TEST REPORT Report Number: C21T00009-SAR01-V01 Shanghai Sunmi Technology Co.,Ltd. **Applicant** **Product Name** Wireless data POS System Model Name T5930 **Brand Name** SUNMI FCC ID 2AH25V2 Industrial Internet Innovation Center (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in ANSI C95.1-1999, IEEE std 1528-2013. Prepared by 整律 Reviewed by Issue Date Approved by 2021-04-14 Page Number: 1 of 118 Report No.: C21T00009-SAR01-V01 Industrial Internet Innovation Center (Shanghai) Co., Ltd. Page Number: 2 of 118 Report No.: C21T00009-SAR01-V01 ### NOTE - 1. This report is invalid without the signature of the writer, reviewer and authorizer. - 2. This report is invalid if altered. - 3. For the benefit of clients, if you have any objection to the report, please inform the testing laboratory within 15 days from the date of receiving this report. - 4. Samples in the test report are provided by the client. The test results are only applicable to the samples received by the laboratory. The source information of samples (such as sample sender, manufacturer, etc.) in the test report is provided by the client, and the laboratory is not responsible for its authenticity and the measurement accuracy. - 5. The test report does not represent the identification of a product by a certification body or an authorized body. - 6. This report is only valid as a whole, and no part of the report can be reproduced without the written approval of Industrial Internet Innovation Center (Shanghai) Co., Ltd. - 7. Without the written permission of testing institutions and accreditation bodies, this report cannot be used in part or in whole for publicity or product introduction. - 8. "N/A" is used in this report to indicate that it is not applicable or available. - 9. Industrial Internet Innovation Center (Shanghai) Co., Ltd. assumes the legal responsibility for the report. #### **Test Laboratory:** Industrial Internet Innovation Center (Shanghai) Co., Ltd. Add: Building 4, No. 766 Jingang Rd, Pudong, Shanghai, China Tel: +86 21 63843300 Page Number: 3 of 118 Report No.: C21T00009-SAR01-V01 ### **Revision Version** | Report Number | Revision | Date | Memo | |---------------------|----------|------------|---------------------------------| | C21T00009-SAR01-V00 | 00 | 2021-04-02 | Initial creation of test report | | C21T00009-SAR01-V01 | 01 | 2021-04-14 | Update Sections 5.1 | Page Number: 4 of 118 Report No.: C21T00009-SAR01-V01 ### **CONTENTS** | 1. | TEST | LABORATORY | 7 | |----|------|--|----| | | 1.1. | TESTING LOCATION | 7 | | | 1.2. | TESTING ENVIRONMENT | 7 | | | 1.3. | PROJECT INFORMATION | 7 | | 2. | CLIE | NT INFORMATION | 8 | | | 2.1. | APPLICANT INFORMATION | 8 | | | 2.2. | MANUFACTURER INFORMATION | 8 | | 3. | EQU | IPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 9 | | | 3.1. | ABOUT EUT | 9 | | | 3.2. | INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST | 10 | | | 3.3. | INTERNAL IDENTIFICATION OF AE USED DURING THE TEST | 10 | | 4. | REF | ERENCE DOCUMENTS | 11 | | | 4.1. | REFERENCE DOCUMENTS FOR TESTING | 11 | | | 4.2. | CRITERION | 12 | | 5. | TEST | SUMMARY | 13 | | | 5.1. | SUMMARY OF TEST RESULTS | 13 | | | 5.2. | STATEMENTS | 14 | | 6. | SPE | CIFIC ABSORPTION RATE (SAR) | 15 | | | 6.1. | INTRODUCTION | 15 | | | 6.2. | SAR DEFINITION | 15 | | 7. | SAR | MEASUREMENT SYSTEM INTRODUCTION | 16 | | | 7.1. | MEASUREMENT SET-UP | 16 | | | 7.2. | E-FIELD PROBE SYSTEM | 17 | | | 7.3. | E-FIELD PROBE CALIBRATION | 18 | Page Number: 5 of 118 Report No.: C21T00009-SAR01-V01 | | 7.4. | OTHER TEST EQUIPMENT | 19 | |-----|-------|--|----| | 8. | TEST | POSITION IN RELATION TO THE PHANTOM | 22 | | | 8.1. | GENERAL CONSIDERATIONS | 22 | | | 8.2. | BODY-WORN DEVICE | 23 | | | 8.3. | DESKTOP DEVICE | 24 | | 9. | TISSU | JE SIMULATING LIQUIDS | 25 | | | 9.1. | EQUIVALENT TISSUES COMPOSITION | 25 | | | 9.2. | DIELECTRIC PERFORMANCE OF TSL | 26 | | | 9.3. | LIQUID DEPTH | 26 | | 10. | SYST | EM VALIDATION | 27 | | | 10.1. | SYSTEM VALIDATION | 27 | | | 10.2. | SYSTEM SETUP | 27 | | | 10.3. | SYSTEM VALIDATION RESULT | 28 | | 11. | MEAS | SUREMENT PROCEDURES | 29 | | | 11.1. | TEST STEPS | 29 | | | 11.2. | SPATIAL PEAK SAR EVALUATION | 30 | | | 11.3. | GENERAL MEASUREMENT PROCEDURE | 31 | | | 11.4. | WCDMA MEASUREMENT PROCEDURES | 32 | | | 11.5. | LTE MEASUREMENT PROCEDURE | 33 | | | 11.6. | BLUETOOTH & WIFI MEASUREMENT PROCEDURES | 34 | | 12. | SIMU | LTANEOUS TRANSMISSION SAR CONSIDERATIONS | 35 | | | 12.1. | REFERENCE DOCUMENT | 35 | | | 12.2. | ANTENNA SEPARATION DISTANCES | 36 | | | 12.3. | SAR MEASUREMENT POSITIONS | 37 | | | 12.4. | LOW POWER TRANSMITTERS SAR CONSIDERATION | 37 | | | 12.5. | SIMULTANEOUS TRANSMISSION ANALYSIS | 37 | Page Number: 6 of 118 Report No.: C21T00009-SAR01-V01 | | 12.6. | SIMULTANEOUS TRANSMISSION TABLE | . 38 | |-----|----------|---------------------------------|------| | 13. | CONDU | CTED OUTPUT POWER | . 39 | | | 13.1. | GSM MEASUREMENT RESULT | . 39 | | | 13.2. | WCDMA MEASUREMENT RESULT | . 39 | | | 13.3. | LTE MEASUREMENT RESULT | . 39 | | | 13.4. | BT MEASUREMENT RESULT | . 39 | | | 13.5. | WIFI MEASUREMENT RESULT | . 39 | | 14. | MEASU | REMENT RESULTS | . 41 | | | 14.1. | STANDALONE SAR TEST RESULT | . 41 | | | 14.2. | SIMULTANEOUS SAR EVALUATION | . 61 | | | 14.3. | SAR MEASUREMENT VARIABILITY | . 62 | | 15. | TEST E | QUIPMENT LIST | . 63 | | ANI | NEX A: G | RAPH RESULTS | . 64 | | ANI | NEX B: S | YSTEM VALIDATION PLOT | . 70 | | ANI | NEX C: M | TEASUREMENT UNCERTAINTY | . 73 | | ANI | NEX D: C | ALIBRATION CERTIFICATE | . 75 | | ANI | NEX E: A | CCREDITATION CERTIFICATE | 118 | Page Number: 7 of 118 Report No.: C21T00009-SAR01-V01 # 1. Test Laboratory # 1.1. Testing Location ### Primary Lab: | Company Name | ame Industrial Internet Innovation Center (Shanghai) Co., Ltd. | | |---|--|--| | Address Building 4, No. 766 Jingang Rd, Pudong, Shanghai, China | | | | FCC Registration No. | 958356 | | | FCC Designation No. | CN1177 | | # 1.2. Testing Environment | Normal Temperature | 18°C~25°C | |--------------------|-------------| | Relative Humidity | 25%RH~75%RH | ## 1.3. Project Information | Project Leader | Lu Fang | |--------------------|------------| | Testing Start Date | 2021-03-08 | | Testing End Date | 2021-03-30 | Page Number: 8 of 118 Report No.: C21T00009-SAR01-V01 # 2. Client Information # 2.1. Applicant Information | Company Name | Shanghai Sunmi Technology Co.,Ltd. | |--------------|---| | Address | Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Shanghai, China | | Telephone | +86 18721763396 | ### 2.2. Manufacturer Information | Company Name | Shanghai Sunmi Technology Co.,Ltd. | |--------------|---| | Address | Room 505, KIC Plaza, No.388 Song Hu Road, Yang Pu District, Shanghai, China | | Telephone | +86 18721763396 | Page Number: 9 of 118 Report No.: C21T00009-SAR01-V01 # 3. Equipment under Test (EUT) and Ancillary Equipment (AE) # 3.1. About EUT | Product Name | Wireless data POS System | |---|--| | Model name | T5930 | | Supported Radio
Technology and Bands | GSM850/GSM900/GSM1800/GSM1900
WCDMA Band I/ II/IV/V
LTE Band 2/3/4/7/17/28
BT4.0,BLE
WLAN 802.11b,g,n,a
GPS | | Hardware Version | V3 | | Software Version | ZAP1522_769_DEV_dailybuild_20181205071714_userdebug_DCC | | FCC ID | 2AH25V2 | | Dimension | 215x75x55mm | Page Number: 10 of 118 Report No.: C21T00009-SAR01-V01 ## 3.2. Internal Identification of EUT used during the test | EUT ID* | SN or IMEI | HW Version | SW Version | Date of Receipt | |----------------------------------|-----------------|------------|---|-----------------| | N06(Second supply) | 861741048621889 | V3 | ZAP1522_769_DEV_d
ailybuild_20181205071
714_userdebug_DCC | 2021-02-23 | | N08(Main
Supply) 861741048621 | | V3 | ZAP1522_769_DEV_d
ailybuild_20181205071
714_userdebug_DCC | 2021-02-23 | ^{*}EUT ID: is internally used to identify the test sample in the lab. # 3.3. Internal Identification of AE used during the test | AE ID* | Description | Model | SN/Remark | |--------|-------------|-------|-----------| | N/A | N/A | N/A | N/A | ^{*}AE ID: is internally used to identify the test sample in the lab. ^{*}The AE is provided by the lab/client. Page Number: 11 of 118 Report No.: C21T00009-SAR01-V01 ## 4. Reference Documents # 4.1. Reference Documents for testing The following documents listed in this section are referred for testing. | Reference | Title | Version | | | | | |---------------|---|------------|--|--|--|--| | ANSI C95.1 | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. | 1999 | | | | | | IEEE std 1528 | Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques. | | | | | | | KDB648474 | Handset SAR | D04 v01r03 | | | | | | KDB648474 | Wireless Chargers Battery Cover | D03 v01r04 | | | | | | KDB248227 | 802 11 WiFi SAR | D01 v02r02 | | | | | | KDB447498 | General RF Exposure Guidance | D01 v06 | | | | | | KDB865664 | SAR Measurement 100 MHz to 6 GHz | D01 v01r04 | | | | | | KDB865664 | RF Exposure Reporting | D02 v01r02 |
| | | | | KDB941225 | 3G SAR Procedures | D01 v03r01 | | | | | | KDB941225 | SAR for LTE Devices | D05 v02r05 | | | | | | KDB941225 | Hotspot SAR | D06 v02r01 | | | | | Page Number: 12 of 118 Report No.: C21T00009-SAR01-V01 At frequencies between 100 kHz and 6 GHz, the MPE (Maximum Permissible Exposure) in population/uncontrolled environments for electromagnetic field strengths may be exceeded if - a) The exposure conditions can be shown by appropriate techniques to produce SARs below 0.08W/kg, as averaged over the whole body, and spatial peak SAR values not exceeding 1.6 W/kg, as averaged over any 1g of tissue (defined as a tissue volume in the shape of a cube), except for the hands, wrists, feet, and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10g of tissue (defined as a tissue volume in the shape of a cube); and - b) The induced currents in the body confirm with the MPE in table 2, Part B in ANSI C95.1-1999. Page Number: 13 of 118 Report No.: C21T00009-SAR01-V01 # 5. Test Summary ## 5.1. Summary of Test Results The maximum results of Specific Absorption Rate (SAR) in standalone mode are as follows. | David | SAR 1 | g(W/Kg) | SAR 10g(W/Kg) | |-------------|-----------------|-----------------|-----------------| | Band | Body worn(5mm) | Hotspot(5mm) | Limb | | GSM 850 | 0.561(Original) | 0.561(Original) | 0.741(Original) | | GSM 1900 | 0.476(Original) | 0.983(Original) | 1.042(Original) | | WCDMA Band2 | 0.392(Original) | 0.922(Original) | 0.942(Original) | | WCDMA Band4 | 0.466(Original) | 0.932(Original) | 0.874(Original) | | WCDMA Band5 | 0.415(Original) | 0.415(Original) | 0.486(Original) | | LTE Band2 | 0.368(Original) | 0.759(Original) | 0.949(Original) | | LTE Band4 | 0.419(Original) | 0.772(Original) | 0.890(Original) | | LTE Band7 | 0.050(Original) | 0.371(Original) | 0.845(Original) | | LTE Band17 | 0.266(Original) | 0.354(Original) | 0.376(Original) | | 2.4G WiFi | 0.158(Original) | 0.335(Original) | 0.337 (Variant) | | 5G WiFi | 0.362(Original) | 0.610(Original) | 0.497(Original) | Note: Original 5G test results are obtained from the **Shenzhen BALUN Technology Co., Ltd.** Report and report No. is **BL-SZ1010024-701**. Page Number: 14 of 118 Report No.: C21T00009-SAR01-V01 The T5930, manufactured by Shanghai Sunmi Technology Co., Ltd. is a new product for testing. This project has two sets of configured sample N08 (Main Supply) and N06 (Second supply), among which the N08 sample is the main test, and the N06 sample tests the worst mode of SAR. This project is based on the variation of the original report I18D00236-SAR01 by ECIT. It changes the CPU. The difference between N08 (Main Supply) and N06 (Secondary Supply) is battery. We test data was recorded in the report. In this report, we retest the SAR in WiFi mode and verify the worst-case conditions in WLAN mode. Industrial Internet Innovation Center (Shanghai) Co., Ltd. has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report. Page Number: 15 of 118 Report No.: C21T00009-SAR01-V01 # 6. Specific Absorption Rate (SAR) #### 6.1. Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. #### 6.2. SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by: $$SAR = c(\frac{\delta T}{\delta t})$$ Where: C is the specific head capacity, δT is the temperature rise and δT is the exposure duration, or related to the electrical field in the tissue by: $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: - \triangleright σ is the conductivity of the tissue - \triangleright ρ is the mass density of tissue, which is normally set to 1g/cm³ - > E is the RMS electrical field strength However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. Page Number: 16 of 118 Report No.: C21T00009-SAR01-V01 ### 7. SAR Measurement System Introduction ### 7.1. Measurement Set-up The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items: Picture 7-1 SAR Measurement Set-up - A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. The phantom, the device holder and other accessories according to the targeted measurement. #### 7.2. E-field Probe System The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using 2nd order curve fitting. The approach is stopped at reaching the maximum. | Probe Specifications | | |----------------------|---| | Model | EX3DV4 | | Frequency Range | 4 MHz – 10 GHz | | Calibration | In head simulating tissue at frequency from 650MHz to 5900MHz | | Linearity | ±0.2 dB (30 MHz – 10 GHz) | | Dynamic Range | 10 μW/g – >100 mW/g | | Probe Length | 337 mm | | Probe Tip Length | 20 mm | | Body Diameter | 12 mm | | Tip Diameter | 2.5 mm | | Tip-Center | 1 mm | | Application | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better than 30% | Picture 7-2 Detail of Probe Picture 7-3 E-field Probe Page Number: 17 of 118 Report No.: C21T00009-SAR01-V01 Page Number: 18 of 118 Report No.: C21T00009-SAR01-V01 ### 7.3. E-field Probe Calibration Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an RF Signal generator, TEM cell, and RF Power Meter. The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm2.. E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe
is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ Where: $\Delta t = \text{Exposure time (30 seconds)},$ C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³). #### 7.4.1. Data Acquisition Electronics (DAE) The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB. Picture 7-4: DAE #### 7.4.2. Robot The SPEAG DASY system uses the high precision robots (DASY5: TX90) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchronal motors; no stepper motors) - Low ELF interference (motor control fields shielded via the closed metallic construction shields) Picture 7-5: DASY5 Page Number: 19 of 118 Report No.: C21T00009-SAR01-V01 The DASY5 measurement server is based on a PC/104 CPU board with a 400 MHz intel ULV Celeron, 128 MB chipdisk and 128 MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronics box as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board. Picture 7-6: Server for DASY5 The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. #### 7.4.4. Device Holder for Phantom The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. Picture 7-7: Device Holder Page Number: 20 of 118 Report No.: C21T00009-SAR01-V01 The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity \mathcal{E} =3 and loss tangent $_{\mathcal{S}}$ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity \mathcal{E} =3 and loss tangent $_{\mathcal{S}}$ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. Picture 7-8: Laptop Extension Kit #### 7.4.5. Phantom The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm). | Shell Thickness | 2 ± 0.2 mm | |-----------------|--| | Available | Special | | Filling Volume | Approx. 25 liters | | Dimensions | 810 mm x l000 mm x 500 mm
(H x L x W) | Picture 7-9: SAM Twin Phantom Page Number: 21 of 118 Report No.: C21T00009-SAR01-V01 Page Number: 22 of 118 Report No.: C21T00009-SAR01-V01 ### 8. Test Position in Relation to the Phantom ### 8.1. General considerations This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position. Page Number: 23 of 118 Report No.: C21T00009-SAR01-V01 Picture 8-4 Tilt position of the wireless device on the left side of SAM ### 8.2. Body-worn device Picture 8-5 Test positions for body-worn devices A typical example of a body-worn device is a mobile phone, wireless enabled PDA (personal digital assistant) or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer. Page Number: 24 of 118 Report No.: C21T00009-SAR01-V01 ### 8.3. Desktop device A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used. The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions. Tests shall be performed for all antenna positions specified. Picture 8-6 shows positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat Picture 8-6 Test positions for desktop devices Page Number: 25 of 118 Report No.: C21T00009-SAR01-V01 # 9. Tissue Simulating Liquids ### 9.1. Equivalent Tissues Composition The liquid used for the frequency range of 650-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 9.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. Table 9.1: Composition of the Head Tissue Equivalent Matter | Frequency
(MHz) | 835 | 900 | 1800 | 1950 | 2300 | 2450 | 2600 | 5800 | | | | |--|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|--|--| | Ingredients (% by weight) | | | | | | | | | | | | | Water | 41.45 | 40.92 | 55.242 | 54.89 | 56.34 | 58.79 | 58.79 | 65.53 | | | | | Sugar | 56.0 | 56.5 | / | / | / | / | / | | | | | | Salt | 1.45 | 1.48 | 0.306 | 0.18 | 0.14 | 0.06 | 0.06 | | | | | | Preventol | 0.1 | 0.1 | / | / | / | / | / | | | | | | Cellulose | 1.0 | 1.0 | / | / | / | / | / | | | | | | GlycolMonobutyl | / | / | 44.452 | 44.93 | 43.52 | 41.15 | 41.15 | | | | | | Diethylenglycol
momohexylether | / | / | / | / | / | / | / | 17.24 | | | | | Triton X-100 | / | / | / | / | / | / | / | 17.23 | | | | | Dielectric
Parameters
Target Value | ε=41.5
σ=0.90 | ε=41.5
σ=0.97 | ε=40.0
σ=1.40 | ε=40.0
σ=1.40 | ε=39.5
σ=1.67 | ε=39.2
σ=1.80 | ε=39.0
σ=1.96 | ε=35.3
σ=5.27 | | | | Table 9.2: Targets for tissue simulating liquid | Frequency | Liquid Type | Conductivity | ± 5% Range | Permittivity | ± 5% Range | | |-----------|-------------|--------------|------------|--------------|-------------|--| | (MHz) | | (σ) | _ | (ε) | - | | | 835 | Head | 0.90 | 0.874~0.97 | 41.5 | 39.4~43.6 | | | 900 | Head | 0.97 | 0.92~1.02 | 41.5 | 39.4~43.6 | | | 1800 | Head | 1.40 | 1.33~1.47 | 40.0 | 38.0~42.0 | | | 1950 | Head | 1.40 | 1.33~1.47 | 40.0 | 38.0~42.0 | | | 2300 | Head | 1.67 | 1.59~1.75 | 39.5 | 37.5~41.4 | | | 2450 | Head | 1.80 | 1.71~1.89 | 39.2 | 37.2~41.2 | | | 2600 | Head | 1.96 | 1.86~2.06 | 39.0 | 37.5~40.95 | | | 5200 | Head | 4.66 | 4.43~4.89 | 35.99 | 34.19~37.79 | | | 5300 | Head | 4.76 | 4.52~4.99 | 35.87 | 34.08~37.66 | | | 5500 | Head | 4.96 | 4.71~5.2 | 35.6 | 33.82~37.38 | | | 5600 | Head | 5.07 | 4.82~5.32 | 35.53 | 33.75~37.30 | | | 5800 | Head | 5.27 | 5.01~5.53 | 35.3 | 33.54~37.05 | | Page
Number: 26 of 118 Report No.: C21T00009-SAR01-V01 ### 9.2. Dielectric Performance of TSL Table 9.3: Dielectric Performance of Head Tissue Simulating Liquid | | Tissue Simulating Liquid | | | | | | | | | | | | |-----------|--------------------------|--------------|-------------|-----------|--------------|--------------|---------------|--------------|--|--|--|--| | Frequency | Head(St | tandard) | _ | Dete | Test | Result | Deviation (%) | | | | | | | (MHz) | Permittivity | Conductivity | Temperature | Date | Permittivity | Conductivity | Permittivity | Conductivity | | | | | | | 3 | σ | | | 3 | σ | 3 | σ | | | | | | 1900 | 40.00 | 1.40 | 22.6℃ | 2020/3/8 | 38.97 | 1.45 | -2.58% | 3.57% | | | | | | 2450 | 39.20 | 1.80 | 22.6℃ | 2020/3/30 | 38.29 | 1.811 | -2.32% | 0.61% | | | | | | 5200 | 36 | 4.66 | 22.6℃ | 2020/3/30 | 37.16 | 4.59 | 3.22% | -1.50% | | | | | ### 9.3. Liquid depth Page Number: 27 of 118 Report No.: C21T00009-SAR01-V01 ## 10. System Validation ### 10.1. System Validation Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. ### 10.2. System Setup In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: Page Number: 28 of 118 Report No.: C21T00009-SAR01-V01 ## 10.3. System Validation Result Table 10.1: System Validation Result of SAR | | SAR System Validation | | | | | | | | | | | | |-----------|-----------------------|-----------------|-------------|-----------|----------|------------|---------------|--------|--|--|--|--| | Frequency | Average Targe | et Value (w/kg) | | Date - | Test Res | ult (w/kg) | Deviation (%) | | | | | | | (MHz) | 10g | 1g | Temperature | Date | 10g | 1g | 10g | 1g | | | | | | 1900 | 20.6 | 39.6 | 22.6℃ | 2020/3/8 | 21.56 | 42 | 4.66% | 6.06% | | | | | | 2450 | 24.4 | 52.4 | 22.6℃ | 2020/3/30 | 23.6 | 50.8 | -3.28% | -3.05% | | | | | | 5200 | 21.4 | 74.9 | 22.6℃ | 2020/3/30 | 21.5 | 74.1 | 0.47% | -1.07% | | | | | Note: The system verifies that the measured input power level is equivalent to 250mW, and the measured results are compared with the target value by converting to 1W. Page Number: 29 of 118 Report No.: C21T00009-SAR01-V01 #### 11. Measurement Procedures ### 11.1. Test Steps According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: #### (a) Power reference measurement The reference and drift jobs are useful for monitoring the power drift of the device under test in the batch process. Both jobs measure the electric field strength at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. #### (b) Area scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought up, grid was at to 15mm * 15mm and can be edited by users. #### (c) Zoom scan Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The default zoom scan measures 5 * 5 * 7 points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more than one maximum, the number of Zoom Scans has to be enlarged accordingly. #### (d) Power drift measurement The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same setting. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under within a batch process. In the properties of the drift job, the user can specify a limit for the drift and have DASY software stop the measurements if this limit is exceeded. This ensures that the power drift during one measurement is within 5%. The SAR measurement procedures for each of test conditions are as follows: - (a) Make EUT to transmit it maximum output power - (b) Measure conducted output power through RF cable - (c) Place the EUT in the specific position of phantom - (d) Measure SAR results for Middle channel or the highest power channel on each testing position - (e) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg - (f) Record the SAR value Page Number: 30 of 118 Report No.: C21T00009-SAR01-V01 ### 11.2. Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1g and 10g. The DASY system allows evaluations that combine measured data and robot positions, such as: ### a) Maximum Search During a maximum search, global and local maximum searches are automatically performed in 2D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2dB of the global maxima for all SAR distributions. ### b) Extrapolation Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5*5*5 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10 cubes. #### c) Boundary effect For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosi-metric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as: $$S \approx So + Sb * exp\left(-\frac{z}{a}\right) * cos(\pi \frac{z}{\lambda})$$ Since the decay of the boundary effect dominates for small probe (a $\ll \lambda$), the cos-term can be omitted. Factors Sb (parameter Alpha in the DASY software) and a (parameter Delta in the DASY software) ard assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations. This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as: - The boundary curvature is small - The probe axis is angled less than 30_to the boundary normal - The distance between probe and boundary is larger than 25% of the probe diameter - The probe is symmetric (all sensors have the same offset from the probe tip) Since all of these requirements are fulfilled in a DASY system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during post processing. Page Number: 31 of 118 Report No.: C21T00009-SAR01-V01 #### 11.3. General Measurement Procedure The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The
results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied. Table 11.1: Test Resolution Requirement | | Ite | ms | ≤3GHz | >3GHz | | | | |--|------------------------------------|---|---|---|--|--|--| | | Maximum | Distance | 5mm ±1mm | $\frac{1}{2} * \delta * \ln(2) \text{ mm } \pm 0.5 \text{mm}$ | | | | | M | laximum pr | obe angle | 30±1° | 20±1° | | | | | | | | ≤2GHz: ≤15mm | 3-4GHz: ≤12mm | | | | | | | | 2-3GHz: ≤12mm | 4-6GHz: ≤10mm | | | | | Maximum | Area Scar
Δ x _{Area} , | spatial resolution:
Δy _{Area} | when the x or y dimension of the device , in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the device with at least one measurement point on the device | | | | | | Maximum | Zoom Scar | n spatial resolution: | ≤2GHz: ≤8mm | 3-4GHz: ≤5mm | | | | | | Δ XZoom , | Δ yzoom | 2-3GHz: ≤5mm | 4-6GHz: ≤4mm | | | | | maximum
zoom scan | unif | orm grid: Δ z _{zoom} (n) | ≤5mm | 3-4GHz: ≤4mm
4-5GHz: ≤3mm
5-6GHz: ≤2mm | | | | | spatial
resolution,
normal to
phantom | graded
grid | Δ z _{Zoom} (1): between 1 st two points closest to phantom surface | ≤4mm | 3-4GHz: ≤3mm
4-5GHz: ≤2.5mm
5-6GHz: ≤2mm | | | | | surface | gna | Δ z _{Zoom} (n >1) between subsequent points | ≤1.5* | | | | | | minimum
zoom scan
volume | | x, y, z | ≥30mm | 3-4GHz: ≥28mm
4-5GHz: ≥25mm
5-6GHz: ≥22mm | | | | #### Notes δ is the penetration depth of a plane-wave at normal incidence to the tissue medium in IEEE 1528-2013. When Zoom Scan is required and reported SAR from the Area Scan based 1-g SAR estimation procedure of KDB Page Number: 32 of 118 Report No.: C21T00009-SAR01-V01 publication 447498 is \leq 1.4 W/kg, \leq 8mm for 2GHz-3GHz, \leq 7mm for 3GHz-4GHz, \leq 5mm for 4GHz-6GHz Zoom Scan resolution may be applied. #### 11.4. WCDMA Measurement Procedures The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply. β_d (SF) Sub-test β_c β_d β_c/β_d CM (dB) MPR (dB) β_{hs} 1 2/15 15/15 64 2/15 4/15 1.5 0.5 12/15 15/15 12/15 2 64 24/25 2.0 1 3 15/15 8/15 64 15/8 30/15 2.0 1 4 15/15 4/15 64 15/4 30/15 2.0 1 Table 11.2: HSDPA setting for Release 5 | Table | 11 | ე. | IPH | $ID\Lambda$ | setting | for | Pal | 0260 | ۵ | |-------|----|-----|-----|-------------|---------|-----|-----|------|---| | rabie | 11 | .ാ. | поι | JPA | seuma | IOI | REI | ease | n | | Sub-
test | $oldsymbol{eta}_c$ | $oldsymbol{eta}_d$ | eta_d (SF) | eta_{c} / eta_{d} | $oldsymbol{eta_{hs}}$ | $oldsymbol{eta}_{ec}$ | $oldsymbol{eta}_{ed}$ | eta_{ed} (SF) | $eta_{\scriptscriptstyle ed}$ (codes) | CM
(dB) | MPR
(dB) | AG
Index | E-
TFCI | |--------------|--------------------|--------------------|--------------|-----------------------|-----------------------|-----------------------|---------------------------------------|-----------------|---------------------------------------|------------|-------------|-------------|------------| | 1 | 11/15 | 15/15 | 64 | 11/15 | 22/15 | 209/225 | 1039/225 | 4 | 1 | 2.0 | 1.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 12/15 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | eta_{ed1} :47/15 eta_{ed2} :47/15 | 4 | 2 | 3.0 | 2.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 4/15 | 56/75 | 4 | 1 | 2.0 | 1.0 | 17 | 71 | | 5 | 15/15 | 15/15 | 64 | 15/15 | 24/15 | 30/15 | 134/15 | 4 | 1 | 2.0 | 1.0 | 21 | 81 | Page Number: 33 of 118 Report No.: C21T00009-SAR01-V01 #### 11.5. LTE Measurement Procedure SAR tests for LTE are performed with a base station simulator. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. - 1. Per KDB 941225 D05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 2. 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 3. For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 4. 16QAM/64QAM output power for each RB allocation configuration is > not $\frac{1}{2}$ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; 16QAM/64QAM SAR testing is not required. - 5. Smaller bandwidth output power for each RB allocation configuration is > not $\frac{1}{2}$ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; smaller bandwidth SAR testing is not required. - 6. For LTE Band 12/26 the maximum bandwidth does not support three non-overlapping channels, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. - 7. LTE band 17/2/5/38/4 SAR test was covered by Band 12/25/26/41/66; according to TCB workshop, SAR test for overlapping LTE bands can be reduced if - a. The maximum output power, including tolerance, for the smaller band is \leq the larger band to qualify for the SAR test exclusion. - b. The channel bandwidth and other operating parameters for the smaller band are fully supported by the larger band. #### LTE Carrier Aggregation Conducted Power (Downlink) According to KDB941225 D05A v01r02, Uplink maximum output power measurement with downlink carrier aggregation active should be measured, using the highest output channel measured without downlink carrier aggregation, to confirm that uplink maximum output power with downlink carrier aggregation active remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output measured without downlink carrier aggregation active. #### LTE TDD Considerations According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations. SAR was tested with the highest transmission duty factor (63.33%) using Uplink-downlink configuration 0 and Special sub-frame configuration 7. LTE TDD Band 41 supports 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for Industrial Internet Innovation Center (Shanghai) Co., Ltd. Add: Building 4, No. 766 Jingang Rd, Pudong, Shanghai, China Tel: +86 21 63843300 Page Number: 34 of 118 Report No.: C21T00009-SAR01-V01 uplink-downlink configurations and Table 4.2-1 for Special sub-frame configurations. Table 11.4 Calculated Duty Cycle for LTE TDD | Uplink-Downlin | Uplink-Downlink Configuration | | Sub-frame Number | | | | | | | | | Calculated | |----------------|-------------------------------|---|------------------|---|---|---|---|---|---|---|----|----------------| | 0 | Periodicity | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Duty Cycle (%) | | 0 | 5 ms | D | S | C | U | U | D | S | U | U | U | 63.33 | | 1 | 5 ms | D | S | U | U | D | D | S | U | U | D | 43.33 | | 2 | 5 ms | D | S | J | D | D | D | S | J | D | D | 23.33 | | 3 | 10 ms | D | S | J | J | J | D | D | D | D | D | 31.67 | | 4 | 10 ms | D | Ø | J | J | D | D | D | D | D | D | 21.67 | | 5 | 10 ms | D | S | U | D | D | D | D | D | D | D | 11.67 | | 6 | 5 ms | D | S | U | U | U | D | S | U | U | D | 53.33 | Example for Calculated Duty Cycle for Uplink-Downlink Configuration 0: Calculated Duty Cycle = $(5120 \times Ts \times 2 + 6 ms) / 10ms = 63.33\%$ Where $Ts = 1/(15000 \times 2048)$ seconds #### 11.6. Bluetooth & WiFi Measurement Procedures Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce
undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable. Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements. Page Number: 35 of 118 Report No.: C21T00009-SAR01-V01 ## 12. Simultaneous Transmission SAR Considerations ### 12.1. Reference Document The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. ## 12.2. Antenna Separation Distances Page Number: 36 of 118 Report No.: C21T00009-SAR01-V01 Picture 12-1 Antenna Locations Page Number: 37 of 118 Report No.: C21T00009-SAR01-V01 #### 12.3. SAR Measurement Positions The edges with less than 2.5 cm distance to the antennas need to be tested for SAR. Table 12.1: SAR measurement Positions | Antenna Mode | Front | Back | Left | Right | Тор | Bottom | |--------------|-------|------|------|-------|-----|--------| | 2/3/4G | Yes | Yes | Yes | Yes | No | Yes | | BT/WiFi | Yes | Yes | No | Yes | Yes | No | #### 12.4. Low Power Transmitters SAR Consideration Standalone 1-g head or body SAR evaluation by measurement or numerical simulation for low power transmitters is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: $$\frac{(max. power of channel, including tune - up tolerance, mW)}{(min. test separation distance, mm)} \times \sqrt{Frequency(GHz)} \le 3.0$$ #### Where: - Frequency (GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW. That means the transmitters with tune-up power below 10mW are excluded for SAR measurement. #### 12.5. Simultaneous Transmission Analysis KDB 447498 D01 General RF Exposure Guidance introduces a new formula for calculating the SPLSR (SAR to Peak Location Ratio) between pairs of simultaneously transmitting antennas: $$SPLSR = \sqrt{(SAR1 + SAR2)^3/Ri}$$ #### Where: - SAR1 is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition. - SAR2 is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first. - ➢ Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location , based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $$(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2$$ In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of: $$\sqrt{(SAR1 + SAR2)^3/Ri} < 0.04$$ Page Number: 38 of 118 Report No.: C21T00009-SAR01-V01 #### 12.6. Simultaneous Transmission Table Table 12.3: Simultaneous Transmission Configurations | | 3 | |-------|---------------------------------| | Items | Capable Transmit Configurations | | 1 | GSM/GPRS + BT | | 2 | GSM/GPRS + WiFi2.4G/ WiFi5G | | 3 | WCDMA + BT | | 4 | WCDMA+ WiFi2.4G/ WiFi5G | | 5 | LTE + BT | | 6 | LTE + WiFi2.4G/ WiFi5G | Note: For the DUT, the WLAN and BT modules sharing a single antenna, and so these two modules can't transmit signal simultaneously. WCDMA and GSM modules sharing a single antenna, so these two modules can't transmit signal simultaneously. So we can get following combination that can transmit signal simultaneously. Page Number: 39 of 118 Report No.: C21T00009-SAR01-V01 ## 13. Conducted Output Power #### 13.1. GSM Measurement result Please reference ECIT Shanghai, East China Institute of Telecommunications Testing Center and the report I18D00236-SAR01. which is the test report for the initial product. #### 13.2. WCDMA Measurement result Please reference ECIT Shanghai, East China Institute of Telecommunications Testing Center and the report I18D00236-SAR01. which is the test report for the initial product. #### 13.3. LTE Measurement result Please reference ECIT Shanghai, East China Institute of Telecommunications Testing Center and the report I18D00236-SAR01. which is the test report for the initial product. #### 13.4. BT Measurement result Please reference ECIT Shanghai, East China Institute of Telecommunications Testing Center and the report I18D00236-SAR01. which is the test report for the initial product. #### 13.5. WiFi Measurement result Table 13.1: The average conducted power for WiFi | | WiFi | | WIF | TI 2.4G | |---------|------|---------|---------|--------------| | Mode | BW | Channel | Tune up | Output Power | | | | 1 | 15 | 14.55 | | 802.11b | 20M | 6 | 15 | 14.58 | | | | 11 | 15 | 14.65 | | | | 1 | 14 | 13.75 | | 802.11g | 20M | 6 | 15 | 14.94 | | | | 11 | 15 | 14.15 | | | | 1 | 13 | 12.13 | | 802.11n | 20M | 6 | 13 | 12.21 | | | | 11 | 13 | 12.15 | Page Number: 40 of 118 Report No.: C21T00009-SAR01-V01 | | WiFi | | WII | Fi 5G | |----------|-------|---------|---------|--------------| | Mode | BW | Channel | Tune up | Output Power | | | | 36 | 16 | 15.5 | | | 20M | 40 | 16 | 15.09 | | 802.11a | | 48 | 16 | 14.74 | | 802.11a | | 149 | 16 | 14.89 | | | 40M | 157 | 16 | 14.51 | | | | 165 | 16 | 14.26 | | | | 36 | 16 | 15.55 | | | | 40 | 16 | 15.11 | | | 20M | 48 | 16 | 14.77 | | | ZUIVI | 149 | 16 | 14.78 | | 802.11n | | 157 | 16 | 14.54 | | 002.1111 | | 165 | 16 | 14.31 | | | | 38 | 9.5 | 9.06 | | | 40M | 46 | 9.5 | 8.82 | | | 4UIVI | 151 | 8 | 7.5 | | | | 159 | 8 | 7.23 | Page Number: 41 of 118 Report No.: C21T00009-SAR01-V01 ## 14. Measurement Results ## 14.1. SAR Test Result For I18D00236-SAR01 Table 14.1: SAR Values (GSM 850 MHz Band-Body) | Freq
cy
MH
z | | Mod
e
/Ban
d | Servic
e
/Heads
et | Test
Positi
on | Spaci
ng
(mm) | Figur
e No. | Measur
ed
average
power
(dBm) | Maximu
m
allowed
Power
(dBm) | Scali
ng
factor | Measur
ed
SAR(1g
) (W/kg) | Report
ed
SAR(1g
)
(W/kg) | Pow
er
Drift
(dB) | |-----------------------|---------|-----------------------|-----------------------------|-----------------------|---------------------|----------------|---|--|-----------------------|------------------------------------|---------------------------------------|----------------------------| | | | | | <u> </u> | | Hotspot | & Body worn | T | | T | | | | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Phanto
m | 5 | 1 | 28.4 | 28.5 | 1.023 | 0.548 | 0.561 | -0.10 | | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Ground | 5 | 1 | 28.4 | 28.5 | 1.023 | 0.451 | 0.462 | -0.04 | | | | | | | | Н | otspot | | | | | | | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Left | 5 | 1 | 28.4 | 28.5 | 1.023 | 0.541 | 0.554 | -0.16 | | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Right | 5 | 1 | 28.4 | 28.5 | 1.023 | 0.24 | 0.246 | 0.08 | | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Top | 5 | 1 | 28.4 | 28.5 | 1.023 | 0.029 | 0.030 | 0.01 | Page Number: 42 of 118 Report No.: C21T00009-SAR01-V01 ## Table 14.2: SAR Values for Limb (GSM 850 MHz Band-Body) | Freq
cy
MH
z | | Mod
e
/Ban
d | Servic
e
/Heads
et | Test
Positi
on | Spaci
ng
(mm) | Figur
e No. | Measur
ed
average
power
(dBm) | Maximu
m
allowed
Power
(dBm) | Scali
ng
factor | Measur
ed
SAR(10
g)
(W/kg) | Report
ed
SAR(10
g)
(W/kg) | Pow
er
Drift
(dB) | |-----------------------|---------|-----------------------|-----------------------------|-----------------------|---------------------|----------------|---|--|-----------------------|--|--|----------------------------| | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Phanto
m | 0 | 2 | 28.4 | 28.5 | 1.023 | 0.724 | 0.741 | -0.03 | | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Ground | 0 | 1 | 28.4 | 28.5 | 1.023 | 0.383 | 0.392 | -0.06 | | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Left | 0 | 1 | 28.4 | 28.5 | 1.023 | 0.611 | 0.625 | -0.16 | | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Right | 0 | 1 | 28.4 | 28.5 | 1.023 | 0.159 | 0.163 | 0.04 | | 836.
6 | 19
0 | GPR
S
4TS | Class12 | Toward
Top | 0 | 1 | 28.4 | 28.5 | 1.023 | 0.023 | 0.024 | 0.05 | Page Number: 43 of 118 Report No.: C21T00009-SAR01-V01 ## Table 14.3: SAR Values (GSM 1900 MHz Band-Body) | Frequ
y
MHz | | Mod
e
/Ban
d |
Servic
e
/Heads
et | Test
Positi
on | Spaci
ng
(mm) | Figur
e No. | Measur
ed
average
power
(dBm) | Maximu
m
allowed
Power
(dBm) | Scali
ng
factor | Measur
ed
SAR(1g
) (W/kg) | Report
ed
SAR(1
g)
(W/kg) | Pow
er
Drift
(dB) | |-------------------|---------|-----------------------|-----------------------------|-----------------------|---------------------|----------------|---|--|-----------------------|------------------------------------|---------------------------------------|----------------------------| | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Phanto
m | 5 | 1 | 25.35 | 26 | 1.161 | 0.41 | 0.476 | -0.03 | | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Ground | 5 | 1 | 25.35 | 26 | 1.161 | 0.205 | 0.238 | 0.19 | | | | | | | | Ho | otspot | | | | | | | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Left | 5 | 1 | 25.35 | 26 | 1.161 | 0.776 | 0.901 | 0.08 | | 1850
.2 | 51
2 | GPR
S
4TS | Class12 | Toward
Left | 5 | 3 | 25.09 | 26 | 1.233 | 0.797 | 0.983 | -0.04 | | 1909 | 81
0 | GPR
S
4TS | Class12 | Toward
Left | 5 | 1 | 25.45 | 26 | 1.135 | 0.697 | 0.791 | 0.06 | | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Right | 5 | 1 | 25.35 | 26 | 1.161 | 0.19 | 0.221 | 0.12 | | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Top | 5 | 1 | 25.35 | 26 | 1.161 | 0.016 | 0.019 | 0.01 | | | | | | | | Secon | nd supply | | | | | | | 1850
.2 | 51
2 | GPR
S
4TS | Class12 | Toward
Left | 5 | 1 | 25.35 | 26 | 1.161 | 0.753 | 0.874 | 0.12 | Page Number: 44 of 118 Report No.: C21T00009-SAR01-V01 ## Table 14.4: SAR Values for Limb (GSM 1900 MHz Band-Body) | Frequ
y
MHz | | Mod
e
/Ban
d | Servic
e
/Heads
et | Test
Positi
on | Spaci
ng
(mm) | Figur
e No. | Measur
ed
average
power
(dBm) | Maximu
m
allowed
Power
(dBm) | Scali
ng
factor | Measur
ed
SAR(10
g)
(W/kg) | Report
ed
SAR(10
g)
(W/kg) | Pow
er
Drift
(dB) | |-------------------|---------|-----------------------|-----------------------------|-----------------------|---------------------|----------------|---|--|-----------------------|--|--|----------------------------| | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Phanto
m | 0 | 1 | 25.35 | 26 | 1.161 | 0.353 | 0.410 | -0.03 | | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Ground | 0 | 1 | 25.35 | 26 | 1.161 | 0.287 | 0.333 | 0.19 | | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Left | 0 | 4 | 25.35 | 26 | 1.161 | 0.897 | 1.042 | 0.08 | | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Right | 0 | 1 | 25.35 | 26 | 1.161 | 0.178 | 0.207 | 0.12 | | 1880 | 66
1 | GPR
S
4TS | Class12 | Toward
Top | 0 | 1 | 25.35 | 26 | 1.161 | 0.012 | 0.014 | 0.01 | Page Number: 45 of 118 Report No.: C21T00009-SAR01-V01 ## Table 14.5: SAR Values (WCDMA Band II-Body) | Frequ | | Mod
e | Servic
e | Test | Spaci | Figu | Measur
ed | Maximu
m | Scali | Measur
ed | Report
ed | Pow
er | |------------|----------|------------|------------------|-----------------------|------------|-----------|---------------------------|---------------------|--------------|--------------------|-----------------------|---------------| | MHz | Ch | /Ban
d | /Heads | Positi
on | ng
(mm) | re
No. | average
power
(dBm) | allowed Power (dBm) | ng
factor | SAR(1g
) (W/kg) | SAR(1
g)
(W/kg) | Drift
(dB) | | | | | | | | Hotspot & | & Body worn | | | | | | | 1880 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Phanto
m | 5 | 1 | 22.41 | 23 | 1.146 | 0.342 | 0.392 | -0.12 | | 1880 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Ground | 5 | 1 | 22.41 | 23 | 1.146 | 0.295 | 0.338 | 0.01 | | | • | | | | | Но | tspot | | | | | | | 1880 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Left | 5 | 1 | 22.41 | 23 | 1.146 | 0.765 | 0.876 | 0.03 | | 1852
.4 | 926
2 | Band
II | 12.2kbp
s RMC | Toward
Left | 5 | 1 | 22.35 | 23 | 1.161 | 0.765 | 0.889 | 0.18 | | 1907
.6 | 953
8 | Band
II | 12.2kbp
s RMC | Toward
Left | 5 | 1 | 22.45 | 23 | 1.135 | 0.69 | 0.783 | -0.01 | | 1880 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Right | 5 | 1 | 22.41 | 23 | 1.146 | 0.147 | 0.168 | 0.11 | | 1880 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Top | 5 | 1 | 22.41 | 23 | 1.146 | 0.013 | 0.015 | 0.04 | | | | | | | | Rep | peated | | | | | | | 1852
.4 | 926
2 | Band
II | 12.2kbp
s RMC | Toward
Left | 5 | 5 | 22.35 | 23 | 1.161 | 0.794 | 0.922 | 0.09 | Page Number: 46 of 118 Report No.: C21T00009-SAR01-V01 ## Table 14.6: SAR Values for Limb (WCDMA Band II-Body) | Freq
C
MH
z | | Mod
e
/Ban
d | Servic
e
/Heads
et | Test
Positi
on | Spaci
ng
(mm) | Figur
e No. | Measur
ed
average
power
(dBm) | Maximu
m
allowed
Power
(dBm) | Scali
ng
factor | Measur
ed
SAR(10
g)
(W/kg) | Report
ed
SAR(10
g)
(W/kg) | Pow
er
Drift
(dB) | |----------------------|----------|-----------------------|-----------------------------|-----------------------|---------------------|----------------|---|--|-----------------------|--|--|----------------------------| | 188 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Phanto
m | 0 | 1 | 22.41 | 23 | 1.146 | 0.255 | 0.292 | -0.1 | | 188
0 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Ground | 0 | 1 | 22.41 | 23 | 1.146 | 0.213 | 0.244 | 0.02 | | 188
0 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Left | 0 | 6 | 22.41 | 23 | 1.146 | 0.822 | 0.942 | 0.06 | | 188 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Right | 0 | 1 | 22.41 | 23 | 1.146 | 0.098 | 0.112 | -0.07 | | 188
0 | 940
0 | Band
II | 12.2kbp
s RMC | Toward
Top | 0 | 1 | 22.41 | 23 | 1.146 | 0.009 | 0.010 | 0.09 | Page Number: 47 of 118 Report No.: C21T00009-SAR01-V01 ## Table 14.7: SAR Values (WCDMA Band IV-Body) | Frequ | | Mod
e | Servic
e | Test | Spaci | Figu | Measur
ed | Maximu
m | Scali | Measur
ed | Report
ed | Pow
er | | |------------|---------------------|------------|------------------|-----------------------|------------|-----------|---------------------------|---------------------------|--------------|--------------------|-----------------------|---------------|--| | MHz | Ch | /Ban
d | /Heads | Positi
on | ng
(mm) | re
No. | average
power
(dBm) | allowed
Power
(dBm) | ng
factor | SAR(1g
) (W/kg) | SAR(1
g)
(W/kg) | Drift
(dB) | | | | Hotspot & Body worn | | | | | | | | | | | | | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Phanto
m | 5 | 1 | 22.71 | 23 | 1.069 | 0.436 | 0.466 | -0.01 | | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Ground | 5 | 1 | 22.71 | 23 | 1.069 | 0.304 | 0.325 | 0.1 | | | | ı | I. | | | | Но | tspot | | · | | | | | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Left | 5 | 1 | 22.71 | 23 | 1.069 | 0.851 | 0.910 | 0.08 | | | 1712
.4 | 131
2 | Band
IV | 12.2kbp
s RMC | Toward
Left | 5 | 7 | 22.56 | 23 | 1.107 | 0.842 | 0.932 | 0.02 | | | 1752
.6 | 151
2 | Band
IV | 12.2kbp
s RMC | Toward
Left | 5 | 1 | 22.65 | 23 | 1.084 | 0.704 | 0.763 | 0.07 | | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Right | 5 | 1 | 22.71 | 23 | 1.069 | 0.055 | 0.059 | 0.03 | | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Top | 5 | 1 | 22.71 | 23 | 1.069 | 0.118 | 0.126 | 0.08 | | | | | | | | | Rep | peated | | | | | | | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Left | 5 | 1 | 22.71 | 23 | 1.069 | 0.842 | 0.900 | 0.03 | | Page Number: 48 of 118 Report No.: C21T00009-SAR01-V01 ## Table 14.8: SAR Values for Limb (WCDMA Band IV-Body) | Frequ
y
MHz | | Mod
e
/Ban
d | Servic
e
/Heads
et | Test
Positi
on | Spaci
ng
(mm) | Figu
re
No. | Measur
ed
average
power
(dBm) | Maximu
m
allowed
Power
(dBm) | Scali
ng
factor | Measur
ed
SAR(10
g)
(W/kg) | Report
ed
SAR(10
g)
(W/kg) | Pow
er
Drift
(dB) | |-------------------|----------|-----------------------|-----------------------------|-----------------------|---------------------|-------------------|---|--|-----------------------|--|--|----------------------------| | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Phanto
m | 0 | 1 | 22.71 | 23 | 1.069 | 0.333 | 0.356 | -0.01 | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Ground | 0 | 1 | 22.71 | 23 | 1.069 | 0.248 | 0.265 | 0.18 | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Left | 0 | 8 | 22.71 | 23 | 1.069 | 0.818 | 0.874 | 0.04 | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Right | 0 | 1 | 22.71 | 23 | 1.069 | 0.06 | 0.064 | 0.06 | | 1732
.6 | 141
3 | Band
IV | 12.2kbp
s RMC | Toward
Top | 0 | 1 | 22.71 | 23 | 1.069 | 0.008 | 0.009 | 0.1 | Page Number: 49 of 118 Report No.: C21T00009-SAR01-V01 Table 14.9: SAR Values (WCDMA Band V-Body) | Freq
c
MH
z | | Mod
e
/Ban
d | Servic
e
/Heads
et | Test
Positi
on |
Spaci
ng
(mm) | Figur
e No. | Measur
ed
average
power
(dBm) | Maximu
m
allowed
Power
(dBm) | Scali
ng
factor | Measur
ed
SAR(1g
) (W/kg) | Report
ed
SAR(1g
)
(W/kg) | Pow
er
Drift
(dB) | |----------------------|---------------------|-----------------------|-----------------------------|-----------------------|---------------------|----------------|---|--|-----------------------|------------------------------------|---------------------------------------|----------------------------| | | Hotspot & Body worn | | | | | | | | | | | | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Phanto
m | 5 | 9 | 23.29 | 23.5 | 1.050 | 0.395 | 0.415 | 0.01 | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Ground | 5 | 1 | 23.29 | 23.5 | 1.050 | 0.281 | 0.295 | 0.11 | | | | | | | | Н | otspot | | | | | | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Left | 5 | 1 | 23.29 | 23.5 | 1.050 | 0.218 | 0.229 | 0.03 | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Right | 5 | 1 | 23.29 | 23.5 | 1.050 | 0.119 | 0.125 | -0.05 | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Top | 5 | 1 | 23.29 | 23.5 | 1.050 | 0.017 | 0.018 | 0.01 | Table 14.10: SAR Values for Limb (WCDMA Band V-Body) | Freq | | Mod | Servic | Test | Spaci | F: | Measur
ed | Maximu
m | Scali | Measur
ed | Report
ed | Pow | |-----------|----------|----------------|-------------------|-----------------------|------------|-------|---------------------------|---------------------------|--------------|------------------------|------------------------|---------------------| | MH | Ch | e
/Ban
d | e
/Heads
et | Positi
on | ng
(mm) | e No. | average
power
(dBm) | allowed
Power
(dBm) | ng
factor | SAR(10
g)
(W/kg) | SAR(10
g)
(W/kg) | er
Drift
(dB) | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Phanto
m | 0 | 10 | 23.29 | 23.5 | 1.050 | 0.463 | 0.486 | -0.08 | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Ground | 0 | 1 | 23.29 | 23.5 | 1.050 | 0.316 | 0.332 | 0.08 | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Left | 0 | 1 | 23.29 | 23.5 | 1.050 | 0.418 | 0.439 | 0.09 | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Right | 0 | 1 | 23.29 | 23.5 | 1.050 | 0.099 | 0.104 | 0.05 | | 836.
6 | 418
3 | Band
V | 12.2kbp
s RMC | Toward
Top | 0 | 1 | 23.29 | 23.5 | 1.050 | 0.015 | 0.016 | 0.03 | Page Number: 50 of 118 Report No.: C21T00009-SAR01-V01 Table 14.11: SAR Values (LTE Band 2-Body) | Freq | uenc | | | | | Measur | Maximu | | | Report | | |----------|-----------|--|------------------|-------------|-------------|----------------------|--------------|-------------|------------------------|-------------|--------------------| | - | y | Configuration | Test
Positi | Spaci
ng | Figu
re | ed
average | m
allowed | Scali
ng | Measur
ed
SAR(1g | ed
SAR(1 | Pow
er
Drift | | z | Ch. | | on | (mm) | No. | power | Power | factor |) (W/kg) | g) | (dB) | | | | | | | Hotspot 8 | (dBm)
& Body worn | (dBm) | | | (W/kg) | | | | | QPSK 20MHz 1 | Toward | | l lotspot d | Body Worn | | | | | | | 188 | 1890 | RB_ | Phanto | 5 | 1 | 22.01 | 22.5 | 1.119 | 0.254 | 0.284 | 0.07 | | 0 | 0 | 50 offset Middle | m | | | | | | | | | | 188 | 1890
0 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Ground | 5 | 1 | 22.01 | 22.5 | 1.119 | 0.329 | 0.368 | 0.09 | | 188 | 1890 | QPSK_20MHz_50 | Toward | | | | | | | | | | 0 | 0 | RB_ | Phanto | 5 | 1 | 21.15 | 22 | 1.216 | 0.21 | 0.255 | 0.01 | | <u> </u> | | 25 offset Middle | m | | | | | | | | | | 188 | 1890 | QPSK_20MHz_50
RB | Toward | 5 | , | 21.15 | 22 | 1.216 | 0.257 | 0.313 | 0.02 | | 0 | 0 0 | 25 offset Middle | Ground | 3 | , | 21.13 | 22 | 1.210 | 0.237 | 0.313 | 0.02 | | | I | | | | Но | tspot | | | I | | | | 188 | 1890
0 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Left | 5 | 11 | 22.01 | 22.5 | 1.119 | 0.678 | 0.759 | 0.06 | | 188 | 1890
0 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Right | 5 | 1 | 22.01 | 22.5 | 1.119 | 0.11 | 0.123 | 0.02 | | 188 | 1890
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Top | 5 | 1 | 22.01 | 22.5 | 1.119 | 0.011 | 0.012 | 0.01 | | 188
0 | 1890
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Left | 5 | 1 | 21.15 | 22 | 1.216 | 0.611 | 0.743 | 0.05 | | 188
0 | 1890
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Right | 5 | 1 | 21.15 | 22 | 1.216 | 0.086 | 0.105 | -0.14 | | 188
0 | 1890
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Top | 5 | 1 | 21.15 | 22 | 1.216 | 0.012 | 0.015 | 0.02 | Page Number: 51 of 118 Report No.: C21T00009-SAR01-V00 ## Table 14.12: SAR Values for Limb (LTE Band 2-Body) | Freq | uenc | | | | | Measur | Maximu | | Measur | Report | Pow | |----------|-----------|--|-----------------------|---------------------|-------------------|---------------------------------|--------------------------------|-----------------------|------------------------------|------------------------------|---------------------| | MH
z | Ch. | Configuration | Test
Positi
on | Spaci
ng
(mm) | Figu
re
No. | ed
average
power
(dBm) | m
allowed
Power
(dBm) | Scali
ng
factor | ed
SAR(10
g)
(W/kg) | ed
SAR(10
g)
(W/kg) | er
Drift
(dB) | | 188 | 1890
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Phanto
m | 0 | 1 | 22.01 | 22.5 | 1.119 | 0.27 | 0.302 | 0.05 | | 188 | 1890
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Ground | 0 | I | 22.01 | 22.5 | 1.119 | 0.27 | 0.302 | 0.02 | | 188 | 1890
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Left | 0 | 12 | 22.01 | 22.5 | 1.119 | 0.848 | 0.949 | -0.18 | | 188
0 | 1890
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Right | 0 | 1 | 22.01 | 22.5 | 1.119 | 0.068 | 0.076 | -0.09 | | 188 | 1890
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Top | 0 | I | 22.01 | 22.5 | 1.119 | 0.007 | 0.008 | 0.03 | | 188 | 1890
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Phanto
m | 0 | 1 | 21.15 | 22 | 1.216 | 0.217 | 0.264 | -0.01 | | 188 | 1890
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Ground | 0 | 1 | 21.15 | 22 | 1.216 | 0.211 | 0.257 | -0.08 | | 188
0 | 1890
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Left | 0 | I | 21.15 | 22 | 1.216 | 0.678 | 0.825 | 0.05 | | 188
0 | 1890
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Right | 0 | 1 | 21.15 | 22 | 1.216 | 0.056 | 0.068 | -0.05 | | 188 | 1890
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Top | 0 | I | 21.15 | 22 | 1.216 | 0.006 | 0.007 | -0.01 | | | | | | | Secon | d supply | | | | | | | 188 | 1890
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Left | 0 | 12 | 22.01 | 22.5 | 1.119 | 0.848 | 0.949 | -0.12 | Page Number: 52 of 118 Report No.: C21T00009-SAR01-V00 Table 14.13: SAR Values (LTE Band 4-Body) | Frequ | iency | | | | | Measur | Manda | | | D | | |------------|-----------|---|-----------------------|---------------------|-------------------|-------------------------------------|------------------------------|-----------------------|------------------------------------|---------------------------------------|----------------------------| | MHz | Ch. | Configuration | Test
Positi
on | Spaci
ng
(mm) | Figu
re
No. | ed
averag
e
power
(dBm) | Maxim um allowed Power (dBm) | Scali
ng
factor | Measur
ed
SAR(1g
) (W/kg) | Report
ed
SAR(1
g)
(W/kg) | Pow
er
Drift
(dB) | | | | | | ŀ | lotspot & | Body worn | | | | | | | 1732
.5 | 2017
5 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Phanto
m | 5 | 1 | 22.18 | 22.5 | 1.076 | 0.378 | 0.407 | 0.06 | | 1732
.5 | 2017
5 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Ground | 5 | 1 | 22.18 | 22.5 | 1.076 | 0.316 | 0.340 | 0.08 | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Phanto
m | 5 | 1 | 21.22 | 22.5 | 1.343 | 0.312 | 0.419 | 0.05 | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Ground | 5 | 1 | 21.22 | 22.5 | 1.343 | 0.265 | 0.356 | 0.11 | | | | | | | Hot | spot | | | | | | | 1732
.5 | 2017
5 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Left | 5 | 1 | 22.18 | 22.5 | 1.076 | 0.709 | 0.763 | 0.02 | | 1732
.5 | 2017
5 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Right | 5 | 1 | 22.18 | 22.5 | 1.076 | 0.046 | 0.050 | 0.08 | | 1732
.5 | 2017
5 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Top | 5 | 1 | 22.18 | 22.5 | 1.076 | 0.012 | 0.013 | -0.01 | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Left | 5 | 13 | 21.22 | 22.5 | 1.343 | 0.575 | 0.772 | 0.18 | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Right | 5 | 1 | 21.22 | 22.5 | 1.343 | 0.037 | 0.050 | 0.07 | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Top | 5 | 1 | 21.22 | 22.5 | 1.343 | 0.01 | 0.013 | 0.01 | Page Number: 53 of 118 Report No.: C21T00009-SAR01-V00 ## Table 14.14: SAR Values for Limb (LTE Band 4-Body) | Frequ | uency | | | | | Measur | Maxim | | Measur | Donort | | |------------|-----------|---|-----------------------|---------------------|-------------------|-------------------------------------|---------------------------------|-----------------------|---------------------|--|----------------------------| | MH
z | Ch. |
Configuration | Test
Positi
on | Spaci
ng
(mm) | Figu
re
No. | ed
averag
e
power
(dBm) | um
allowed
Power
(dBm) | Scali
ng
factor | ed SAR(10 g) (W/kg) | Report
ed
SAR(10
g)
(W/kg) | Pow
er
Drift
(dB) | | 1732
.5 | 2017
5 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Phanto
m | 0 | 1 | 22.18 | 22.5 | 1.076 | 0.285 | 0.307 | -0.08 | | 1732
.5 | 2017
5 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Ground | 0 | 1 | 22.18 | 22.5 | 1.076 | 0.282 | 0.304 | 0.06 | | 1732
.5 | 2017
5 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Left | 0 | 1 | 22.18 | 22.5 | 1.076 | 0.813 | 0.875 | 0.07 | | 1732
.5 | 2017
5 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Right | 0 | 1 | 22.18 | 22.5 | 1.076 | 0.035 | 0.038 | 0.02 | | 1732
.5 | 2017
5 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Top | 0 | 1 | 22.18 | 22.5 | 1.076 | 0.006 | 0.006 | 0.09 | | | _ | | | T | Ī | | 1 | T | | | | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Phanto
m | 0 | 1 | 21.22 | 22.5 | 1.343 | 0.26 | 0.349 | -0.07 | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Ground | 0 | 1 | 21.22 | 22.5 | 1.343 | 0.248 | 0.333 | 0.1 | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Left | 0 | 14 | 21.22 | 22.5 | 1.343 | 0.663 | 0.890 | 0.09 | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Right | 0 | 1 | 21.22 | 22.5 | 1.343 | 0.029 | 0.039 | -0.04 | | 1732
.5 | 2017
5 | QPSK_20MHz_50
RB_
0 offset Middle | Toward
Top | 0 | 1 | 21.22 | 22.5 | 1.343 | 0.005 | 0.007 | -0.03 | Page Number: 54 of 118 Report No.: C21T00009-SAR01-V00 ## Table 14.15: SAR Values (LTE Band 7-Body) | Freq | uenc | | | | | Measur | Maximu | | | Report | _ | |----------|-----------|--|-----------------------|-------------|------------|----------------|-----------------------|-----------------------|------------------------|--------------|--------------------| | MH | y
Ch | Configuration | Test
Positi | Spaci
ng | Figu
re | ed
average | m
allowed
Power | Scali
ng
factor | Measur
ed
SAR(1g | ed
SAR(1 | Pow
er
Drift | | z | Ch. | | on | (mm) | No. | power
(dBm) | (dBm) | Tactor |) (W/kg) | g)
(W/kg) | (dB) | | | | | | | Hotspot & | & Body worn | (3.2.3.) | | | (3) | | | 253
5 | 2110
0 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Phanto
m | 5 | 1 | 21.91 | 22.5 | 1.146 | 0.044 | 0.050 | 0.07 | | 253
5 | 2110
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Ground | 5 | 1 | 21.91 | 22.5 | 1.146 | 0.015 | 0.017 | 0.01 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Phanto
m | 5 | 1 | 21.17 | 21.5 | 1.079 | 0.033 | 0.036 | 0.06 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Ground | 5 | 1 | 21.17 | 21.5 | 1.079 | 0.01 | 0.011 | 0.06 | | | | | | T | Но | tspot | T | 1 | T | | ı | | 253
5 | 2110
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Left | 5 | 15 | 21.91 | 22.5 | 1.146 | 0.324 | 0.371 | -0.07 | | 253
5 | 2110
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Right | 5 | 1 | 21.91 | 22.5 | 1.146 | 0.009 | 0.010 | 0.06 | | 253
5 | 2110
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Top | 5 | 1 | 21.91 | 22.5 | 1.146 | 0.008 | 0.009 | -0.01 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Left | 5 | 1 | 21.17 | 21.5 | 1.079 | 0.256 | 0.276 | -0.03 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Right | 5 | 1 | 21.17 | 21.5 | 1.079 | 0.007 | 0.008 | 0.02 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Top | 5 | 1 | 21.17 | 21.5 | 1.079 | 0.007 | 0.008 | 0.01 | Page Number: 55 of 118 Report No.: C21T00009-SAR01-V00 ## Table 14.16: SAR Values for Limb(LTE Band 7-Body) | Freq | uenc | | | | | Measur | Maximu | | Measur | Report | Pow | |----------|-----------|--|-----------------------|---------------------|-------------------|---------------------------------|--------------------------------|-----------------------|------------------------------|------------------------------|---------------------| | MH
z | Ch. | Configuration | Test
Positi
on | Spaci
ng
(mm) | Figu
re
No. | ed
average
power
(dBm) | m
allowed
Power
(dBm) | Scali
ng
factor | ed
SAR(10
g)
(W/kg) | ed
SAR(10
g)
(W/kg) | er
Drift
(dB) | | 253
5 | 2110
0 | QPSK_20MHz_1 RB_ 50 offset Middle | Toward
Phanto
m | 0 | 1 | 21.91 | 22.5 | 1.146 | 0.033 | 0.038 | 0.01 | | 253
5 | 2110
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Ground | 0 | 1 | 21.91 | 22.5 | 1.146 | 0.014 | 0.016 | 0.01 | | 253
5 | 2110
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Left | 0 | 16 | 21.91 | 22.5 | 1.146 | 0.738 | 0.845 | 0.08 | | 253
5 | 2110
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Right | 0 | 1 | 21.91 | 22.5 | 1.146 | 0.01 | 0.011 | 0.05 | | 253
5 | 2110
0 | QPSK_20MHz_1
RB_
50 offset Middle | Toward
Top | 0 | 1 | 21.91 | 22.5 | 1.146 | 0.004 | 0.005 | 0.02 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Phanto
m | 0 | 1 | 21.17 | 21.5 | 1.079 | 0.025 | 0.027 | 0.06 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Ground | 0 | 1 | 21.17 | 21.5 | 1.079 | 0.01 | 0.011 | 0.03 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Left | 0 | 1 | 21.17 | 21.5 | 1.079 | 0.587 | 0.633 | 0.03 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Right | 0 | 1 | 21.17 | 21.5 | 1.079 | 0.007 | 0.008 | 0.07 | | 253
5 | 2110
0 | QPSK_20MHz_50
RB_
25 offset Middle | Toward
Top | 0 | 1 | 21.17 | 21.5 | 1.079 | 0.003 | 0.003 | 0.09 | Page Number: 56 of 118 Report No.: C21T00009-SAR01-V00 ## Table 14.17: SAR Values (LTE Band 17-Body) | _ | uenc | | Test | Spaci | Figu | Measur
ed | Maximu
m | Scali | Measur | Report
ed | Pow | |---------|-----------|--|-----------------------|------------|-----------|---------------------------|---------------------|--------------|--------------------------|-----------------------|---------------------| | MH
z | Ch. | Configuration | Positi
on | ng
(mm) | re
No. | average
power
(dBm) | allowed Power (dBm) | ng
factor | ed
SAR(1g
) (W/kg) | SAR(1
g)
(W/kg) | er
Drift
(dB) | | | | | | | Hotspot & | & Body worn | | | | | | | 710 | 2379
0 | QPSK_10MHz_1
RB_
25 offset Middle | Toward
Phanto
m | 5 | 1 | 22.86 | 23 | 1.033 | 0.258 | 0.266 | -0.03 | | 710 | 2379
0 | QPSK_10MHz_1 RB_ 25 offset Middle | Toward
Ground | 5 | 1 | 22.86 | 23 | 1.033 | 0.037 | 0.038 | 0.02 | | 710 | 2379
0 | QPSK_10MHz_25 RB_ 13 offset Middle | Toward
Phanto
m | 5 | 1 | 21.89 | 22 | 1.026 | 0.204 | 0.209 | -0.04 | | 710 | 2379
0 | QPSK_10MHz_25 RB_ 13 offset Middle | Toward
Ground | 5 | 1 | 21.89 | 22 | 1.026 | 0.029 | 0.030 | 0.01 | | | | | | | Но | tspot | | | | | | | 710 | 2379
0 | QPSK_10MHz_1 RB_ 25 offset Middle | Toward
Left | 5 | 17 | 22.86 | 23 | 1.033 | 0.343 | 0.354 | 0.05 | | 710 | 2379
0 | QPSK_10MHz_1 RB_ 25 offset Middle | Toward
Right | 5 | 1 | 22.86 | 23 | 1.033 | 0.027 | 0.028 | 0.08 | | 710 | 2379
0 | QPSK_10MHz_1 RB_ 25 offset Middle | Toward
Top | 5 | 1 | 22.86 | 23 | 1.033 | 0.004 | 0.004 | 0.04 | | 710 | 2379
0 | QPSK_10MHz_25 RB_ 13 offset Middle | Toward
Left | 5 | 1 | 21.89 | 22 | 1.026 | 0.272 | 0.279 | 0.06 | | 710 | 2379
0 | QPSK_10MHz_25
RB_
13 offset Middle | Toward
Right | 5 | 1 | 21.89 | 22 | 1.026 | 0.022 | 0.023 | -0.03 | | 710 | 2379
0 | QPSK_10MHz_25
RB_
13 offset Middle | Toward
Top | 5 | I | 21.89 | 22 | 1.026 | 0.004 | 0.004 | 0.01 | Page Number: 57 of 118 Report No.: C21T00009-SAR01-V00 ## Table 14.18: SAR Values for Limb(LTE Band 17-Body) | Freq | uenc | | | | | Measur | Maximu | | Measur | Report | | |---------|-----------|--|-----------------------|---------------------|-------------------|---------------------------------|--------------------------------|-----------------------|------------------------------|------------------------------|---------------------| | MH
z | Ch. | Configuration | Test
Positi
on | Spaci
ng
(mm) | Figu
re
No. | ed
average
power
(dBm) | m
allowed
Power
(dBm) | Scali
ng
factor | ed
SAR(10
g)
(W/kg) | ed
SAR(10
g)
(W/kg) | er
Drift
(dB) | | 710 | 2379
0 | QPSK_10MHz_1 RB_ 25 offset Middle | Toward
Phanto
m | 0 | 1 | 22.86 | 23 | 1.033 | 0.241 | 0.249 | -0.01 | | 710 | 2379
0 | QPSK_10MHz_1
RB_
25 offset Middle | Toward
Ground | 0 | 1 | 22.86 | 23 | 1.033 | 0.036 | 0.037 | 0.02 | | 710 | 2379
0 | QPSK_10MHz_1
RB_
25 offset Middle | Toward
Left | 0 | 18 | 22.86 | 23 | 1.033 | 0.364 | 0.376 | 0.03 | | 710 | 2379
0 | QPSK_10MHz_1
RB_
25 offset Middle | Toward
Right | 0 | I | 22.86 | 23 | 1.033 | 0.014 | 0.014 | 0.07 | | 710 | 2379
0 | QPSK_10MHz_1
RB_
25 offset Middle | Toward
Top | 0 | I | 22.86 | 23 | 1.033 | 0.003 | 0.003 | 0.09 | | 710 | 2379
0 | QPSK_10MHz_25 RB_ 13 offset Middle | Toward
Phanto
m | 0 | ı | 21.89 | 22 | 1.026 | 0.192 | 0.197 | -0.02 | | 710 | 2379
0 | QPSK_10MHz_25
RB_
13 offset Middle | Toward
Ground | 0 | 1 | 21.89 | 22 | 1.026 | 0.028 | 0.029 | 0.01 | | 710 | 2379 | QPSK_10MHz_25
RB_
13 offset Middle | Toward
Left | 0 | 1 | 21.89 | 22 | 1.026 | 0.291 | 0.298 | 0.01 | | 710 | 2379
0 | QPSK_10MHz_25
RB_
13 offset Middle |
Toward
Right | 0 | I | 21.89 | 22 | 1.026 | 0.01 | 0.010 | 0.01 | | 710 | 2379
0 | QPSK_10MHz_25
RB_
13 offset Middle | Toward
Top | 0 | I | 21.89 | 22 | 1.026 | 0.002 | 0.002 | 0.05 | Page Number: 58 of 118 Report No.: C21T00009-SAR01-V00 Table 14.19: SAR Values (WiFi 802.11b - Body) | Freq
cy
MH
z | | Mod
e
/Ban
d | Servic
e
/Heads
et | Test
Positi
on | Spaci
ng
(mm) | Figur
e No. | Measur
ed
average
power
(dBm) | Maximu
m
allowed
Power
(dBm) | Scali
ng
factor | Measur
ed
SAR(1g
) (W/kg) | Report
ed
SAR(1g
)
(W/kg) | Pow
er
Drift
(dB) | |-----------------------|----|-----------------------|-----------------------------|-----------------------|---------------------|----------------|---|--|-----------------------|------------------------------------|---------------------------------------|----------------------------| | | | | | | | Hotspot | & Body worn | | | | | | | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Phanto
m | 5 | 1 | 14.65 | 15 | 1.084 | 0.146 | 0.158 | 0.09 | | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Ground | 5 | 1 | 14.65 | 15 | 1.084 | 0.047 | 0.051 | 0.06 | | | | | | | | Н | otspot | | | | | | | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Left | 5 | 1 | 14.65 | 15 | 1.084 | 0.093 | 0.101 | 0.01 | | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Right | 5 | 19 | 14.65 | 15 | 1.084 | 0.309 | 0.335 | 0.06 | | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Top | 5 | 1 | 14.65 | 15 | 1.084 | 0.006 | 0.007 | 0.01 | Table 14.20: SAR Values for Limb (WiFi 802.11b - Body) | Frequency MH | | Mod
e
/Ban
d | Servic
e
/Heads
et | Test
Positi
on | Spaci
ng
(mm) | Figur
e No. | Measur
ed
average
power
(dBm) | Maximu
m
allowed
Power
(dBm) | Scali
ng
factor | Measur
ed
SAR(10
g)
(W/kg) | Report
ed
SAR(10
g)
(W/kg) | Pow
er
Drift
(dB) | |--------------|----|-----------------------|-----------------------------|-----------------------|---------------------|----------------|---|--|-----------------------|--|--|----------------------------| | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Phanto
m | 0 | I | 14.65 | 15 | 1.084 | 0.002 | 0.002 | 0.06 | | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Ground | 0 | 1 | 14.65 | 15 | 1.084 | 0.031 | 0.034 | 0.05 | | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Left | 0 | 1 | 14.65 | 15 | 1.084 | 0.091 | 0.099 | 0.04 | | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Right | 0 | 20 | 14.65 | 15 | 1.084 | 0.3 | 0.325 | -0.03 | | 2462 | 11 | WiFi
2450 | 802.11b | Toward
Top | 0 | 1 | 14.65 | 15 | 1.084 | 0.004 | 0.004 | 0.08 | Page Number: 59 of 118 Report No.: C21T00009-SAR01-V00 ## 14.2. Standalone SAR Test Result For C21T00009-SAR01-V01 Table 14.21: SAR Values for GSM1900 | | | | | Frequency | Measured | Tune-up | Power Drift | Limit of 1gS | SAR 1.6 W/k | g (mW/g) | Figure | |---------------|------------|----------|---------|-----------|----------------------|----------|-------------|--------------------|-------------------|------------------|--------| | Test Position | Cover Type | Mode | Channel | (MHz) | power (dBm) | (dBm) | (dB) | Measured
SAR1g | Scaling
Factor | Report
SAR1g | No. | | | | | | Body SA | AR (HotSpot | 5mm)N0 | 8 | | | | | | Left Side | Standard | GPRS 4TS | 512 | 1850.2 | 25.09 | 26 | -0.040 | 0.557 | 1.23 | 0.687 | 1 | | | | | Body | SAR (Hots | Spot 5mm)S | econd Su | ipply N06 | | | | | | Left Side | Standard | GPRS 4TS | 512 | 1850.2 | 25.09 | 26 | -0.040 | 0.515 | 1.23 | 0.635 | 1 | | | | | | Frequency | Measured | Tune-up | Power Drift | Limit of 10g | SAR 4.0 W/I | kg (mW/g) | Figure | | Test Position | Cover Type | Mode | Channel | (MHz) | power (dBm) | (dBm) | (dB) | Measured
SAR10g | Scaling
Factor | Report
SAR10g | No. | | | | | | Limb SA | R (Distance | 0mm)N0 | 8 | | | | | | | | | | | | | | | | | | | Left Side | Standard | GPRS 4TS | 661 | 1880 | 25.35 | 26 | -0.030 | 0.657 | 1.16 | 0.763 | 2 | | Left Side | Standard | GPRS 4TS | | | 25.35
Ince 0mm) S | | | 0.657 | 1.16 | 0.763 | 2 | Table 14.22: SAR Values for WiFi 2.4G | | Cover | | | Duty | | Frequency | Measured | Tune-up | Power Drift | Limit of 1g | SAR 1.6 W/ | kg (mW/g) | Figure | |---------------|----------|---------|---------|-------|---------|------------|-------------|-----------|-------------|--------------------|-------------------|------------------|--------| | Test Position | Туре | Mode | BW(MHz) | Cycle | Channel | | power (dBm) | (dBm) | (dB) | Measured
SAR1g | Scaling
Factor | Report
SAR1g | No. | | | | | | | Boo | ly SAR (Ho | otSpot 5mm |) | | | | | | | Front Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | -0.090 | 0.110 | 1.20 | 0.132 | 1 | | Back Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | -0.020 | 0.032 | 1.20 | 0.038 | 1 | | Left Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | -0.020 | 0.025 | 1.20 | 0.030 | 1 | | Right Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | -0.100 | 0.248 | 1.20 | 0.297 | 3 | | Top Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | 0.030 | 0.013 | 1.20 | 0.016 | 1 | | | Cover | | B.W. | Duty | | Frequency | Measured | Tune-up | Power Drift | Limit of 10g | SAR 4.0 W | /kg (mW/g) | Figure | | Test Position | Туре | Mode | BW(MHz) | Cycle | Channel | (MHz) | power (dBm) | (dBm) | (dB) | Measured
SAR10g | Scaling
Factor | Report
SAR10g | No. | | | , | | • | | Lim | b SAR (Di | stance 0mm |) | | | | | • | | Front Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | -0.04 | 0.096 | 1.20 | 0.115 | 1 | | Back Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | 0.01 | 0.026 | 1.20 | 0.031 | 1 | | Left Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | 0.02 | 0.023 | 1.20 | 0.028 | 1 | | Right Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | -0.05 | 0.281 | 1.20 | 0.337 | 4 | | Top Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | 0.04 | 0.009 | 1.20 | 0.011 | 1 | | | | | | Limb | SAR (Di | stance 0m | m)Second S | Supply NO |)6 | | | | | | Right Side | Standard | 802.11b | 20 | 1:1 | 6 | 2437 | 12.21 | 13 | -0.10 | 0.257 | 1.20 | 0.308 | 1 | Page Number: 60 of 118 Report No.: C21T00009-SAR01-V00 #### Table 14.23: SAR Values for WiFi 5G | | | | | Dutv | | Frequency | Measured | Tune-up | Power Drift | Limit of 1gS | SAR 1.6 W/k | g (mW/g) | Figure | |---------------|------------|---------|---------|-------|---------|------------|-------------|----------|-------------|--------------------|-------------------|------------------|--------| | Test Position | Cover Type | Mode | BW(MHz) | Cycle | Channel | (MHz) | power (dBm) | | (dB) | Measured
SAR1g | Scaling
Factor | Report
SAR1g | No. | | | | | | | Body S | SAR (HotS | oot 5mm)N0 | В | | | | | | | Front Side | Standard | 802.11n | 20 | 1:1 | 36 | 5180 | 15.55 | 16 | 0.010 | 0.070 | 1.11 | 0.078 | 1 | | Back Side | Standard | 802.11n | 20 | 1:1 | 36 | 5180 | 15.55 | 16 | -0.010 | 0.034 | 1.11 | 0.038 | 1 | | Left Side | Standard | 802.11n | 20 | 1:1 | 36 | 5180 | 15.55 | 16 | -0.030 | 0.018 | 1.11 | 0.020 | 1 | | Right Side | Standard | 802.11a | 20 | 1:1 | 36 | 5180 | 15.55 | 16 | 0.020 | 0.301 | 1.11 | 0.334 | 5 | | Top Side | Standard | 802.11a | 20 | 1:1 | 36 | 5180 | 15.55 | 16 | -0.070 | 0.012 | 1.11 | 0.013 | 1 | | | | | • | Body | SAR (Ho | Spot 5mm |) Second Su | pply N06 | | | | | • | | Right Side | Standard | 802.11n | 20 | 1:1 | 36 | 5180 | 15.55 | 16 | -0.050 | 0.272 | 1.11 | 0.302 | 1 | | | | | | Dutv | | Frequency | Measured | Tune-up | Power Drift | Limit of 10g | SAR 4.0 W/I | kg (mW/g) | Figure | | Test Position | Cover Type | Mode | | Cycle | Channel | (MHz) | power (dBm) | | (dB) | Measured
SAR10g | Scaling
Factor | Report
SAR10g | No. | | | | | | | Limb S | AR (Distar | ice 0mm)N0 | 8 | | | • | | | | Front Side | Standard | 802.11n | 40 | 1:1 | 36 | 5180 | 15.55 | 16 | 0.08 | 0.044 | 1.11 | 0.049 | 1 | | Back Side | Standard | 802.11n | 40 | 1:1 | 36 | 5180 | 15.55 | 16 | 0.01 | 0.021 | 1.11 | 0.023 | 1 | | Left Side | Standard | 802.11n | 40 | 1:1 | 36 | 5180 | 15.55 | 16 | 0.03 | 0.002 | 1.11 | 0.002 | 1 | | Right Side | Standard | 802.11a | 20 | 1:1 | 36 | 5180 | 15.55 | 16 | -0.04 | 0.179 | 1.11 | 0.199 | 6 | | Top Side | Standard | 802.11a | 20 | 1:1 | 36 | 5180 | 15.55 | 16 | 0.00 | 0.006 | 1.11 | 0.007 | 1 | Page Number: 61 of 118 Report No.: C21T00009-SAR01-V00 #### 14.3. Simultaneous SAR Evaluation Table 14.23: Simultaneous transmission SAR | | | Sir | nultaneo | us multi | -band tra | nsmissio | on | | | |------------------------|--------------|-------|----------|----------|-----------|----------|----------|--------|-------| | Took | Position | 2G | 20 | 4G | 2.4GHz | | 5GHz SUM | | JM | | restr | Position | 26 | 3G | 46 | ВТ | WiFi | WiFi | 2.4GHz | 5GHz | | Hotspot
&Body- worn | Phantom Side | 0.561 | 0.466 | 0.419 | 0.418 | 0.158 | 0.362 | 0.979 | 0.923 | | 5 mm(1g) | Ground Side | 0.462 | 0.338 | 0.368 | 0.418 | 0.051 | 0.056 | 0.88 | 0.518 | | | Left Side | 0.983 | 0.932 | 0.772 | 0.418 | 0.101 | 0.02 | 1.401 | 0.985 | | Hotspot 5 | Right Side | 0.246 | 0.168 | 0.123 | 0.418 | 0.335 | 0.61 | 0.664 | 0.856 | | mm(1g) | Top Side | 0.03 | 0.126 | 0.015 | 0.418 | 0.016 | 0.013 | 0.544 | 0.139 | | | Bottom Side | | | 1 | 1 | - | | • | - | | | Phantom Side | 0.741 | 0.486 | 0.349 | 0.167 | 0.115 | 0.203 | 0.908 | 0.944 | | | Ground Side | 0.392 | 0.332 | 0.333 | 0.167 | 0.034 | 0.052 | 0.559 | 0.444 | | Limb (10a) | Left Side | 1.042 | 0.942 | 0.949 | 0.167 | 0.099 | 0.002 | 1.209 | 1.044 | | Limb
(10g) | Right Side | 0.207 | 0.112 | 0.076 | 0.167 | 0.337 | 0.497 | 0.544 | 0.704 | | | Top Side | 0.024 | 0.016 | 0.008 | 0.167 | 0.011 | 0.007 | 0.191 | 0.031 | | | Bottom Side | - | - | - | - | - | - | - | - | According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi/BT is considered with measurement results of GSM/WCDMA/LTE and WiFi/BT. According to the above table, the sum of reported SAR values for partial-body GSM/WCDMA/LTE and WiFi < 1.6W/kg; the sum of reported SAR values for Limb GSM/WCDMA/LTE and WiFi < 4.0W/kg. So the simultaneous transmission SAR is not required for WiFi/BT transmitter. Page Number: 62 of 118 Report No.: C21T00009-SAR01-V00 #### 14.4. SAR Measurement Variability SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required. - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45W/kg (\sim 10% from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. Page Number: 63 of 118 Report No.: C21T00009-SAR01-V00 # 15. Test Equipment List | Item | Equipment Name | Туре | Serial Number | Manufacturer | Cal. Date | Cal.
interval | |------|--------------------------|--------------------|---------------|--------------|------------|------------------| | 1 | Network analyzer | N5242A | MY51221755 | Agilent | 2020-11-8 | 1 year | | 2 | Power meter | NRVD | 102257 | RS | 2020-5-10 | 1 year | | 3 | Power sensor | NRV-Z5 | 100241 | RS | 2020-5-10 | 1 year | | 4 | Power sensor | NRV-Z5 | 100644 | RS | 2020-5-10 | 1 year | | 5 | Signal Generator | E8247C | MY43000157 | Agilent | 2020-5-10 | 1 year | | 6 | Amplifier | NTWPA-
0086010F | 12023024 | rflight | N/A | 3 years | | 7 | Coupler | 778D | MY4825551 | Agilent | 2020-5-10 | 1 year | | 8 | BTS | E5515C | MY50266468 | Agilent | 2020-11-8 | 1 year | | 9 | E-field Probe | EX3DV4 | 7401 | SPEAG | 2020-4-1 | 1 year | | 10 | DAE | SPEAG DAE4 | 1581 | SPEAG | 2020-5-6 | 1 year | | 11 | Dipole Validation
Kit | SPEAG
D1900V2 | 5d232 | SPEAG | 2020-2-12 | 3 year | | 12 | Dipole Validation
Kit | SPEAG
D2450V2 | 858 | SPEAG | 2018-10-26 | 3 year | | 13 | Dipole Validation
Kit | SPEAG
D5GHzV2 | 1172 | SPEAG | 2018-3-30 | 3 year | Page Number: 64 of 118 Report No.: C21T00009-SAR01-V00 ## **Annex A: Graph Results** ## Fig.1 GSM 1900 4TS Left Mode Low 5mm N08 Date/Time: 2021/03/08 Electronics: DAE4 Sn1581 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.422 S/m; ϵ_r = 39.052; ρ = 1000 kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.6°C Communication System: GPRS1900 4TS 1950MHz; Frequency: 1850.2 MHz; Duty Cycle: 1:2 Probe: EX3DV4 - SN7401ConvF(8.37, 8.37, 8.37) @ 1850.2 MHz GSM 1900 4TS Left Mode Low 5mm N08/Area Scan (61x161x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.02 W/kg GSM 1900 4TS Left Mode Low 5mm N08/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.78 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.22 W/kg SAR(1 g) = 0.557 W/kg; SAR(10 g) = 0.291 W/kgMaximum value of SAR (measured) = 0.921 W/kg Page Number: 65 of 118 Report No.: C21T00009-SAR01-V00 ## Fig.2 GSM 1900 4TS Left Mode Middle 0mm N08 Date/Time: 2021/03/08 Electronics: DAE4 Sn1581 Medium parameters used: f = 1880 MHz; σ = 1.439 S/m; ϵ_r = 38.998; ρ = 1000 kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.6°C Communication System: GPRS1900 4TS 1950MHz; Frequency: 1880 MHz; Duty Cycle: 1:2 Probe: EX3DV4 - SN7401ConvF(8.37, 8.37, 8.37) @ 1880 MHz GSM 1900 4TS Left Mode Middle 0mm N08/Area Scan (61x161x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.43 W/kg GSM 1900 4TS Left Mode Middle 0mm N08/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.35 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.93 W/kg SAR(1 g) = 1.48 W/kg; SAR(10 g) = 0.657 W/kgMaximum value of SAR (measured) = 2.70 W/kg Page Number: 66 of 118 Report No.: C21T00009-SAR01-V00 ## Fig.3 WIFI 2.4G 11b Right Mode Middle 5mm Date/Time: 2021/3/30 Electronics: DAE4 Sn1581 Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.82$ S/m; $\epsilon_r = 38.269$; $\rho = 1000$ kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.6°C Communication System: WLan 2450 HSL600-6GHz; Frequency: 2462 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN7401ConvF(7.85, 7.85, 7.85) @ 2462 MHz WIFI 2.4G 11b Right Mode Middle/Area Scan (61x151x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.382 W/kg ### WIFI 2.4G 11b Right Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.998 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.614 W/kg SAR(1 g) = 0.248 W/kg; SAR(10 g) = 0.102 W/kgMaximum value of SAR (measured) = 0.458 W/kg Page Number: 67 of 118 Report No.: C21T00009-SAR01-V00 ## Fig.4 WIFI 2.4G 11b Right Mode Middle 0mm Date/Time: 2021/3/30 Electronics: DAE4 Sn1581 Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.82$ S/m; $\epsilon_r = 38.269$; $\rho = 1000$ kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.6°C Communication System: WLan 2450 HSL600-6GHz; Frequency: 2462 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN7401ConvF(7.85, 7.85, 7.85) @ 2462 MHz WIFI 2.4G 11b Right Mode Middle 0mm/Area Scan (61x151x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.36 W/kg WIFI 2.4G 11b Right Mode Middle 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.87 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.33 W/kg SAR(1 g) = 0.799 W/kg; SAR(10 g) = 0.281 W/kgMaximum value of SAR (measured) = 1.69 W/kg Page Number: 68 of 118 Report No.: C21T00009-SAR01-V00 ## Fig.5 WIFI 5G Right Mode Middle 5mm Date/Time: 2021/3/30 Electronics: DAE4 Sn1581 Medium parameters used: f = 5180 MHz; σ = 4.569 S/m; ϵ_r = 37.205; ρ = 1000 kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.6°C Communication System: 5G-U-NII-1 5GHz; Frequency: 5180 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN7401ConvF(5.74, 5.74, 5.74) @ 5180 MHz WIFI 5G Right Mode Middle 5mm/Area Scan (61x151x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.829 W/kg ## WIFI 5G Right Mode Middle 5mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.197 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.301 W/kg; SAR(10 g) = 0.086 W/kgMaximum of SAR (measured) = 0.766 W/kg Page Number: 69 of 118 Report No.: C21T00009-SAR01-V00 ## Fig.6 WIFI 5G Right Mode Middle 0mm Date/Time: 2021/3/30 Electronics: DAE4 Sn1581 Medium parameters used: f = 5180 MHz; σ = 4.569 S/m; ϵ_r = 37.205; ρ = 1000 kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.6°C Communication System: 5G-U-NII-1 5GHz; Frequency: 5180 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN7401ConvF(5.74, 5.74, 5.74) @ 5180 MHz WIFI 5G Right Mode Middle 0mm/Area Scan (61x151x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.90 W/kg ## WIFI 5G Right Mode Middle 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.326 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 0.782 W/kg; SAR(10 g) = 0.179 W/kg Maximum of SAR (measured) = 2.15 W/kg Page Number: 70 of 118 Report No.: C21T00009-SAR01-V00 ## **Annex B: System Validation Plot** #### Head 1900MHz Date/Time: 2021/03/08 Electronics: DAE4 Sn1581 Medium parameters used: f = 1900 MHz; σ = 1.45 S/m; ϵ_r = 38.967; ρ = 1000 kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.6°C Communication System: CW 1950MHz; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN7401ConvF(8.37, 8.37, 8.37) @ 1900 MHz Head 1900 MHz/Area Scan (81x81x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 16.0 W/kg Head 1900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.6 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 20.4 W/kg SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.39 W/kgMaximum value of SAR (measured) = 16.7 W/kg Page Number: 71 of 118 Report No.: C21T00009-SAR01-V00 #### Head 2450MHz Date/Time: 2021/3/30 Electronics: DAE4 Sn1581 Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.811$ S/m; $\epsilon_r = 38.29$; $\rho = 1000$ kg/m³ Ambient Temperature:22.6°C Liquid Temperature:22.6°C Communication System: CW HSL600-6GHz; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN7401ConvF(7.85, 7.85, 7.85) @ 2450 MHz **Head 2450MHz/Area Scan (61x61x1):** Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 21.3 W/kg Head 2450MHz /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =
104.4 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.9 W/kg Maximum value of SAR (measured) = 21.4 W/kg Page Number: 72 of 118 Report No.: C21T00009-SAR01-V00 #### Head 5200MHz Date/Time: 2021/03/30 Electronics: DAE4 Sn1581 Medium parameters used: f = 5200 MHz; $\sigma = 4.591 \text{ S/m}$; $\varepsilon_r = 37.165$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.6°C Liquid Temperature:22.6°C Communication System: 1950MHz; Frequency: 5200 MHz; Duty Cycle: 1:1 Probe: EX3DV4 - SN7401ConvF(5.74, 5.74, 5.74) @ 5200 MHz Head 5200MHz/Area Scan (71x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 18.2 W/kg Head 5200MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.68 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.15 W/kgMaximum value of SAR (measured) = 18.8 W/kg Page Number: 73 of 118 Report No.: C21T00009-SAR01-V00 # **Annex C: Measurement Uncertainty** Table C.1 Measurement Uncertainty Evaluation for SAR test | | able C.1 Measuren | 1 |
 | | I | | Ct-l | | |------------------------------|--|----------------|------------|------|------|-----------------|-----------------|-----------| | Error Description | Uncert. Value | Prob.
Dist. | Div. | (Ci) | (Ci) | Std.
Unc.[%] | Std.
Unc.[%] | (Ui) ueff | | | | Dist. | | 1g | 10g | (1g) | (10g) | | | | • | Measuren | nent Syste | m | 1 | r | r | _ | | Probe Calibration | 13.3 | N | 2 | 1 | 1 | 6.65 | 6.65 | ∞ | | Axial Isotropy | 4.7 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.90 | 1.90 | ∞ | | Hemispherical Isotropy | | | $\sqrt{3}$ | | | | | | | Tiernispriencal isotropy | 9.6 | R | | 0.7 | 0.7 | 3.88 | 3.88 | ∞ | | Boundary effects | 1 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.70 | 2.70 | ∞ | | System Detection Limits | 1 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | 8 | | Readout Electronics | 0.7 | N | 1 | 1 | 1 | 0.70 | 0.70 | ∞ | | Response Time | 0.8 | R | $\sqrt{3}$ | 1 | 1 | 0.50 | 0.50 | ∞
∞ | | Integration Time | 2.6 | R | $\sqrt{3}$ | 1 | 1 | 1.50 | 1.50 | | | RF Ambient Noise | 3 | R | $\sqrt{3}$ | 1 | 1 | 1.70 | 1.70 | ∞ | | RF Ambient Re | , , | IX. | $\sqrt{3}$ | ' | ' | 1.70 | 1.70 | ∞ | | ections | 3 | R | \ | 1 | 1 | 1.70 | 1.70 | | | Probe Positioner | 0.4 | R | $\sqrt{3}$ | 1 | 1 | 0.20 | 0.20 | ∞ | | Probe Positioning | 2.9 | R | $\sqrt{3}$ | 1 | 1 | 1.70 | 1.70 | ∞ | | Post-processing | 4 | R | $\sqrt{3}$ | 1 | 1 | 2.30 | 2.30 | ∞ | | 1 Ost-processing | 4 | | ple Relate | | ı | 2.30 | 2.30 | ∞ | | Device Holder | 2.55 | N | 1 | 1 | 1 | 2.55 | 2.55 | 71 | | Test dample Positioning | 1.34 | N | 1 | 1 | 1 | 1.34 | 1.34 | 3 | | Power Drift | 5 | R | $\sqrt{3}$ | 1 | 1 | 2.9 | 2.9 | ∞ | | | | Phantom | and Setu | ρ | I | 1 | | | | Phantom Uncertainty | 4 | R | $\sqrt{3}$ | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | 5 | R | $\sqrt{3}$ | 0.64 | 0.43 | 2.9 | 2.9 | ∞ | | Liquid Conductivity (meas.) | 5 | N | 1 | 0.64 | 0.43 | 5 | 5 | ∞ | | Liquid Permittivity (target) | 5 | R | $\sqrt{3}$ | 0.6 | 0.49 | 2.9 | 2.9 | ∞ | | Liquid Permittivity (meas.) | 5 | N | 1 | 0.6 | 0.49 | 5 | 5 | ∞ | | Combined Std.
Uncertainty | $U_{C}^{'} = \sqrt{\sum_{i=1}^{23} C_{i}^{2} U_{i}^{2}}$ | | | | | 11.23 | 10.70 | | | Expanded STD
Uncertainty | $U_C = 2U_C$ | | | | | 22.45 | 21.40 | | Page Number: 74 of 118 Report No.: C21T00009-SAR01-V00 ## Table C.2 Measurement Uncertainty Evaluation for System Validation | Error Description | Uncert.
Value | Prob.
Dist. | Div. | (Ci) | (Ci) | Std.
Unc.[%] | Std.
Unc.[%] | (Ui) ueff | |-------------------------------|------------------|-----------------------------|-----------------------------|--------|------|-----------------|-----------------|-----------| | | | | | 1g | 10g | (1g) | (10g) | | | Drobe Calibration | 40.0 | | urement S | | | 0.05 | 0.05 | | | Probe Calibration | 13.3 | N | $\frac{2}{\sqrt{3}}$ | 1 | 1 | 6.65 | 6.65 | ∞ | | Axial Isotropy | 4.7 | R | $\frac{\sqrt{3}}{\sqrt{3}}$ | 0.7 | 0.7 | 1.90 | 1.90 | ∞ | | Hemispherical Isotropy | 9.6 | R | | 0.7 | 0.7 | 3.88 | 3.88 | ∞ | | Boundary effects | 1 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | 4.7 | R | $\sqrt{3}$ | 1 | 1 | 2.70 | 2.70 | ∞ | | System Detection Limits | 1 | R | √ 3 | 1 | 1 | 0.58 | 0.58 | ∞ | | Readout Electronics | 0.7 | N | 1 | 1 | 1 | 0.70 | 0.70 | ∞ | | Response Time | 0.8 | R | $\sqrt{3}$ | 1 | 1 | 0.50 | 0.50 | ∞ | | Integration Time | 2.6 | R | $\sqrt{3}$ | 1 | 1 | 1.50 | 1.50 | ∞ | | RF Ambient Noise | 3 | R | $\sqrt{3}$ | 1 | 1 | 1.70 | 1.70 | ∞ | | RF Ambient Re | | | $\sqrt{3}$ | | | | | | | ections | 3 | R | | 1 | 1 | 1.70 | 1.70 | ∞ | | Probe Positioner | 0.4 | R | $\sqrt{3}$ | 1 | 1 | 0.20 | 0.20 | ∞ | | Probe Positioning | 2.9 | R | $\sqrt{3}$ | 1 | 1 | 1.70 | 1.70 | ∞ | | Post-processing | 4 | R | $\sqrt{3}$ | 1 | 1 | 2.30 | 2.30 | ∞ | | | | Test | Sample Re | elated | | | | • | | Validation Dipole Positioning | 2 | N | 1 | 1 | 1 | 2 | 2 | | | Dipole Input Power | 5 | N | 11 | 1 | 1 | 5 | 5 | | | Power Drift | 5 | R | $\sqrt{3}$ | 1 | 1 | 2.9 | 2.9 | ∞ | | | | | tom and S | | | | | | | Phantom Uncertainty | 4 | R | $\sqrt{3}$ | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | 5 | R | $\sqrt{3}$ | 0.64 | 0.43 | 2.9 | 2.9 | ∞ | | Liquid Conductivity (meas.) | 5 | N | 1 | 0.64 | 0.43 | 5 | 5 | ∞ | | Liquid Permittivity (target) | 5 | R | $\sqrt{3}$ | 0.6 | 0.49 | 2.9 | 2.9 | 8 | | Liquid Permittivity (meas.) | 5 | N | 1 | 0.6 | 0.49 | 5 | 5 | ∞ | | Combined Std. Uncertainty | $U_{c}^{'} = $ | $\sum_{i=1}^{23} Ci^2 Ui^2$ | | | | 12.11 | 11.63 | | | Expanded STD Uncertainty | $U_{C} =$ | 2 <i>U</i> _C | | | | 24.23 | 23.26 | | ### Annex D: Calibration Certificate Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client: 3in Certificate No: Z20-60180 ## **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1581 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: May 06, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 24-Jun-19 (CTTL, No.J19X05126) | Jun-20 | Calibrated by: Name Function Reviewed by: Yu Zongying Lin Hao SAR Test Engineer SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 08, 2020 Page Number: 75 of 118 Report No.: C21T00009-SAR01-V00 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60180 Page 1 of 3 Page Number: 76 of 118 Report No.: C21T00009-SAR01-V00 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z20-60180 Page 2 of 3 Page Number: 77 of 118 Report No.: C21T00009-SAR01-V00 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = $6.1\mu V$, full range = -100...+300 m Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV | Calibration Factors | Х | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.200 ± 0.15% (k=2) | 405.459 ± 0.15% (k=2) | 405.719 ± 0.15% (k=2) | | Low Range | 3.99505 ± 0.7% (k=2) | 3.99885 ± 0.7% (k=2) | 4.00362 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 13° ± 1 ° | |---|-----------| | | | Certificate No: Z20-60180 Page 3 of 3 In Collaboration with e Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client 3in Certificate No: Z20-60103 ## **CALIBRATION CERTIFICAT** Object EX3DV4 - SN: 7401 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: April 01, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are
given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | 0.1 1.1 1.0 | |-------------------------|--|--|-----------------------| | Power Meter NRP2 | 101919 | 18-Jun-19(CTTL, No.J19X05125) | Scheduled Calibration | | Power sensor NRP-Z91 | 101547 | 18-Jun-19(CTTL, No.J19X05125) | Jun-20 | | Power sensor NRP-Z91 | 101548 | 18-Jun-19(CTTL, No.J19X05125) | Jun-20 | | Reference 10dBAttenuato | | 10 Fob 20(CTTL, No.J19X05125) | Jun-20 | | Reference 20dBAttenuato | The state of s | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference Probe EX3DV4 | LOUD | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | DAE4 | SN 1525 | 24-May-19(SPEAG, No.EX3-7307_May | 19/2) May-20 | | | SIN 1525 | 26-Aug-19(SPEAG, No.DAE4-1525_Aug | (19) Aug-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Sahadulad O-liberti | | SignalGenerator MG3700 | A 6201052605 | 18-Jun-19(CTTL, No.J19X05127) | Scheduled Calibration | | Network Analyzer E5071C | MY46110673 | 10-Feb-20(CTTL, No.J20X00515) | Jun-20 | | | Name | Function | Feb-21 | | Calibrated by: | Yu Zongying | SAR Test Engineer | Signature | | Reviewed by: | Lin Hao | | D II | | | LIII I I au | SAR Test Engineer | 州沙 | | Approved by: | Qi Dianyuan | SAR Project Leader | 200 | | | | Issued: April 03 | 2020 | Issued: April 03, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60103 Page 1 of 10 Page Number: 79 of 118 Report No.: C21T00009-SAR01-V00 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i Polarization θ θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF). $NORM(f)x, y, z = NORMx, y, z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z20-60103 Page 2 of 10 Page Number: 80 of 118 Report No.: C21T00009-SAR01-V00 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7401 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.37 | 0.45 | 0.34 | ±10.0% | | DCP(mV) ^B | 102.4 | 100.8 | 102.6 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 137.2 | ±2.3% | | | | Y | 0.0 | 0.0 | 1.0 | | 155.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 128.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z20-60103 Page 3 of 10 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4 and Page 5). B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Page Number: 81 of 118 Report No.: C21T00009-SAR01-V00 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DASY/EASY – Parameters of Probe: EX3DV4 – SN:7401 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.51 | 10.51 | 10.51 | 0.40 | 0.75 | ±12.1% | | 835 | 41.5 | 0.90 | 10.22 | 10.22 | 10.22 | 0.15 | 1.31 | ±12.1% | | 900 | 41.5 | 0.97 | 10.24 | 10.24 | 10.24 | 0.16 | 1.32 | ±12.1% | |
1750 | 40.1 | 1.37 | 8.65 | 8.65 | 8.65 | 0.22 | 1.13 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.37 | 8.37 | 8.37 | 0.20 | 1.19 | ±12.1% | | 2000 | 40.0 | 1.40 | 8.35 | 8.35 | 8.35 | 0.22 | 1.18 | ±12.1% | | 2300 | 39.5 | 1.67 | 8.17 | 8.17 | 8.17 | 0.47 | 0.80 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.85 | 7.85 | 7.85 | 0.50 | 0.77 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.60 | 7.60 | 7.60 | 0.55 | 0.76 | ±12.1% | | 5250 | 35.9 | 4.71 | 5.74 | 5.74 | 5.74 | 0.45 | 1.25 | ±13.3% | | 5600 | 35.5 | 5.07 | 5.21 | 5.21 | 5.21 | 0.45 | 1.30 | ±13.3% | | 5750 | 35.4 | 5.22 | 5.22 | 5.22 | 5.22 | 0.45 | 1.40 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z20-60103 Page 4 of 10 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Page Number: 82 of 118 Report No.: C21T00009-SAR01-V00 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7401 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.67 | 10.67 | 10.67 | 0.40 | 0.80 | ±12.1% | | 835 | 55.2 | 0.97 | 10.26 | 10.26 | 10.26 | 0.18 | 1.35 | ±12.1% | | 900 | 55.0 | 1.05 | 10.29 | 10.29 | 10.29 | 0.30 | 1.05 | ±12.1% | | 1750 | 53.4 | 1.49 | 8.36 | 8.36 | 8.36 | 0.19 | 1.28 | ±12.1% | | 1900 | 53.3 | 1.52 | 8.11 | 8.11 | 8.11 | 0.24 | 1.12 | ±12.1% | | 2000 | 53.3 | 1.52 | 8.03 | 8.03 | 8.03 | 0.21 | 1.28 | ±12.1% | | 2300 | 52.9 | 1.81 | 8.04 | 8.04 | 8.04 | 0.49 | 0.86 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.95 | 7.95 | 7.95 | 0.58 | 0.79 | ±12.1% | | 2600 | 52.5 | 2.16 | 7.67 | 7.67 | 7.67 | 0.68 | 0.70 | ±12.1% | | 5250 | 48.9 | 5.36 | 5.23 | 5.23 | 5.23 | 0.45 | 1.85 | ±13.3% | | 5600 | 48.5 | 5.77 | 4.61 | 4.61 | 4.61 | 0.50 | 1.80 | ±13.3% | | 5750 | 48.3 | 5.94 | 4.70 | 4.70 | 4.70 | 0.55 | 1.45 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z20-60103 Page 5 of 10 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.