

427 West 12800 South Draper, UT 84020

Test Report Certification

FCC ID	SWX-U7PROO
ISED ID	6545A-U7PROO
Equipment Under Test	U7-Pro-Outdoor
Test Report Serial Number	TR9533_02
Date of Tests	2-8 October; 1-4 November 2024
Report Issue Date	20 November 2024

Test Specification	Applicant
47 CFR FCC Part 15, Subpart E	Ubiquiti Inc.
	685 Third Avenue
	New York, NY 10017
	U.S.A.

R Jac-M TESTING

NVLAP LAB CODE 600241-0

Certification of Engineering Report

This report has been prepared by Unified Compliance Laboratory (UCL) to document compliance of the device described below with the requirement of Federal Communication Commissions (FCC) Part 15, Subpart E. This report may be reproduced in full. Partial reproduction of this report may only be made with the written consent of the laboratory. The results in this report apply only to the sample tested with the specifications provided by the manufacturer.

Applicant	Ubiquiti Inc.
Manufacturer	Ubiquiti Inc.
Brand Name	UBIQUITI
Model Number	U7-Pro-Outdoor
FCC ID	SWX-U7PROO
ISED ID	6545A-U7PROO

On this 20th day of November 2024, I individually and for Unified Compliance Laboratory certify that the statements made in this engineering report are true, complete and correct to the best of my knowledge and are made in good faith.

Although NVLAP has accredited the Unified Compliance Laboratory testing facilities, this report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. federal government.

Unified Compliance Laboratory

Written By: Kimberly DeBole

shard L.

Reviewed By: Richard L. Winter

Revision History		
Revision	Description	Date
01	Original Report Release	20 November 2024
02	Removed Section 5.5.1 Amended Sections 2.2, 3.3.1, 5.1, 5.3, 5.4, 5.6	14 February 2025

Table of Contents

1	Clie	nt Information	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
2	Equi	ipment Under Test (EUT)	.6
	2.1	Identification of EUT	.6
	2.2	Description of EUT	.6
	2.3	EUT and Support Equipment	.7
	2.4	Interface Ports on EUT	.7
	2.5	Operating Environment	.7
	2.6	Operating Modes	.7
	2.7	EUT Exercise Software	.8
	2.8	Block Diagram of Test Configuration	.8
	2.9	Modification Incorporated/Special Accessories on EUT	.8
	2.10	Deviation, Opinions Additional Information or Interpretations from Test Standard	.8
3	Test	Specification, Method and Procedures	.9
	3.1	Test Specification	.9
	3.2	Methods & Procedures	.9
	3.3	FCC Part 15, Subpart E	.9
	3.4	Results	.9
	3.5	Test Location	.9
4	Test	Equipment	11
	4.1	Conducted Emissions at Mains Ports	11
	4.2	Direct Connect at the Antenna Port Tests	11
	4.3	Equipment Calibration	13
	4.4	Measurement Uncertainty	13
5	Test	Results	14
	5.1	§15.203 Antenna Requirements	14
	5.2	Conducted Emissions at Mains Ports Data	15
	5.3	§15.407(a) 26 dB Emissions Bandwidth	17
	5.4	§15.407(a) Maximum Average Output Power	18
	5.5	§15.209 Spurious Emissions	20
	5.6	§15.407(a) Maximum Power Spectral Density	25

1 Client Information

1.1 Applicant

Company	Ubiquiti Inc. 685 Third Avenue New York, NY 10017 U.S.A.
Contact Name	Alex Macon
Title	Compliance

1.2 Manufacturer

Company	Ubiquiti Inc. 685 Third Avenue New York, NY 10017 U.S.A.
Contact Name	Alex Macon
Title	Compliance

2 Equipment Under Test (EUT)

2.1 Identification of EUT

Brand Name	UBIQUITI
Model Number	U7-Pro-Outdoor
Serial Number	942A6F407A26
Dimensions (cm)	17.0 x 20.8 x 12.18

2.2 Description of EUT

The U7-Pro-Outdoor is a WiFi7 access point with 2.4 GHz, 5GHz and 6GHz 2x2 radios. It has external SMA antenna connectors supporting 2.4/5GHz and internal antennas supporting 2.4/5/6GHz. The U7-Pro-Outdoor has an aggregate throughput rate of 9.3 Gbps and is powered by a 2.5Gbe PoE 802.3at through a single RJ45 port.

For CDD transmissions, directional gain is calculated as follows.

Array Gain = 10 log(NANT/NSS) dB NANT = number of transmit antennas and NSS = number of spatial streams. NSS = 1 considered worst case.

For power measurements on IEEE 802.11 devices, Array Gain = 0 dB for NANT \leq 4; Internal Antenna: For PSD measurements when Nss=1: Array Gain = 10 log(NANT/NSS) dB + Antenna Gain (dBi). Or 3.01 dB + 11 dBi = 14.01 dBi. External Antenna:

For PSD measurements when Nss=1: Array Gain = $10 \log(\text{NANT/NSS}) dB$ + Antenna Gain (dBi). Or 3.01 dB + 7 dBi = 10.01 dBi.

Band	WiFi Mode	Modulation Bandwidth	Modulation Type	Frequency (MHz)
	а	20 MHz	OFDM	5745, 5775, 5825
LINIL 2	ax	20 MHz	HE	5745, 5775, 5825
UNII-5	ax	40 MHz	HE	5755, 5775, 5795
	ax	80 MHz	HE	5775

The table below show the channels used within the different modulation bandwidths.

This report covers the circuitry of the device subject to FCC Part 15, Subpart E. The circuitry of the device subject to FCC Part 15 Subpart B was found to be compliant and is covered under a separate Unified Compliance Laboratory test report.

TR9533_U7-Pro-Outdoor_FCC_15.407_UNII-3_02

2.3 EUT and Support Equipment

The EUT and support equipment used during the test are listed below.

Brand Name Model Number Serial Number	Description	Name of Interface Ports / Interface Cables
BN: UBIQUITI MN: U7-Pro-Wall (Note 1) SN: 05BF1C	WiFi Access Point	See Section 2.4
BN: UBIQUITI MN: U-POE-at SN: N/A	PoE Power Adapter	Unshielded Cat 5e cable/1 meters
BN: Dell MN: XPS 13 SN: N/A	Laptop Personal Computer	Unshielded Cat 5e cable/1 meters

Notes: (1) EUT

(2) Interface port connected to EUT (See Section 2.4)

The support equipment listed above was not modified in order to achieve compliance with this standard.

2.4 Interface Ports on EUT

Name of Ports	No. of Ports Fitted to EUT	Cable Description/Length
AC Mains	1	3 conductor power cord/80 cm
POE (POE Injector)	1	Unshielded Cat 5e cable/8 meters
LAN (POE Injector)	1	Unshielded Cat 5e cable/1 meters

2.5 **Operating Environment**

Power Supply	120 Volts AC Mains to 48 Volts PoE
AC Mains Frequency	60 Hz
Temperature	21 - 26 °C
Humidity	17 - 29 %
Barometric Pressure	1013 mBar

2.6 Operating Modes

The U7-Pro-Outdoor was tested using test software in order to enable a constant transmission. The measurements within this report are corrected to reference a 100% duty cycle. All emission modes of 802.11 a/ax were investigated. All measurements are reported with the worst-case mode (802.11ax) unless otherwise stated.

TR9533_U7-Pro-Outdoor_FCC_15.407_UNII-3_02

2.7 EUT Exercise Software

EUT firmware version 1.0 was used to operate the transmitter using a constant transmit mode.

2.8 Block Diagram of Test Configuration

Diagram 1: Test Configuration Block Diagram

2.9 Modification Incorporated/Special Accessories on EUT

There were no modifications made to the EUT during testing to comply with the specification.

2.10 Deviation, Opinions Additional Information or Interpretations from Test Standard

There were no deviations, opinions, additional information or interpretations from the test specification.

3 Test Specification, Method and Procedures

3.1 Test Specification

Title	47 CFR FCC Part 15, Subpart E, Section 15.407 Limits and methods of measurement of radio interference characteristics of Unlicensed National Information Infrastructure Devices
Purpose of Test	The tests were performed to demonstrate initial compliance

3.2 Methods & Procedures

3.2.1 47 CFR FCC Part 15 Section 15.407

See test standard for details.

3.3 FCC Part 15, Subpart E

3.3.1 Summary of Tests

FCC Section	ISED Section	Environmental Phenomena	Frequency Range (MHZ)	Result
15.203	N/A	Antenna requirements	Structural Requirement	Compliant
15.207	RSS-Gen	Conducted Disturbance at Mains Port	0.15 to 30	Compliant
15.407(a)	RSS-247 §6.2.2	Bandwidth Requirement	5725 to 5825	Compliant
15.407(a)	RSS-247 §6.2.2, §6.2.3	Peak Output Power	5725 to 5825	Compliant
15.407(b)	RSS-247 §6.2.2, §6.2.3	Antenna Conducted Spurious Emissions	0.009 to 40000	N/A Note ¹
15.209	RSS-247 §6.2.2, §6.2.3	Radiated Spurious Emissions	0.009 to 40000	Compliant
15.407(a)	RSS-247 §6.2.2, §6.2.3	Peak Power Spectral Density	5725 to 5825	Compliant
The testing was p	erformed according to the	procedures in ANSI C63.10-20	013, KDB 78903	3 and 47

CFR Part 15. Where applicable, KDB 662911 was followed to sum required measurements. Note ¹: Radiated Spurious was performed per 15.209 with the antenna unterminated.

3.4 Results

In the configuration tested, the EUT complied with the requirements of the specification.

3.5 Test Location

Testing was performed at the Unified Compliance Laboratory 3-meter and 10-meter chamber located at 427 West 12800 South, Draper, UT 84020. Unified Compliance Laboratory is accredited by National Voluntary Laboratory Accreditation Program (NVLAP); NVLAP Code 600241-0 which is effective until

30 June 2025. This site has also been registered with Innovations, Science and Economic Development (ISED) department as was accepted under Appendix B, Phase 1 procedures of the APEC Tel MRA for Canadian recognition. ISED No.: 25346, effective until 30 June 2025.

Unified Compliance Laboratory has been assigned Designation Number US5037 by the FCC and Conformity Assessment Number US0223 by ISED.

4 Test Equipment

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
EMI Receiver	AFJ	FFT3010	UCL-6754	1/23/2024	2/26/2025
LISN	AFJ	LS16C/10	UCL-2512	7/08/2024	7/08/2025
ISN	Teseq	ISN T800	UCL-2974	7/09/2024	7/09/2025
LISN	AFJ	LS16C\10	UCL-6749	1/29/2024	1/29/2025
AC Power Source	Laplace Instruments	AC1000A	UCL-2857	N/A	N/A
Test Software	AFJ	AFJ FFT3010	UCL-3107	N/A	N/A

4.1 Conducted Emissions at Mains Ports

Table 1: List of equipment used for Conducted Emissions Testing at Mains Port

Figure 1: Conducted Emissions Test

4.2 Direct Connect at the Antenna Port Tests

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
Spectrum Analyzer	R&S	FSV40	UCL-2861	11/27/2023	11/27/2024
Signal Generator	R&S	SMB100A	UCL-2864	N/A	N/A
Vector Signal Generator	R&S	SMBV100A	UCL-2873	N/A	N/A
Switch Extension	R&S	OSP- B157WX	UCL-2867	4/12/2024	4/19/2025
Switch Extension	R&S	OSP-150W	UCL-2870	4/12/2024	4/19/2025
Test Software	R&S	EMC32	UCL-9442	-	-

Table 2: List of equipment used for Direct Connect at the Antenna Port

Spectrum Analyzer

Figure 2: Direct Connect at the Antenna Port Test

Equipment
Under Test

Figure 3: Output Power Measurement Radiated Emissions

Type of Equipment	Manufacturer	Model Number	Asset Number	Date of Last Calibration	Due Date of Calibration
EMI Receiver	Keysight	N9038A	UCL-2778	1/25/2024	1/29/2025
Pre-Amplifier 9 kHz – 1 GHz	Sonoma Instruments	310N	UCL-2889	1/19/2024	1/19/2026
Broadband Antenna	Broadband Scwarzbeck		UCL-3062	2/22/2023	2/22/2025
Broadband Antenna	Broadband Scwarzbeck		UCL-3071	1/11/2023	1/11/2025
Double Ridge Horn Antenna	Scwarzbeck	BBHA 9120D	UCL-3065	3/10/2023	3/10/2025
Log Periodic	Scwarzbeck	STLP 9129	UCL-3068	1/27/2023	1/27/2025
15 - 40 GHz Horn Antenna	Scwarzbeck	BBHA 9170	UCL-2487	3/10/2023	3/10/2025
1 – 18 GHz Amplifier	Com-Power	PAM 118A	UCL-3833	1/19/2024	1/19/2026
Test Software	Nexio	BatEMC	UCL-5253 & UCL- 5249	N/A	N/A

Table 3: List of equipment used for Radiated Emissions

Figure 4: Radiated Emissions Test

4.3 Equipment Calibration

All applicable equipment is calibrated using either an independent calibration laboratory or Unified Compliance Laboratory personnel at intervals defined in ANSI C63.4:2014 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to traceability is on file and is available for examination upon request.

4.4 Measurement Uncertainty

Test	Uncertainty (<u>+</u> dB)	Confidence (%)
Conducted Emissions	1.44	95
Radiated Emissions (9 kHz to 30 MHz)	2.50	95
Radiated Emissions (30 MHz to 1 GHz)	4.38	95
Radiated Emissions (1 GHz to 18 GHz)	4.37	95
Radiated Emissions (18 GHz to 40 GHz)	3.93	95
Direct Connect Tests	K Factor	Value
Emissions Bandwidth	2	2.0%
Output Power	2	1.0 dB
Peak Power Spectral Density	2	1.3 dB
Band Edge	2	0.8 dB
Transmitter Spurious Emissions	2	1.8 dB

5 Test Results

5.1 §15.203 Antenna Requirements

The EUT uses an internal and an external antenna. Per the manufacturer, the maximum gain of the internal antenna per chain is 11 dBi and the maximum gain for the external antenna is 7 dBi. This is an 802.11 device and utilizes CDD as described in KDB 662911 D01. The internal antenna is not user replaceable; the external antenna is independent and removable.

Results

The EUT complied with the specification.

5.2 Conducted Emissions at Mains Ports Data

5.2.1 Line

ID	Frequency	Probe	Cable	Atten.	Detector	Meter Read	Meas Level	Limit 1	Limit 1 Dist.	Limit 2	Limit 2 Dist.	P/F
MU	MHz	dB	dB	dB	Type	dBµV	dBµV	dBµV	dB	dBµV	dB	P/F
1	534,000kHz	9.49			QPeak	38.71	48.20	56.00	-7.80			
5	498,000kHz	9.49			QPeak	34.90	44.39	56.03	-11.64			
3	750,000kHz	9.51			QPeak	32.59	42.10	56.00	-13.90			
2	537,000kHz	9.49	Ĩ		C_AVG	31.89	41.38			46.00	-4.62	
4	747,000kHz	9.51			C_AVG	31.66	41.17			46.00	-4.83	
6	498,000kHz	9.49			C_AVG	30.59	40.08			46.03	-5.96	

5.2.2 Neutral

1110		00	 	1,100	oppr	aspr	och .		uch .		1.00
1	531,000kHz	9.62		QPeak	38.97	48.59	56.00	-7.41			
5	498,000kHz	9.64		QPeak	34.93	44.57	56.03	-11.46			
3	750,000kHz	9.52		QPeak	32.25	41.77	56.00	-14.23			\square
2	534,000kHz	9.62		C_AVG	32.45	42.07			46.00	-3.93	
4	747,000kHz	9.52		C_AVG	31.36	40.88			46.00	-5.12	\square
6	498,000kHz	9.64		C_AVG	30.75	40.39			46.03	-5.64	

Result

The EUT complied with the specification limit.

5.3 §15.407(a) 26 dB Emissions Bandwidth

All chains were measured under the guidance of KDB 789033 Section II.C. and KDB 662911 D01. Please see associated annex for details on instrument settings.

5.3.1 Internal Antenna

Nominal BW (MHz)	Frequency (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)
20	5745	17.25	24.20
20	5775	17.50	30.00
20	5825	19.00	31.40
20	5745	19.25	23.10
20	5775	19.25	28.00
20	5825	19.10	38.50
40	5755	19.50	38.50
40	5775	38.50	43.22
40	5795	38.50	57.19
80	5775	39.00	51.00

5.3.2 External Antenna

Nominal BW (MHz)	Frequency (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)
20	5745	28.75	41.00
20	5775	28.00	43.20
20	5825	30.25	48.30
20	5745	29.70	49.50
20	5775	32.08	57.20
20	5825	30.89	45.80
40	5755	39.00	47.40
40	5775	40.00	87.60
40	5795	48.50	87.90
80	5775	79.00	88.00

Result

All chains were tested and the highest bandwidth per chain is reported above. Please see Annex for all bandwidth measurements.

5.4 §15.407(a) Maximum Average Output Power

All chains were measured and summed under the guidance of KDB 789033 Section II. E.2. and KDB 662911 D01. Please see associated annex for details on instrument settings.

See Section 2.2 of this report for the directional gain calculation.

The maximum average RF conducted output power measured for this device was 26.90 dBm or 489.78 mW. The limit is 30 dBm, or 1 Watt when using antennas with 6 dBi or less gain. The maximum internal antenna has a gain of 11 dBi and a maximum gain of 7 dBi for the external antenna.

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting	Conducted Output Power *	Measured EIRP	Measured PSD
OFDM 20	5745	Mcs0	23	24.35	35.35	9.29
OFDM 20	5775	Mcs0	23	24.41	35.41	9.12
OFDM 20	5825	Mcs0	24	24.13	35.13	9.11
HE 20	5745	Mcs0	23	24.07	35.07	8.46
HE 20	5775	Mcs0	23	24.26	35.26	8.40
HE 20	5825	Mcs0	23	23.95	34.95	8.53
HE 40	5755	Mcs0	23	24.07	35.07	5.58
HE 40	5775	Mcs0	23	24.40	35.40	5.85
HE 40	5795	Mcs0	23	24.44	35.44	5.97
HE 80	5775	Mcs0	20	21.21	32.21	-0.35

5.4.1 Internal Antenna

5.4.2 External Antenna

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting	Conducted Output Power *	Measured EIRP	Measured PSD
OFDM 20	5745	Mcs0	31	26.67	34.67	11.88
OFDM 20	5775	Mcs0	31	26.90	34.90	10.78
OFDM 20	5825	Mcs0	31	25.64	33.64	10.46
HE 20	5745	Mcs0	31	26.85	34.85	11.49
HE 20	5775	Mcs0	31	26.86	34.86	11.49
HE 20	5825	Mcs0	31	25.70	33.70	9.99
HE 40	5755	Mcs0	24	24.73	32.73	6.59
HE 40	5775	Mcs0	25	25.33	33.33	6.52
HE 40	5795	Mcs0	26	25.17	33.17	6.32
HE 80	5775	Mcs0	22	22.42	30.42	1.17

TR9533_U7-Pro-Outdoor_FCC_15.407_UNII-3_02

Result

In the configuration tested, the maximum summed average RF output power was less than 1 watt; therefore, the EUT complied with the requirements of the specification (see spectrum analyzer plots in attached Annex).

* Gated EIRP shown in the Annex is the conducted measurement.

5.5 §15.209 Spurious Emissions

5.5.1 Radiated Spurious Emissions in the Restricted Bands of § 15.205

The EUT uses various power settings based on the channel in use. In order to reduce test time, the radiated spurious emissions at the lowest, middle, and highest channel were measured at the maximum power of TP31.

Correction Factor = Antenna Factor (dBi) + Cable Loss (dB) - Pre-Amplifier Gain (dB), and is added to the Receiver reading.

Result

All emissions in the restricted bands of § 15.205 met the limits specified in § 15.209; therefore, the EUT complies with the specification. See Annex for Conducted Band edge plots.

Internal Antenna

Frequency	SR #	Level (dBµV/m)	Limit (dBµV/m)	Margin	Azimuth (°)	Height	Pol.	RBW (Hz)	Correction (dB)
30.547212 MHz	QP	26.111	30	-3.889	117	3.74	Vertical	120 kHz	-3.932
39.82208 MHz	QP	29.987	30	-0.013	58	1.08	Vertical	120 kHz	-10.068
58.07336 MHz	QP	20.844	30	-9.156	40	2.69	Vertical	120 kHz	-16.592
206.390644 MHz	QP	24.724	30	-5.276	239	1	Vertical	120 kHz	-12.769
30.223088 MHz	QP	25.276	30	-4.724	243	3.1	Horizontal	120 kHz	-3.678

Table 4: Radiated Emissions within 30MHz-1GHz

Frequency	SR #	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Meas. Time (s)	Correction (dB)
11.4886928 GHz	Peak	61.521	74	-12.479	287	1.5	Vertical	5	11.238
11.4982911 GHz	Peak	57.22	74	-16.78	280	2.287	Vertical	5	11.322
14.5935437 GHz	Peak	57.856	74	-16.144	284	2.292	Vertical	5	14.703
14.6941799 GHz	Peak	57.712	74	-16.288	19	2.867	Vertical	5	15.039
11.4886928 GHz	Avg	48.948	54	-5.052	287	1.5	Vertical	5	11.238
11.4982911 GHz	Avg	43.594	54	-10.406	280	2.287	Vertical	5	11.322
14.5935437 GHz	Avg	45.139	54	-8.861	284	2.292	Vertical	5	14.703
14.6941799 GHz	Avg	45.049	54	-8.951	19	2.867	Vertical	5	15.039
11.4877057 GHz	Peak	58.128	74	-15.872	330	2.605	Horizontal	5	11.229
11.4962968 GHz	Peak	59.861	74	-14.139	309	2.867	Horizontal	5	11.305
13.8591646 GHz	Peak	57.916	74	-16.084	2	1.5	Horizontal	5	13.903
14.905945 GHz	Peak	57.823	74	-16.177	76	2.292	Horizontal	5	14.393
11.4877057 GHz	Avg	44.976	54	-9.024	330	2.605	Horizontal	5	11.229
11.4962968 GHz	Avg	45.391	54	-8.609	309	2.867	Horizontal	5	11.305
13.8591646 GHz	Avg	44.18	54	-9.82	2	1.5	Horizontal	5	13.903
14.905945 GHz	Avg	44.397	54	-9.603	76	2.292	Horizontal	5	14.393

 Table 5: Radiated Emissions within 1-17GHz

Frequency	SR #	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Pol.	Meas. Time (s)	Correction (dB)
17.2339472 GHz	Peak	59.115	74	-14.885	345	Vertical	5	-0.178
22.9794446 GHz	Peak	57.022	74	-16.978	79	Vertical	5	1.103
34.9603677 GHz	Peak	56.909	74	-17.091	1	Vertical	5	6.352
17.2339472 GHz	Avg	45.462	54	-8.538	345	Vertical	5	-0.178
22.9794446 GHz	Avg	43.012	54	-10.988	79	Vertical	5	1.103
34.9603677 GHz	Avg	43.869	54	-10.131	1	Vertical	5	6.352
17.240154 GHz	Peak	56.295	74	-17.705	15	Horizontal	5	-0.169
22.9759366 GHz	Peak	55.544	74	-18.456	29	Horizontal	5	1.089
35.0493778 GHz	Peak	57.018	74	-16.982	180	Horizontal	5	6.128
17.240154 GHz	Avg	43.394	54	-10.606	15	Horizontal	5	-0.169
22.9759366 GHz	Avg	42.155	54	-11.845	29	Horizontal	5	1.089
35.0493778 GHz	Avg	43.574	54	-10.426	180	Horizontal	5	6.128

Table 6: Radiated Emissions within 17-40GHz

External Antenna

Frequency	SR #	Level (dBµV/m)	Limit (dBµV/m)	Margin	Azimuth (°)	Height	Pol.	RBW (Hz)	Correction (dB)
30.547212 MHz	1	26.111	30	-3.889	117	3.74	Vertical	120 kHz	-3.932
39.82208 MHz	1	29.987	30	-0.013	58	1.08	Vertical	120 kHz	-10.068
58.07336 MHz	1	20.844	30	-9.156	40	2.69	Vertical	120 kHz	-16.592
206.390644 MHz	1	24.724	30	-5.276	239	1	Vertical	120 kHz	-12.769
30.223088 MHz	2	25.276	30	-4.724	243	3.1	Horizontal	120 kHz	-3.678

Table 7: Radiated Emissions within 30MHz-1GHz

Frequency	SR #	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Height (m)	Pol.	Meas. Time (s)	Correction (dB)
10.9986154 GHz	Peak	59.779	74	-14.221	352	1.714	Vertical	5	11.377
11.0022003 GHz	Peak	56.862	74	-17.138	222	2.292	Vertical	5	11.333
14.2285726 GHz	Peak	57.674	74	-16.326	59	3.444	Vertical	5	14.299
14.382348 GHz	Peak	56.889	74	-17.111	239	3.728	Vertical	5	14.161
10.9986154 GHz	Avg	45.409	54	-8.591	352	1.714	Vertical	5	11.377
11.0022003 GHz	Avg	43.338	54	-10.662	222	2.292	Vertical	5	11.333
14.2285726 GHz	Avg	44.319	54	-9.681	59	3.444	Vertical	5	14.299
14.382348 GHz	Avg	44.124	54	-9.876	239	3.728	Vertical	5	14.161
10.9925714 GHz	Peak	63.319	74	-10.681	339	1.5	Horizontal	5	11.445
10.994681 GHz	Peak	62.671	74	-11.329	306	2.292	Horizontal	5	11.421
16.4869368 GHz	Peak	56.603	74	-17.397	273	2.867	Horizontal	5	13.22
16.5040138 GHz	Peak	58.571	74	-15.429	266	1.5	Horizontal	5	13.406
10.9925714 GHz	Avg	49.885	54	-4.115	339	1.5	Horizontal	5	11.445
10.994681 GHz	Avg	49.053	54	-4.947	306	2.292	Horizontal	5	11.421
16.4869368 GHz	Avg	43.077	54	-10.923	273	2.867	Horizontal	5	13.22
16.5040138 GHz	Avg	43.913	54	-10.087	266	1.5	Horizontal	5	13.406

Table 8: Radiated Emissions within 1-17GHz

Frequency	SR #	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Azimuth (°)	Pol.	Correction (dB)
17.2319533 GHz	Peak	56.758	74	-17.242	83	Vertical	-0.18
33.4870288 GHz	Peak	55.888	74	-18.112	145	Vertical	4.677
34.8524274 GHz	Peak	56.102	74	-17.898	279	Vertical	5.723
17.2319533 GHz	Avg	44.286	0	0	83	Vertical	-0.18
33.4870288 GHz	Avg	42.09	0	0	145	Vertical	4.677
34.8524274 GHz	Avg	43.147	0	0	279	Vertical	5.723
22.9798323 GHz	Peak	57.665	74	-16.335	54	Horizontal	1.104
22.9798323 GHz	Avg	44.214	0	0	54	Horizontal	1.104

Table 9: Radiated Emissions within 17-40GHz

5.6 §15.407(a) Maximum Power Spectral Density

All chains were measured and summed under the guidance of KDB 789033 Section II. F. and KDB 662911 D01. Please see associated annex for details on instrument settings.

The maximum average power spectral density conducted from the intentional radiator of the antenna shall not be greater than 30 dBm in any 500 kHz band during any time interval of continuous transmission.

See Section 2.2 of this report for the directional gain calculation.

Results of this testing are summarized.

5.6.1 Internal Antenna

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting	Conducted Output Power	Measured EIRP	Measured PSD
OFDM 20	5745	Mcs0	23	24.35	35.35	9.29
OFDM 20	5775	Mcs0	23	24.41	35.41	9.12
OFDM 20	5825	Mcs0	24	24.13	35.13	9.11
HE 20	5745	Mcs0	23	24.07	35.07	8.46
HE 20	5775	Mcs0	23	24.26	35.26	8.40
HE 20	5825	Mcs0	23	23.95	34.95	8.53
HE 40	5755	Mcs0	23	24.07	35.07	5.58
HE 40	5775	Mcs0	23	24.40	35.40	5.85
HE 40	5795	Mcs0	23	24.44	35.44	5.97
HE 80	5775	Mcs0	20	21.21	32.21	-0.35

5.6.2 External Antenna

Modulation (BW)	Frequency (MHz)	Data Rate	TP Setting	Conducted Output Power	Measured EIRP	Measured PSD
OFDM 20	5745	Mcs0	31	26.67	34.67	11.88
OFDM 20	5775	Mcs0	31	26.90	34.90	10.78
OFDM 20	5825	Mcs0	31	25.64	33.64	10.46
HE 20	5745	Mcs0	31	26.85	34.85	11.49
HE 20	5775	Mcs0	31	26.86	34.86	11.49
HE 20	5825	Mcs0	31	25.70	33.70	9.99
HE 40	5755	Mcs0	24	24.73	32.73	6.59
HE 40	5775	Mcs0	25	25.33	33.33	6.52
HE 40	5795	Mcs0	26	25.17	33.17	6.32
HE 80	5775	Mcs0	22	22.42	30.42	1.17

Result

The maximum summed average power spectral density was less than the limit of 30 dBm; therefore, the EUT complies with the specification.

427 West 12800 South, Draper, UT 84020

-- End of Test Report --