

Page 1 of 43 JQA File No. : KL80150050 Issue Date : June 2, 2015

TEST REPORT

Applicant Address	:	Sharp Corporation, Communication Systems Division 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan
Products	:	Phablet (Handheld Mini Tablet)
Model No.	:	SH-05G
Serial No.	:	004401115430452
		004401115430577
FCC ID	:	APYHRO00222
Test Standard	:	CFR 47 FCC Rules and Regulations Part 22
Test Results	:	Passed
Date of Test	:	April 24 ~ May 20, 2015

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

JAPAN QUALITY ASSURANCE ORGANIZATION

TABLE OF CONTENTS

Page 2 of 43

Page

Description of the Equipment Under Test	. 3
Summary of Test Results	. 4
Test Procedure	
Test Location	. 5
Recognition of Test Laboratory	. 5
•	
	Summary of Test Results

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT	: Equipment Under Test	EMC	: Electromagnetic Compatibility
AE	: Associated Equipment	EMI	: Electromagnetic Interference

- EMI: Electromagnetic InterferenceEMS: Electromagnetic Susceptibility
- N/T : Not Tested

: Not Applicable

N/A

- \boxtimes indicates that the listed condition, standard or equipment is applicable for this report.
- □ indicates that the listed condition, standard or equipment is not applicable for this report.

1 Description of the Equipment Under Test

Page 3 of 43

1.	Manufacturer	:	Sharp Corporation, Communication Systems Division 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan
2.	Products	:	Phablet (Handheld Mini Tablet)
3.	Model No.	:	SH-05G
4.	Serial No.	:	004401115430452
		:	004401115430577
5.	Product Type	:	Pre-production
6.	Date of Manufacture	:	March, 2015
7.	Power Rating	:	4.0VDC (Lithium-ion Battery UBATIA264AFZZ 3900mAh)
8.	Grounding	:	None
9.	Transmitting Frequency	:	824.2 MHz(128CH) – 848.8 MHz(251CH)
10.	Receiving Frequency	:	869.2 MHz(128 CH) - 893.8 MHz(251 CH)
11.	Emission Designations	:	245KGXW
12.	Max. RF Output Power	:	1.349W (ERP)
13.	Category	:	GSM850
14.	EUT Authorization	:	Certification
15.	Received Date of EUT	:	April 18, 2015

16. Channel Plan

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

 $\begin{array}{ll} Transmitting \ Frequency \ (in \ MHz) &= 824.2 + 0.2 \times (n-128) \\ where, \ n \ : \ channel \ number \ (128 \leq n \leq 251) \end{array}$

Receiving Frequency (in MHz) = $869.2 + 0.2 \times (n - 128)$ where, n : channel number ($128 \le n \le 251$)

Page 4 of 43

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 22 Subpart H – Cellular Radiotelephone Service

The EUT described in clause 1 was tested according to the applied standard shown above. Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \boxtimes - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

□ - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Assistant Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

higen Osawa

Shigeru Osawa Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Page 5 of 43

3 Test Procedure

Test Requirements	:	CFR 47 FCC Rules and Regulations Part 2 §2.1046, §2.1047, §2.1049, §2.1051, §2.1053, §2.1055 and §2.1057
Test Procedure	:	ANSI C63.4–2003, TIA/EIA–603-C-2004 FCC KDB 971168 D01 Power Meas License Digital Systems v02r02, released October 17, 2014

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2016)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2016)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2016)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2016)

6 Description of Test Setup

Page 6 of 43

6.1 Test Configuration

The equipment under test (EUT) consists of :

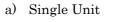
	Item	Manufacturer	Model No.	Serial No.	FCC ID
Δ	Phablet (Handheld Mini	Charm	SH-05G	004401115430452 *1)	APYHRO00222
А	Tablet)	Sharp	SH-05G	004401115430577 *2)	APIIRO00222
В	AC Adapter	Fujitsu Corporation	05	XFA	N/A
С	Stereo Handsfree	Sharp	SHLDL1		N/A
D	DTV Antenna	Sharp	SH01		N/A

*1) Used for Field Strength of Spurious Emission

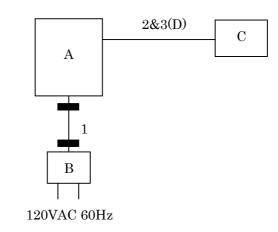
*2) Used for Antenna Conducted Emission and Frequency Stability

The auxiliary equipment used for testing :

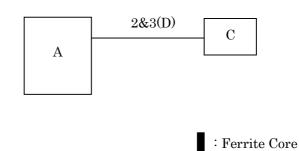
None


Type of Cable:

No.	Description	Identification (Manu. etc.)	Connector Shielded	Cable Shielded	Ferrite Core	Length (m)
1	USB conversion cable			NO	YES	1.2
2	Handsfree Cable			NO	NO	1.5
3	DTV Antenna Cable			NO	NO	0.3


6.2 Test Arrangement (Drawings)

Page 7 of 43



b) AC Adapter used

c) Earphone used

Page 8 of 43

6.3 Operating Condition

The test were carried under one modulation type shown as follows: Modulation Burst Signal : DATA TSC 5 in accordance with GSM 05.02. (Maximum Power Setting)

The Radiated Emission test were carried under 3 test configurations shown in clause 6.2. In all tests, the fully charged battery is used for the EUT.

Other Clock Frequency 19.2MHz, 48MHz, 12MHz, 27.12MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

Page 9 of 43

7 Test Requirements

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
RF Power Output	Section 22.913(a)(2)	Section 7.1	Passed	-
ERP / EIRP RF Power	Section 22.913(a)(2)	Section 7.2	Passed	-
Output				
Modulation Characteristics	-	-	-	-
Occupied Bandwidth	Section 22.917	Section 7.4	Passed	-
Spurious Emissions at	Section 22.917	Section 7.5	Passed	-
Antenna Terminals				
Band-Edge Emission	Section 22.917	Section 7.6	Passed	-
Field Strength of Spurious	Section 22.917	Section 7.7	Passed	-
Radiation				
Frequency Stability	Section 22.355	Section 7.8	Passed	-

7.1 RF Power Output (§2.1046)

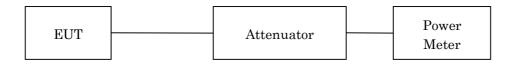
For the requirements,	- Applicable	[🛛 - Tested.	- Not tested by application	ant request.]
	- Not Applica	ble		

For the limits, \square - Passed \square - Failed \square - Not judged

7.1.1 Worst Point and Measurement Uncertainty

Transmitter Power is	<u>1836.5</u> mW	at	848.800	MHz
Uncertainty of Measurement Results at Amplitude			+/-0.9	_ dB(2σ)

Remarks:

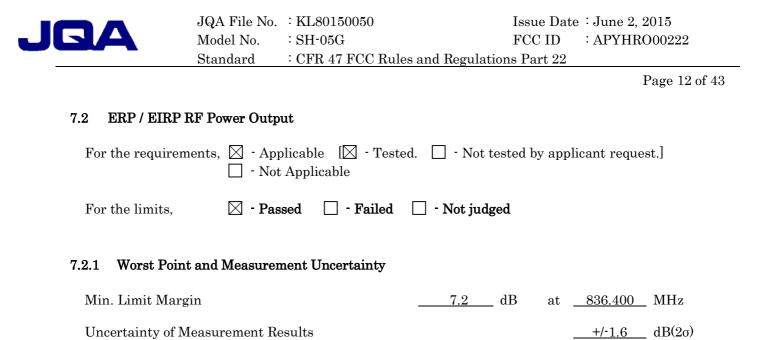

Page 10 of 43

7.1.2 Test Instruments

Shielded Room S4								
TypeModelManufacturerID No.Last Cal.Inter								
Power Meter	N1911A	Agilent	B-63	2014/7	1 Year			
Power Sensor	N1921A	Agilent	B-64	2014/7	1 Year			
Attenuator	43KC-20	Anritsu	D-41	2014/6	1 Year			
RF Cable	SUCOFLEX102	SUHNER	C-52	2014/8	1 Year			

7.1.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one attenuator and a short, low loss cable.


Page 11 of 43

7.1.4 Test Data

(GSM850)

					<u>Test Date: May 5, 20</u> mp.: 26 °C, Humi: 30
Transm	itting Frequency	Correction Factor	Meter Reading (Peak)	Result	ts (Peak)
СН	[MHz]	[dB]	[dBm]	[dBm]	[m W]
128	824.200	20.25	12.27	32.52	1786.5
189	836.400	20.26	12.33	32.59	1815.5
251	848.800	20.26	12.38	32.64	1836.5

Correction Factor	=	20.26	dB		
+) Meter Reading	=	12.38	dBm	_	
Result	=	32.64	dBm = 1836.5 mW	_	

Remarks: The maximum ERP is 1.349 W at 836.400 MHz.

7.2.2 Test Instruments

	Anecho	ic Chamber A2			
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESU 26	Rohde & Schwarz	A-6	2015/4	1 Year
Signal Generator	E8257D	Agilent	B-39	2014/8	1 Year
Power Meter	N1911A	Agilent	B-63	2014/7	1 Year
Power Sensor	N1921A	Agilent	B-64	2014/7	1 Year
Attenuator(TX)	2-10	Weinschel	D-79	2014/11	1 Year
Log-periodic Antenna	UHALP9108-A1	Schwarzbeck	C-31	2014/5	1 Year
Dipole Antenna(TX)	KBA-611	Kyoritsu	C-20	2014/5	1 Year

Page 13 of 43

7.2.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1:

In order to obtain the maximum emission, the EUT was placed at the height 1.5 m on the non-conducted support and was varying at three orthogonal axes, at the distance 3 m from the receiving antenna and rotated around 360 degrees.

The receiving antenna height was varied from 1 m to 4 m.

The EUT on the table was placed to be maximum emission against at the receiving antenna polarized (vertical and horizontal).

Then the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V).

Step 2:

The EUT was replaced to substitution antenna at the same polarized under the same condition as step 1.

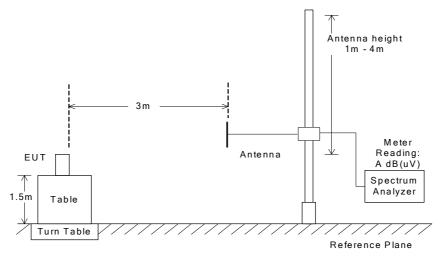
The RF power was fed to the transmitting antenna through the RF amplifier from the signal generator.

In order to obtain the maximum emission level, the height of the receiving antenna was varied from 1 m to 4 m.

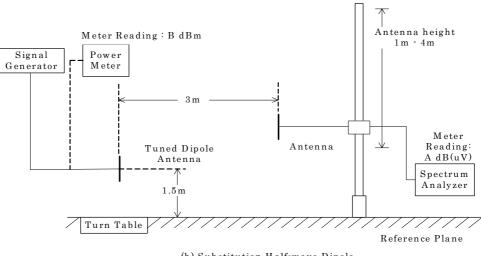
The level of maximum emission was A dB(μ V), same as the recorded level in the step 1.

Then the RF power into the substitution horn antenna was P (dBm).

The ERP/EIRP output power was calculated in the following equation.


 $\begin{array}{l} {\rm ERP}\;({\rm dBm})={\rm P}\;({\rm dBm})-{\rm Balun\;loss\;of\;the\;tuned\;dipole\;antenna\;({\rm dB})+{\rm Cable\;loss\;(dB)}\\ {\rm EIRP}\;({\rm dBm})={\rm P}\;({\rm dBm})+{\rm Gh\;(dBi)} \end{array}$

where, Gh(dBi): Gain of the substitution horn antenna.



Page 14 of 43

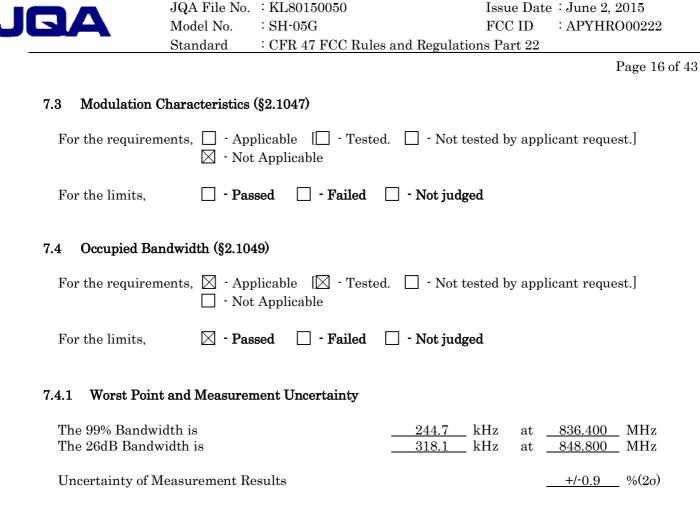
(b) Substitution Half-wave Dipole Antenna

Page 15 of 43

7.2.4 Test Data

(GSM850)

1. Measurement Results


<u>Test Date: April 28, 2015</u> <u>Temp.: 23 °C, Humi: 48 %</u>

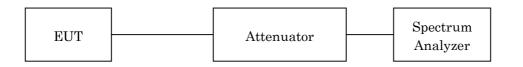
	ansmitting `requency		easurement [uV)]		Measurement (uV)]	Supplied Power to Substitution Antenna	Balun Loss of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dB m]	[dB]
128	824.200	104.9	102.8	67.0	65.8	- 5.0	1.8
189	836.400	104.8	103.1	66.7	65.6	- 5.0	1.8
251	848.800	104.4	103.0	66.3	65.1	- 5.0	1.9

2. Calculation Results

Transmi	tting Frequency	Peak ER	P [dBm]	Maximum Peak ERP	Limits	Margin
СН	[MHz]	Hori. (ERPh)	Vert. (ERPv)	[W]	[dBm]	[dB]
128	824.200	31.1	30.2	1.288	38.5	+ 7.4
189	836.400	31.3	30.7	1.349	38.5	+ 7.2
251	848.800	31.2	31.0	1.318	38.5	+ 7.3

Emission Measurment (Mh)		=	104.8	dB(uV)
Substitution Measurement (Msh)		=	-66.7	dB(uV)
Supplied Power to Substitution A	Intenna	=	-5.0	dBm
+) Balun Loss of Substitution Ant	enna	=	-1.8	dB
Result (ERPh)		=	31.3	dBm = 1.349 W
inimum Margin: 38.5 - 31.3 = 7.2 (dB)				
OTE: Setting of measuring instrument	(s) :			
DTE: Setting of measuring instrument Detector Function	(s) : Resoluti	on B.W.	V.B.W.	Sweep Time

Remarks :


Page 17 of 43

7.4.2 Test Instruments

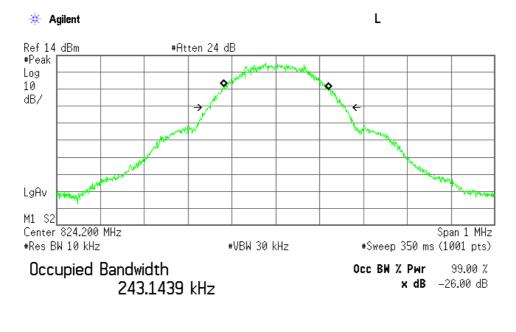
	Shield	ed Room S4			
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2014/9	1 Year
Attenuator	43KC-20	Anritsu	D-41	2014/7	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2014/8	1 Year

7.4.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	10 kHz
Video Bandwidth	$30 \mathrm{kHz}$
Span	1 MHz
Sweep Time	AUTO
Trace	Maxhold

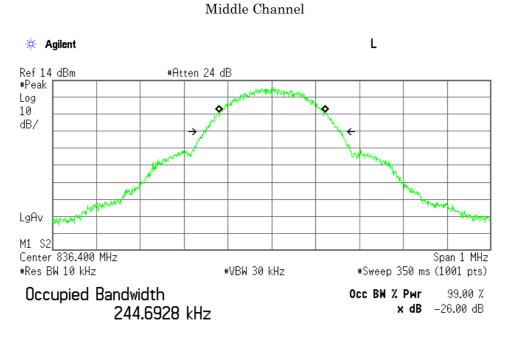

Page 18 of 43

7.4.4 Test Data

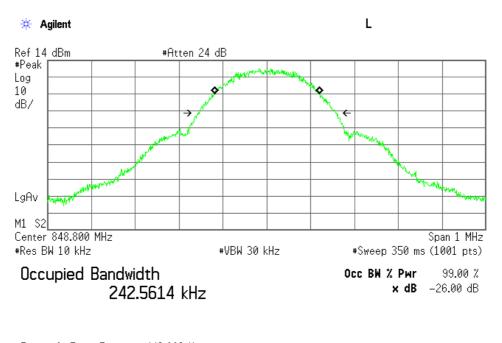
The resolution bandwidth was set to about 1% of emission bandwidth, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

<u>Test Date : May 5, 2015</u> <u>Temp.:26°C, Humi:30%</u>

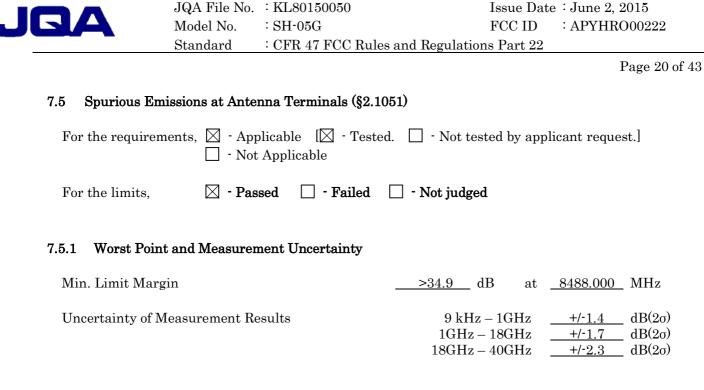
Channel	Frequency (MHz)	99% Bandwidth (kHz)	-26dBc Bandwidth (kHz)
128	824.20	243.1	315.0
189	836.40	244.7	314.2
251	848.80	242.6	318.1



Low Channel


Transmit Freq Error	831.361 Hz	
Occupied Bandwidth	314.967 kHz	_

Page 19 of 43



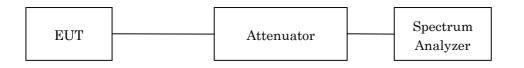
Transmit Freq Error	724.342 Hz
Occupied Bandwidth	314.165 kHz

High Channel

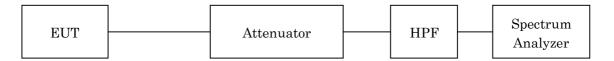
Occupied Bandwidth 318.091 kHz	Transmit Freq Error	443.903 Hz	
	Occupied Bandwidth	318.091 kHz	

Remarks :

Page 21 of 43


7.5.2 Test Instruments

Shielded Room S4							
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval		
Spectrum Analyzer	E4446A	Agilent	A-39	2014/9	1 Year		
Attenuator	43KC-20	Anritsu	D-41	2014/7	1 Year		
RF Cable	SUCOFLEX102	SUHNER	C-52	2014/8	1 Year		
HPF	HPM5010S	MICRO-TRONICS	D-94	2015/2	1 Year		


7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Antenna Conducted Emission was measured with a spectrum analyzer. The test system is shown as follows:

a) Frequency Range: 9 kHz - 1.2 GHz

b) Frequency Range: 1.2 GHz – 10 GHz

The setting of the spectrum analyzer are shown as follows:

Frequency Range	9 kHz - 150 kHz	150 kHz - 30 MHz	30 MHz - 10 GHz
Res. Bandwidth	200 Hz	$10 \mathrm{kHz}$	1 MHz
Video Bandwidth	1 kHz	$30 \mathrm{kHz}$	$3 \mathrm{~MHz}$
Sweep Time	AUTO	AUTO	AUTO
Trace	Maxhold	Maxhold	Maxhold

Page 22 of 43

7.5.4 Test Data

(GSM850)

<u>Test Date: May 5, 2015</u> <u>Temp.: 26 °C, Humi: 30 %</u>

	ansmitting	Measured	Corr.	Meter Readings [dBm]	Limits [dBm]	Results [dBm]	Margin [dB]	Remark
CH F	requency [MHz]	Frequency [MHz]	Factor [dB]	լսթայ	[aß m]	լսծայ	[UB]	
128	824.200	1648.400	21.4	< -70.0	-13.0	< -48.6	> +35.6	С
		2472.600	21.1	< -70.0	-13.0	< -48.9	> +35.9	С
		3296.800	21.3	< -70.0	-13.0	< -48.7	> +35.7	С
		4121.000	21.4	< -70.0	-13.0	< -48.6	> +35.6	С
		4945.200	21.4	< -70.0	-13.0	< -48.6	> +35.6	С
		5769.400	21.5	< -70.0	-13.0	< -48.5	> +35.5	С
		6593.600	21.6	< -70.0	-13.0	< -48.4	> +35.4	С
		7417.800	21.8	< -70.0	-13.0	< -48.2	> +35.2	С
		8242.000	22.0	< -70.0	-13.0	< -48.0	> +35.0	С
189	836.400	1672.800	21.5	< -70.0	-13.0	< -48.5	> +35.5	С
		2509.200	21.2	< -70.0	-13.0	< -48.8	> +35.8	С
		3345.600	21.3	< -70.0	-13.0	< -48.7	> +35.7	С
		4182.000	21.4	< -70.0	-13.0	< -48.6	> +35.6	С
		5018.400	21.5	< -70.0	-13.0	< -48.5	> +35.5	С
		5854.800	21.5	< -70.0	-13.0	< -48.5	> +35.5	С
		6691.200	21.7	< -70.0	-13.0	< -48.3	> +35.3	С
		7527.600	21.9	< -70.0	-13.0	< -48.1	> +35.1	С
		8364.000	22.0	< -70.0	-13.0	< -48.0	> +35.0	С
251	848.800	1697.600	21.4	< -70.0	-13.0	< -48.6	> +35.6	С
		2546.400	21.2	< -70.0	-13.0	< -48.8	> +35.8	С
		3395.200	21.3	< -70.0	-13.0	< -48.7	> +35.7	С
		4244.000	21.4	< -70.0	-13.0	< -48.6	> +35.6	С
		5092.800	21.4	< -70.0	-13.0	< -48.6	> +35.6	С
		5941.600	21.5	< -70.0	-13.0	< -48.5	> +35.5	С
		6790.400	21.7	< -70.0	-13.0	< -48.3	> +35.3	С
		7639.200	21.9	< -70.0	-13.0	< -48.1	> +35.1	С
		8488.000	22.1	< -70.0	-13.0	< -47.9	> +34.9	С

Page 23 of 43

NOTES

1. The spectrum was checked from 9 kHz to 10 GHz.

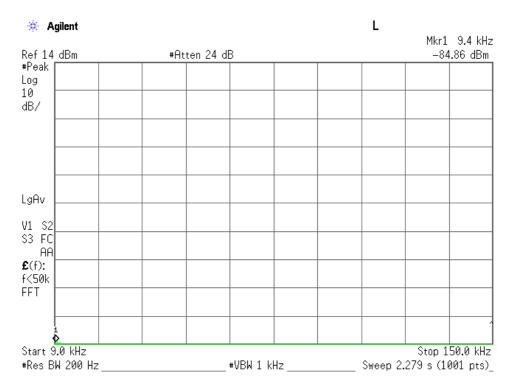
2. Applied limits : -13.0 [dBm] = $10\log(TP[mW]) - (43 + 10\log(tp[W])) = 10\log(TP[mW]) - (43 + (10\log(TP[mW]) - 30))$ where, tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal

3. The correction factor is shown as follows:

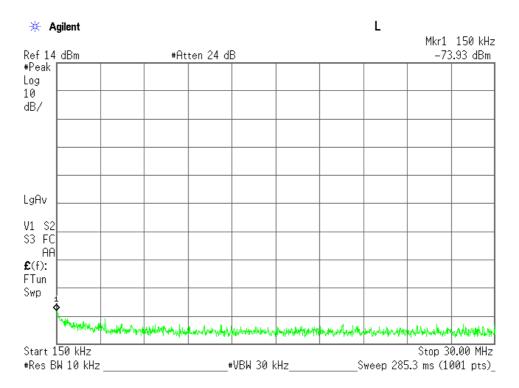
Corr. Factor [dB] = Cable Loss + 10dB Pad Att. [dB] (9 kHz - 2 GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. + High Pass Filter Loss (D-96) [dB] (over 2 GHz)

4. The symbol of "<" means "or less".

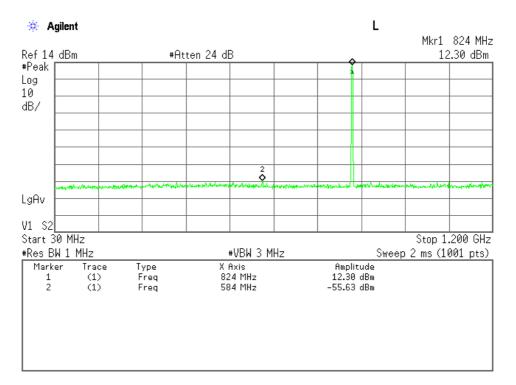

5. The symbol of ">" means "more than".

6. Setting of measuring instrument(s) :

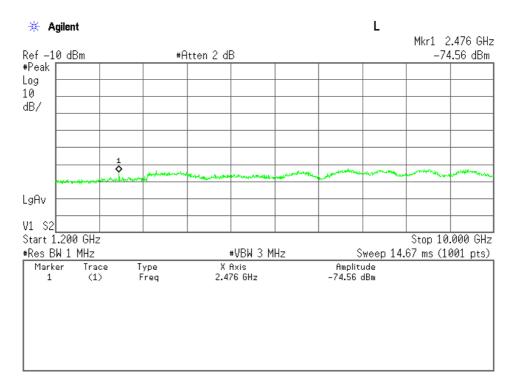

		Detector Function	RES B.W.	V.B.W.	Sweep Time
	A	Peak	200 Hz	1 kHz	AUTO
]	В	Peak	10 kHz	30 kHz	AUTO
	С	Peak	1 MHz	3 MHz	AUTO

Low Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

Low Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

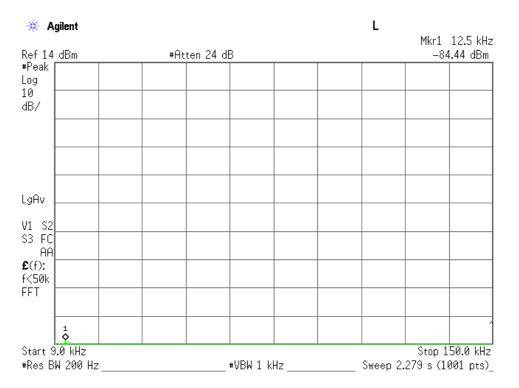


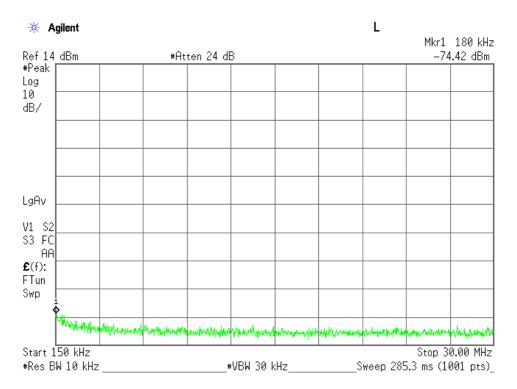
Page 24 of 43



Page 25 of 43

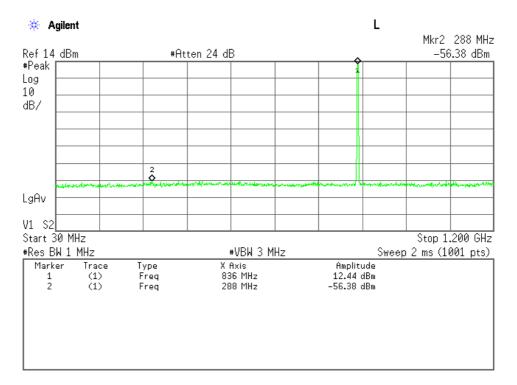
Low Channel, Out-Of-Band Emissions (30 MHz – 1.2 GHz)

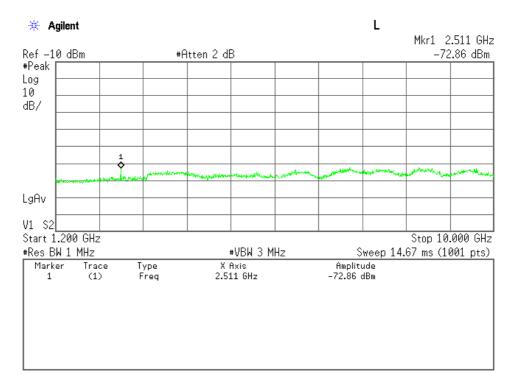

Low Channel, Out-Of-Band Emissions (1.2 GHz - 10 GHz)



Page 26 of 43

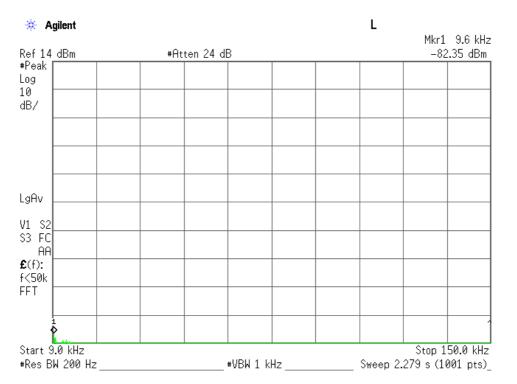
Middle Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

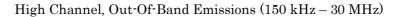

Middle Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

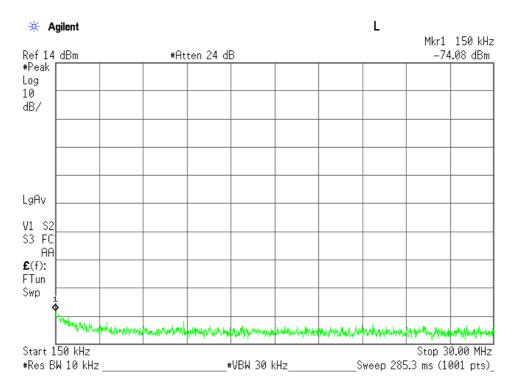


Page 27 of 43

Middle Channel, Out-Of-Band Emissions (30 $\rm MHz-1.2~GHz)$

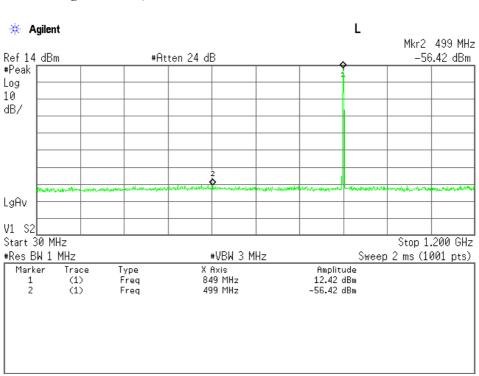

Middle Channel, Out-Of-Band Emissions (1.2 GHz - 10 GHz)



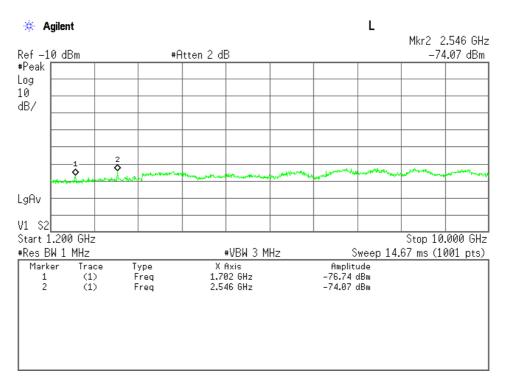


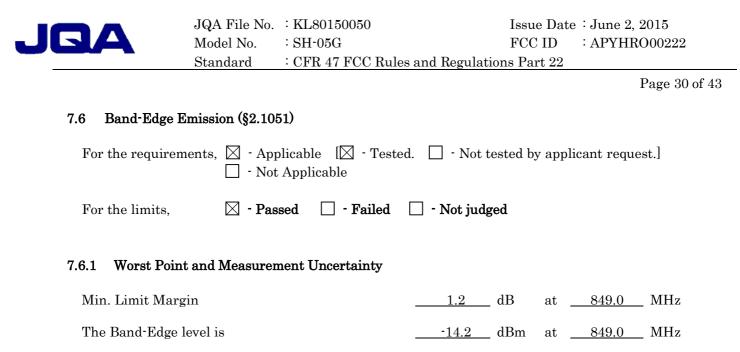
Page 28 of 43

High Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)



Technical document No. 23199-1501




Page 29 of 43

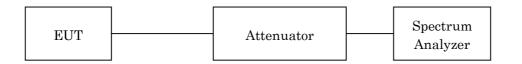
High Channel, Out-Of-Band Emissions (30 MHz - 1.2 GHz)

High Channel, Out-Of-Band Emissions (1.2 GHz - 10 GHz)

Uncertainty of Measurement Results ______ dB(2o)

Remarks: The measurement result is within the range of measurement uncertainty.

7.6.2 Test Instruments


Shielded Room S4							
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval		
Spectrum Analyzer	E4446A	Agilent	A-39	2014/9	1 Year		
Attenuator	43KC-20	Anritsu	D-41	2014/7	1 Year		
RF Cable	SUCOFLEX102	SUHNER	C-52	2014/8	1 Year		

Page 31 of 43

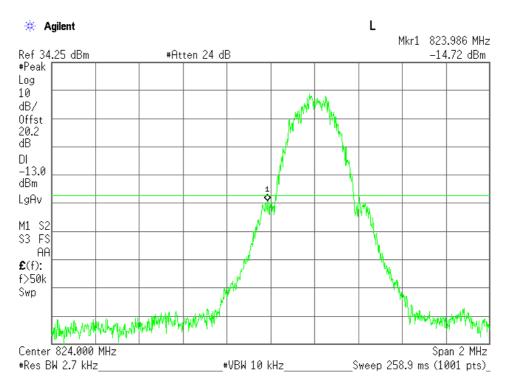
7.6.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

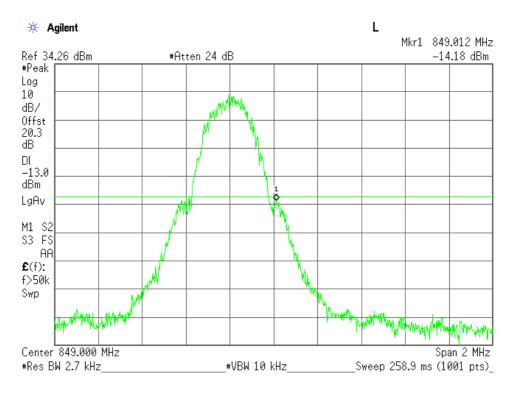
The setting of the spectrum analyzer are shown as follows:

TX Frequency	824.20 MHz / 848.80 MHz			
Band-Edge Frequency	824.00 MHz / 849.00 MHz			
Res. Bandwidth	$2.7\mathrm{kHz}$			
Video Bandwidth	$10 \mathrm{kHz}$			
Span	2 MHz			
Sweep Time	AUTO			
Trace	Maxhold			

7.6.4 Test Data


<u>Test Date : May 5, 2015</u> <u>Temp.:26°C, Humi:30%</u>

Channel	Frequency (MHz)	Band-Edge Frequency (MHz)	Band-Edge Level (dBm)	Limits (dBm)	Margin (dB)
128	824.2	824.0	-14.7	-13.0	+1.7
251	848.8	849.0	-14.2	-13.0	+1.2



Low Channel, Band-Edge Emission

Page 32 of 43

High Channel, Band-Edge Emission

7.7 Field Strength of Spurious Radiation (§2.1053)

For the requirements, \square - Applicable $[\square$ - Tested. \square - Not tested by applicant request.]

	JQA File No. Model No.	: KL80150050 : SH-05G		Issu FCC		e :June 2, 2 :APYHR(
	Standard	: CFR 47 FCC Rul	es and Regulat			· AF IIIM	000222
	🗌 - Not	Applicable				1	Page 33 of 43
For the limits,	🛛 - Pass	sed 🗌 - Failed	🗌 - Not jud	ged			
7.7.1 Worst Point	and Measuren	nent Uncertainty					
Min. Limit Marg	in		>29.6	dB	at	8364/8488	MHz
Uncertainty of M	easurement Re	sults	30 MHz – 1 GH	1000 M z – 18G		+/-1.6 +/-1.8	dB(2o) dB(2o)

Remarks:

7.7.2 Test Instruments

Anechoic Chamber A2							
Type Model		Manufacturer	ID No.	Last Cal.	Interval		
Test Receiver	ESU26	Rohde & Schwarz	A-6	2015/4	1 Year		
Signal Generator	E8257A	Agilent	B-39	2014/8	1 Year		
Power Meter	N1911A	Agilent	B-63	2014/7	1 Year		
Power Sensor	N1921A	Agilent	B-64	2014/7	1 Year		
Horn Antenna	91888-2	EATON	C-41-1	2014/7	1 Year		
Horn Antenna	91889-2	EATON	C-41-2	2014/7	1 Year		
Horn Antenna	3160-05	EATON	C-56	2014/6	1 Year		
Horn Antenna	3160-06	EATON	C-57	2014/6	1 Year		
Horn Antenna	3160-07	EATON	C-58	2014/6	1 Year		
RF Cable	SUCOFLEX104	SUHNER	C-66	2015/1	1 Year		
RF Cable	SUCOFLEX104	SUHNER	C-67	2015/1	1 Year		
Attenuator	2-10	Weinschel	D-79	2014/11	1 Year		
Attenuator	54-10	Weinschel	D-29	2014/9	1 Year		
Pre-Amplifier	TPA0118-36	ΤΟΥΟ	A-37	2014/5	1 Year		
HPF	HPM5010S	MICRO-TRONICS	D-94	2015/2	1 Year		

Page 34 of 43

7.7.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 0.8 m in height and was varying at three orthogonal axes. The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

This test was carried out using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

Step 2)

A) Up to 1 GHz

The ERP measurement was carried out with according to Step 2 in Clause 7.2.4. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The ERP is calculated in the following equation.

ERP(dBm) = P(dBm) - (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss(dB)

B) Above 1 GHz

The ERP is calculated from the maximum emission level by the following formula.

$$\frac{e^2}{120\pi} = \frac{eirp}{4\pi d^2} \quad \dots (Eq.1)$$

 $erp = eirp - Gd \cdots (Eq.2)$

Where, e[V/m]: Field Strength at measuring distance(d=3m)

eirp[W]: Equivalent Isotropic Radiated Power

erp[*W*] : Effective Radiated Power

Gd(dBi): Gain of the substitution half-wave dipole antenna(2.15dBi)

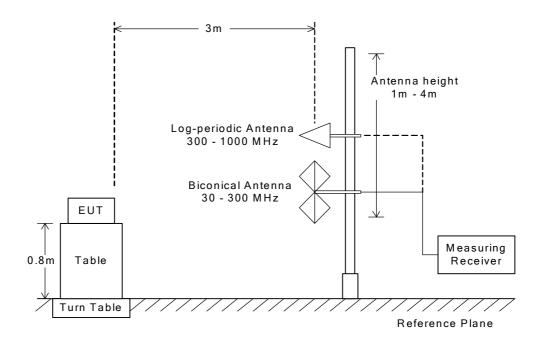
$$eirp = \frac{(de)^2}{30} = \frac{3}{10}e^2$$

$$\therefore 10 \log(eirp) = 20 \log(e) + 10 \log(3/10) = 20 \log(e) - 5.23$$

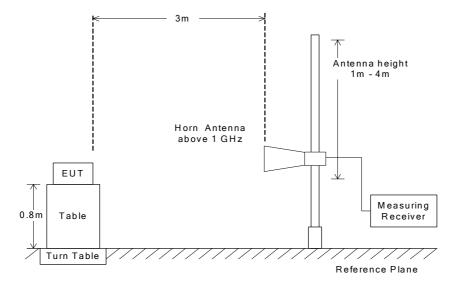
$$10 \log(eirp) = EIRP[dBm] - 30$$

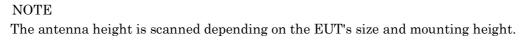
$$20 \log(e) = E[dB(\mu V / m)] - 120$$

$$EIRP = E - 120 + 30 - 5.23 = E - 95.23$$


$$ERP[dBm] = EIRP - 2.15 = E - 97.38$$

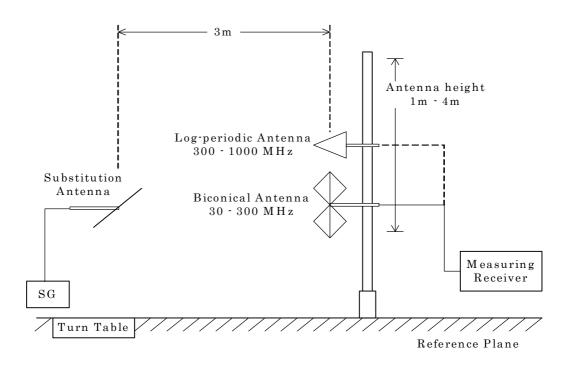
The respective calculated ERP of the spurious and harmonics were compared with the ERP of fundamental frequency by specified attenuation limits, $43+10\log_{10}$ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.




Radiated Emission 30 MHz to 1000 MHz

Page 35 of 43

Radiated Emission above 1 GHz



Page 36 of 43

Radiated Emission 30 to 1000 MHz - Substitution Method

7.7.4

Test Configuration : Single Unit

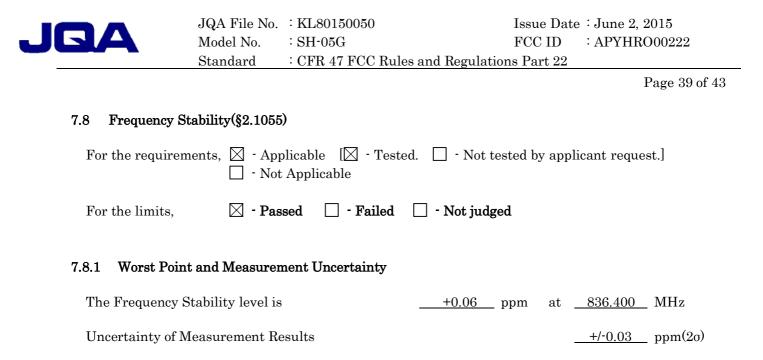
Test Data

(GSM850)

<u>Test Date: April 24, 2015</u> <u>Temp.: 24 °C</u>, Humi: 45 %

Page 37 of 43

Trans mitting Freque ncy		Me as ured Fre que ncy		CRP Bm]	Limits [dBm]	Margin [dB]	Remarks
СН	I [MHz] [MHz]	[MHz]	Hori.	Vert.			
128	824.200	1648.400	< -57.2	< -57.2	-13.0	> +44.2	С
		2472.600	-52.4	-52.1	-13.0	+39.1	С
		3296.800	< -55.4	< -55.4	-13.0	> +42.4	С
		4121.000	< -48.7	< -48.7	-13.0	> +35.7	С
		4945.200	< -48.0	< -48.0	-13.0	> +35.0	С
		5769.400	< -47.6	< -47.6	-13.0	> +34.6	С
		6593.600	< -46.0	< -46.0	-13.0	> +33.0	С
		7417.800	< -46.0	< -46.0	-13.0	> +33.0	С
		8242.000	< -42.7	< -42.7	-13.0	> +29.7	С
189	836.400	1672.800	< -57.1	< -57.1	-13.0	> +44.1	С
		2509.200	-52.7	-52.5	-13.0	+39.5	С
		3345.600	< -55.2	< -55.2	-13.0	> +42.2	С
		4182.000	< -48.7	< -48.7	-13.0	> +35.7	С
		5018.400	< -48.0	< -48.0	-13.0	> +35.0	С
		5854.800	< -45.4	< -45.4	-13.0	> +32.4	С
		6691.200	< -46.0	< -46.0	-13.0	> +33.0	С
		7527.600	< -46.0	< -46.0	-13.0	> +33.0	С
		8364.000	< -42.6	< -42.6	-13.0	> +29.6	С
251	848.800	1697.600	< -57.2	< -57.2	-13.0	> +44.2	С
		2546.400	-52.7	-52.3	-13.0	+39.3	С
		3395.200	< -54.9	< -54.9	-13.0	> +41.9	С
		4244.000	< -48.6	< -48.6	-13.0	> +35.6	С
		5092.800	< -47.9	< -47.9	-13.0	> +34.9	С
		5941.600	< -45.4	< -45.4	-13.0	> +32.4	С
		6790.400	< -45.9	< -45.9	-13.0	> +32.9	С
		7639.200	< -46.0	< -46.0	-13.0	> +33.0	С
		8488.000	< -42.6	< -42.6	-13.0	> +29.6	С


Page 38 of 43

Calculated result at 8364.0 MHz, as the worst point shown on underline: Minimum Margin: -13.0 - (<-42.6) = >29.6 (dB)

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 30 MHz to 10 GHz.
- 3. All emissions not reported were more than 20 dB below the applied limits.
- 4. Applied limits : -13.0 [dBm] = $10\log(TP[mW]) \cdot (43 + 10\log(tp[W])) = 10\log(TP[mW]) \cdot (43 + (10\log(TP[mW]) \cdot 30))$ where, tp[W] = TP[mW] / 1000: Transmitter power at anttena terminal
- 5. The symbol of "<" means "or less".
- 6. The symbol of ">" means "more than".
- 7. Setting of measuring instrument(s) :

	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	$10 \mathrm{kHz}$	30 kHz	20 msec.
В	Peak	$100 \mathrm{kHz}$	300 kHz	20 msec.
С	Peak	$1\mathrm{MHz}$	3 MHz	20 msec.

Remarks : _____

7.8.2 Test Instruments

Shielded Room S4							
Туре	Model	Manufacturer	ID No.	Last Cal.	Interval		
Radio Communication Analyzer	MT8815B	Anritsu	B-69	2014/8	1 Year		
DC Voltage Meter	2011-39	YEW	B-33	2014/6	1 Year		
Environmental Chamber	SH-641	ESPEC	F-32	2014/7	1 Year		
DC Power Supply	NL035-10	TAKASAGO	F-4	N/A	N/A		

Page 40 of 43

7.8.3 Test Method and Test Setup (Diagrammatic illustration)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

Frequency Stability versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the ending voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

Page 41 of 43

7.8.4 Test Data

(GSM850)

<u>Test Date: May 19, 2015</u> <u>- May 20, 2015</u>

1. Frequency Stability Measurement versus Temperature

Transmitting Free DC Supply Voltag		: 836.400 MHz (1) : 4.0 VDC	89 ch)			
Ambient		Deviation [ppm]			Limits	Margin
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
-30	+ 0.05	+ 0.06	+ 0.05	+ 0.05	2.50	2.44
-20	+ 0.05	+ 0.06	+ 0.05	+ 0.05	2.50	2.44
-10	+ 0.05	+ 0.05	+ 0.05	+ 0.05	2.50	2.45
0	+ 0.05	+ 0.05	+ 0.06	+ 0.05	2.50	2.44
10	+ 0.05	+ 0.05	+ 0.04	+ 0.05	2.50	2.45
20	+ 0.05	+ 0.05	+ 0.04	+ 0.05	2.50	2.45
30	+ 0.06	+ 0.05	+ 0.05	+ 0.05	2.50	2.44
40	+ 0.05	+ 0.04	+ 0.04	+ 0.04	2.50	2.45
50	+ 0.05	+ 0.05	+ 0.05	+ 0.05	2.50	2.45

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Freq Ambient Temperatu	·	: 836.400 MHz (13 : 20 °C	89 ch)			
DC Supply		Deviation [ppm]		Limits	Margin	
Voltage [V]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
4.0 3.7(Ending)	+ 0.05	+ 0.05 + 0.05	+ 0.04 + 0.04	+ 0.05	$2.50 \\ 2.50$	$2.45 \\ 2.45$

Test condition example as the maximum deviation point shown on underline:Ambient Temperature: -30 °CDC Supply Voltage: 4 VDC

Minimum Margin: 2.50 - 0.06 = 2.44 (ppm)

NOTE : The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.