

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 1803WSU012-U3Report Version:V02Issue Date:05-30-2018

MEASUREMENT REPORT FCC Part 15B & ICES-003 Test Report

IC: 772C-LB1PR

APPLICANT: Murata Manufacturing Co., Ltd.

Application Type:	Certification
Product:	Bluetooth mesh node
Model No.:	LBCC2ZZ1PR
FCC Rule Part(s):	FCC Part 15 Subpart B
IC Rule(s):	ICES-003, Issue 6: April 2017
Test Date:	April 13 ~ May 30, 2018

Reviewed By

: Kevin Guo)

Approved By

Marlinchen

(Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1803WSU012-U3	Rev. 01	Initial Report	04-17-2018	Invalid
1803WSU012-U3	Rev. 02	Add Conducted Emission Test	05-30-2018	Valid

CONTENTS

Des	criptior	Pag	je
§2.1	033 Ge	neral Information	. 4
1.	INTRO	DUCTION	. 5
	1.1.	Scope	. 5
	1.2.	MRT Test Location	. 5
2.	PROD	UCT INFORMATION	. 6
	2.1.	Equipment Description	. 6
	2.2.	Test Mode	. 6
	2.3.	Test Configuration	. 7
	2.4.	Test System Details	. 7
	2.5.	Test Software	. 7
3.	DESC	RIPTION OF TEST	. 8
	3.1.	Evaluation Procedure	. 8
	3.2.	AC Line Conducted Emissions	. 8
	3.3.	Radiated Emissions	. 9
4.	TEST	EQUIPMENT CALIBRATION DATE	10
5.	MEAS	UREMENT UNCERTAINTY	11
6.	TEST	RESULT	12
	6.1.	Summary	12
	6.2.	Conducted Emission Measurement	13
	6.2.1.	Test Limit	13
	6.2.2.	Test Setup	13
	6.2.3.	Test Result	14
	6.3.	Radiated Emission Measurement	16
	6.3.1.	Test Limit	16
	6.3.2.	Test Frequency selected	16
	6.3.3.	Test Setup	17
	6.3.4.	Test Result	18
	6.4.	Test Photograph	22

Applicant:	Murata Manufacturing Co., Ltd.			
Applicant Address:	0-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555, Japan			
Manufacturer:	Murata Manufacturing Co., Ltd.			
Manufacturer Address:	0-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto 617-8555, Japan			
Test Site:	MRT Technology (Suzhou) Co., Ltd			
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong			
	Economic Development Zone, Suzhou, China			
FCC Registration No.:	893164			
IC Registration No.:	11384A-1			
Test Device Serial No.:	N/A Production Pre-Production Engineering			

§2.1033 General Information

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

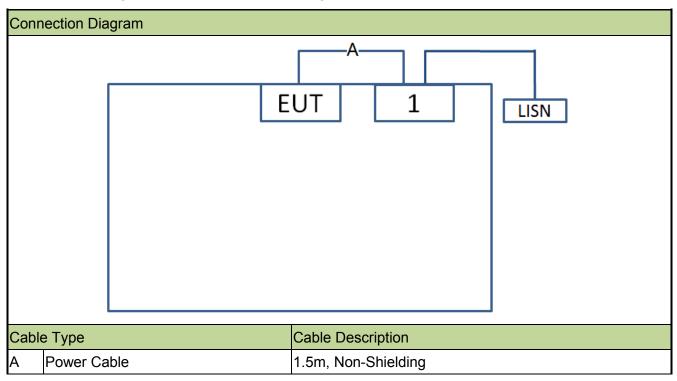
1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

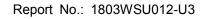
Product Name:	uetooth mesh node	
Model No.:	LBCC2ZZ1PR	
Bluetooth Specification:	V4.2 single mode	
Power Type:	DC 12V	


2.2. Test Mode

Test Mode	
EMI Mode	Mode 1: Normal operation

2.3. Test Configuration

The EUT was tested per the guidance FCC Part 15 Subpart B: 2016, ICES-003 Issue 6: April 2017 and ANSI C63.4: 2014 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.


2.4. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Prod	luct	Manufacturer	Model No.	Serial No.	Power Cord
1	DC Source	APECC	DPS-336030D	N/A	N/A

2.5. Test Software

Not Applicable.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-2014) was used in the measurement of the Equipment under test. **Deviation from measurement procedure......None**

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

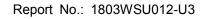
The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to

warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150 kHz to 30 MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or resolution, clock or data exchange speed, scrolling H pattern to the EUT and/or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30 MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30 MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 0.8 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found. Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB beam-width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. TEST EQUIPMENT CALIBRATION DATE


Conducted Emission - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2018/08/18
Two-Line V-Network	R&S	ENV 216	MRTSUE06002	1 year	2018/06/21
Two-Line V-Network	R&S	ENV 216	MRTSUE06003	1 year	2018/06/21
DC Power Supply	APECC	DPS-336030D	MRTSUE06014	1 year	2018/12/15
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2018/08/14
Shielding Anechoic Chamber	Mikebang	Chamber-SR2	MRTSUE06215	1 year	2019/04/30

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
MXE EMI Receiver	Agilent	N9038A	MRTSUE06125	1 year	2018/08/18
EXA Signal Analyzer	Agilent	N9010A	MRTSUE06195	1 year	2019/04/22
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2018/11/20
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2018/10/21
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06171	1 year	2018/11/18
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2018/11/17
DC Power Supply	APECC	DPS-336030D	MRTSUE06014	1 year	2018/12/15
Digitial Thermometer & Hygrometer	MingGao	ETH529	MRTSUE06170	1 year	2018/12/12
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2019/04/30

oftware Version		Function	
e3	V8.3.5	EMI Test Software	

5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement (SR2)
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
150kHz~30MHz: 3.5dB
Radiated Emission Measurement (AC2)
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
Horizontal: 30MHz~1GHz: 4.07dB
Vertical: 30MHz~1GHz: 4.18dB

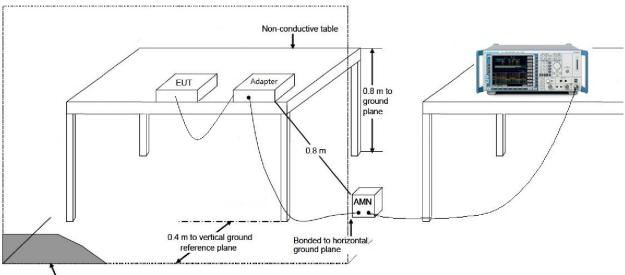
6. TEST RESULT

6.1. Summary

Company Name:	Murata Manufacturing Co., Ltd					
FCC ID:	VPYLB1PR					
IC:	<u>772C-LB1PR</u>					

FCC Section(s)	IC Section(s)	Test Description	Test Result
15.107	ICES-003, Issue 6: April 2017	Conducted Emission	Pass
15.109	15.109 ICES-003, Issue 6: April 2017		Pass

6.2. Conducted Emission Measurement


6.2.1.Test Limit

ICES-003, Issue 6: April 2017 Table 2						
Frequency (MHz)	AV (dBµV)					
0.15 - 0.50	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30	60	50				

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

6.2.2.Test Setup

Vertical ground reference plane

6.2.3.Test Result

Site: SR2					Т	Time: 2018/05/25 - 14:38			
Limit: FCC_Part15.107_CE_AC Power_ClassB				sB E	Engineer: Polly Zong				
Prot	Probe: ENV216_101683_Filter On				F	olarity: Line			
EUT	Bluet	ooth me	esh node		F	ower: DC 12	V		
Test	Mode	1							
	80	1							
	70								
	60								
	50								
6	40								
I evel(dBuV)	30								
- Ave	20								
	10							A State of State	14
	10	zm	minhow	an Alyn Mahadan an an	have and and and and and the	antipus, pasa harille	ANAL STREET	10	
		*			5 +		÷		
	-10								
	-20 0.15	1		1			i de s t la citat	10	30
					Freque	ncy(MHz)			
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)	(dB)	
				(dBuV)	(dBuV)				
1			0.186	-3.014	-13.052	-67.227	64.213	10.039	QP
2			0.186	-5.275	-15.314	-59.488	54.213	10.039	AV
3			0.394	7.776	-2.304	-50.203	57.979	10.080	QP
4		*	0.394	6.429	-3.651	-41.550	47.979	10.080	AV

Note: Measure Level ($dB\mu V$) = Reading Level ($dB\mu V$) + Factor (dB)

-7.262

-7.640

0.242

-2.138

3.875

0.998

6.794

4.254

-17.170

-17.548

-9.833

-12.213

-6.257

-9.134

-3.471

-6.011

-63.262

-53.640

-59.758

-52.138

-56.125

-49.002

-53.206

-45.746

56.000

46.000

60.000

50.000

60.000

50.000

60.000

50.000

9.908

9.908

10.075

10.075

10.132

10.132

10.265

10.265

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

1.022

1.022

5.570

5.570

10.406

10.406

28.502

28.502

5

6

7

8

9

10

11

12

QP

AV

QP

AV

QP

AV

QP

AV

Site: SR2						Time: 2018/05/25 - 14:43				
Limit: FCC_Part15.107_CE_AC Power_ClassB					ssB I	Engineer: Polly Zong				
Probe: ENV216_101683_Filter On					I	Polarity: Neutral				
EUT	: Bluet	ooth me	esh node		I	Power: DC 12	V			
Test	Mode	1								
	80				1					
	70	_								
	60									
	50									
	40									
ovdb/p	30									
	20									
								and the second	1	
	10	n	ministra	Water and the state of the stat	and the second states of the second	A Manufacture was so and an a faire	Land Barriston	W P		
	0			C 1998 C 19 C 1 C 1998	<mark>5</mark> ≢		*	1		
	-10									
	-20 0.15			1				10	30	
				1		ency(MHz)	a (1 - 30.071 - 176.	10	30	
No		Mark	Frequency	1 Measure		ency(MHz) Over Limit	Limit	10 Factor	30 Type	
No	0.15	Mark	Frequency (MHz)		Freque		Limit (dBuV)			
No	0.15	Mark		Measure	Freque	Over Limit		Factor		
No 1	0.15	Mark		Measure Level	Freque Reading Level	Over Limit		Factor		
No 1 2	0.15	Mark	(MHz)	Measure Level (dBuV)	Freque Reading Level (dBuV)	Over Limit (dB)	(dBuV)	Factor (dB)	Туре	
1	0.15	Mark	(MHz) 0.154	Measure Level (dBuV) -0.903	Freque Reading Level (dBuV) -11.619	Over Limit (dB) -66.685	(dBuV) 65.781	Factor (dB) 10.716	Type QP	
1 2	0.15	Mark	(MHz) 0.154 0.154	Measure Level (dBuV) -0.903 -3.032	Freque Reading Level (dBuV) -11.619 -13.748	Over Limit (dB) -66.685 -58.814	(dBuV) 65.781 55.781	Factor (dB) 10.716 10.716	Type QP AV	
1 2 3	0.15	Mark	(MHz) 0.154 0.154 0.390	Measure Level (dBuV) -0.903 -3.032 2.816	Freque Reading Level (dBuV) -11.619 -13.748 -7.288	Over Limit (dB) -66.685 -58.814 -55.247	(dBuV) 65.781 55.781 58.064	Factor (dB) 10.716 10.716 10.105	Type QP AV QP	
1 2 3 4	0.15	Mark	(MHz) 0.154 0.154 0.390 0.390	Measure Level (dBuV) -0.903 -3.032 2.816 0.898	Freque Reading Level (dBuV) -11.619 -13.748 -7.288 -9.207	Over Limit (dB) -66.685 -58.814 -55.247 -47.166	(dBuV) 65.781 55.781 58.064 48.064	Factor (dB) 10.716 10.716 10.105 10.105	Type QP AV QP AV QP AV	
1 2 3 4 5 6	0.15	Mark	(MHz) 0.154 0.154 0.390 0.390 1.518	Measure Level (dBuV) -0.903 -3.032 2.816 0.898 -6.968	Freque Reading Level (dBuV) -11.619 -13.748 -7.288 -9.207 -16.858	Over Limit (dB) -66.685 -58.814 -55.247 -47.166 -62.968	(dBuV) 65.781 55.781 58.064 48.064 56.000	Factor (dB) 10.716 10.716 10.105 10.105 9.889	Type QP AV QP AV QP QP QP QP	
1 2 3 4 5 6 7	0.15	Mark	(MHz) 0.154 0.154 0.390 0.390 1.518 1.518	Measure Level (dBuV) -0.903 -3.032 2.816 0.898 -6.968 -7.416	Freque Reading Level (dBuV) -11.619 -13.748 -7.288 -9.207 -16.858 -17.305	Over Limit (dB) -66.685 -58.814 -55.247 -47.166 -62.968 -53.416	(dBuV) 65.781 55.781 58.064 48.064 56.000 46.000	Factor (dB) 10.716 10.716 10.105 10.105 9.889 9.889	Type QP AV QP AV QP AV QP AV QP	
1 2 3 4 5	0.15	Mark	(MHz) 0.154 0.154 0.390 0.390 1.518 1.518 5.698	Measure Level (dBuV) -0.903 -3.032 2.816 0.898 -6.968 -7.416 1.160	Freque Reading Level (dBuV) -11.619 -13.748 -7.288 -9.207 -16.858 -17.305 -8.951	Over Limit (dB) -66.685 -58.814 -55.247 -47.166 -62.968 -53.416 -58.840	(dBuV) 65.781 55.781 58.064 48.064 56.000 46.000 60.000	Factor (dB) 10.716 10.716 10.105 10.105 9.889 9.889 10.111	TypeQPAVQPAVQPAVQPQPQPQPQPQPQPQPQP	
1 2 3 4 5 6 7 8	0.15	Mark	(MHz) 0.154 0.154 0.390 0.390 1.518 1.518 5.698 5.698	Measure Level (dBuV) -0.903 -3.032 2.816 0.898 -6.968 -7.416 1.160 -1.758	Freque Reading Level (dBuV) -11.619 -13.748 -7.288 -7.288 -9.207 -16.858 -17.305 -8.951 -11.868	Over Limit (dB) -66.685 -58.814 -55.247 -47.166 -62.968 -53.416 -58.840 -51.758	(dBuV) 65.781 55.781 58.064 48.064 56.000 46.000 60.000 50.000	Factor (dB) 10.716 10.716 10.105 10.105 9.889 9.889 9.889 10.111 10.111	TypeQPAVQPAVQPAVQPAVQPAVQPAVQPAV	
1 2 3 4 5 6 7 8 9	0.15	Mark	(MHz) 0.154 0.154 0.390 0.390 1.518 1.518 5.698 5.698 5.698 10.054	Measure Level (dBuV) -0.903 -3.032 2.816 0.898 -6.968 -7.416 1.160 -1.758 4.844	Freque Reading Level (dBuV) -11.619 -13.748 -7.288 -7.288 -9.207 -16.858 -17.305 -8.951 -11.868 -5.322	Over Limit (dB) -66.685 -58.814 -55.247 -47.166 -62.968 -53.416 -58.840 -51.758 -55.156	(dBuV) 65.781 55.781 58.064 48.064 56.000 46.000 60.000 50.000 60.000	Factor (dB) 10.716 10.716 10.105 10.105 9.889 9.889 9.889 10.111 10.111 10.111	Type QP AV QP AV QP AV QP AV QP AV QP AV QP QP	

Note: Measure Level (dB μ V) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB)

6.3. Radiated Emission Measurement

6.3.1. Test Limit

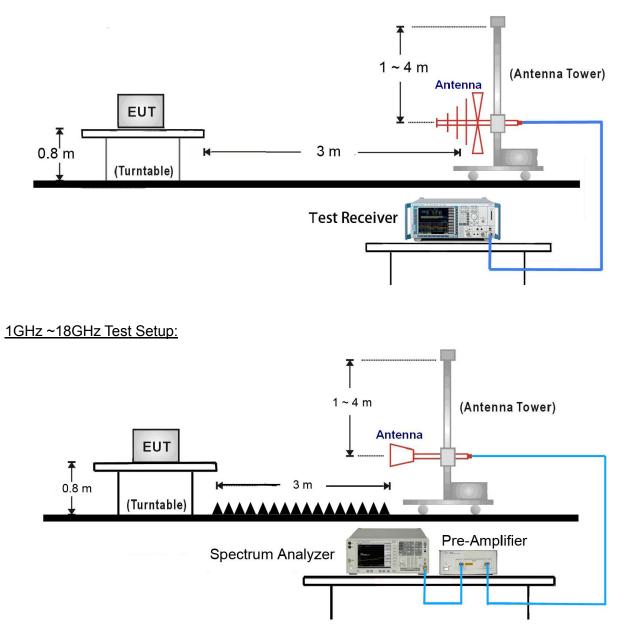
FCC Part 15.109 Limits						
Frequency (MHz)	Distance (m)	Level (dBµV/m)				
30 - 88	3	40				
88 - 216	3	43.5				
216 - 960	3	46				
Above 960	3	54				

Note 1: The lower limit shall apply at the transition frequency.

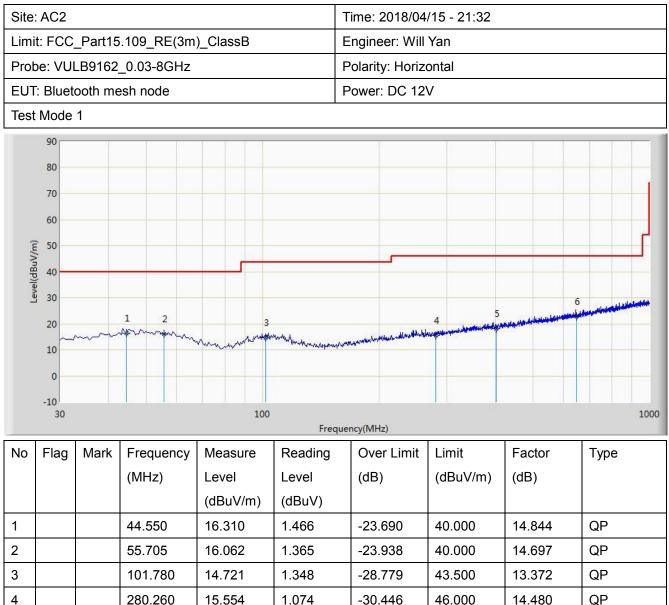
Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Note 3: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

6.3.2. Test Frequency selected


For an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower


6.3.3. Test Setup

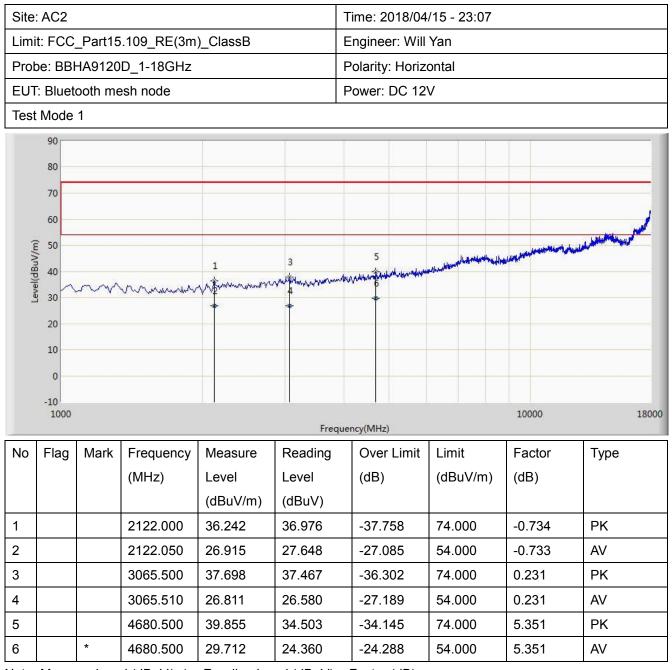
30MHz ~ 1GHz Test Setup:

6.3.4. Test Result

					- (() -)			
6	*	649.345	22.728	1.656	-23.272	46.000	21.072	QP
5		401.510	18.073	1.004	-27.927	46.000	17.069	QP
4		280.260	15.554	1.074	-30.446	46.000	14.480	QP
3		101.780	14.721	1.348	-28.779	43.500	13.372	QP

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).



Site	Site: AC2 Limit: FCC_Part15.109_RE(3m)_ClassB Probe: VULB9162_0.03-8GHz					Time: 2018/04/15 - 21:36Engineer: Will YanPolarity: Vertical				
Limi										
Prob										
EUT	: Bluet	ooth me	esh node		ł	Power: DC 12	V			
Test	Mode	1								
I musical Ruiviven	90 80 70 60 50 40 30 20 10 0 -10 30			100	4 the and the and the second				6 1000	
					Freque	ency(MHz)				
No	Flag	Mark	Frequency (MHz)	Measure Level	Reading Level	Over Limit (dB)	Limit (dBuV/m)	Factor (dB)	Туре	
				(dBuV/m)	(dBuV)					
1			44.065	(dBuV/m) 21.761	(dBuV) 7.010	-18.239	40.000	14.751	QP	
1 2		*	44.065 53.765	, ,	. ,	-18.239 -15.959	40.000 40.000	14.751 14.991	QP QP	
		*		21.761	7.010					
2 3		*	53.765	21.761 24.041	7.010 9.050	-15.959	40.000	14.991	QP	
2		*	53.765 61.525	21.761 24.041 16.910	7.010 9.050 3.150	-15.959 -23.090	40.000 40.000	14.991 13.761	QP QP	

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Note: Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

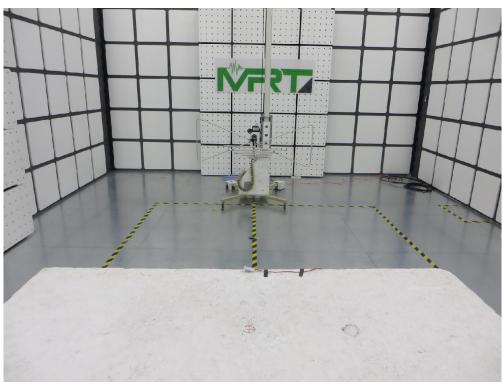
Site:	AC2	AC2 : FCC_Part15.109_RE(3m)_ClassB					Time: 2018/04/15 - 23:11 Engineer: Will Yan				
Limi	t: FCC										
Probe: BBHA9120D_1-18GHz EUT: Bluetooth mesh node					Polarity:	Vertic	al				
					Power: D	C 12	V				
Test	Mode	1									
	90										
	70										
Ê	60 50						5		L. antenski h	- Anna -	
Level(dBuV/m)	40				1 3		د سنگریا	Anter and a start the state of the	water fritzer fritzer were get		
Level(30 × 10	M	Mannan	V determinante de la construcción de Esta de la construcción de la constru Esta de la construcción de la const	in the second		*				
	0					1	-		1		
	-10										
	1000				Freq	uency(MHz)			10000	1800	
No	Flag	Mark	Frequency	Measure	Reading	Over L	imit	Limit	Factor	Туре	
			(MHz)	Level (dBuV/m)	Level (dBuV)	(dB)		(dBuV/m)	(dB)		
1			2853.000	37.675	37.532	-36.32	5	74.000	0.143	PK	
2			2853.015	28.453	28.310	-25.54	7	54.000	0.143	AV	
3			3150.500	37.747	37.176	-36.25	3	74.000	0.572	PK	
4			3150.500	27.721	27.150	-26.27	9	54.000	0.572	AV	
5			5598.500	42.536	35.858	-31.46	4	74.000	6.677	PK	
6		*	5598.510	32.318	25.640	-21.68	2	54.000	6.678	AV	

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

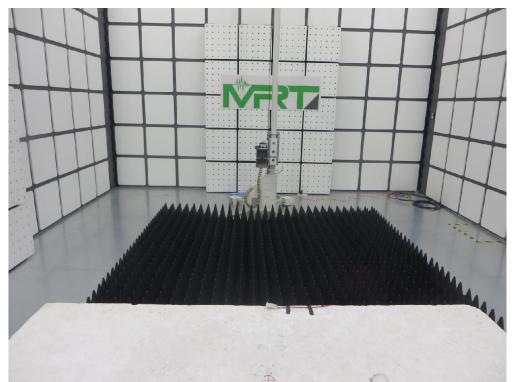

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

6.4. Test Photograph

Test Mode 1


Description: Front View of Conducted Emission Test Setup Power Port

Test Mode 1 Description: Back view of Conducted Emission Test Setup for Power Port



Radiated disturbance Test Setup (30MHz ~ 1000MHz)

Radiated disturbance Test Setup (1GHz ~ 18GHz)

