2.07 m | .50000 (<br>s (1001   |
|                           | ×<br>2.479 840 GHz             |                   | FUNCTION                   | FUNCTION WIDTH   | F       | UNCTION VALUE       |                       |
| N 1 f                     | 2.483 746 GHz                  |                   |                            |                  |         |                     |                       |
| N 1 f                     | 2.483 746 GHz<br>2.485 657 GHz |                   |                            |                  |         |                     |                       |
| N 1 f<br>N 1 f            |                                |                   |                            |                  |         |                     |                       |
| N 1 f                     |                                |                   |                            |                  |         |                     |                       |
| N 1 f<br>N 1 f            |                                |                   |                            |                  |         |                     |                       |



# For Hopping Band edge

00 CH

| ent Spectrum Analyz<br>R L RF              | er - Swept SA<br>50 Ω AC                          |                                        | SENSE:INT     | A             | IGN AUTO   |                | 09:55:1                | 5 AM Jun 21, :            |
|--------------------------------------------|---------------------------------------------------|----------------------------------------|---------------|---------------|------------|----------------|------------------------|---------------------------|
|                                            | 51500000 GHz                                      | PNO: Fast G                            | Tuin Fue      | Run           | Avg Type:  | Log-Pwr        | TF                     | TYPE M WWW<br>DET P P P F |
| dB/div Ref 6.                              | fset 0.5 dB<br>. <b>38 dBm</b>                    |                                        |               |               |            | M              | lkr1 2.403<br>-3.      | 000 G<br>622 dE           |
| 2                                          |                                                   |                                        |               |               |            |                |                        |                           |
| 6                                          |                                                   |                                        |               |               |            |                |                        |                           |
| 6                                          |                                                   |                                        |               |               |            |                |                        | -23.62                    |
|                                            |                                                   |                                        |               |               |            |                |                        | MM                        |
| 5<br>0.00000000000000000000000000000000000 | wwwwwwww                                          | ALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | analdadanad   | 0.000.000.000 | mushnerker | water work and | www.                   | number                    |
| <sup>2</sup> NANAANIANAAN                  | RAARARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA           | AAAAAAAAAAA                            | λάθληληληλη   | CODMONN       |            |                |                        |                           |
| 5 <b></b>                                  |                                                   |                                        |               |               |            |                |                        |                           |
| 6                                          |                                                   |                                        |               |               |            |                |                        |                           |
| art 2.30000 GH<br>es BW 100 kH             |                                                   | #VE                                    | 3W 300 kHz    |               |            | Swe            | Stop 2.<br>eep 9.87 ms | 40300 G<br>; (1001 p      |
| Mode TRG SCL<br>N 1 f<br>N 1 f<br>N 1 f    | ×<br>2.403 000 GH<br>2.390 022 GH<br>2.399 292 GH | z -46.41                               | 2 dBm<br>IdBm | CTION FUNC    | TION WIDTH |                | FUNCTION VALUE         |                           |
|                                            |                                                   |                                        |               |               |            |                |                        |                           |
|                                            |                                                   |                                        |               |               |            |                |                        |                           |

78 CH

|                    | RF                | 50 Ω AC                                |                    | SE                     | INSE:INT                     |         | ALIGNAUTO       |           |                       | 31 AM Jun 21,                       |
|--------------------|-------------------|----------------------------------------|--------------------|------------------------|------------------------------|---------|-----------------|-----------|-----------------------|-------------------------------------|
| ter F              | req 2.4           | 89500000                               | PN                 | 0: Fast 😱<br>ain:Low   | Trig: Free R<br>#Atten: 30 d |         | Avg Type        | : Log-Pwr |                       | RACE 1 2 3<br>TYPE MWW<br>DET P P P |
| B/div              |                   | set 0.5 dB<br>65 dBm                   |                    |                        |                              |         |                 | M         | lkr1 2.479<br>-3.     | 000 G<br>355 d                      |
| $\int \mathcal{L}$ | h                 |                                        |                    |                        |                              |         |                 |           |                       |                                     |
| V                  |                   |                                        |                    |                        |                              |         |                 |           |                       | -23.3                               |
| <u> </u>           | hand              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 2 3<br>Marina      |                        |                              |         |                 |           |                       |                                     |
|                    |                   |                                        | - wayne -          | سميصلين                | al all comments              | - Wyman | when the second | man       | multipling            | wald war                            |
|                    |                   |                                        |                    |                        |                              |         |                 |           |                       |                                     |
| <u> </u>           |                   |                                        |                    |                        |                              |         |                 |           |                       |                                     |
|                    |                   |                                        |                    |                        |                              |         |                 |           |                       |                                     |
|                    | 7900 GH<br>100 kH |                                        |                    | #VBV                   | / 300 kHz                    |         |                 | Swe       | Stop 2.<br>eep 2.07 m | .50000 <b>(</b><br>s (1001          |
| Mode T             | RC SCL            | ×<br>2.479                             | 000 GHz            | -3.355 d               | FUNCT                        | ION FUN | NCTION WIDTH    | F         | FUNCTION VALUE        |                                     |
| N 1<br>N 1         | f<br>f            |                                        | 809 GHz<br>027 GHz | -34.622 d<br>-40.181 d |                              |         |                 |           |                       |                                     |
|                    |                   |                                        |                    |                        |                              |         |                 |           |                       |                                     |
|                    |                   |                                        |                    |                        |                              |         |                 |           |                       |                                     |
|                    |                   |                                        |                    |                        |                              |         |                 |           |                       |                                     |
|                    |                   |                                        |                    |                        |                              |         |                 |           |                       |                                     |



# Page 36 of 71

#### Report No.: STS1806136W03

| Temperature: | <b>25</b> ℃                      | Relative Humidity: | 50%     |
|--------------|----------------------------------|--------------------|---------|
| Test Mode:   | π/4-DQPSK(2Mbps)–<br>00/39/78 CH | Test Voltage:      | DC 3.7V |

|                | RF                       | 50 Ω AC    |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT              |                  | ALIC    | GNAUTO                       |         | 08:57:5           | 58 AM Jun 21,                            |
|----------------|--------------------------|------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|---------|------------------------------|---------|-------------------|------------------------------------------|
| er F           | req 12.5                 | 150000     | 1                                                        | PNO: Fast G<br>Gain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trig: Fre<br>#Atten: 3 |                  |         | Avg Type:                    | Log-Pwr |                   | RACE 1 2 3 4<br>TYPE MWAA<br>DET P P P F |
| 3/div          | Ref Offse<br>Ref_3.3     |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         | Mkr1 2.4<br>-6.   | 02 2 G<br>700 dE                         |
|                | <b>1</b>                 |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
|                |                          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
|                |                          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   | -26.7                                    |
|                |                          | \ <u>2</u> |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
|                |                          | <u>}</u>   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         | and some state in the second |         |                   |                                          |
| المعربين       | deside and the           |            |                                                          | State of the local division of the local div |                        | and state of the |         |                              |         |                   |                                          |
|                |                          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
|                |                          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
|                |                          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
| t 30  <br>s BW | MHz<br>100 kHz           |            |                                                          | #VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3W 300 kH              | z                |         |                              | Swe     | Stop<br>ep 2.39 s | 25.00 G<br>(40001                        |
|                | RC SCL                   | ×          |                                                          | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | INCTION          | FUNCTIO | ON WIDTH                     | FL      | JNCTION VALUE     |                                          |
|                | 1 f<br>1 f<br>1 f<br>1 f |            | 2.402 2 GHz<br>3.327 9 GHz<br>6.039 7 GHz<br>4.701 6 GHz | -50.962<br>-55.070<br>-47.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 dBm                  |                  |         |                              |         |                   |                                          |
| N              | 1 T                      |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
| N              | і т<br>—                 |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
| N              |                          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
| N              |                          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |
| N              |                          |            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                  |         |                              |         |                   |                                          |

#### 00 CH

#### 39 CH

|                       | RF 50 Ω                        | AC                                        | SENSE:INT                                | A                     | LIGNAUTO     |                                                                                                                  | 09:01:29 AM Jun 2              |
|-----------------------|--------------------------------|-------------------------------------------|------------------------------------------|-----------------------|--------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|
| iter Frec             | 12.51500                       |                                           | D: Fast Trig: Free<br>in:Low #Atten: 30  |                       | Avg Type: Lo | g-Pwr                                                                                                            | TRACE 12<br>TYPE MW<br>DET P P |
|                       | ef Offset 0.5 d<br>ef_5.15 dBi |                                           |                                          |                       |              | М                                                                                                                | kr1 2.440 9 (<br>-4.849 c      |
|                       | <b>\</b> 1                     |                                           |                                          |                       |              |                                                                                                                  |                                |
|                       |                                |                                           |                                          |                       |              |                                                                                                                  |                                |
|                       |                                |                                           |                                          |                       |              |                                                                                                                  | -24                            |
|                       |                                |                                           |                                          |                       |              |                                                                                                                  |                                |
|                       |                                | 3                                         |                                          |                       |              |                                                                                                                  |                                |
|                       | Y                              | Y                                         |                                          |                       |              | and the second | and the state                  |
| lung berdinste        |                                |                                           |                                          | and the second second |              |                                                                                                                  |                                |
|                       |                                |                                           |                                          |                       |              |                                                                                                                  |                                |
|                       |                                |                                           |                                          |                       |              |                                                                                                                  |                                |
|                       |                                |                                           |                                          |                       |              |                                                                                                                  |                                |
| rt 30 MHz<br>es BW 10 |                                |                                           | #VBW 300 kH:                             | z                     |              | Sweep                                                                                                            | Stop 25.00<br>2.39 s (40001    |
| MODE TRC S            |                                | ×                                         |                                          | NCTION FUNC           | TION WIDTH   | FUNC                                                                                                             | TION VALUE                     |
|                       | f<br>f<br>f                    | 2.440 9 GHz<br>3.327 9 GHz<br>4.882 3 GHz | -4.849 dBm<br>-50.659 dBm<br>-51.785 dBm |                       |              |                                                                                                                  |                                |
| N 1                   |                                | 01770000                                  | -48.188 dBm                              |                       |              |                                                                                                                  |                                |
|                       |                                | 24.770 3 GHz                              |                                          |                       |              |                                                                                                                  |                                |
| N 1                   |                                | 24.770 3 GHZ                              |                                          |                       |              |                                                                                                                  |                                |
| N 1                   |                                | 24.770 3 GHZ                              |                                          |                       |              |                                                                                                                  |                                |
| N 1                   |                                | 24.770 3 GHZ                              |                                          |                       |              |                                                                                                                  |                                |
| N 1                   |                                | 24.770 3 GHZ                              |                                          |                       |              |                                                                                                                  |                                |

Shenzhen STS Test Services Co., Ltd.



# 78 CH

|                                                          | _               | RF            | 50 Ω A               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SENSE:INT                     |             | ALIGNAUTO             |         |                   | 10 AM Jun 21, 2                           |
|----------------------------------------------------------|-----------------|---------------|----------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|-----------------------|---------|-------------------|-------------------------------------------|
| nter                                                     | r Fre           | ∋q 12.        | 515000               |                                                                                                                 | PNO: Fast Gain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trig: Free<br>#Atten: 3       |             | Avg Type:             | Log-Pwr |                   | RACE 1 2 3 4<br>TYPE MWAAA<br>DET P P P P |
| dB/di                                                    |                 |               | set 0.5 dB<br>02 dBm |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             |                       |         | Mkr1 2.4<br>-3.   | 80 2 GI<br>979 dB                         |
|                                                          |                 | <b>1</b>      |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             |                       |         |                   |                                           |
| .0                                                       |                 |               |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             |                       |         |                   | -23.98                                    |
|                                                          |                 |               |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             |                       |         |                   |                                           |
|                                                          |                 |               | 2                    | ,                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |             |                       |         |                   |                                           |
| .0                                                       | ي وي            | وروا مروان    | Y                    |                                                                                                                 | 2<br>The block of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a final a spille of the state |             | and the second second |         | and the second    |                                           |
| .0                                                       |                 |               |                      | an particul de la caracteria de la caracter | hand the state of |                               |             |                       |         |                   |                                           |
| .0                                                       |                 |               |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             |                       |         |                   |                                           |
|                                                          |                 |               |                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             |                       |         |                   |                                           |
| art 3                                                    |                 | HZ<br>00 kH   | 7                    |                                                                                                                 | #VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W 300 KH                      | z           |                       | Swe     | Stop<br>ep 2.39 s | 25.00 G<br>(40001 p                       |
|                                                          | JV4 1           | 00 MII        | 2                    |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |             |                       |         |                   |                                           |
| R MOD                                                    | e  trc          | SCL           | _                    | ×                                                                                                               | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | NCTION FUN  | ICTION WIDTH          | FL      | JNCTION VALUE     |                                           |
| R MOD                                                    |                 | SCL<br>f      | _                    | 2.480 2 GHz                                                                                                     | -3.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dBm                           | INCTION FUN | CTION WIDTH           | FL      | JNCTION VALUE     |                                           |
| R MOD<br>N<br>2 N<br>3 N                                 | e tro<br>1      | SCL<br>f<br>f |                      | 2.480 2 GHz<br>3.327 9 GHz<br>7.524 7 GHz                                                                       | -3.979<br>-51.667<br>-54.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBm<br>dBm<br>dBm             | INCTION FUN | ICTION WIDTH          | FL      | JNCTION VALUE     |                                           |
| R MOD<br>N<br>2 N<br>3 N<br>4 N                          | E TRC<br>1<br>1 | SCL<br>f<br>f |                      | 2.480 2 GHz<br>3.327 9 GHz                                                                                      | -3.979<br>-51.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dBm<br>dBm<br>dBm             | NCTION FUN  | ICTION WIDTH          | FL      | UNCTION VALUE     |                                           |
| R MOD<br>N<br>2 N<br>3 N<br>4 N                          | E TEC<br>1<br>1 | SCL<br>f<br>f |                      | 2.480 2 GHz<br>3.327 9 GHz<br>7.524 7 GHz                                                                       | -3.979<br>-51.667<br>-54.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBm<br>dBm<br>dBm             | INCTION FUN | ICTION WIDTH          | FL      | UNCTION VALUE     |                                           |
| R MOD<br>N<br>N<br>N<br>N<br>N                           | E TEC<br>1<br>1 | SCL<br>f<br>f |                      | 2.480 2 GHz<br>3.327 9 GHz<br>7.524 7 GHz                                                                       | -3.979<br>-51.667<br>-54.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBm<br>dBm<br>dBm             | NCTION FUN  | ICTION WIDTH          | FL      | UNCTION VALUE     |                                           |
| R MOD<br>N<br>2 N<br>3 N<br>4 N<br>5<br>5                | E TEC<br>1<br>1 | SCL<br>f<br>f |                      | 2.480 2 GHz<br>3.327 9 GHz<br>7.524 7 GHz                                                                       | -3.979<br>-51.667<br>-54.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBm<br>dBm<br>dBm             | NCTION FUN  | ICTION WIDTH          | F1      | INCTION VALUE     |                                           |
| R MOD<br>N<br>2 N<br>3 N<br>4 N<br>5<br>5<br>7<br>8      | E TEC<br>1<br>1 | SCL<br>f<br>f |                      | 2.480 2 GHz<br>3.327 9 GHz<br>7.524 7 GHz                                                                       | -3.979<br>-51.667<br>-54.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBm<br>dBm<br>dBm             | NCTION FUN  | ICTION WIDTH          | R1      | INCTION VALUE     |                                           |
| R MOD<br>N<br>2 N<br>3 N<br>4 N<br>5<br>5<br>7<br>7<br>8 | E TEC<br>1<br>1 | SCL<br>f<br>f |                      | 2.480 2 GHz<br>3.327 9 GHz<br>7.524 7 GHz                                                                       | -3.979<br>-51.667<br>-54.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBm<br>dBm<br>dBm             | NCTION FUN  | ICTION WIDTH          | F1      | INCTION VALUE     |                                           |
| R MOD<br>N<br>2 N<br>3 N<br>4 N<br>5<br>5<br>7<br>8      | E TEC<br>1<br>1 | SCL<br>f<br>f |                      | 2.480 2 GHz<br>3.327 9 GHz<br>7.524 7 GHz                                                                       | -3.979<br>-51.667<br>-54.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dBm<br>dBm<br>dBm             | NCTION FUN  | STATUS                | FL      | INCTION VALUE     |                                           |



=

Shenzhen STS Test Services Co., Ltd.



# For Band edge

00 CH

|              |            | lyzer - Swept SA          |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
|--------------|------------|---------------------------|-----------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|-------------------|
| RL           | RF         | 50 Ω AC                   |                             | SENSE:INT                       | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e: Log-Pwr | 08:58:32 AM Ju<br>TRACE 1 |                   |
| enter F      | req z      |                           | PNO: Fast G<br>IFGain:Low   | Trig: Free Run<br>#Atten: 30 dB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e. Logi ni | TYPE                      | PPP               |
| dB/div       |            | Offset 0.5 dB<br>6.25 dBm |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | М          | kr1 2.401 970<br>-3.747   |                   |
| 75           |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
|              |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
|              |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           | -23.75            |
|              |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           | $\langle \rangle$ |
|              |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | $\wedge^2$                | ۳۹                |
|              |            |                           |                             |                                 | and an the monte working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mound      |                           |                   |
| 1.8 Minterne | phanpatoph | harmon cale how man       | and an and an and an and an | annow Month                     | And a contraction of the contrac |            |                           |                   |
| · ·          |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| 3.8          |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| 3.8          |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| art 2.30     |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          | Stop 2.4030               |                   |
| tes BW       |            | (Hz                       | #VI                         | 3W 300 kHz                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Swe        | ep 9.87 ms (10            | 01 p              |
| R MODE T     |            | ×<br>2.401 970            | CU- 274                     | FUNCTIO<br>7 dBm                | FUNCTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FI         | JNCTION VALUE             |                   |
| 2 N 1        | 1 f        | 2.390 022                 | GHz -47.49                  | 5 dBm                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| 3 N 1        | 1 f        | 2.398 571                 | GHz -33.19                  | 7 dBm                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| 5            |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| 5<br>7       |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| 3            |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| 0            |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| 1            |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |
| 3            |            |                           |                             |                                 | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                           |                   |
|              |            |                           |                             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                           |                   |

78 CH

| -              | nalyzer - Swept SA<br>F 50 Ω AC |                        | SENSE                     | INT                           | ALIGNAUTO      |               |                 | :34 AM Jun 2                    |
|----------------|---------------------------------|------------------------|---------------------------|-------------------------------|----------------|---------------|-----------------|---------------------------------|
| ter Freq       | 2.489500000                     | PNO                    |                           | rig: Free Run<br>Atten: 30 dB | Avg Typ        | e: Log-Pwr    |                 | TRACE 1 2<br>TYPE MW<br>DET P P |
|                | of Offset 0.5 dB                |                        |                           |                               |                | M             | lkr1 2.48<br>-3 | 0 008 (<br>3.359 c              |
| 1              |                                 |                        |                           |                               |                |               |                 |                                 |
| $\rightarrow$  |                                 |                        |                           |                               |                |               |                 |                                 |
| -              |                                 | x2                     |                           |                               |                |               |                 | -23                             |
| / \            | www.                            | $\sum_{m=1}^{3}$       |                           |                               |                |               |                 |                                 |
|                | - www.www                       | - Morrison Marrie      | mahrmannon                | Marrie Marrie                 | Mumun          | mallen and an | 000mm 0 000 000 |                                 |
|                |                                 |                        |                           |                               |                |               |                 |                                 |
|                |                                 |                        |                           |                               |                |               |                 |                                 |
|                |                                 |                        |                           |                               |                |               |                 |                                 |
|                |                                 |                        |                           |                               |                |               |                 |                                 |
| t 2.47900      |                                 |                        |                           |                               |                |               |                 | 2.50000                         |
| 5 BW 100       | ) kHz                           |                        | #VBW 3                    | 00 kHz                        |                | Swe           | eep 2.07 m      | ns (1001                        |
| IODE TRC SO    |                                 |                        | Y                         | FUNCTION                      | FUNCTION WIDTH | 1             | FUNCTION VALUE  |                                 |
| N 1 f<br>N 1 f |                                 | 0 008 GHz<br>3 578 GHz | -3.359 dBn<br>-33.751 dBn |                               |                |               |                 |                                 |
| N 1 f          | 2.48                            | 5 426 GHz              | -38.959 dBn               | ı                             |                |               |                 |                                 |
|                |                                 |                        |                           |                               |                |               |                 |                                 |
|                |                                 |                        |                           |                               |                |               |                 |                                 |
|                |                                 |                        |                           |                               |                |               |                 |                                 |
|                |                                 |                        |                           |                               |                |               |                 |                                 |
|                |                                 |                        |                           |                               |                |               |                 |                                 |





# For Hopping Band edge

00 CH

| RL                      | RF                 | <mark>rzer - Swept SA</mark><br>50 Ω AC |                            |                          | SENSE:INT                  | AL         | IGNAUTO   |             |                         | ) AM Jun 21, 2                            |
|-------------------------|--------------------|-----------------------------------------|----------------------------|--------------------------|----------------------------|------------|-----------|-------------|-------------------------|-------------------------------------------|
| art Fre                 | eq 2.30            | 0000000                                 |                            | PNO: Fast 🕞<br>FGain:Low | ⊃ Trig: Free<br>#Atten: 30 |            | Avg Type: | -           | 1                       | ACE 1 2 3 4<br>TYPE M WAAA<br>DET P P P P |
| dB/div                  |                    | ffset 0.5 dB<br><b>1.58 dBm</b>         |                            |                          |                            |            |           | M           | kr1 2.401<br>-5.4       | 867 GI<br>418 dB                          |
| 42                      |                    |                                         |                            |                          |                            |            |           |             |                         |                                           |
| 5.4                     |                    |                                         |                            |                          |                            |            |           |             |                         |                                           |
| .4                      |                    |                                         |                            |                          |                            |            |           |             |                         | -25.42                                    |
| i.4                     |                    |                                         |                            |                          |                            |            |           |             |                         | ()°                                       |
| .4                      |                    |                                         |                            |                          |                            |            |           |             | 2<br>104                | when the                                  |
| .4 <b>/114/1</b>        | howith             | www.huna                                | a why any any              | Mantagent                | with and marking           | anahanhang | mangham   | millenality | when the share          | of all i                                  |
| .4                      |                    |                                         |                            |                          |                            |            |           |             |                         |                                           |
| .4                      |                    |                                         |                            |                          |                            |            |           |             |                         |                                           |
| 5.4                     |                    |                                         |                            |                          |                            |            |           |             |                         |                                           |
|                         | 0000 G<br>1 100 ki |                                         | 1                          | #VB                      | W 300 kHz                  | 1          | 1         | Swe         | Stop 2.4<br>ep  9.87 ms | 40300 G<br>(1001 p                        |
| R MODE T                | RC SCL             |                                         | 401 867 GHz                | -5,418                   |                            | CTION FUNC | ION WIDTH | FI          | JNCTION VALUE           |                                           |
|                         | 1 f<br>1 f         | 2.3                                     | 390 022 GHz<br>398 777 GHz | -49.300<br>-38.305       | dBm                        |            |           |             |                         |                                           |
| 3 N                     |                    | 2.                                      |                            | 00.000                   | ub.m                       |            |           |             |                         |                                           |
| 8 N<br>4<br>5<br>7<br>8 |                    | Ζ.                                      |                            |                          |                            |            |           |             |                         |                                           |
| 8 N -                   |                    | 2.                                      |                            |                          |                            |            |           |             |                         |                                           |

78 CH

|            |                        | Ω AC                           | SENSE:I               | NT                         | ALIGNAUTO<br>Avg Type: | Lan Dum             |                        | 4 AM Jun 21, 2<br>ACE 1 2 3 4          |
|------------|------------------------|--------------------------------|-----------------------|----------------------------|------------------------|---------------------|------------------------|----------------------------------------|
| irt Fre    | q 2.47900              |                                |                       | g: Free Run<br>tten: 30 dB | Avg Type:              | Log-Pwr             | 1                      | YPE MWAWA                              |
| dB/div     | Ref Offset<br>Ref 2.82 |                                |                       |                            |                        | Mł                  | (r1 2.479<br>-7.       | 882 G<br>181 dE                        |
| 3 June     | 1<br>Mm                |                                |                       |                            |                        |                     |                        |                                        |
| 2          |                        |                                | √3                    |                            |                        |                     |                        | -27.18                                 |
| 2          | hornal                 | Murantimeda                    | Mr. washer Martin     |                            |                        | 0                   |                        |                                        |
| 2          |                        |                                | I T T T MARKET IN THE | *** *******                | Margantensturio        | and many affred the | dunnun                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 2          |                        |                                |                       |                            |                        |                     |                        |                                        |
| 2          |                        |                                |                       |                            |                        |                     |                        |                                        |
|            | 7900 GHz<br>100 kHz    |                                | #VBW 30               | 10 kHz                     |                        | Swee                | Stop 2.3<br>ep 2.07 ms | 50000 G<br>(1001 p                     |
|            | RCİ SCLİ               | ×<br>2.479 882 GHz             | -7.181 dBm            | FUNCTION                   | FUNCTION WIDTH         | FU                  | INCTION VALUE          |                                        |
| N 1        | f                      |                                | 05.040 JD             |                            |                        |                     |                        |                                        |
|            | f<br>f                 | 2.483 704 GHz<br>2.485 426 GHz |                       |                            |                        |                     |                        |                                        |
| N 1<br>N 1 | f<br>f                 | 2.483 704 GHz                  |                       |                            |                        |                     |                        |                                        |
| N 1<br>N 1 | f<br>f                 | 2.483 704 GHz                  |                       |                            |                        |                     |                        |                                        |
| N 1        | f<br>f                 | 2.483 704 GHz                  |                       |                            |                        |                     |                        |                                        |



# Page 40 of 71

#### Report No.: STS1806136W03

| Temperature: | <b>25</b> ℃               | Relative Humidity: | 50%     |
|--------------|---------------------------|--------------------|---------|
| Test Mode:   | 8DPSK(3Mbps) -00/39/78 CH | Test Voltage:      | DC 3.7V |

# 00 CH

|                                             | RF 50                       | IQ AC                                                          | S                                                       | ENSE:INT                 | AL          | IGN AUTO  |     | 09:09:4            | 3 AM Jun 21, 20                               |
|---------------------------------------------|-----------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------|-------------|-----------|-----|--------------------|-----------------------------------------------|
| arker 1                                     | 2.402150                    |                                                                | PNO: Fast 🖵<br>-Gain:Low                                | Trig: Free<br>#Atten: 30 |             | Avg Type: | -   |                    | ACE 1 2 3 4 1<br>TYPE MWAAAA<br>DET P P P P I |
| dB/div                                      | Ref Offset (<br>Ref 4.06    |                                                                |                                                         |                          |             |           |     | Mkr1 2.4<br>-5.    | 02 2 GH<br>941 dB                             |
| 94                                          |                             |                                                                |                                                         |                          |             |           |     |                    |                                               |
| 5.9                                         |                             |                                                                |                                                         |                          |             |           |     |                    | -25.94 (                                      |
| i.9                                         |                             |                                                                |                                                         |                          |             |           |     |                    |                                               |
| .9                                          | $- \downarrow 0^2$          | 2                                                              | 3                                                       |                          |             |           |     | Marcal Andrews     |                                               |
| .9<br>Islama                                |                             |                                                                |                                                         |                          |             |           |     |                    |                                               |
| .9                                          |                             |                                                                |                                                         |                          |             |           |     |                    |                                               |
| .9                                          |                             |                                                                |                                                         |                          |             |           |     |                    |                                               |
|                                             |                             |                                                                |                                                         |                          |             |           |     |                    |                                               |
|                                             | VIHz<br>100 kHz             |                                                                | #VB\                                                    | № 300 kHz                |             |           | Swe | Stop<br>eep 2.39 s |                                               |
| R MODE TR<br>N 1<br>2 N 1<br>3 N 1<br>4 N 1 | 100 kHz<br>FC SCL<br>f<br>f | ×<br>2.402 2 GHz<br>3.327 9 GHz<br>7.936 8 GHz<br>24.990 0 GHz | #VB\<br>-5.941 (<br>-50.723 (<br>-56.098 (<br>-48.254 ( | dBm<br>dBm<br>dBm<br>dBm | CTION FUNCT | ION WIDTH |     |                    |                                               |
| R MODE 11<br>N 1<br>N 1<br>N 1<br>N 1       | 100 kHz<br>FC SCL<br>f<br>f | 2.402 2 GHz<br>3.327 9 GHz<br>7.936 8 GHz                      | -5.941 c<br>-50.723 c<br>-56.098 c                      | dBm<br>dBm<br>dBm<br>dBm | FUNCT       | ION WIDTH |     | eep 2.39 s         |                                               |
| Res BW<br>R MODE H<br>N 1<br>2 N 1<br>3 N 1 | 100 kHz<br>FC SCL<br>f<br>f | 2.402 2 GHz<br>3.327 9 GHz<br>7.936 8 GHz                      | -5.941 c<br>-50.723 c<br>-56.098 c                      | dBm<br>dBm<br>dBm<br>dBm | FUNCT       | ION WIDTH |     | eep 2.39 s         | 25.00 Gł<br>(40001 p                          |

# 39 CH

| L                                                            | RF          | yzer - Swep<br>50 Ω   | AC                                                             |                        | SENSE:INT                            |                 | ALT    | GNAUTO    |         | 09:12           | :48 AM Jun 21                        |
|--------------------------------------------------------------|-------------|-----------------------|----------------------------------------------------------------|------------------------|--------------------------------------|-----------------|--------|-----------|---------|-----------------|--------------------------------------|
|                                                              |             |                       | 00000 GHz                                                      | PNO: Fast<br>-Gain:Low | Trig: Fr<br>#Atten:                  | ee Run<br>30 dB | 1164   | Avg Type: | Log-Pwr |                 | TRACE 1 2 3<br>TYPE MWM<br>DET P P P |
| IB/div                                                       |             | offset 0.5<br>5.35 dB |                                                                |                        |                                      |                 |        |           |         | Mkr1 2.4        | 440 9 C<br>I.646 d                   |
| ,                                                            |             | )                     |                                                                |                        |                                      |                 |        |           |         |                 |                                      |
|                                                              |             |                       |                                                                |                        |                                      |                 |        |           |         |                 | -24.6                                |
|                                                              |             | {\} <sup>2</sup>      | (                                                              | 3                      |                                      |                 |        |           |         |                 |                                      |
|                                                              |             |                       |                                                                |                        |                                      |                 |        |           |         |                 |                                      |
|                                                              |             |                       |                                                                |                        |                                      |                 |        |           |         |                 |                                      |
| rt 30 P<br>es BW                                             |             | Hz                    |                                                                | #                      | VBW 300 k                            | Hz              |        |           | Sw      | Sto<br>eep 2.39 | p 25.00 (<br>s (40001                |
| MODE T<br>N <sup>(</sup><br>N <sup>(</sup><br>N <sup>(</sup> | f<br>f<br>f |                       | ×<br>2.440 9 GHz<br>3.327 9 GHz<br>7.409 9 GHz<br>24.679 8 GHz | -50.0<br>-55.7         | 46 dBm<br>41 dBm<br>73 dBm<br>17 dBm | UNCTION         | FUNCTI | ON WIDTH  |         | FUNCTION VALUE  |                                      |
|                                                              |             |                       |                                                                |                        |                                      |                 |        |           |         |                 |                                      |
|                                                              |             |                       |                                                                |                        |                                      |                 |        |           |         |                 |                                      |

Shenzhen STS Test Services Co., Ltd.



# 78 CH

| R L                | rum Anal<br>RE    | yzer - Swept<br>50 Ω     | AC                                        |                                    | SENSE:INT  |     | ALIGNAUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 09:14:4           | 3 AM Jun 21, 2                             |
|--------------------|-------------------|--------------------------|-------------------------------------------|------------------------------------|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|--------------------------------------------|
| enter F            | req 1             |                          | 00000 GHz                                 | NO: Fast Gain:Low                  |            | Run | Avg Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Log-Pwr | TF                | ACE 1 2 3 4<br>TYPE M WAAWA<br>DET P P P P |
| dB/div             |                   | offset 0.5 c<br>5.81 dBr |                                           |                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Mkr1 2.4<br>-4.   | 80 2 GH<br>191 dB                          |
| 19                 |                   | )1                       |                                           |                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                            |
| 1.2                |                   |                          |                                           |                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   | -24.19                                     |
| 1.2                |                   |                          |                                           |                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                            |
|                    |                   | 2                        | ^3                                        |                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                            |
| 1.2                |                   |                          |                                           | and the same the state of the same |            |     | A STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STRE | -       |                   |                                            |
| 1.2                |                   |                          |                                           |                                    |            |     | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                   |                                            |
| 4.2                |                   |                          |                                           |                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                            |
| art 30  <br>Res BW |                   | ·U                       |                                           | #\/P                               | W 300 kH;  | _   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Stop<br>ep 2.39 s | 25.00 G                                    |
| R MODE 1           |                   | .пz                      | X                                         | #VD                                |            | -   | CTION WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | votion value      | (40001 p                                   |
| 1 N<br>2 N         | 1 f<br>1 f<br>1 f |                          | 2.480 2 GHz<br>2.509 5 GHz<br>5.977 9 GHz | -4.191<br>-50.406<br>-55.489       | dBm<br>dBm |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | SNCTION VALUE     |                                            |
| 4 N                | 1 f               |                          | 24.697 2 GHz                              | -48.444                            |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                            |
| 5<br>7<br>3        |                   |                          |                                           |                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                            |
| )<br>)             |                   |                          |                                           |                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                            |
| 1                  |                   |                          |                                           |                                    |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                                            |
| 1<br>2<br>3        |                   |                          |                                           |                                    |            |     | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                   |                                            |



=

Shenzhen STS Test Services Co., Ltd.



# For Band edge

00 CH

|                       |        | er - Swept SA        |                          |                         |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|--------|----------------------|--------------------------|-------------------------|---------------------------------|-------------------------------|-------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RL                    | RF     | 50Ω AC               |                          | SE                      | NSE:INT                         | ALIGNAUTO                     | pe:Log-Pwr  |                        | 21 AM Jun 21, 20<br>RACE 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| arker 1               | 2.4019 | 97000000             | P                        | NO: Fast 😱<br>Gain:Low  | Trig: Free Run<br>#Atten: 30 dB | Avgiy                         | pe: Log-Pwr |                        | TYPE MWWW<br>DET P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ) dB/div              |        | set 0.5 dB<br>57 dBm |                          |                         |                                 |                               | N           | 1kr1 2.401<br>-3.      | 970 GH<br>430 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 43                    |        |                      |                          |                         |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.4                   |        |                      |                          |                         |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.4                   |        |                      |                          |                         |                                 |                               |             |                        | -23.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.4                   |        |                      |                          |                         |                                 |                               |             |                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .4                    |        |                      |                          |                         |                                 | in alanharmon                 | whenter     | wowner                 | a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta |
| A norm                | Manne  | man                  | all have maked           | a and the second second | wys wallow when the walk        | or a star har a share was her |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .4                    |        |                      |                          |                         |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.4                   |        |                      |                          |                         |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| art 2.30<br>Res BW    |        |                      |                          | #VBW                    | / 300 kHz                       |                               | Sw          | Stop 2.<br>eep 9.87 ms | 40300 <b>GI</b><br>s (1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| R MODE TR             |        | Х                    |                          | Y                       | FUNCTION                        | FUNCTION WIDTH                |             | FUNCTION VALUE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N 1<br>2 N 1<br>3 N 1 | f<br>f | 2.39                 | 01 970 GHz<br>90 022 GHz | -3.430 d<br>-45.819 d   |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | f      | 2.39                 | 98 880 GHz               | -34.014 d               | Bm                              |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1<br>5<br>5           |        |                      |                          |                         |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7<br>3                |        |                      |                          |                         |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                     |        |                      |                          |                         |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                     |        |                      |                          |                         |                                 |                               |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |        |                      |                          |                         | 1                               | STATUS                        |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

78 CH

| RL RF 50 Ω AC                                                                                                                                                                                                                                         | SENSE:INT                                         | ALIGNAUTO                                                | 09:15:16 AM Jun 21, 2                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| enter Freq 2.489500000 GHz                                                                                                                                                                                                                            | PNO: Fast Trig: Free R<br>IFGain:Low #Atten: 30 d |                                                          | TRACE 1234<br>TYPE M WWW<br>DET P P P   |
| Ref Offset 0.5 dB<br>dB/div Ref 6.63 dBm                                                                                                                                                                                                              |                                                   |                                                          | Mkr1 2.480 008 GF<br>-3.368 dB          |
| 37                                                                                                                                                                                                                                                    |                                                   |                                                          | -23.37                                  |
| 4                                                                                                                                                                                                                                                     | 3                                                 | alregramment annound for the solves                      |                                         |
| 4                                                                                                                                                                                                                                                     |                                                   | an sende water and a server for a for the server for the | ann all was not all a second            |
| 4                                                                                                                                                                                                                                                     |                                                   |                                                          |                                         |
| art 2.47900 GHz<br>es BW 100 kHz                                                                                                                                                                                                                      | #VBW 300 kHz                                      |                                                          | Stop 2.50000 G<br>Sweep 2.07 ms (1001 p |
| MODE         TRC         SCL         ×           N         1         f         2.480         008         GI           N         1         f         2.483         599         GI           N         1         f         2.485         006         GI | Iz -33.433 dBm                                    | TION FUNCTION WIDTH                                      | FUNCTION VALUE                          |
|                                                                                                                                                                                                                                                       |                                                   |                                                          |                                         |
|                                                                                                                                                                                                                                                       |                                                   |                                                          |                                         |





### For Hopping Band edge

00 CH

|                              |                              | wept SA                                        |                          |                                              |                          |                      |                                                             |
|------------------------------|------------------------------|------------------------------------------------|--------------------------|----------------------------------------------|--------------------------|----------------------|-------------------------------------------------------------|
| rt Fre                       | RF 50 9<br><b>q 2.300000</b> | Ω AC<br>0000 GHz                               | PNO: Fast G              | SENSE:INT<br>Trig: Free Rui<br>#Atten: 30 dB |                          | e: Log-Pwr           | 10:40:04 AM Jun 21<br>TRACE 1 2 3<br>TYPE M WW<br>DET P P P |
| B/div                        | Ref Offset 0<br>Ref -0.85    |                                                |                          |                                              |                          | Mł                   | r1 2.403 000 G<br>-10.846 dl                                |
|                              |                              |                                                |                          |                                              |                          |                      |                                                             |
|                              |                              |                                                |                          |                                              |                          |                      | -716                                                        |
|                              |                              |                                                |                          |                                              |                          |                      | ^2 whether 1                                                |
| miles                        | mar alman Montan             | manunaphymitalite                              | dimportant               | down when the                                | when any analyse and the | a for the second and | athefun and the start of the start                          |
|                              |                              |                                                |                          |                                              |                          |                      |                                                             |
|                              |                              |                                                |                          |                                              |                          |                      |                                                             |
| L                            | 0000 GHz                     |                                                |                          | 300 kHz                                      |                          | Swee                 | Stop 2.40300 G<br>p 9.87 ms (1001 j                         |
|                              | 100 kHz                      |                                                | # ¥ L                    |                                              |                          |                      |                                                             |
| s BW                         | RC SCL                       | ×                                              | Y                        | FUNCTIO                                      | N FUNCTION WIDTH         | FU                   | NCTION VALUE                                                |
|                              | FC SCL                       | ×<br>2.403 000 G<br>2.390 022 G<br>2.398 159 G | Hz -10.846<br>Hz -52.259 | 6 dBm<br>∂ dBm                               | N FUNCTION WIDTH         | FU                   | NCTION VALUE                                                |
| SBW<br>NODE TO<br>N 1<br>N 1 | FC SCL                       | 2.403 000 G<br>2.390 022 G                     | Hz -10.846<br>Hz -52.259 | 6 dBm<br>∂ dBm                               | N FUNCTION WIDTH         | FU                   | NCTION VALUE                                                |

78 CH

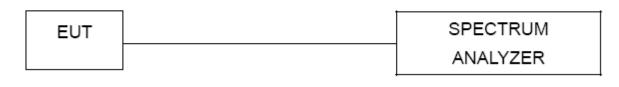


=



# 5. NUMBER OF HOPPING CHANNEL

# 5.1 APPLIED PROCEDURES / LIMIT


| FCC Part 15.247,Subpart C |                              |       |                         |        |
|---------------------------|------------------------------|-------|-------------------------|--------|
| Section                   | Test Item                    | Limit | FrequencyRange<br>(MHz) | Result |
| 15.247<br>(a)(1)(iii)     | Number of Hopping<br>Channel | ≥15   | 2400-2483.5             | PASS   |

| Spectrum Parameters | Setting                    |
|---------------------|----------------------------|
| Attenuation         | Auto                       |
| Span Frequency      | > Operating FrequencyRange |
| RB                  | 100KHz                     |
| VB                  | 100KHz                     |
| Detector            | Peak                       |
| Trace               | Max Hold                   |
| Sweep Time          | Auto                       |

#### **5.2 TEST PROCEDURE**

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=100KHz, Sweep time = Auto.

#### 5.3 TEST SETUP



#### 5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



### 5.5 TEST RESULTS

| Temperature: | <b>25</b> ℃  | Relative Humidity: | 60%     |
|--------------|--------------|--------------------|---------|
| Test Mode:   | Hopping Mode | Test Voltage:      | DC 3.7V |

# Number of Hopping Channel

### 79

# Hopping channel

| -                                                      | RF                  | 50 Ω AC                    | SENSE:                       | INT                         | ALIGNAUTO      |      | 09:53:00 AM       |                      |
|--------------------------------------------------------|---------------------|----------------------------|------------------------------|-----------------------------|----------------|------|-------------------|----------------------|
| enter                                                  | Freq 2.4            | 441750000 GHz<br>PI<br>IFC | NO: Fast 😱 Tr<br>Gain:Low #A | ig: Free Run<br>tten: 30 dB | Avg Type: I    | -    | TYPE<br>DET       | 1234<br>MWWW<br>AAAA |
| 0 dB/di                                                |                     | ffset 0.5 dB<br>5.93 dBm   |                              |                             |                | Mkr2 | 2.480 243<br>-3.0 | 5 G⊦<br>4 dB         |
| <sup>og</sup><br>3.07                                  | )1                  |                            |                              |                             |                |      |                   | <b>2</b>             |
| 13.1                                                   |                     |                            |                              |                             |                |      |                   | ··· \                |
| 23.1                                                   |                     |                            |                              |                             |                |      |                   |                      |
| B.1                                                    |                     |                            |                              |                             |                |      |                   |                      |
| I3.1                                                   |                     |                            |                              |                             |                |      |                   |                      |
| i3.1                                                   |                     |                            |                              |                             |                |      |                   |                      |
| 3.1                                                    |                     |                            |                              |                             |                |      |                   |                      |
| 3.1                                                    |                     |                            |                              |                             |                |      |                   |                      |
| 33.1                                                   |                     |                            |                              |                             |                |      |                   |                      |
|                                                        |                     |                            |                              |                             |                |      | Stop 2.483        | 350 CI               |
| tart 2                                                 | 40000 G             | Hz                         |                              |                             |                |      |                   |                      |
|                                                        | .40000 G<br>W 1.0 M |                            | #VBW 1.                      | 0 MHz                       |                | Swee | p 1.00 ms (1      |                      |
| Res B                                                  | W 1.0 MI            | iz<br>×                    | Y                            | FUNCTION                    | FUNCTION WIDTH |      |                   |                      |
| Res B<br>REMODE<br>1 N<br>2 N                          | W 1.0 M             | lz                         |                              | FUNCTION                    | FUNCTION WIDTH |      | p 1.00 ms (1      |                      |
| Res B<br>1 N<br>2 N<br>3<br>4                          | W 1.0 MI            | 1z<br>×<br>2.401 920 5 GHz | Y<br>-3.09 dBm               | FUNCTION                    | FUNCTION WIDTH |      | p 1.00 ms (1      |                      |
| Res B<br>1 N<br>2 N<br>3<br>4                          | W 1.0 MI            | 1z<br>×<br>2.401 920 5 GHz | Y<br>-3.09 dBm               | FUNCTION                    | FUNCTION WIDTH |      | p 1.00 ms (1      |                      |
| Res B<br>1 N<br>2 N<br>3<br>4<br>5<br>6<br>7           | W 1.0 MI            | 1z<br>×<br>2.401 920 5 GHz | Y<br>-3.09 dBm               | FUNCTION                    | FUNCTION WIDTH |      | p 1.00 ms (1      |                      |
| Res B<br>1 N<br>2 N<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | W 1.0 MI            | 1z<br>×<br>2.401 920 5 GHz | Y<br>-3.09 dBm               | FUNCTION                    | FUNCTION WIDTH |      | p 1.00 ms (1      |                      |
| Res B<br>1 N<br>2 N<br>3<br>4<br>5<br>6                | W 1.0 MI            | 1z<br>×<br>2.401 920 5 GHz | Y<br>-3.09 dBm               | FUNCTION                    | FUNCTION WIDTH |      | p 1.00 ms (1      |                      |

Shenzhen STS Test Services Co., Ltd.



# 6. AVERAGE TIME OF OCCUPANCY

### 6.1 APPLIED PROCEDURES / LIMIT

|                       | FCC Part 15.247,Subpart C    |        |                         |        |  |
|-----------------------|------------------------------|--------|-------------------------|--------|--|
| Section               | Test Item                    | Limit  | FrequencyRange<br>(MHz) | Result |  |
| 15.247<br>(a)(1)(iii) | Average Time<br>of Occupancy | 0.4sec | 2400-2483.5             | PASS   |  |

#### 6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- $\tilde{h}$ . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). Sothe dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So he dwell time is the time duration of the pulse times  $5.06 \times 31.6 = 160$  within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the dwell time is the time duration of the pulse times  $10.12 \times 31.6 = 320$  within 31.6 seconds.

#### 6.3 TEST SETUP



### 6.4 EUT OPERATION CONDITIONS

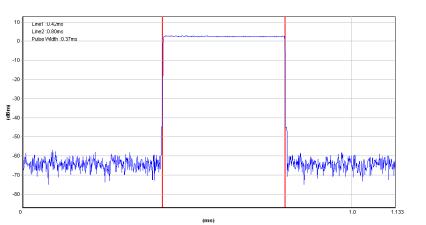
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



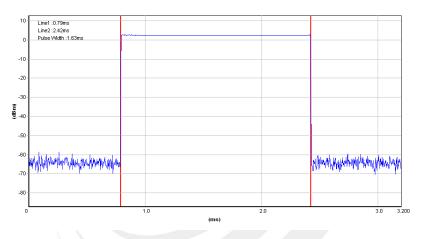
Report No.: STS1806136W03

# 6.5 TEST RESULTS

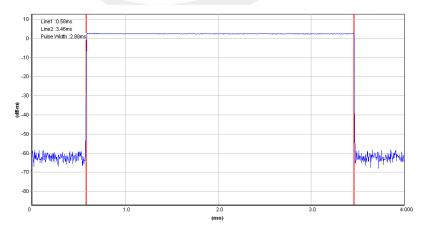
| Temperature: | <b>25</b> ℃             | Relative Humidity: | 50%     |
|--------------|-------------------------|--------------------|---------|
| Test Mode:   | GFSK(1Mbps)-DH1/DH3/DH5 | Test Voltage:      | DC 3.7V |


| Data Packet | Frequency | Pulse Duration(ms) | Dwell Time(s) | Limits(s) |
|-------------|-----------|--------------------|---------------|-----------|
| DH1         | 2441 MHz  | 0.370              | 0.118         | 0.4       |
| DH3         | 2441 MHz  | 1.630              | 0.261         | 0.4       |
| DH5         | 2441 MHz  | 2.880              | 0.307         | 0.4       |




Shenzhen STS Test Services Co., Ltd.




### CH39-DH1







CH39-DH5



F

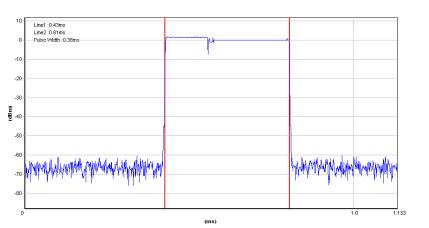
Shenzhen STS Test Services Co., Ltd.



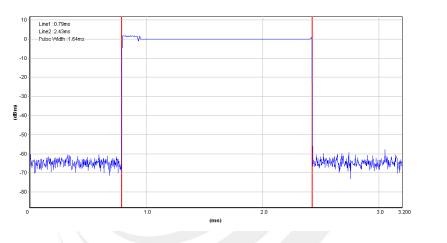
Page 49 of 71

Report No.: STS1806136W03

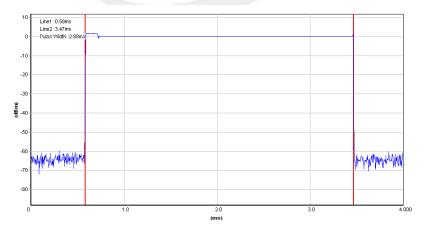
| Temperature: | <b>25</b> ℃                         | Relative Humidity: | 50%     |
|--------------|-------------------------------------|--------------------|---------|
| Test Mode:   | π/4-DQPSK(2Mbps)–<br>2DH1/2DH3/2DH5 | Test Voltage:      | DC 3.7V |


| Data Packet | Frequency | Pulse Duration(ms) | Dwell Time(s) | Limits(s) |
|-------------|-----------|--------------------|---------------|-----------|
| 2DH1        | 2441 MHz  | 0.380              | 0.122         | 0.4       |
| 2DH3        | 2441 MHz  | 1.640              | 0.262         | 0.4       |
| 2DH5        | 2441 MHz  | 2.880              | 0.307         | 0.4       |




Shenzhen STS Test Services Co., Ltd.




#### CH39-2DH1











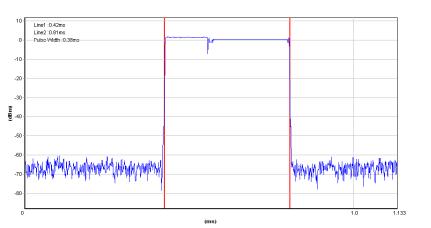
F

Shenzhen STS Test Services Co., Ltd.

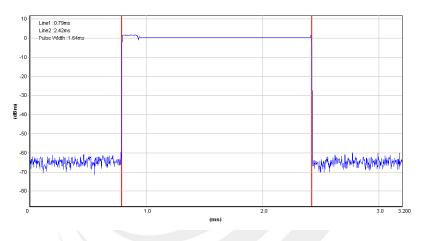


Page 51 of 71 Report No.: STS1806136W03

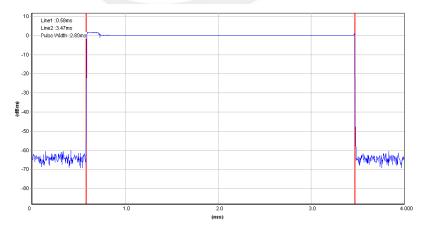
| Temperature: | <b>25</b> ℃                     | Relative Humidity: | 50%     |
|--------------|---------------------------------|--------------------|---------|
| Test Mode:   | 8DPSK(3Mbps)–<br>3DH1/3DH3/3DH5 | Test Voltage:      | DC 3.7V |


| Data Packet | Frequency | Pulse Duration(ms) | Dwell Time(s) | Limits(s) |
|-------------|-----------|--------------------|---------------|-----------|
| 3DH1        | 2441 MHz  | 0.380              | 0.122         | 0.4       |
| 3DH3        | 2441 MHz  | 1.640              | 0.262         | 0.4       |
| 3DH5        | 2441 MHz  | 2.890              | 0.308         | 0.4       |




Shenzhen STS Test Services Co., Ltd.




#### CH39-3DH1











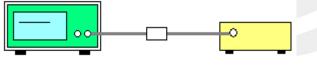
F





# 7. HOPPING CHANNEL SEPARATION MEASUREMEN

## 7.1 APPLIED PROCEDURES / LIMIT


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

| Spectrum Parameter | Setting                                                 |
|--------------------|---------------------------------------------------------|
| Attenuation        | Auto                                                    |
| Span Frequency     | > 20 dB Bandwidth or Channel Separation                 |
| RB                 | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)   |
| VB                 | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |
| Detector           | Peak                                                    |
| Trace              | Max Hold                                                |
| Sweep Time         | Auto                                                    |

### 7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

### 7.3 TEST SETUP



Spectrum Analayzer

EUT

# 7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.



Report No.: STS1806136W03

## 7.5 TEST RESULTS

| Temperature: | <b>25</b> ℃                              | Relative Humidity: | 50%     |
|--------------|------------------------------------------|--------------------|---------|
|              | CH00 / CH39 / CH78<br>(GFSK(1Mbps) Mode) | Test Voltage:      | DC 3.7V |

| Frequency | Ch. Separation<br>(MHz) | Limit | Result   |
|-----------|-------------------------|-------|----------|
| 2402 MHz  | 0.999                   | 0.737 | Complies |
| 2441 MHz  | 1.005                   | 0.736 | Complies |
| 2480 MHz  | 0.999                   | 0.731 | Complies |

# For GFSK: Ch. Separation Limits: > two-thirds 20dB bandwidth

| RL RF                       | rzer - Swept SA<br>  50 Ω AC    | SENSE:I     | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALIGN AUTO   |                  | :27:08 PM Jun 21,                    |
|-----------------------------|---------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|--------------------------------------|
| nter Freq 2.                | 402500000 GHz                   |             | g: Free Run<br>tten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Avg Type: Lo | g-Pwr            | TRACE 1 2 3<br>TYPE MWW<br>DET P P P |
| B/div Ref 4                 | ffset 0.5 dB<br><b>1.42 dBm</b> |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Mkr2 2.4         | 03 064 G<br>-5.578 d                 |
|                             |                                 | ()1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2            |                  |                                      |
|                             | $\sim$                          | have        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 million    | ~~~~             |                                      |
| 5                           | m                               |             | mar and a start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of |              | M                |                                      |
|                             | 5-0-                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ~                | 2                                    |
| man of                      |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  | har                                  |
|                             |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
| ;<br>                       |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
| ; <b></b>                   |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
| 5 <b></b>                   |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
| 6                           |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
| nter 2.40250<br>es BW 30 kH |                                 | #VBW 10     | 0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | Sp<br>Sweep 3.20 | an 3.000 M<br>ms (1001               |
| NODE TRC SCL                | ×<br>2.402 065 GH               | z -5.57 dBm | FUNCTION FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NCTION WIDTH | FUNCTION VALU    | JE                                   |
| N 1 f                       | 2.403 064 GH                    | z -5.58 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
|                             |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
|                             |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
|                             |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
|                             |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
|                             |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
|                             |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |
|                             |                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                                      |

### CH00 -1Mbps



### CH39 -1Mbps



#### CH78 -1Mbps



Shenzhen STS Test Services Co., Ltd.



Page 56 of 71

Report No.: STS1806136W03

| Temperature: | <b>25</b> ℃                                   | Relative Humidity: | 50%     |
|--------------|-----------------------------------------------|--------------------|---------|
| LOCT IVIODO. | CH00 / CH39 / CH78<br>(π/4-DQPSK(2Mbps) Mode) | Test Voltage:      | DC 3.7V |

| Frequency | Ch. Separation<br>(MHz) | Limit | Result   |
|-----------|-------------------------|-------|----------|
| 2402 MHz  | 1.002                   | 0.915 | Complies |
| 2441 MHz  | 0.999                   | 0.915 | Complies |
| 2480 MHz  | 0.996                   | 0.915 | Complies |

For  $\pi$ /4-DQPSK(2Mbps): Ch. Separation Limits: > two-thirds 20dB bandwidth

| ter Fi     | RF             | 72er - Swept S.<br>50 Ω AC<br>4025000 | 00 GHz                       |                          | E:INT                                  | ALIGNAUTO<br>Avg Type:                  | : Log-Pwr |                    | 56 PM Jun 2<br>IRACE 1 2<br>TYPE MW |
|------------|----------------|---------------------------------------|------------------------------|--------------------------|----------------------------------------|-----------------------------------------|-----------|--------------------|-------------------------------------|
| 3/div      |                | ffset 0.5 dB<br>-3.23 dBm             | IF                           | Gain:Low 1               | ¥Atten: 30 dB                          |                                         | N         | lkr2 2.403<br>-13  | 0ET P P                             |
|            | Itel           | 0.20 0.81                             |                              | ()1                      |                                        |                                         | 2         |                    |                                     |
|            |                |                                       | $\sim$                       |                          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\sim$    | m                  |                                     |
|            |                | <i>م</i> م                            |                              |                          |                                        |                                         |           | ~                  | \                                   |
| ~~~        | m              |                                       |                              |                          |                                        |                                         |           |                    | hora                                |
| <u> </u>   |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            | 10250<br>30 kH |                                       |                              | #VBW                     | 100 kHz                                |                                         | Sw        | Spar<br>eep 3.20 m | 1 3.000<br>s (100 <sup>7</sup>      |
| MODE TH    | IC SCL         |                                       | ×                            | Y                        | FUNCTION                               | FUNCTION WIDTH                          |           | FUNCTION VALUE     |                                     |
| N 1<br>N 1 | f              |                                       | .402 143 GHz<br>.403 145 GHz | -13.22 dBi<br>-13.23 dBi |                                        |                                         |           |                    |                                     |
|            |                | -                                     | .400 140 0112                | 10.20 42.                |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |
|            |                |                                       |                              |                          |                                        |                                         |           |                    |                                     |

### CH00 -2Mbps

Shenzhen STS Test Services Co., Ltd.



## CH39 -2Mbps

| Erec 2 444600000 CU            | SENSE:I           |                           | AUTO<br>Avg Type: Log-Pwr | 02:25:25 PM J<br>TRACE    |
|--------------------------------|-------------------|---------------------------|---------------------------|---------------------------|
| Freq 2.441500000 GH            | PNO: Wide Tri     | g: Free Run<br>ten: 30 dB | Avg Type. Log-r wi        | TYPE DET F                |
| Ref Offset 0.5 dB              |                   |                           | Mł                        | r2 2.442 14:<br>-14.058   |
|                                | ()1               |                           | 2                         |                           |
| ~~~                            | $\sim$            | mm                        | m                         | $\sim$                    |
|                                |                   |                           |                           | - h                       |
|                                |                   |                           |                           |                           |
| www                            |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |
| 2.441500 GHz<br>W 30 kHz       | #VBW 10           | 0 kHz                     | Swee                      | Span 3.0<br>p 3.20 ms (10 |
| TRC SCL X                      | Y                 | FUNCTION FUNCTION         |                           | NCTION VALUE              |
| 1 f 2.441 143<br>1 f 2.442 142 |                   |                           |                           |                           |
| 1 1 2.442 142                  | 0112 -14.00 dBill |                           |                           |                           |
|                                |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |
|                                |                   |                           |                           |                           |

# CH78 -2Mbps

| RF 50 Ω AC                             | SENSE:INT                                | ALIGN AUTO                             | 02:25:56 PM Jun           |
|----------------------------------------|------------------------------------------|----------------------------------------|---------------------------|
| r Freq 2.479500000 GHz                 | PNO: Wide Trig: Fr<br>IFGain:Low #Atten: |                                        |                           |
| Ref Offset 0.5 dB<br>div Ref -3.91 dBm |                                          |                                        | Mkr2 2.480 145<br>-13.913 |
|                                        | {1                                       |                                        | 2                         |
|                                        | $\sim$                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | m                         |
|                                        |                                          |                                        | ~                         |
|                                        |                                          |                                        | 1.00                      |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |
| er 2.479500 GHz                        |                                          |                                        | Span 3.000                |
| BW 30 kHz                              | #VBW 100 ki                              | lz                                     | Sweep 3.20 ms (100        |
| DE TRC SCL X                           |                                          | UNCTION FUNCTION WIDTH                 | FUNCTION VALUE            |
| I 1 f 2.479 149 GH                     |                                          |                                        |                           |
| 2.400 140 011                          | 10.01 4011                               |                                        |                           |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |
|                                        |                                          |                                        |                           |

╡



Page 58 of 71

Report No.: STS1806136W03

| Temperature: | <b>25</b> ℃                              | Relative Humidity: | 50%     |
|--------------|------------------------------------------|--------------------|---------|
|              | CH00 / CH39 / CH78<br>(8DPSK(3Mbps)Mode) | Test Voltage:      | DC 3.7V |

| Frequency | Ch. Separation<br>(MHz) | Limit | Result   |
|-----------|-------------------------|-------|----------|
| 2402 MHz  | 0.999                   | 0.905 | Complies |
| 2441 MHz  | 0.999                   | 0.905 | Complies |
| 2480 MHz  | 0.981                   | 0.905 | Complies |

For 8DPSK(3Mbps):Ch. Separation Limits: > two-thirds 20dB bandwidth

|                                 | trum Analyzer - Sv        |                                |                          |                     |                           |         |                   |                    |
|---------------------------------|---------------------------|--------------------------------|--------------------------|---------------------|---------------------------|---------|-------------------|--------------------|
| (RL)                            | RF 50 G                   |                                | SENSE:INT                |                     | ALIGN AUTO<br>Avg Type: I | og-Pwr  |                   | 3 PM Jun 21, 20    |
| enter F                         | -req 2.4025               | Р                              |                          | Free Run<br>n:30 dB | Ang Type.                 | Logi wi | 1                 |                    |
| 0 dB/div                        | Ref Offset 0<br>Ref -2.71 |                                |                          |                     |                           | Mk      | r2 2.402<br>-12.8 | 914 GH<br>304 dB   |
| og<br>12.7                      |                           | 4                              | ∕ <b>∑</b> 1             |                     | 2                         |         |                   |                    |
| 2.7                             |                           | $\sim$                         |                          | m                   |                           |         | $\sim$            |                    |
| 12.7                            | 5                         |                                |                          |                     |                           |         | ~                 |                    |
|                                 | 0.0                       |                                |                          |                     |                           |         | X                 | \                  |
| 2.7                             |                           |                                |                          |                     |                           |         |                   | mon                |
| 2.7                             |                           |                                |                          |                     |                           |         |                   |                    |
| 2.7                             |                           |                                |                          |                     |                           |         |                   |                    |
| 2.7                             |                           |                                |                          |                     |                           |         |                   |                    |
| 12.7                            |                           |                                |                          |                     |                           |         |                   |                    |
| 2.7                             |                           |                                |                          |                     |                           |         |                   |                    |
|                                 | .402500 GHz<br>/ 30 kHz   | <u>.</u>                       | #VBW 100                 | kHz                 |                           | Swee    | Span<br>p 3.20 ms | 3.000 M<br>(1001 p |
| KR MODE T                       |                           | ×                              | Y                        | FUNCTION            | FUNCTION WIDTH            | FUN     | ICTION VALUE      |                    |
| 2 N                             | 1 f<br>1 f                | 2.401 915 GHz<br>2.402 914 GHz | -12.71 dBm<br>-12.80 dBm |                     |                           |         |                   |                    |
| 4                               |                           |                                |                          |                     |                           |         |                   |                    |
| 4                               |                           |                                |                          |                     |                           |         |                   |                    |
| 4<br>5<br>6<br>7                |                           |                                |                          |                     |                           |         |                   |                    |
| 3<br>4<br>5<br>6<br>7<br>8<br>9 |                           |                                |                          |                     |                           |         |                   |                    |
| 4<br>5<br>6<br>7<br>8<br>9      |                           |                                |                          |                     |                           |         |                   |                    |
| 4<br>5<br>6                     |                           |                                |                          |                     |                           |         |                   |                    |

# CH00 -3Mbps



# CH39 -3Mbps

|                   |                                | SENSE:INT                           | ALIC             | Avg Type: Log | 02:2                                    | 23:40 PM Jur<br>TRACE |
|-------------------|--------------------------------|-------------------------------------|------------------|---------------|-----------------------------------------|-----------------------|
| r Freq 2.4415000  | PNO:                           | Wide 🥁 Trig: Fre<br>n:Low #Atten: 3 |                  |               |                                         | DET P                 |
| Ref Offset 0.5 di |                                |                                     |                  |               | Mkr2 2.44<br>-1                         | 11 914<br>3.622       |
|                   | ()1                            |                                     |                  | 2             |                                         |                       |
| ~                 | m                              | m                                   |                  | -             |                                         |                       |
| ~~~               |                                |                                     | -                |               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                       |
|                   |                                |                                     |                  |               |                                         | $\lambda$             |
| ~~~               |                                |                                     |                  |               |                                         | h                     |
|                   |                                |                                     |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |
| 2.441500 GHz      |                                |                                     |                  |               | Sp                                      | an 3.00               |
| BW 30 kHz         |                                | #VBW 100 kH                         |                  |               | Sweep 3.20                              |                       |
| E TRC SCL         | X                              |                                     | JNCTION FUNCTION | DN WIDTH      | FUNCTION VALUE                          | E .                   |
|                   | 2.440 915 GHz<br>2.441 914 GHz | -13.58 dBm<br>-13.62 dBm            |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |
| 1 f<br>1 f        |                                |                                     |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |
| 1 f<br>1 f        |                                |                                     |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |
|                   |                                |                                     |                  |               |                                         |                       |

# CH78 -3Mbps

| L RF         | 50 Ω AC                        | SENSE:I                  | NT                        | ALIGN AUTO     |         | 02:23:11 PM Jun 2               |
|--------------|--------------------------------|--------------------------|---------------------------|----------------|---------|---------------------------------|
| ter Freq 2.4 | 79500000 GHz<br>P<br>IF        | NO: Wide 🕞 Tri           | g: Free Run<br>ten: 30 dB | Avg Type:      | Log-Pwr | TRACE 1 2<br>TYPE MW<br>DET P P |
|              | set 0.5 dB<br>.36 dBm          |                          |                           |                | Mk      | r2 2.480 112 (<br>-13.316 d     |
|              |                                | $\sum^{1}$               |                           |                | 2       |                                 |
|              |                                |                          | - marine                  |                |         | ~~~                             |
|              |                                |                          |                           |                |         |                                 |
| m            |                                |                          |                           |                |         | - m                             |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
| ter 2.479500 | CH7                            |                          |                           |                |         | Span 3.000                      |
| s BW 30 kHz  | 0112                           | #VBW 10                  | 0 kHz                     |                | Swee    | p 3.20 ms (1001                 |
| MODE TRC SCL | ×                              | Y                        | FUNCTION                  | FUNCTION WIDTH | FUN     | ICTION VALUE                    |
| N 1 f        | 2.479 131 GHz<br>2.480 112 GHz | -13.30 dBm<br>-13.32 dBm |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |
|              |                                |                          |                           |                |         |                                 |

╡



# 8. BANDWIDTH TEST

# 8.1 APPLIED PROCEDURES / LIMIT

| FCC Part15 15.247,Subpart C |           |                  |                         |        |
|-----------------------------|-----------|------------------|-------------------------|--------|
| Section                     | Test Item | Limit            | FrequencyRange<br>(MHz) | Result |
| 15.247<br>(a)(1)            | Bandwidth | (20dB bandwidth) | 2400-2483.5             | PASS   |

| Spectrum Parameter | Setting                                                 |
|--------------------|---------------------------------------------------------|
| Attenuation        | Auto                                                    |
| Span Frequency     | > Measurement Bandwidth or Channel Separation           |
| RB                 | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)   |
| VB                 | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |
| Detector           | Peak                                                    |
| Trace              | Max Hold                                                |
| Sweep Time         | Auto                                                    |

#### 8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b. Spectrum Setting : RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

### 8.3 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

### **8.4 EUT OPERATION CONDITIONS**

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.




Report No.: STS1806136W03

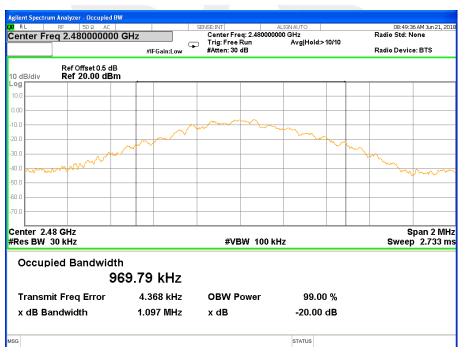
## 8.5 TEST RESULTS

| Temperature: | <b>25</b> ℃                      | Relative Humidity: | 50%     |
|--------------|----------------------------------|--------------------|---------|
|              | GFSK(1Mbps)<br>CH00 / CH39 / C78 | Test Voltage:      | DC 3.7V |

| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 1.105                   | PASS   |
| 2441 MHz  | 1.104                   | PASS   |
| 2480 MHz  | 1.097                   | PASS   |

# CH00 -1Mbps




Shenzhen STS Test Services Co., Ltd.



### CH39 -1Mbps

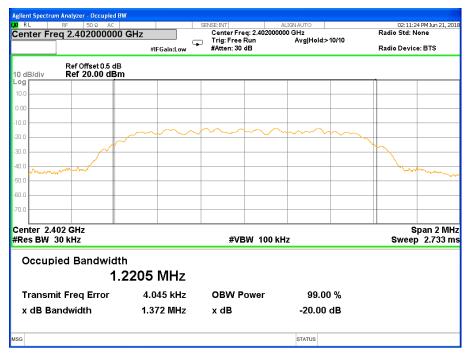


#### CH78 -1Mbps



Shenzhen STS Test Services Co., Ltd.



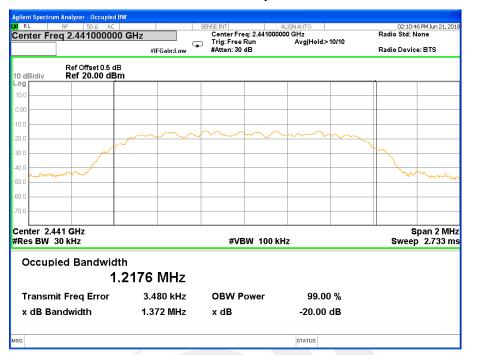

Page 63 of 71

Report No.: STS1806136W03

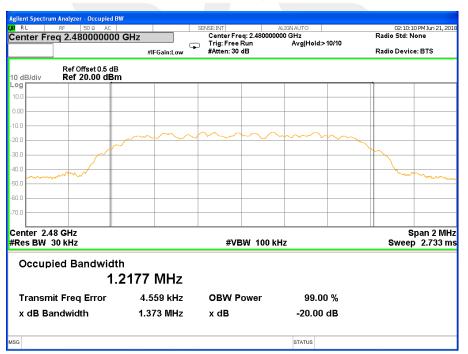
| Temperature: | <b>25</b> ℃                           | Relative Humidity: | 50%     |
|--------------|---------------------------------------|--------------------|---------|
|              | π/4-DQPSK(2Mbps)<br>CH00 / CH39 / C78 | Test Voltage:      | DC 3.7V |

| Frequency | 20dB Bandwidth(MHz) | Result |
|-----------|---------------------|--------|
| 2402 MHz  | 1.372               | PASS   |
| 2441 MHz  | 1.372               | PASS   |
| 2480 MHz  | 1.373               | PASS   |

#### CH00 -2Mbps




Shenzhen STS Test Services Co., Ltd.


=



#### CH39 -2Mbps

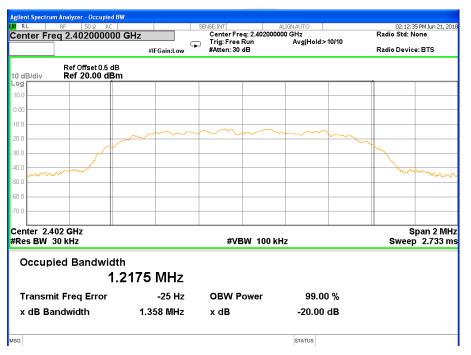


#### CH78 -2Mbps



#### Shenzhen STS Test Services Co., Ltd.



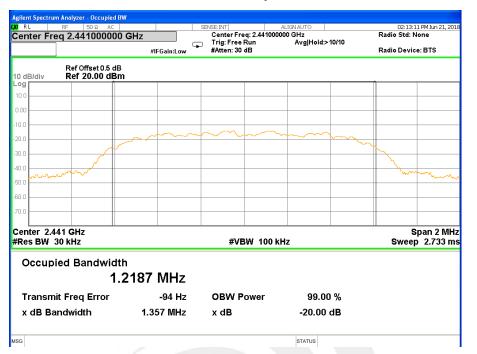

Page 65 of 71

Report No.: STS1806136W03

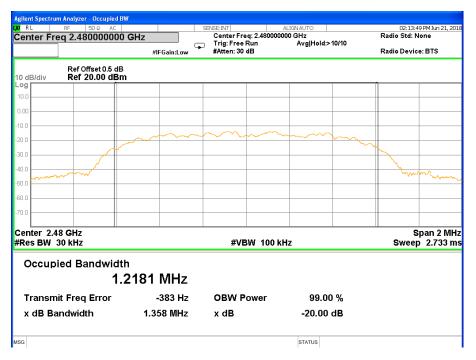
| Temperature: | <b>25</b> ℃                        | Relative Humidity: | 50%     |
|--------------|------------------------------------|--------------------|---------|
|              | 8DPSK(3Mbps)<br>CH00 / CH39 / CH78 | Test Voltage:      | DC 3.7V |

| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 1.358                   | PASS   |
| 2441 MHz  | 1.357                   | PASS   |
| 2480 MHz  | 1.358                   | PASS   |

## CH00 -3Mbps




Shenzhen STS Test Services Co., Ltd.


=



#### CH39 -3Mbps



#### CH78 -3Mbps



Shenzhen STS Test Services Co., Ltd.



# 9. OUTPUT POWER TEST

# 9.1 APPLIED PROCEDURES / LIMIT

| FCC Part 15.247,Subpart C |                 |                                                                                                                                  |                         |        |
|---------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|
| Section                   | Test Item       | Limit                                                                                                                            | FrequencyRange<br>(MHz) | Result |
|                           | Outout          | 1 W or 0.125W                                                                                                                    |                         |        |
| 15.247<br>(a)(1)&(b)(1)   | Output<br>Power | if channel separation ><br>2/3 bandwidthprovided<br>thesystems operatewith an<br>output power no greater<br>than125 mW(20.97dBm) | 2400-2483.5             | PASS   |

#### 9.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Meter

#### 9.3 TEST SETUP

| EUT | Power meter |  |
|-----|-------------|--|
|     |             |  |

# 9.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



## 9.5 TEST RESULTS

| Temperature:  | <b>25</b> ℃ | Relative Humidity: | 60% |
|---------------|-------------|--------------------|-----|
| Test Voltage: | DC 3.7V     |                    |     |

| GFSK(1Mbps)  |           |                        |           |       |  |
|--------------|-----------|------------------------|-----------|-------|--|
| Test Channel | Frequency | Conducted Output Power |           | LIMIT |  |
|              | (MHz)     | Peak (dBm)             | AVG (dBm) | dBm   |  |
| CH00         | 2402      | -1.66                  | -5.83     | 20.97 |  |
| CH39         | 2441      | -2.14                  | -6.34     | 20.97 |  |
| CH78         | 2480      | -2.51                  | -6.68     | 20.97 |  |

Note: the channel separation >2/3 20dB bandwidth

| π/4QPSK(2Mbps) |           |                        |           |       |  |
|----------------|-----------|------------------------|-----------|-------|--|
| Test Channel   | Frequency | Conducted Output Power |           | LIMIT |  |
|                | (MHz)     | Peak (dBm)             | AVG (dBm) | dBm   |  |
| CH00           | 2402      | -1.89                  | -6.01     | 20.97 |  |
| CH39           | 2441      | -2.28                  | -6.43     | 20.97 |  |
| CH78           | 2480      | -2.76                  | -6.79     | 20.97 |  |

Note: the channel separation >2/3 20dB bandwidth

| 8DPSK(3Mbps) |           |                        |           |       |  |
|--------------|-----------|------------------------|-----------|-------|--|
| Test Channel | Frequency | Conducted Output Power |           | LIMIT |  |
|              | (MHz)     | Peak (dBm)             | AVG (dBm) | dBm   |  |
| CH00         | 2402      | -2.16                  | -6.28     | 20.97 |  |
| CH39         | 2441      | -2.52                  | -6.65     | 20.97 |  |
| CH78         | 2480      | -2.91                  | -6.87     | 20.97 |  |

Note: the channel separation >2/3 20dB bandwidth

Shenzhen STS Test Services Co., Ltd.



Page 69 of 71

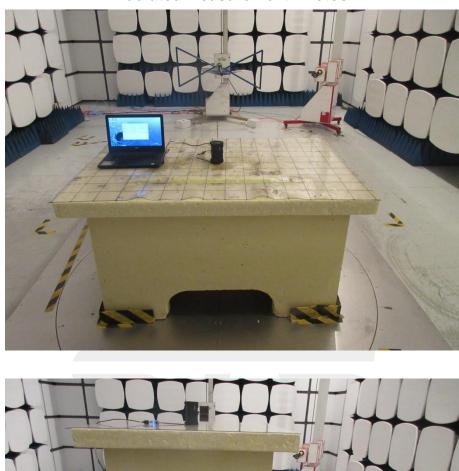
# 10. ANTENNA REQUIREMENT

### **10.1 STANDARD REQUIREMENT**

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

# 10.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.




Shenzhen STS Test Services Co., Ltd.



Page 70 of 71

# **APPENDIX-PHOTOS OF TEST SETUP**



**Radiated Measurement Photos** 



Shenzhen STS Test Services Co., Ltd.



Page 71 of 71

# **Conducted Measurement Photos**



\*\* \*\* \*\* \*\* END OF THE REPORT \*\* \*\* \*\* \*\*

Shenzhen STS Test Services Co., Ltd.