

Test Report

Report No.:	MTi210628011-04E2
Date of issue:	Jan. 18, 2022
Applicant:	Xiamen Hanin Electronic Technology Co., Ltd.
Product:	Barcode Printer
Model(s):	iT4R, HT4R, iV3800R, ST34R, P54R, 324R, J-5400R, Y12R, PZ420R, T432R, ST14R, P43R, T430R
FCC ID:	2AUTE-IT4R

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

Instructions

1. This test report shall not be partially reproduced without the written consent of the laboratory.

2. The test results in this test report are only responsible for the samples submitted

3. This test report is invalid without the seal and signature of the laboratory.

4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.

Any objection to this test report shall be submitted to the laboratory within
15 days from the date of receipt of the report.

Contents

1	General Description	5
	1.1 Description of the EUT	
	1.2 Description of test modes	5
	1.3 Measurement uncertainty	
2	Summary of Test Result	8
3	Test Facilities and Accreditations	9
	3.1 Test laboratory	9
4	Equipment List	10
5	Test Result	11
	5.1 Antenna requirement	11
	5.2 AC power line conducted emissions	12
	5.3 20dB occupied bandwidth	21
	5.4 Conducted peak output power	
	5.5 Carrier frequency separation	
	5.6 Average time of occupancy	
	5.7 Number of hopping channels	
	5.8 Conducted emissions at the band edge	
	5.9 Conducted spurious emissions	
	5.10 Radiated spurious emissions	44
Ρ	hotographs of the Test Setup	54
Ρ	hotographs of the EUT	55

Test Result Certification			
Applicant:	Xiamen Hanin Electronic Technology Co., Ltd.		
Address:	Room 305A, Angye Building, Pioneering Park, Torch High-tech, Zone, Xiamen		
Manufacturer:	Xiamen Hanin Electronic Technology Co., Ltd.		
Address:	Room 305A, Angye Building, Pioneering Park, Torch High-tech, Zone, Xiamen		
Factory:	Xiamen Hanin Electronic Technology Co., Ltd.		
Address:	No.96, Rongyuan Road, Tong'an District, Xiamen		
Product description			
Product name:	Barcode Printer		
Trademark:	HPRT, iDPRT		
Model name:	iT4R		
Serial Model:	HT4R, iV3800R, ST34R, P54R, 324R, J-5400R, Y12R, PZ420R, T432R, ST14R, P43R, T430R		
Standards:	FCC 47 CFR Part 15 Subpart C		
Test method:	ANSI C63.10-2013		
Date of Test	· · · ·		
Date of test:	2021-12-14 ~ 2022-01-18		
Test result:	Pass		

Test Engineer :

crudy aim

(Cindy Qin)

Reviewed By: :

loov chen

(Leon Chen)

Approved By: :

Tom Kue

(Tom Xue)

1 General Description

1.1 Description of the EUT

Product name:	Barcode Printer
Model name:	iT4R
Series Model:	HT4R, iV3800R, ST34R, P54R, 324R, J-5400R, Y12R, PZ420R, T432R, ST14R, P43R, T430R
Model difference:	All the models are the same circuit and RF module, except the model name.
Electrical rating:	DC 24V from adapter AC 120V/60Hz
Hardware version:	iT4RMB
Software version:	V iT4R S
	Adapter 1:
	MODEL: GM60-240250-F
	INPUT: 100-240V~50/60Hz 2.0A
	OUTPUT: 24.0V-2.5A; 60.0W
Accessories:	
	Adapter 2:
	MODEL: AP115G-240250
	INPUT: 100-240V~50/60Hz 2.0A Max.
	OUTPUT: 24.0V-2.5A 60.0W
EUT serial number:	MTi210628011-04-S0001
RF specification:	
Bluetooth version:	V5.0
Operation frequency:	2402 MHz ~ 2480 MHz
Modulation type:	GFSK, π/4-DQPSK,8DPSK
Antenna designation:	PCB antenna, antenna Gain: 1 dBi
Max. peak conducted output power:	7.935 dBm

1.2 Description of test modes

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

1.2.2 Test channels

Chanel	Frequency
Lowest (CH0)	2402MHz
Middle (CH39)	2441MHz
Highest (CH78)	2480MHz

Note: The test software has been used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

1.2.3 Description of support units

Support equipment list				
Description	Model	Serial No.	Manufacturer	
/	/	/	/	

1.3 Measurement uncertainty

Parameter	Measurement uncertainty
AC power line conducted emission (9 kHz~30 MHz)	±2.5 dB
Occupied Bandwidth	±3 %
Conducted RF output power	±0.16 dB
Conducted spurious emissions	±0.21 dB
Radiated emission (9 kHz ~ 30 MHz)	±4.0 dB
Radiated emission (30 MHz~1 GHz)	±4.2 dB

Radiated emission (above 1 GHz)	±4.3 dB

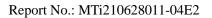
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	FCC reference	Description of test	Result
1	§ 15.203	Antenna requirement	Pass
2	§ 15.207	AC power line conducted emissions	Pass
3	15.247(a)(1)	20dB occupied bandwidth	Pass
4	15.247(b)(1)	Conducted peak output power	Pass
5	15.247(a)(1)	Carrier Frequencies Separation	Pass
6	15.247(a)(1)	Average time of occupancy (Dwell time)	Pass
7	15.247(a)(1)	Number of hopping channels	Pass
8	15.247(d)	Conducted emission at the band edge	Pass
9	15.247(d)	Conducted spurious emissions	Pass
10	15.247(d)	Radiated spurious emissions	Pass

Note: N/A means not applicable.

3 Test Facilities and Accreditations


3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573

4 Equipment List

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
MTi-E002	EMI Test Receiver	R&S	ESCI3	101368	2021/06/02	2022/06/01
MTi-E023	Artificial power network	Schwarzbeck	NSLK8127	NSLK8127# 841	2021/06/02	2022/06/01
MTi-E025	Artificial power network	Schwarzbeck	NSLK8127	8127183	2021/06/02	2022/06/01
MTI-E043	EMI test receiver	R&S	ESCI7	101166	2021/06/02	2022/06/01
MTI-E046	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00044	2021/05/30	2023/05/29
MTI-E044	Broadband antenna	Schwarzbeck	VULB9163	9163-1338	2021/05/30	2023/05/29
MTI-E045	Horn antenna	Schwarzbeck	BBHA9120D	9120D-2278	2021/05/30	2023/05/29
MTI-E047	Pre-amplifier	Hewlett-Packard	8447F	3113A06184	2021/06/02	2022/06/01
MTI-E048	Pre-amplifier	Agilent	8449B	3008A01120	2021/06/02	2022/06/01
MTi-E120	Broadband antenna	Schwarzbeck	VULB9163	9163-1419	2021/05/30	2023/05/29
MTi-E121	Pre-amplifier	Hewlett-Packard	8447D	2944A09365	2021/04/16	2022/04/15
MTi-E123	Pre-amplifier	Agilent	8449B	3008A04723	2021/05/06	2022/05/05
MTi-E135	Horn antenna	Schwarzbeck	BBHA 9170	00987	2021/05/30	2023/05/29
MTi-E136	Pre-amplifier	Space-Dtronics	EWLAN1840G -G45	210405001	2021/06/02	2022/06/01
MTi-E062	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2021/06/23	2022/06/22
MTi-E067	RF Control Unit	Tonscend	JS0806-1	19D8060152	2021/06/02	2022/06/01
MTi-E068	RF Control Unit	Tonscend	JS0806-2	19D8060153	2021/06/02	2022/06/01
MTi-E069	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2021/06/02	2022/06/01
MTI-E010S	EMI Measurement Software	Farad	EZ-EMC Ver. EMEC-3A1	/	/	/
MTI-E014S		Tonscend	TS®JS1120 V2.6.88.0330	/	/	/

5 Test Result

5.1 Antenna requirement

15.203 requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Description of the antenna of EUT

The antenna of EUT is PCB antenna (Antenna Gain: 1 dBi). which is no consideration of replacement.

5.2 AC power line conducted emissions

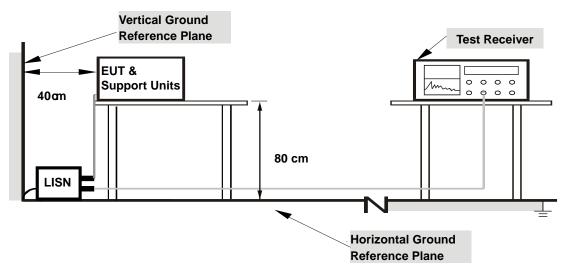
5.2.1 Limits

Frequency (MHz)	Detector type / Bandwidth	Limit-Quasi-peak dBµV	Limit-Average dBµV
0.15 -0.5		66 to 56	56 to 46
0.5 -5	Average / 9 kHz	56	46
5 -30		60	50

Note 1: the limit decreases with the logarithm of the frequency in the range of 0.15 MHz to 0.5 MHz.

5.2.2 Test Procedures

a) The test setup is refer to the standard ANSI C63.10-2013.


b) The EUT is connected to the main power through a line impedance stabilization network (LISN). All support equipment is powered from additional LISN(s).

c) Emissions were measured on each current carrying line of the EUT using an EMI test receiver connected to the LISN powering the EUT.

d) The test receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes described in Item 1.2.

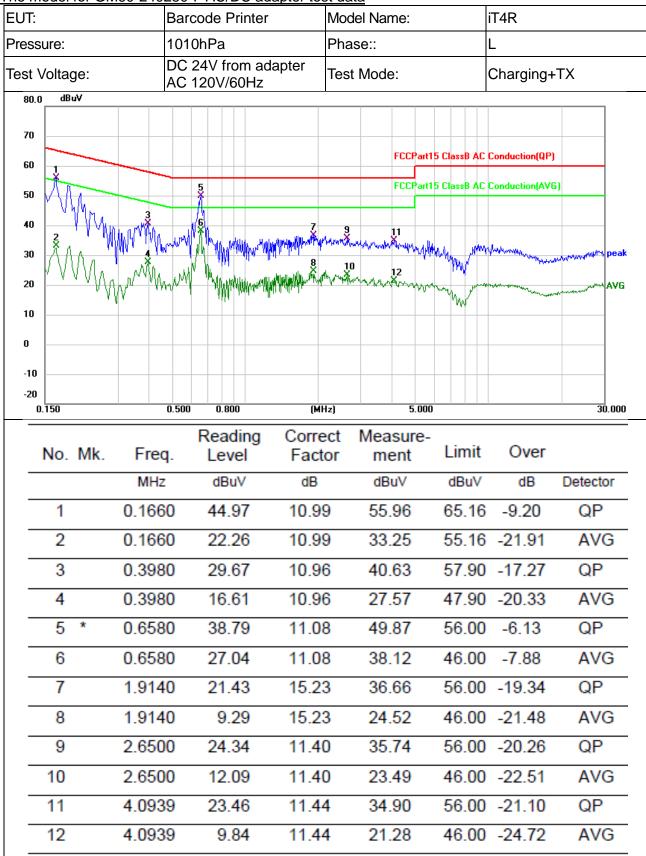
e) The test data of the worst-case condition(s) was recorded.

5.2.3 Test setup

For the actual test configuration, please refer to the related item – Photographs of the test setup.

5.2.4 Test Result

Note:


- 1. The three modulated high, medium and low channels have been tested. The report only shows the worst mode. The worst mode is 8DPSK CH00.
- 2. Emission Level = Reading Level + Factor, Margin= Emission Level- Limit, Factor = LISN modulus + Cable Loss

Page 13 of 55

Report No.: MTi210628011-04E2

The model for GM60-240250-F AC/DC adapter test data

1.6340

1.9380

1.9380

2.3660

2.3660

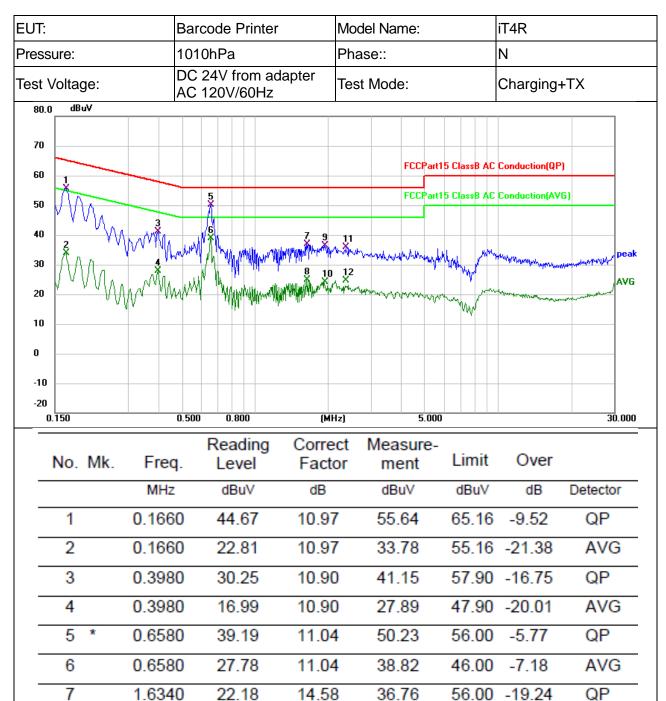
8

9

10

11

12


10.22

21.05

8.75

19.86

8.54

14.58

15.27

15.27

16.12

16.12

24.80

36.32

24.02

35.98

24.66

46.00 -21.20

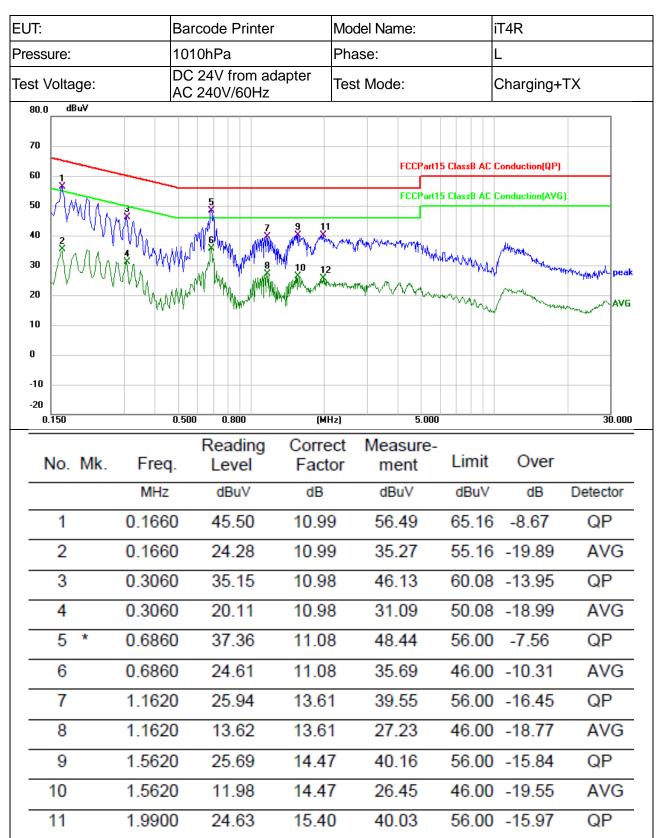
56.00 -19.68

46.00 -21.98

56.00 -20.02

46.00 -21.34

AVG


QP

AVG

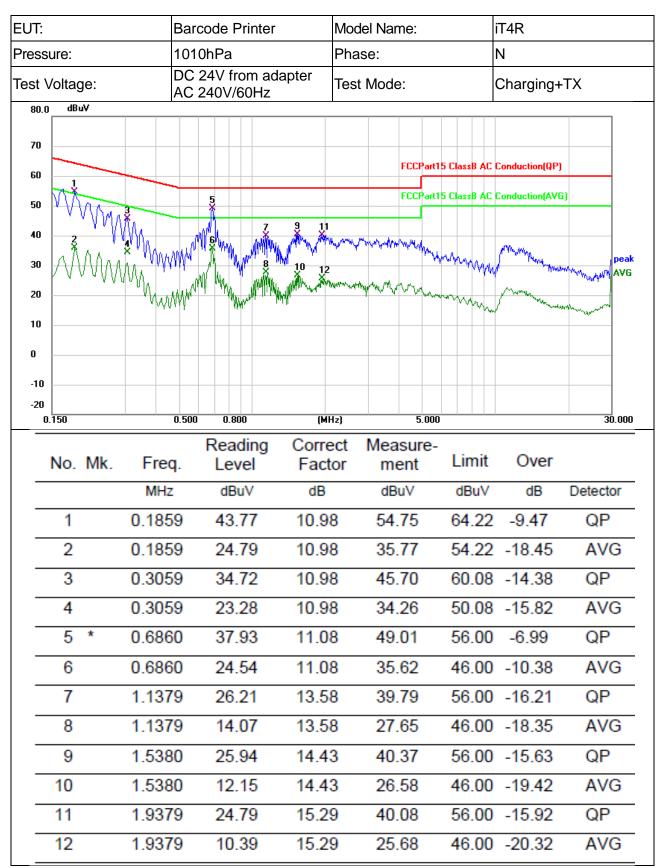
AVG

QP

15.40

25.57

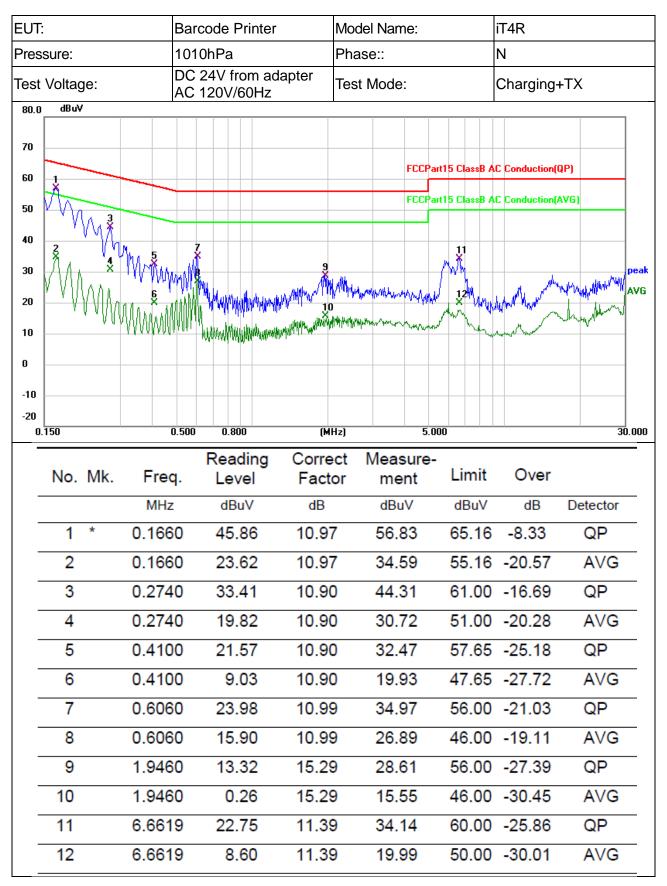
46.00 -20.43

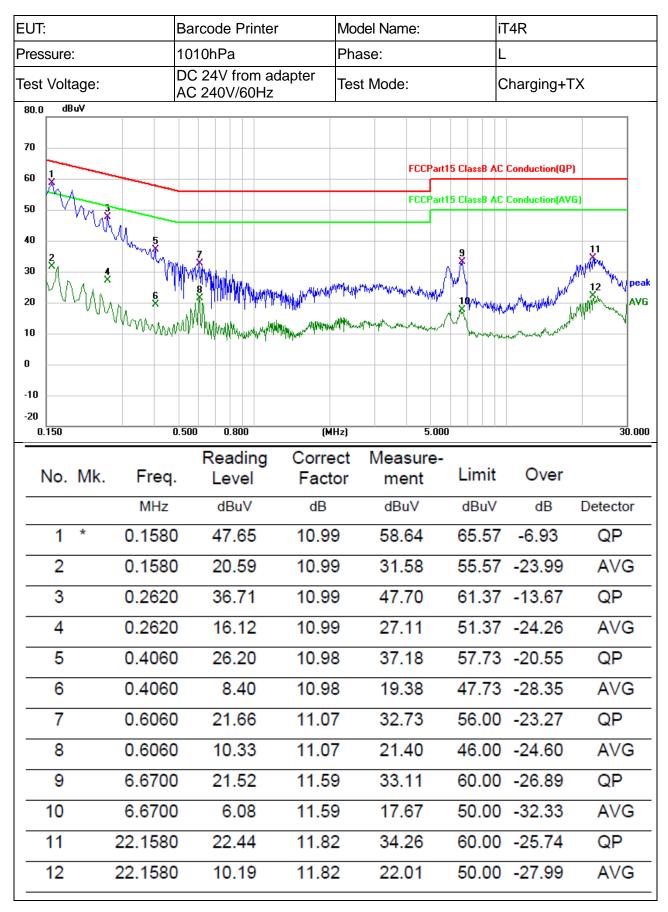

AVG

10.17

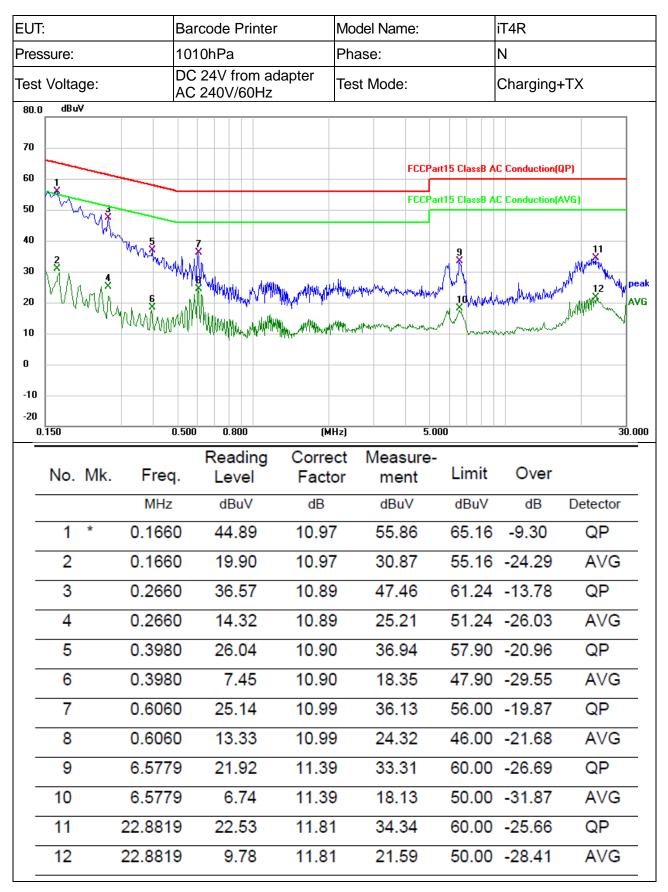
1.9900

12




EUT: E		Ba	rcode Printer	Μ	odel Name:		iT4R	
Pres	sure:	10	10hPa	PI	nase::		L	
	: Voltage:		24V from ac 120V/60Hz	lapter Te	est Mode:		Charging+	тх
80.0) dBu∀							
70								
60					FCCPa	rt15 ClassB A	C Conduction(Q	P)
50	Ň.				FCCPa	rt15 ClassB A	C Conduction(A	/G)
	1º M	3	E					
40	2 X	Maha		Z a		Å.		
30	MVM.		haskennis, buildik .		how mathem with many	1	. or water	
20	- • ¥₩	ANNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	n an	nallale car 🕺 🔱		And the second s	and the second	the water
10		e die och handelikeer		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	Martly Mar and Start and And	* Norway	www.	
0								
-10								
-20 n	.150	0.500	0.800	(MHz)	5.0			30.000
		0.000	Reading	Correct				
	No. Mk	. Freq.	Level	Factor		Limit	Over	
_		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
_	1 *	0.1660	45.75	10.99	56.74	65.16	-8.42	QP
_	2	0.1660	25.28	10.99	36.27	55.16	-18.89	AVG
_	3	0.2740	31.34	10.99	42.33	61.00	-18.67	QP
_	4	0.2740	20.88	10.99	31.87	51.00	-19.13	AVG
_	5	0.6020	26.35	11.07	37.42	56.00	-18.58	QP
_	6	0.6020	19.01	11.07	30.08	46.00	-15.92	AVG
_	7	1.8940	15.09	15.18	30.27	56.00	-25.73	QP
_	8	1.8940	-1.13	15.18	14.05	46.00	-31.95	AVG
_	9	2.3340	12.29	16.06	28.35	56.00	-27.65	QP
_	10	2.3340	-2.43	16.06	13.63	46.00	-32.37	AVG
_	11	5.9459	24.20	11.54	35.74	60.00	-24.26	QP
_	12	5 9/59	8.60	11.54	20.14	50.00	-29.86	AVG

The model for AP115G-24250 AC/DC adapter test data



5.3 20dB occupied bandwidth

5.3.1 Limits

None, for reporting purposes only.

5.3.2 Test setup

5.3.3 Test procedures

- a) Test method: ANSI C63.10-2013 Section 6.9.2.
- b) The transmitter output of EUT is connected to the spectrum analyzer.

c) Spectrum analyzer setting: RBW=30 kHz, VBW=100 kHz, detector= Peak

5.3.4 Test results

Mode	Test channel	Frequency (MHz)	20dB Bandwidth (MHz)
	CH0	2402	0.978
GFSK	CH39	2441	1.009
	CH78	2480	0.9953
	CH0	2402	1.356
π/4-DQPSK	CH39	2441	1.347
	CH78	2480	1.345
	CH0	2402	1.353
8DPSK	CH39	2441	1.349
	CH78	2480	1.354

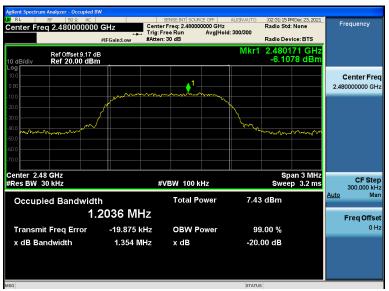
GFSK mode - 20dB occupied bandwidth

CH39

π /4-DQPSK mode - 20dB occupied bandwidth

CH39

Agilent Spectrum Analyzer - Occupied	BW				
X RL RF 50 Ω AC Center Freq 2.44100000		SENSE:INT SOURCE OFF	Radio Sto	MDec 23, 2021 i: None	Frequency
	++++ Irig:	FreeRun Avg Hol en:30 dB	d: 300/300 Radio De	vice: BTS	
Ref Offset 9.17 10 dB/div Ref 20.00 dB			Mkr1 2.44 -2.13	127 GHz 377 dBm	
Log 10.0 0.00		1			Center Freq 2.441000000 GHz
-10.0 -20.0					
-40.0					
-60.0 -70.0 Center 2.441 GHz					
#Res BW 30 kHz		#VBW 100 kHz		oan 3 MHz ep 3.2 ms	CF Step 300.000 kHz
Occupied Bandwid		Total Power	11.0 dBm		<u>Auto</u> Man
	.2144 MHz				Freq Offset 0 Hz
Transmit Freq Error	-15.124 kHz	OBW Power	99.00 %		0 H2
x dB Bandwidth	1.347 MHz	x dB	-20.00 dB		
MSG			STATUS		



8DPSK mode - 20dB occupied bandwidth

CH39

5.4 Conducted peak output power

5.4.1 Limits

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.4.2 Test setup

сит	Spectrum	
EUT	Analyzer	

5.4.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 7.8.5.

b) The EUT was set to continuously transmitting in the max power during the test.

c) The transmitter output of EUT is connected to the spectrum analyzer.

d) Spectrum analyzer setting: RBW > 20dB occupied bandwidth, VBW ≥ RBW, detector= Peak

5.4.4 Test results

Mode	Test channel	Frequency (MHz)	Conducted peak output power (dBm)	Limit (dBm)
	CH0	2402	5.458	≤ 20.97
GFSK	CH39	2441	3.236	≤ 20.97
	CH78	2480	0.443	≤ 20.97
	CH0	2402	7.793	≤ 20.97
π/4-DQPSK	CH39	2441	6.109	≤ 20.97
	CH78	2480	3.176	≤ 20.97
	CH0	2402	7.935	≤ 20.97
8DPSK	CH39	2441	6.190	≤ 20.97
	CH78	2480	3.267	≤ 20.97

GFSK mode - peak conducted output power

CH39

$\pi/4\text{-}DQPSK$ mode - peak conducted output power

CH39

Agilent Spectrum Analyzer - Swept					
Center Freq 2.441000	000 GHz	SENSE:INT SOUR	CE OFF ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	TRACE 1 2 3 4 5 6	Frequency
Ref Offset 9.17 (IFGain:Low ##	tten: 40 dB		1 2.440 675 GHz 6.109 dBm	Auto Tune
20.0					Center Freq 2.441000000 GHz
0.00		1			Start Freq 2.438500000 GHz
-10.0					Stop Freq 2.443500000 GHz
-40.0					CF Step 500.000 kHz <u>Auto</u> Man
-50.0					Freq Offset 0 Hz
Center 2.441000 GHz #Res BW 3.0 MHz	#VBW 8.0	MHz	Sween	Span 5.000 MHz 1.000 ms (1001 pts)	
#Res BW J.0 MHZ	#VBW 8.0	WINZ	Sweep		

8DPSK mode – peak conducted output power

CH39

	rum Analyzer - Swept SA						
Center F	RF 50 Ω AC req 2.441000000		SENSE:INT	SOURCE OFF A #Avg Type Avg Hold:>		03:32:06 PM Dec 23, 2021 TRACE 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 9.17 dB Ref 30.00 dBm	PNO: Fast IFGain:Low	#Atten: 40 dB	Avginoia.>		2.440 920 GHz 6.190 dBm	Auto Tune
20.0							Center Freq 2.441000000 GHz
0.00			• •				Start Freq 2.438500000 GHz
-10.0							Stop Freq 2.443500000 GHz
-30.0							CF Step 500.000 kHz <u>Auto</u> Man
-50.0							Freq Offset 0 Hz
	441000 GHz 3.0 MHz	#VBW	8.0 MHz		Sweep	Span 5.000 MHz 1.000 ms (1001 pts)	
MSG					STATU		

5.5 Carrier frequency separation

5.5.1 Limits

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater

5.5.2 Test setup

	Spectrum
EUT	Analyzer

5.5.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 7.8.2.
- b) The EUT was set to hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum Setting: RBW = 30 kHz, VBW = 100 kHz, detector= Peak.

5.5.4 Test results

Mode	Test channel	Test Result (MHz)	Limit (MHz)	Result
GFSK	Hop-mode	1.044	>=0.673	Pass
π/4-DQPSK	Hop-mode	0.998	>=0.904	Pass
8DPSK	Hop-mode	0.948	>=0.903	Pass

GFSK

Carrier frequency separation

π/4-DQPSK

8DPSK

5.6 Average time of occupancy

5.6.1 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.6.2 Test setup

5.6.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 7.8.4
- b) The EUT was set to hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 1MHz, VBW = 3MHz, Span = 0Hz, Detector = Peak, weep time: As necessary to capture the entire dwell time per hopping channel.

e) Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

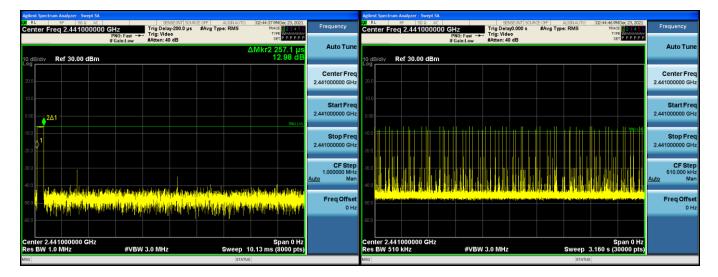
f) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

Mode	Data Packet	Frequency (MHz)	Pulse width (ms)	Number of pulses in 3.16 s	Average time of occupancy (s)	Limit (s)	Result
	DH1	2441	0.26	65	0.167	<=0.4	Pass
GFSK	DH3	2441	1.26	23	0.290	<=0.4	Pass
	DH5	2441	2.94	12	0.353	<=0.4	Pass
	2DH1	2441	0.26	63	0.162	<=0.4	Pass
π/4-DQPS K	2DH3	2441	0.75	29	0.219	<=0.4	Pass
	2DH5	2441	1.01	26	0.263	<=0.4	Pass
	3DH1	2441	0.25	64	0.158	<=0.4	Pass
8DPSK	3DH3	2441	0.40	36	0.142	<=0.4	Pass
	3DH5	2441	1.14	21	0.24	<=0.4	Pass

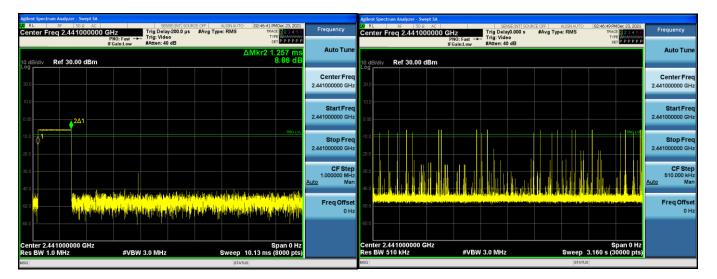
5.6.4 Test results

Notes:

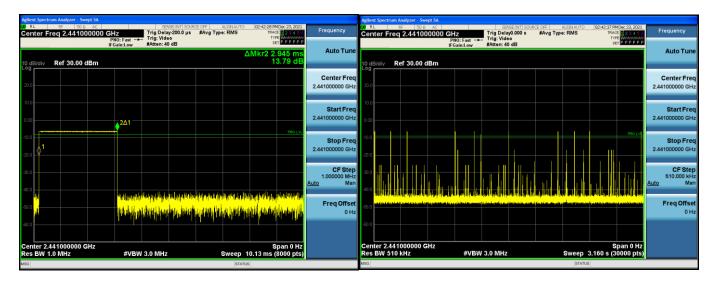
1. Period time = 0.4 (s) * 79 = 31.6(s)


2. Average time of occupancy = Pulse width * Number of pulses in 3.16s * 10

GFSK mode - Average time of occupancy


Pulse width – DH1

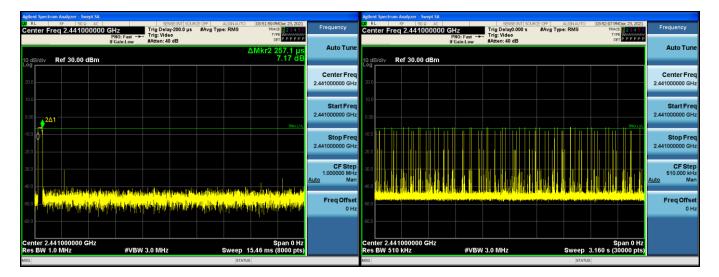
Number of pulses in 3.16 s - DH1


Pulse width – DH3

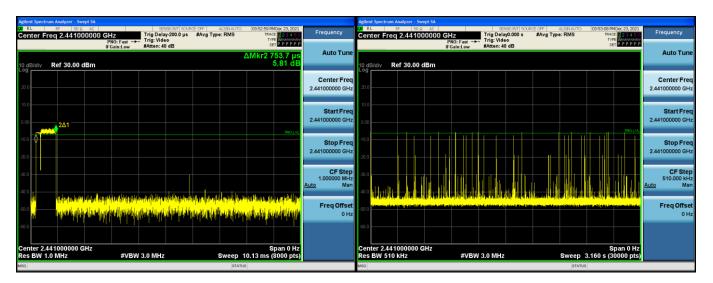
Number of pulses in 3.16 s – DH3

Pulse width – DH5

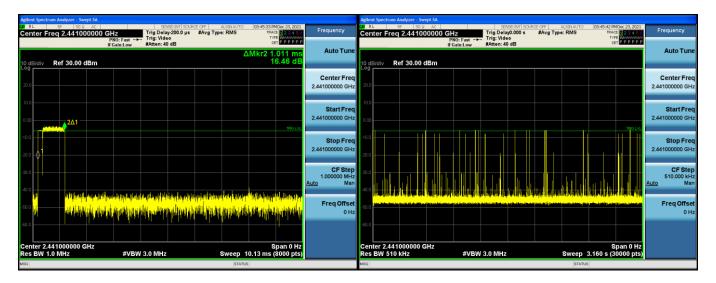
Number of pulses in 3.16 s – DH5



Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com


π /4-DQPSK - Average time of occupancy Pulse width – 2DH1

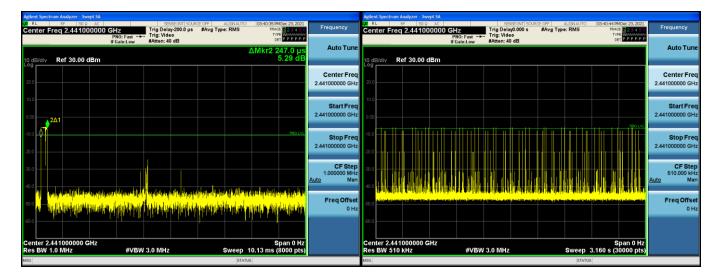
Number of pulses in 3.16 s – 2DH1

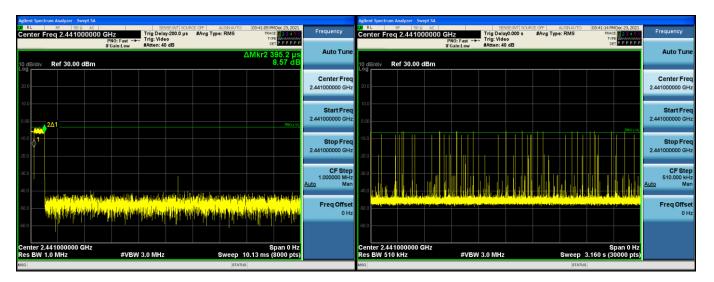

Pulse width – 2DH3

Number of pulses in 3.16 s – 2DH3

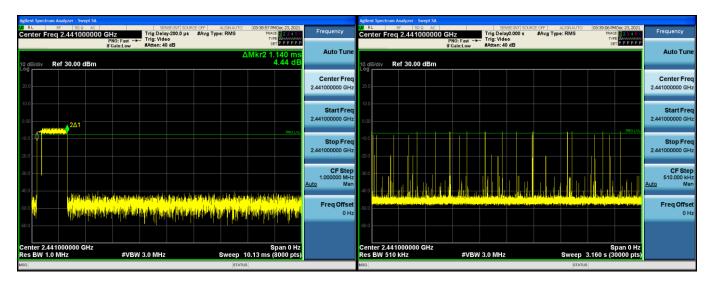
Pulse width – 2DH5

Number of pulses in 3.16 s – 2DH5




8DPSK - Average time of occupancy Pulse width – 3DH1

Number of pulses in 3.16 s – 3DH1


Pulse width – 3DH3

Number of pulses in 3.16 s – 3DH3

Pulse width – 3DH5

Number of pulses in 3.16 s – 3DH5

5.7 Number of hopping channels

5.7.1 Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

5.7.2 Test setup

сит	Spectrum		
EUT	Analyzer		

5.7.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 7.8.3
- b) The EUT was set to hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.

d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.7.4 Test results

Mode	Quantity of Hopping Channel	Limit	Results Pass	
GFSK	79	Pass		
π/4-DQPSK	79	≥15	Pass	
8DPSK	79	≥15	Pass	

Number of hopping channels

$\pi/4$ -DQPSK

gilent Spectrum Analyzer - Swept SA					
RL RF 50 Ω AC	Hz	#Avg Type	RMS TRAC	MDec 23, 2021 2E 1 2 3 4 5 6 PE M M A A A A A A A	Frequency
Ref Offset 9.16 dB 0 dB/div Ref 30.00 dBm	PNO: Fast 🖵 Trig: Free IFGain:Low #Atten: 40		D	TPPPPP	Auto Tune
20.0					Center Fre 2.441750000 GH
	WAMAMAAAAAA	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	hallallanana	MM	Start Fre 2.400000000 GH
20.0					Stop Fre 2.483500000 GH
					CF Ste 8.350000 MH <u>Auto</u> Ma
.0.0					Freq Offse 0 H
100 data			Stop 2.4	250 CH	
Res BW 100 kHz	#VBW 300 kHz		Stop 2.43 Sweep 8.000 ms (8350 GHz (1001 pts)	
SG			STATUS		

8DPSK

Agilen		m Analyzer - Sv	vept SA		650	ISE:INT SOUR	ct off	ALIGNAUTO	00-07-10 5	1Dec 23, 2021	
		2.400000	0000 GHz	NO: Fast 🗔	Trig: Free	Run	#Avg Typ		TRAC		Frequency
10 dE		Ref Offset 9. Ref 30.00	IF 16 dB	Gain:Low	#Atten: 40) dB			DE	Пррррр	Auto Tune
20.0											Center Freq 2.441750000 GHz
10.0 0.00	MW	4444444			ሰብላት	VY\W\Y\ Y	VWWWV	WWWW.	YAAAYYYAAY	, MMM	Start Freq 2.400000000 GHz
-10.0 -20.0											Stop Freq 2.483500000 GHz
-30.0 -40.0	N 										CF Step 8.350000 MHz <u>Auto</u> Man
-50.0											Freq Offset 0 Hz
-60.0 Star	t 2.400	00 GHz							Stop 2.48	350 GHz	
		00 kHz		#VBW	300 kHz			Sweep	8.000 ms (1001 pts)	
MSG								STATU	IS		

5.8 Conducted emissions at the band edge

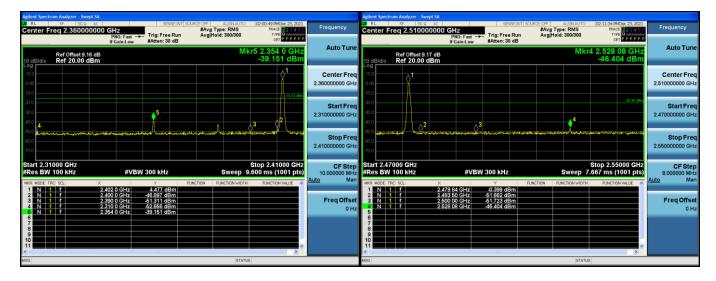
5.8.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.8.2 Test setup

5.8.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 6.10.4
- b) The EUT was set to non-hopping mode & hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.


5.8.4 Test results

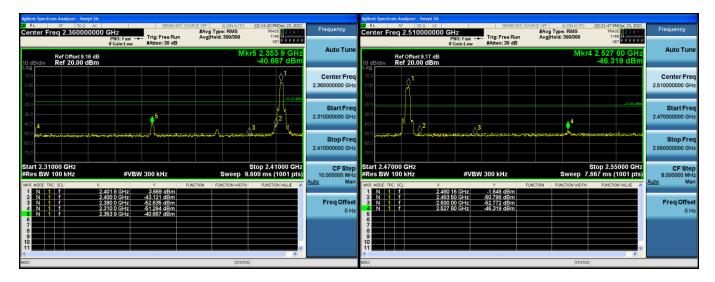
GFSK mode - conducted emissions at the band edge

Low band-edge (no-hopping mode mode)

High band-edge (non-hopping mode)

Low band-edge (hopping mode)

High band-edge (hopping mode)


Agilent Spectrum Analyzer - Swyd SA Selectrum Analyzer - Swyd SA 01 R L RF 50.0 4/2 Start Freq 2.300000000 GHz Free Run AvgiHold-3000300 Free Run AvgiHold-3000300 Free Run AvgiHold-3000300 Free Run	Frequency	Aglient Spectrum Analyzer-Swydt SA. Of R L RF 150.9 AC SPECENT SOURCE OFF ALIGNAUTO 102-07-45 PM Dec 23, 2021 Start Freq 2.4700000000 GHz Ptio: Free Run AvgiHold>300000 trve Free Run AvgiHold>3000000 trve Free Run AvgiHold>3000000 trve Free Run AvgiHold>300000 trve Free Run AvgiHold>3000000 trve Free Run AvgiHold>300000 trve Free Run AvgiHold>300000 trve Free Run AvgiHold>300000 trve Free Run AvgiHold>300000 trve Free Run AvgiHold>3000000 trve Free	Frequency
Ref Offset 9.1 dB Mkr5 2.359 955 GHz 10 dB/div Ref 20.00 dBm -39.372 dBm	Auto Tune	Ref Offset9.17 dB Mkr4 2.509 84 GHz 10 dB/div Ref 20.00 dBm -44.435 dBm	Auto Tune
	Center Freq 2.352500000 GHz		Center Freq 2.51000000 GHz
	Start Freq 2.300000000 GHz		Start Freq 2.470000000 GHz
	Stop Freq 2.405000000 GHz		Stop Freq 2.55000000 GHz
Start 2.30000 GHz Stop 2.40500 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 10.07 ms (1001 pts) Mrs Mode Trc, Scl. X Y Function Function would for the start of t		MKR MODE TRC SCL X Y FUNCTION FUNCTION VIDTH FUNCTION VALUE	CF Step 8.000000 MHz Auto Man
1 f 2.403 980 GHz 4.618 dBm 2 N 1 f 2.400 900 GHz 41.219 dBm 3 N 1 f 2.380 000 GHz 41.219 dBm 4 N 1 f 2.380 000 GHz 41.919 dBm 4 N 1 f 2.359 000 GHz 41.707 dBm 6 1 f 2.359 985 GHz -39.372 dBm	Freq Offset 0 Hz	2 N 1 f 2,483 50 GHz 44,490 dBm 3 N 1 f 2,500 00 GHz 46,428 dBm	Freq Offset 0 Hz
7 7 8 9 9 10 11 11 11 10 10 10 10 10 10 10 10 10 1		7 8 9 10 11	
MSG STATUS		MSG STATUS	

$\pi/4\text{-}D\text{QPSK}$ mode - conducted emissions at the band edge

Low band-edge (non-hopping mode)

High band-edge (non-hopping mode)

Low band-edge (hopping mode)

High band-edge (hopping mode)

Aglient Spectrum Analyzer - Swept SA C RL RF 190.0 AC Start Freq 2.300000000 GHz IFGaint.ew IFGaint.ew Artis: 30 dB	URCE OFF ALIGN AUTO 02:46:47 PM Dec 23, 2021 #Avg Type: RMS TRACE 23 24 15 Avg Hold>300/300 DEF P.P.P.P.C	Frequency	Aglient Spectrum Analyzer - Swrgt SA Stell ENT SOURCE OFF ALIGNAUTO 02554x85 MHORe: 23, 2021 Off RL FF ISS0 = AC Stell ENT SOURCE OFF ALIGNAUTO 02554x85 MHORe: 23, 2021 Start Freq 2.470000000 GHz France #Avg Type: RMS Trace T2234 SC France T224 SC France France #Atten: 30 dB Avg Holde: 300(200 CHI PEP PP	Frequency
Ref Offset 9.1 dB 10 dB/div Ref 20.00 dBm	Mkr5 2.356 910 GHz -39.522 dBm	Auto Tune	Ref Offset 9.17 dB Mkr4 2.506 96 GHz 10 dBJdiv Ref 20.00 dBm -44.606 dBm	Auto Tune
10.0		Center Freq 2.352500000 GHz	100 100 100 100 100 100 100 100 100 100	Center Freq 2.51000000 GHz
-200 300 -400	Virthanaline (Windowski)	Start Freq 2.30000000 GHz	000	Start Freq 2.470000000 GHz
(3) 0 hallhar and a strand and and a st strand and a strand and and a strand and and and and and and and a strand and and and and and and and and and		Stop Freq 2.405000000 GHz	500	Stop Freq 2.55000000 GHz
	Stop 2,40500 GHz Sweep 10.07 ms (1001 pts)	CF Step 10.500000 MHz Auto Man	MKR MODE TRC SCL X Y FUNCTION VIDTH FUNCTION VALUE	CF Step 8.000000 MHz <u>Auto</u> Man
1 N 1 f 2403 950 GHz 5.095 dBm 2 N 1 f 2400 000 GHz 32.848 dBm 3 N 1 f 2300 000 GHz 40.286 dBm 4 N 1 f 2310 000 GHz 40.286 dBm 5 N 1 f 2310 000 GHz -39.502 dBm 6 N 1 f 2369 10 GHz -39.522 dBm		Freq Offset 0 Hz	1 N 1 f 2474 86 GHz 0.201 dBm 2 N 1 f 2483 50 GHz 50.743 dBm 3 N 1 f 24500 00 GHz 48.688 dBm 4 N 1 f 2500 96 GHz 44.606 dBm 5 6 6 6 6	Freq Offset 0 Hz
7 8 9 10 11				
MSG	STATUS		MSG STATUS	

8DPSK mode - conducted emissions at the band edge

Low band-edge (non-hopping mode)

High band-edge (non-hopping mode)

Low band-edge (hopping mode)

High band-edge (hopping mode)

Agilent Spectrum Analyzer - Swept SA		Agilent Spectrum Analyzer - Swept SA	
00 RL 6F 300 AC SPREENT[SOURC GFT ALIGNATO 05:557 PM (00:23, 202 Start Freq 2.300000000 GHZ (00:Fast) Trig: Free Run Avg[Hold>300/500 PM (00:Fast) Floatin Low Atten: 30 dB CFT PM (00:Fast)	Frequency	0 RL PF 300 AC SREENTSOLECT AUNUTO 054219 PM cs. 2042 Start Freq 2.470000000 GHz Trig: Free Run Avg Hold>300,500 Trec PPPPP av Float cv 2 Avg. 2 A	Frequency
Ref Offset 9.1 dB Mkr5 2.361 005 GH2 10 dB/div Ref 20.00 dBm -38.387 dBm		Ref Offset 9.17 dB Mkr4 2.509 04 GHz 10 dBidly Ref 20.00 dBm -45,140 dBm	Auto Tune
100 100 100 100 100 100 100 100 100 100	Center Freq 2.352500000 GHz		Center Freq 2.51000000 GHz
	Start Freq 2.300000000 GHz		Start Freq 2.470000000 GHz
800 / WALLAND / LAND /	Stop Freq 2.405000000 GHz	50.0 Million Marken Marken and and and and and and and and and an	Stop Freq 2.55000000 GHz
Start 2.30000 GHz Stop 2.40500 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 10.07 ms (1001 pts Mrsr mode Trc; ScL X Y Function width Function width	CF Step 10.500000 MHz Auto Man	MKR MODE TRC SCL X Y FUNCTION VIDTH FUNCTION VALUE	CF Step 8.000000 MHz Auto Man
1 N 1 f 2.405.000 GHz 4.015 dBm 2 N 1 7 2.400.000 GHz 41.331 dBm 3 N 1 f 2.390.000 GHz 39.800 dBm 4 N 1 f 2.390.000 GHz 46.123 dBm 5 N 1 f 2.310.000 GHz 33.837 dBm	Freq Offset 0 Hz	1 N 1 f 2,470 00 GHz 0.389 dBm 2 N 1 f 2,483 50 GHz 49,887 dBm 3 N 1 f 2,489 dBm 48,87 dBm 3 N 1 f 2,500 00 GHz -46,129 dBm 4 N 1 f 2,500 04 GHz -45,140 dBm 5 - - - - -	Freq Offset 0 Hz
		77 8 9 9 10	
K STATUS		KG STATUS	

5.9 Conducted spurious emissions

5.9.1 Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.9.2 Test setup

5.9.3 Test procedure

- a) Test method: ANSI C63.10-2013 Section 6.10.4
- b) The EUT was set to non-hopping mode & hopping mode during the test.
- c) The transmitter output of EUT is connected to the spectrum analyzer.
- d) Spectrum analyzer setting: RBW = 100 kHz, VBW = 300 kHz, Detector = Peak.

5.9.4 Test results

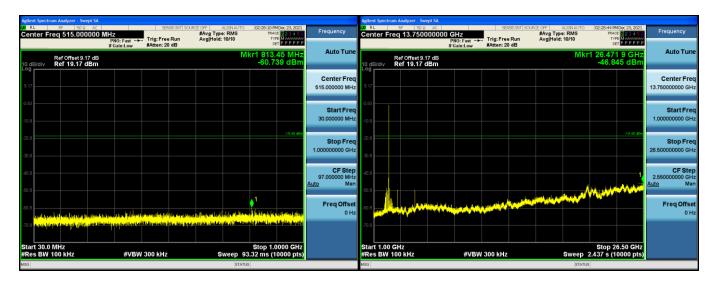
Notes:

All modes of operation of the EUT were investigated, and only the worst-case results are reported. The worst-case mode: TX mode (8DPSK).

Conducted spurious emissions -8DPSK mode

CH0

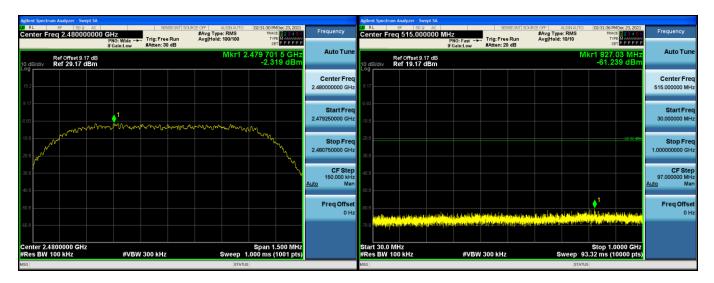
CH0


CH0

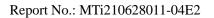
CH39

CH39

CH39


Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, ChinaTel: (86-755)88850135Fax: (86-755) 88850136Web: www.mtitest.comE-mail: mti@51mti.com

Conducted spurious emissions -8DPSK mode


CH78

CH78

CH78

5.10 Radiated spurious emissions

5.10.1 Limits

§ 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

§ 15.209 Radiated emission limits; general requirements.

Note 1: the tighter limit applies at the band edges.

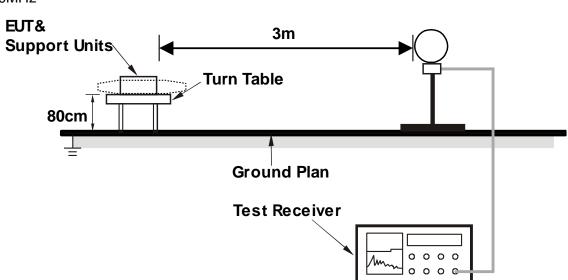
Note 2: the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

§ 15.35 (b) requirements:

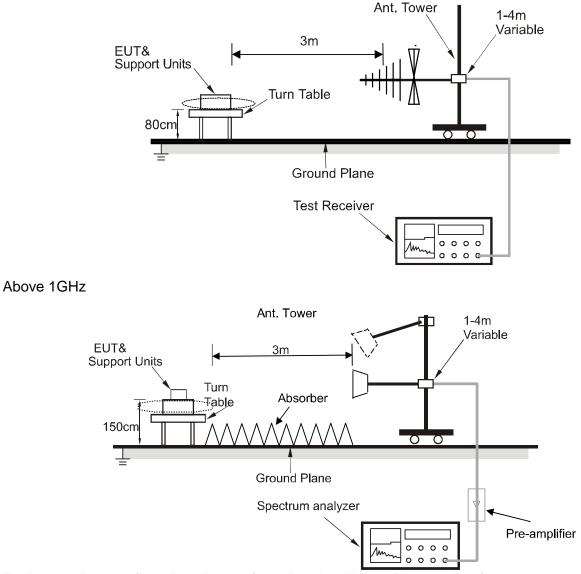
When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

According to ANSI C63.10-2013, the tests shall be performed in the frequency range shown in the following table:

Frequency range of measurements for unlicensed wireless device


Lowest frequency generated in the device	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz, whichever is lower
At or above 10 GHz to below 30 GHz	5th harmonic of highest fundamental frequency or to 100 GHz, whichever is lower
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz, whichever is lower, unless otherwise specified

Frequency range of measurements for unlicensed wireless device with digital device


Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency range of measurement				
Below 1.705 MHz	30 MHz				
1.705 MHz to 108 MHz	1000 MHz				
108 MHz to 500 MHz	2000 MHz				
500 MHz to 1000 MHz	5000 MHz				
	5th harmonic of the highest frequency or 40 GHz, whichever is lower				

5.10.2 Test setup Below 30MHz

30MHz~1GHz

For the actual test configuration, please refer to the related item - Photographs of the test setup.

5.10.3 Test procedure

a) Test method: ANSI C63.10-2013 Section 6.3, 6.4, 6.5, 6.6, 6.10.

b) The EUT is placed on an on-conducting table 0.8 meters above the ground plane for measurement below 1GHz, 1.5 meters above the ground plane for measurement above 1GHz.

c) Emission blew 18 GHz were measured at a 3 meters test distance, above 18 GHz were measured at 1.5-meter test distance with the application of a distance correction factor

d) The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

KDB 558074 D01 15.247 Meas Guidance v05r02

The use of a duty cycle correction factor (DCCF) is permitted for calculating average radiated field strength emission levels for an FHSS device in 15.247. This DCCF can be applied when the unwanted emission limit is subject to an average field strength limit (e.g., within a Government Restricted band) and the conditions specified in Section 15.35(c) can be satisfied. The average radiated field strength is calculated by subtracting the DCCF from the maximum radiated field strength level as determined through measurement. The maximum radiated field strength level represents the worst-case (maximum amplitude) RMS measurement of the emission(s) during continuous transmission (i.e., not including any time intervals during which the transmitter is off or is transmitting at a reduced power level). It is also acceptable to apply the DCCF to a measurement performed with a peak detector instead of the specified RMS power averaging detector. Note that Section 15.35(c) specifies that the DCCF shall represent the worst-case (greatest duty cycle) over any 100 msec transmission period.

Test instrument setup

Frequency	Test receiver / Spectrum analyzer setting			
9 kHz ~ 150 kHz	Quasi Peak / RBW: 200 Hz			
150 kHz ~ 30 MHz	Quasi Peak / RBW: 9 kHz			
30 MHz ~ 1 GHz	Quasi Peak / RBW: 120 kHz			
Above 1 GHz	Peak / RBW: 1 MHz, VBW: 3MHz, Peak detector AVG / RBW: 1 MHz, VBW: 1/T, Peak detector			

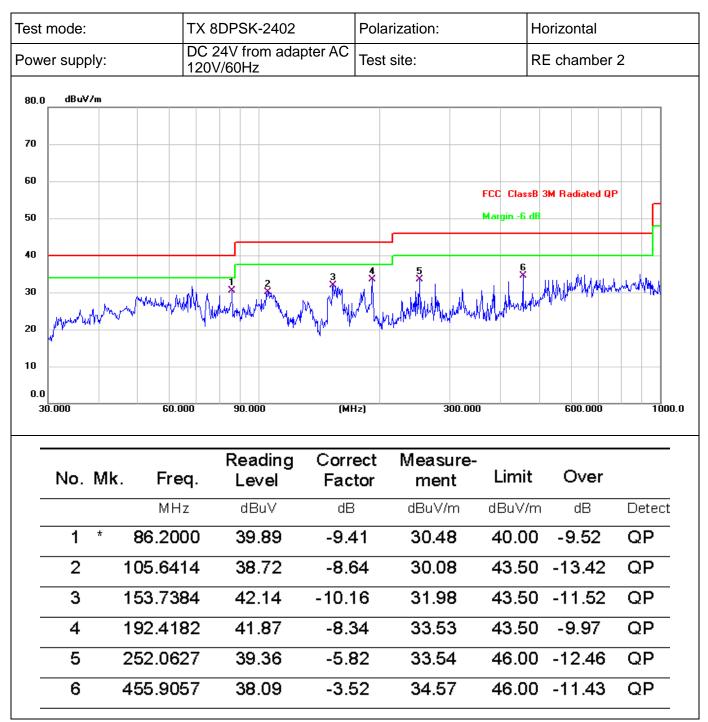
5.10.4 Test results

Notes:

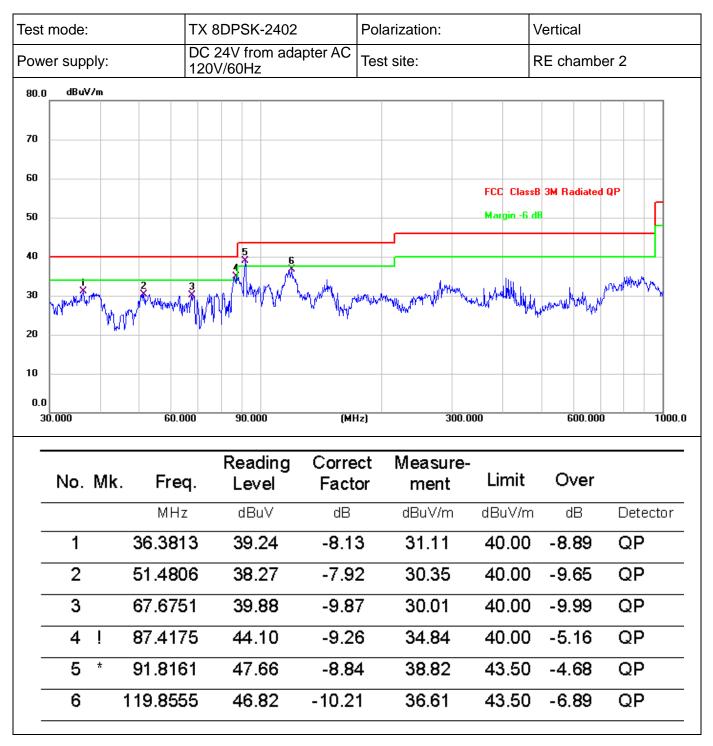
The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

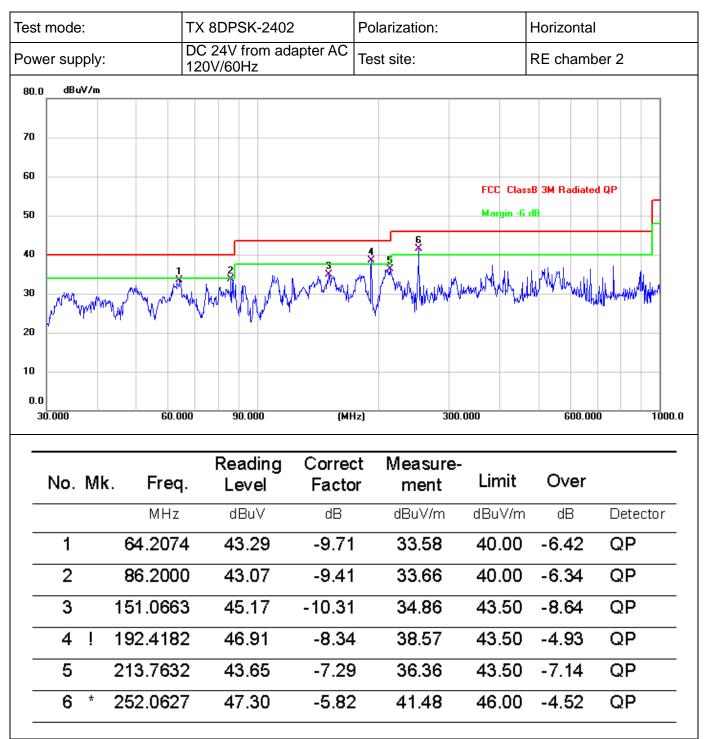
There were no emissions found below 30MHz within 20dB of the limit.


Calculation formula:

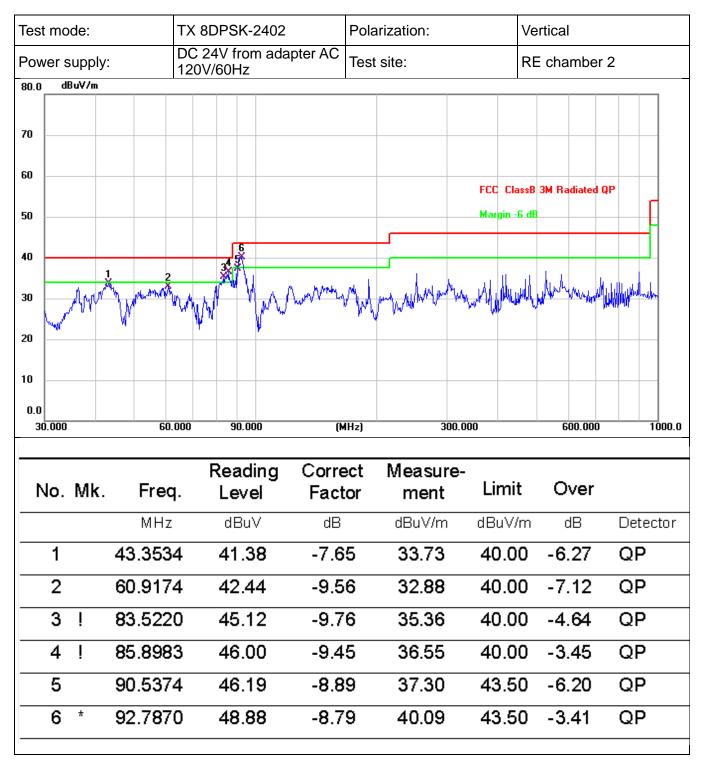
Measurement ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Correct Factor (dB/m) Over (dB) = Measurement ($dB\mu V/m$) – Limit ($dB\mu V/m$)


Radiated emissions between 30MHz – 1GHz

The model for GM60-240250-F AC/DC adapter test data:



Report No.: MTi210628011-04E2



The model for AP115G-24250 AC/DC adapter test data:

Report No.: MTi210628011-04E2

Radiated emissions 1 GHz ~ 25 GHz

Frequency	Read	Cable	Antenna	Preamp	Emission	Limits	Margin	Remark	Comment
	Level	loss	Factor	Factor	Level				
(MHz)	(dBµV)	(dB)	dB/m	(dB)		(dBµV/m)	(dB)		
Low Channel (2402 MHz)(8DPSK)Above 1G									
4804.629	63.18	4.36	32.92	45.53	54.93	74.00	-19.07	Pk	Vertical
4804.629	43.34	4.36	32.92	45.53	35.09	54.00	-18.91	AV	Vertical
7206.567	60.79	5.02	37.63	45.56	57.88	74.00	-16.12	Pk	Vertical
7206.567	42.04	5.02	37.63	45.56	39.13	54.00	-14.87	AV	Vertical
4804.396	60.50	4.36	32.92	45.53	52.25	74.00	-21.75	Pk	Horizontal
4804.396	42.99	4.36	32.92	45.53	34.74	54.00	-19.26	AV	Horizontal
7206.424	60.63	5.02	37.63	45.56	57.72	74.00	-16.28	Pk	Horizontal
7206.424	48.77	5.02	37.63	45.56	45.86	54.00	-8.14	AV	Horizontal
			Mid Chanr	nel (2441 M	1Hz)(8DPS	SK)Above	1G		
4881.539	62.01	4.43	33.04	45.81	53.67	74.00	-20.33	Pk	Vertical
4881.539	41.88	4.43	33.04	45.81	33.54	54.00	-20.46	AV	Vertical
7322.142	59.46	5.02	37.71	45.62	56.57	74.00	-17.43	Pk	Vertical
7322.142	43.41	5.02	37.71	45.62	40.52	54.00	-13.48	AV	Vertical
4881.285	59.35	4.43	33.04	45.81	51.01	74.00	-22.99	Pk	Horizontal
4881.285	47.25	4.43	33.04	45.81	38.91	54.00	-15.09	AV	Horizontal
7322.199	58.51	5.02	37.71	45.62	55.62	74.00	-18.38	Pk	Horizontal
7322.199	48.06	5.02	37.71	45.62	45.17	54.00	-8.83	AV	Horizontal
		ŀ	ligh Chan	nel (2480 N	/Hz)(8DPS	SK) Abov	e 1G		_
4959.223	60.44	4.50	33.26	46.07	52.13	74.00	-21.87	Pk	Vertical
4959.223	40.64	4.50	33.26	46.07	32.33	54.00	-21.67	AV	Vertical
7439.201	61.49	5.02	37.78	45.77	58.52	74.00	-15.48	Pk	Vertical
7439.201	46.49	5.02	37.78	45.77	43.52	54.00	-10.48	AV	Vertical
4959.165	61.97	4.50	33.26	46.07	53.66	74.00	-20.34	Pk	Horizontal
4959.165	48.40	4.50	33.26	46.07	40.09	54.00	-13.91	AV	Horizontal
7439.264	59.52	5.02	37.78	45.77	56.55	74.00	-17.45	Pk	Horizontal
7439.264	46.72	5.02	37.78	45.77	43.75	54.00	-10.25	AV	Horizontal

Note:

- 1. All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz).
- 2. Emission Level= Antenna Factor + Cable Loss + Read Level Preamp Factor.
- 3. All the modulation modes have been tested, and only the worst results are reflected in the report.

Radiated emissions at band edge

	Meter	Cable	Antenna	Preamp	Emission				
Frequency	Reading	Loss	Factor	Factor	Level	Limits	Margin De	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
	3Mbps(8DPSK)- hopping								
2310.00	60.50	2.40	27.70	40.40	50.20	74	-23.80	Pk	Horizontal
2310.00	42.98	2.40	27.70	40.40	32.68	54	-21.32	AV	Horizontal
2310.00	63.72	2.40	27.70	40.40	53.42	74	-20.58	Pk	Vertical
2310.00	42.66	2.40	27.70	40.40	32.36	54	-21.64	AV	Vertical
2390.00	59.77	2.44	28.30	40.10	50.41	74	-23.59	Pk	Vertical
2390.00	41.53	2.44	28.30	40.10	32.17	54	-21.83	AV	Vertical
2390.00	59.78	2.44	28.30	40.10	50.42	74	-23.58	Pk	Horizontal
2390.00	42.50	2.44	28.30	40.10	33.14	54	-20.86	AV	Horizontal
2400.00	64.60	2.46	28.30	40.10	55.26	74	-18.74	Pk	Vertical
2400.00	44.67	2.46	28.30	40.10	35.33	54	-18.67	AV	Vertical
2400.00	63.69	2.46	28.30	40.10	54.35	74	-19.65	Pk	Horizontal
2400.00	43.87	2.46	28.30	40.10	34.53	54	-19.47	AV	Horizontal
2483.50	61.39	2.48	28.70	39.80	52.77	74	-21.23	Pk	Vertical
2483.50	40.83	2.48	28.70	39.80	32.21	54	-21.79	AV	Vertical
2483.50	61.12	2.48	28.70	39.80	52.50	74	-21.50	Pk	Horizontal
2483.50	42.08	2.48	28.70	39.80	33.46	54	-20.54	AV	Horizontal
2500.00	60.33	2.48	28.70	39.80	51.71	74	-22.29	Pk	Vertical
2500.00	42.76	2.48	28.70	39.80	34.14	54	-19.86	AV	Vertical
2500.00	59.79	2.48	28.70	39.80	51.17	74	-22.83	Pk	Horizontal
2500.00	42.62	2.48	28.70	39.80	34.00	54	-20.00	AV	Horizontal

Note:

1. All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz).

2. Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor.

3. All the modulation modes have been tested, and only the worst results are reflected in the report.

Photographs of the Test Setup

See the appendix – Test Setup Photos.

Photographs of the EUT

See the appendix - EUT Photos.

----End of Report----