

Report No.: POCE230819321KYT

RF TEST REPORT

For

Shenzhen Ugoos Technology Co., Ltd Product Name: android tv box

Model(s).: am8

Report Reference No. : POCE230819321KYT

FCC ID : 2AL8Y-AM8

Applicant's Name : Shenzhen Ugoos Technology Co., Ltd

Address Room 6A, 6th Floor, Building A, Bao'an Square, Sun'gang Road, Luohu

District, Shenzhen 518020, China

Testing Laboratory: Shenzhen POCE Technology Co., Ltd.

Address 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,

Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15E

Date of Receipt : August 17, 2023

Date of Test : August 17, 2023 to August 31, 2023

Data of Issue : August 31, 2023

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 1 of 143

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE230819321KYT	August 31, 2023
		-00	

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:	
Amy Zhu	Stone In.	(Machoel MO	
Amy Zhu / File administrators	Stone Yin / Technique principal	Machael Mo / Manager	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 2 of 143

CONTENTS

1 TEST SUMMARY	5
1.1 Test Standards	
2 GENERAL INFORMATION	6
2.1 CLIENT INFORMATION	
2.2 DESCRIPTION OF DEVICE (EUT)	6
2.3 DESCRIPTION OF TEST MODES	7
2.4 DESCRIPTION OF SUPPORT UNITS	7
2.5 EQUIPMENTS USED DURING THE TEST	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	10
3 EVALUATION RESULTS (EVALUATION)	
3.1 Antenna requirement	11
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	12
4.1.2 Test Setup Diagram: 4.1.3 Test Data:	
4.1.3 Test Data.	
4.2.1 E.U.T. Operation:	
4.2.2 Test Setup Diagram:	15
4.2.3 Test Data:	15
4.3 MAXIMUM CONDUCTED OUTPUT POWER	16
4.3.1 E.U.T. Operation:	17
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 POWER SPECTRAL DENSITY	
4.4.1 E.U.T. Operation: 4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	
4.5.1 E.U.T. Operation:	21
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6 BAND EDGE EMISSIONS (RADIATED)	
4.6.1 E.U.T. Operation: 4.6.2 Test Data:	
4.7 UNDESIRABLE EMISSION LIMITS (BELOW 1GHz)	
4.7.1 E.U.T. Operation:	
4.7.2 Test Data:	
4.8 Undesirable emission limits (above 1GHz)	
4.8.1 E.U.T. Operation:	
4.8.2 Test Setup Diagram:	
4.8.3 Test Data:	
5 TEST SETUP PHOTOS	
6 PHOTOS OF THE EUTAPPENDIX	
16pB Emission Bandwidth	
IOUD EMISSION DANDWIDTH	37

2. DUTY CYCLE	52
3. MAXIMUM CONDUCTED OUTPUT POWER	
4. Power Spectral Density	82
5. BANDEDGE	103
6. Spurious Emission	114
7. FREQUENCY STABILITY	129

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15E		Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	section 6.2	47 CFR Part 15.207(a)	Pass
Duty Cycle	47 CFR Part 15E	section 12.2 (b)	POO	Pass
Maximum conducted output power	47 CFR Part 15E	ANSI C63.10-2013, section 12.3	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	ANSI C63.10-2013, section 12.5	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 5 of 143

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Shenzhen Ugoos Technology Co., Ltd

Address : Room 6A, 6th Floor, Building A, Bao'an Square, Sun'gang Road, Luohu

District, Shenzhen 518020, China

Manufacturer : Shenzhen Ugoos Technology Co., Ltd

Address : Room 6A, 6th Floor, Building A, Bao'an Square, Sun'gang Road, Luohu

District, Shenzhen 518020, China

2.2 Description of Device (EUT)

	, , ,
Product Name:	android tv box
Model/Type reference:	am8
Series Model:	am8 pro,am8 plus,am8 max ,am8b plus,am8b pro
Model Difference:	The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	ugoos
Power Supply:	DC5V/3A;DC9.0V/2.22A;DC12.0/1.67A Power from Adapter
Power Adaptor:	MODEL:RPD20-01E INPOU:100-240V-50/60Hz 0.8A OUTPUT:DC5V/3A;DC9.0V/2.22A;DC12.0/1.67A 20.0W MAX
Operation Frequency:	802.11a/n(HT20)/ac(HT20)(HE20): U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40)(HE40): U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80)(HE80): U-NII Band 3: 5775MHz
Number of Channels:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 3: 5; 802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 3: 2; 802.11ac(HT80)/ax(HE80): U-NII Band 3: 1
Modulation Type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
Antenna Type:	External
Antenna Gain:	ANT1:3 dBi;ANT2:3 dBi; MIMO ANT:6.01dBi
Hardware Version:	V1.0
Software Version:	V1.0

Note: MIMO Gain=10*log[(10G1/20+10G2/20+...)2 /Nant], so MIMO Gain: 6.01dBi >6dBi

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 6 of 143

Operation Frequency each of channel

Operation i requency each of channel						
Band 4						
802.11a/80	2.11n20	802.11n40		802.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
149	5745MHz	151	5755MHz	155	5775MHz	
153	5765MHz	159	5795MHz			
157	5785MHz			CE.		
161	5805MHz					
165	5825MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

_								
	Band 4							
	802.11a/802	2.11n20	802.11n40		802.11ac			
	Channel	Frequency	Channel	Frequency	Channel	Frequency		
	The lowest channel	5745MHz	The lowest channel	5755MHz	The middle channel	5775MHz		
	The middle channel	5785MHz	The highest channel	5795MHz				
	The highest channel	5825MHz	20	CE		OCE		

2.3 Description of Test Modes

No	Title	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM3	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM5	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
PC	Lenovo	Air 14 Plus	
Display Screen	000	DU	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 7 of 143

2.5 Equipments Used During The Test

• •	•				
Conducted Emission	at AC power line				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
loop antenna	EVERFINE	LLA-2	80900L-C	2023-02-27	2024-02-26
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2023-02-28	2024-02-27
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1
Cable	SCHWARZ BECK	1	PO	2022-12-27	2023-12-27
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-02-27	2024-02-26
50ΩCoaxial Switch	Anritsu	MP59B	M20531		/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2022-12-29	2023-12-28

Duty Cycle

Maximum conducted output power

Power spectral density

Emission bandwidth and occupied bandwidth

Zimoron banawan ana oodapida banawan						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	1	
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10	
DC power	HP	66311B	38444359	/	1	
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	POCK	
Vector signal generator	Keysight	N5181A	MY48180415	2022-12-10	2023-12-09	
Signal generator	Keysight	N5182A	MY50143455	2022-12-29	2023-12-28	
Spectrum Analyzer	Keysight	N9020A	MY53420323	2022-12-29	2023-12-28	

Undesirable emission limits (above 1GHz)
Band edge emissions (Radiated)

Undesirable emission limits (below 1GHz)

Unidestrable emission	IIIIII (Delow TOTI)				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	1
Positioning Controller	1	MF-7802	1	1	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Cable(LF)#2 Schwarzbeck		/	2023-02-27	2024-02-26
Cable(LF)#1	Schwarzbeck		/	2023-02-27	2024-02-26
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023-02-28	2024-02-27
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	1	2023-02-27	2024-02-26
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF power density	±0.234%
Radio Frequency	2×10-7
RF conducted power	±0.733dB
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded ur	ncertainty expressed at approximately the 95%

2.7 Identification of Testing Laboratory

confidence level using a coverage factor of k=2.

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen POCE Technology Co., Ltd.			
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Par Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China			
Phone Number:	+86-13267178997			
Fax Number:	86-755-29113252			
FCC Registration Number:	0032847402			
Designation Number:	CN1342			
Test Firm Registration No.:	778666			
A2LA Certificate Number:	6270.01			

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 10 of 143

3 Evaluation Results (Evaluation)

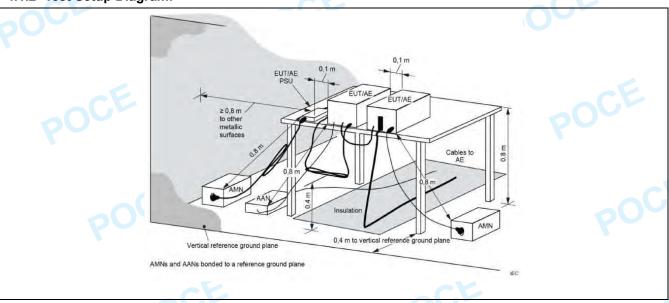
3.1 Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

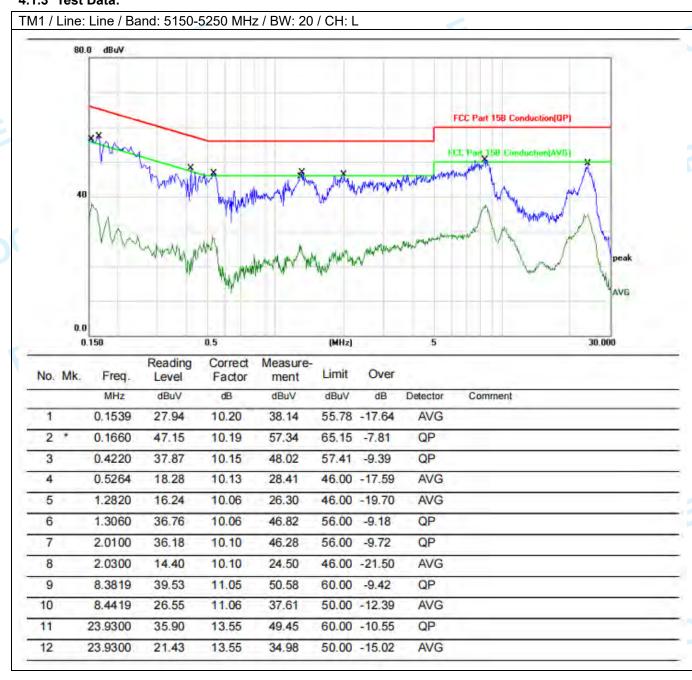
102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 11 of 143

4 Radio Spectrum Matter Test Results (RF)

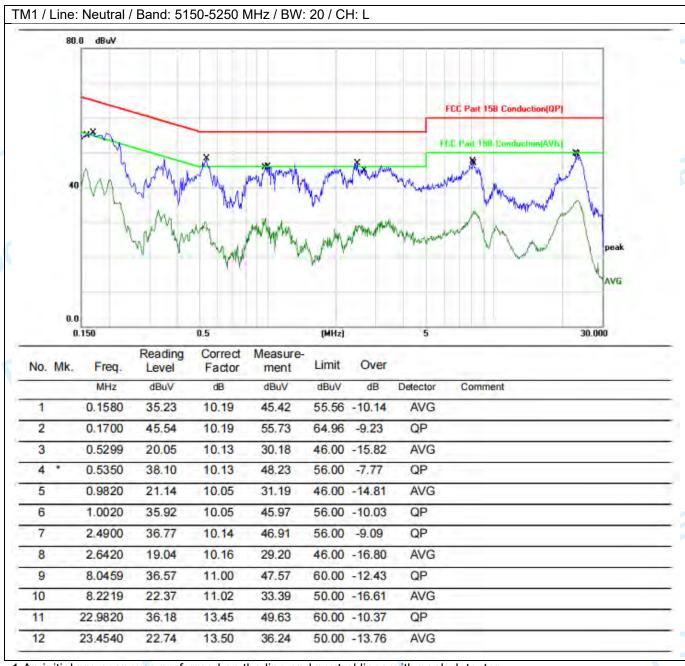

4.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	000	1	OU	
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)			
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of t	he frequency.		_	
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices				

4.1.1 E.U.T. Operation:


Operating Environment:						
Temperature:	22.2 °C		Humidity:	53.6 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1				
Final test mode:		TM1				

4.1.2 Test Setup Diagram:

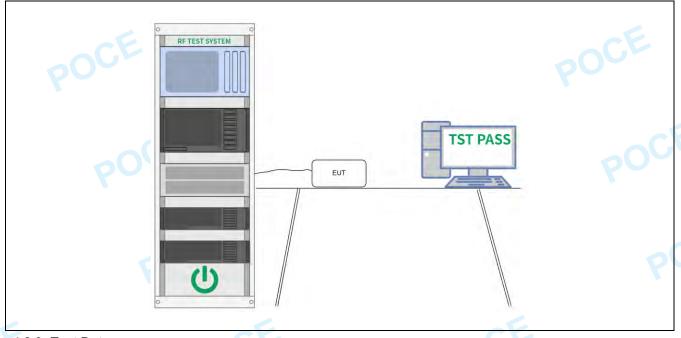


102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 12 of 143

4.1.3 Test Data:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 14 of 143


4.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

4.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.2 °C		Humidity:	53.6 %	Atmospheric Pressure:	102 kPa		
Pre test mode:		TM1,	TM2, TM3			CE		
Final test mode:		TM1,	TM2, TM3	0				

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

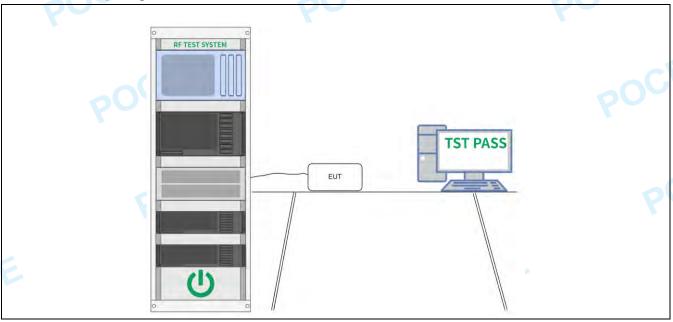
102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 15 of 143

4.3 Maximum conducted output power

4.3 Maximum condu	cted output power
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
CE	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
POO	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
POCE	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
P	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
E	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional
Test Method:	applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. ANSI C63.10-2013, section 12.3

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 16 of 143

Procedure:


Method SA-1

- a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
- b) Set RBW = 1 MHz.
- c) Set VBW >= 3 MHz.
- d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level,then the trigger shall be set to "free run."
- h) Trace average at least 100 traces in power averaging (rms) mode.
- i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%OBW of the spectrum.

4.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.2 °C		Humidity:	53.6 %	Atmospheric Pressure:	102 kPa	
Pre test mode:		TM1,	TM2, TM3				
Final test mode:		TM1,	TM2, TM3				

4.3.2 Test Setup Diagram:

4.3.3 Test Data:

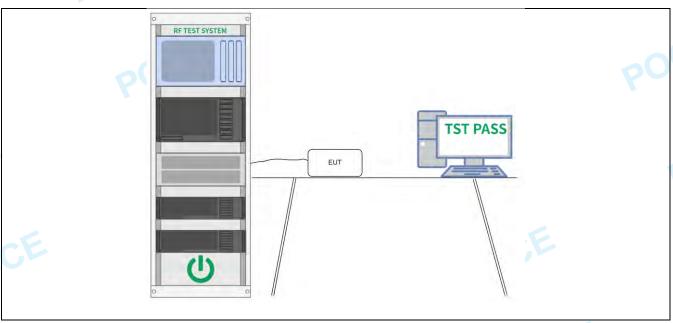
Please Refer to Appendix for Details.

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 17 of 143

4.4 Power spectral density

4.4 Fower spectrar c	
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz
Test Method:	ANSI C63.10-2013, section 12.5
Procedure:	a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Computepower" (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW >= 1 / T, where T is defined in 12.2 a). 2) Set VBW >= [3 × RBW]. 3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.

4.4.1 E.U.T. Operation:


	Operating Environment:								
	Temperature:	22.2 °C		Humidity:	53.6 %	Atmospheric Pressure:	102 kPa		
1	Pre test mode:		TM1,	TM2, TM3					
	Final test mode:		TM1,	TM2, TM3		000			

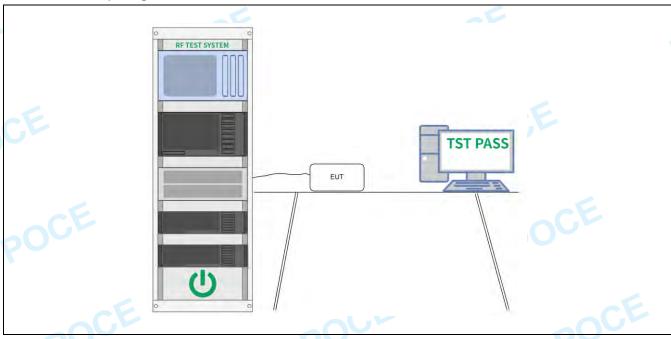
4.4.2 Test Setup Diagram:

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 18 of 143

4.4.3 Test Data:

Please Refer to Appendix for Details.

4.5 Emission bandwidth and occupied bandwidth


	riotn and occupied bandwidth
Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Procedure:	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold.
CE	e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
OCE	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of
	the OBW,and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from
POCE	exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified
	range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
POC	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace
D	data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the
	difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
	6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak.
OCE	d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the
	frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.5.1 E.U.T. Operation:

Operating Environment:									
Temperature:	22.2 °C	CX	Humidity:	53.6 %	Atmospheric Pressure:	102 kPa			
Pre test mode:	OU	TM1,	TM2, TM4		00		PO		
Final test mode:		TM1,	TM2, TM4						

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 21 of 143

	47 CFR Part 15.407(b) 47 CFR Part 15.407(b) For transmitters operat 5.15-5.35 GHz band sh For transmitters operat All emissions shall be li or below the band edge below the band edge, a linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band edge MHz 0.090-0.110	ing in the 5.15-5.25 Ghall not exceed an e.i.r. ing solely in the 5.725- imited to a level of -27 e increasing linearly to and from 25 MHz above 6 dBm/MHz at 5 MHz a below the band edge inceedge.	p. of -27 dBm/M 5.850 GHz band dBm/MHz at 75 10 dBm/MHz at e or below the ba above or below	MHz. d: 5 MHz or more abo 25 MHz above or and edge increasi
	For transmitters operat 5.15-5.35 GHz band sh For transmitters operat All emissions shall be li or below the band edge below the band edge, a linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band edge. MHz 0.090-0.110	ing in the 5.15-5.25 GH nall not exceed an e.i.r. ing solely in the 5.725- imited to a level of −27 e increasing linearly to and from 25 MHz above 6.6 dBm/MHz at 5 MHz a below the band edge indedge.	p. of -27 dBm/M 5.850 GHz band dBm/MHz at 75 10 dBm/MHz at e or below the ba above or below	MHz. d: 5 MHz or more abo 25 MHz above or and edge increasi
est Limit:	5.15-5.35 GHz band she For transmitters operat All emissions shall be lighter or below the band edge, a linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band edge. MHz 0.090-0.110	nall not exceed an e.i.r., ing solely in the 5.725-imited to a level of -27 in increasing linearly to and from 25 MHz above 6 dBm/MHz at 5 MHz are ledge.	p. of -27 dBm/M 5.850 GHz band dBm/MHz at 75 10 dBm/MHz at e or below the ba above or below	MHz. d: 5 MHz or more abo 25 MHz above or and edge increasi
	5.15-5.35 GHz band she For transmitters operat All emissions shall be lighter or below the band edge, a linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band edge. MHz 0.090-0.110	nall not exceed an e.i.r., ing solely in the 5.725-imited to a level of -27 in increasing linearly to and from 25 MHz above 6 dBm/MHz at 5 MHz are ledge.	p. of -27 dBm/M 5.850 GHz band dBm/MHz at 75 10 dBm/MHz at e or below the ba above or below	MHz. d: 5 MHz or more abo 25 MHz above or and edge increasi
	All emissions shall be li or below the band edge below the band edge, a linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band of MHz 0.090-0.110	imited to a level of -27 increasing linearly to and from 25 MHz above 6 dBm/MHz at 5 MHz arelow the band edge incedge.	dBm/MHz at 75 10 dBm/MHz at e or below the ba above or below	5 MHz or more abo 25 MHz above or and edge increasi
	All emissions shall be li or below the band edge below the band edge, a linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band of MHz 0.090-0.110	imited to a level of -27 increasing linearly to and from 25 MHz above 6 dBm/MHz at 5 MHz arelow the band edge incedge.	dBm/MHz at 75 10 dBm/MHz at e or below the ba above or below	5 MHz or more abo 25 MHz above or and edge increasi
	or below the band edge, a below the band edge, a linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band of MHz	e increasing linearly to and from 25 MHz above 6 dBm/MHz at 5 MHz a below the band edge inc edge.	10 dBm/MHz at e or below the ba above or below	25 MHz above or and edge increasi
	below the band edge, a linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band of MHz 0.090-0.110	and from 25 MHz above 6 dBm/MHz at 5 MHz a selow the band edge ind edge.	e or below the ba above or below	and edge increasi
	linearly to a level of 15. from 5 MHz above or b dBm/MHz at the band of MHz 0.090-0.110	.6 dBm/MHz at 5 MHz a selow the band edge ind edge.	above or below	
	from 5 MHz above or b dBm/MHz at the band of MHz 0.090-0.110	elow the band edge incedge.		the band edge ar
	dBm/MHz at the band of MHz 0.090-0.110	edge.	5 ,	
	0.090-0.110	T		
	0.090-0.110	MHz	MHz	GHz
		16.42-16.423	399.9-410	4.5-5.15
	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
			1646.5	
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
			1722.2	
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
		156.52525		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(²)
	13.36-13.41			The state of the s
	¹ Until February 1, 1999), this restricted band sl	hall be 0.490-0.5	510 MHz.
	² Above 38.6	ataataaa aaaa aa ta'a ta	in the second	
	The field strength of en			
	exceed the limits show MHz, compliance with the			
	measurement instrume			
	MHz, compliance with t			
	on the average value o			
	these measurements.			
	Except as provided else	ewhere in this subpart,	the emissions f	rom an intentional
	radiator shall not excee			
	Frequency (MHz)	Field strength		Measurement
		(microvolts/mete		distance
		(5.575/11/5/5	,	(meters)
		0400/5/1411=)		300
	0.009-0.490	2400/F(KHZ)		300
	0.009-0.490 0.490-1.705	2400/F(kHz) 24000/F(kHz)		
	0.490-1.705	24000/F(kHz)		30
	0.490-1.705 1.705-30.0	24000/F(kHz) 30		
	0.490-1.705	24000/F(kHz)	PC	30 30

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 22 of 143

ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6

500

Above 960

Test Method:

3

Procedure:

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

4.6.1 E.U.T. Operation:

Operating Envir	onment:				200	
Temperature:	22.2 °C		Humidity:	53.6 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1,	TM2, TM4			
Final test mode:		TM1,	TM2, TM4			

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 23 of 143

4.6.2 Test Data:

UNII-3_20M_5745MHz_Horizontal

No	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1	5650	46.40	0.91	47.31	68.20	-20.89	peak	Р
2	5700	54.17	0.91	55.08	105.20	-50.12	peak	Р
3	5720	63.78	0.9	64.68	110.80	-46.12	peak	Р
4	5725	77.28	0.9	78.18	122.20	-44.02	peak	Р

UNII-3_20M_5745MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650	47.63	0.91	48.54	68.20	-19.66	peak	Р
2	5700	53.38	0.91	54.29	105.20	-50.91	peak	Р
3	5720	64.13	0.9	65.03	110.80	-45.77	peak	Р
4	5725	74.31	0.9	75.21	122.20	-46.99	peak	Р

UNII-3_20M_5825MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	5850	72.70	0.91	73.61	122.20	-48.59	peak	Р
2	5875	50.14	0.91	51.05	105.20	-54.15	peak	Р
3	5925	46.93	0.9	47.83	68.20	-20.37	peak	Р

UNII-3_20M_5825MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850	70.20	0.91	71.11	122.20	-51.09	peak	Р
2	5875	50.79	0.91	51.70	105.20	-53.50	peak	Р
3	5925	45.67	0.9	46.57	68.20	-21.63	peak	Р

UNII-3_40M_5755MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5650	47.81	0.91	48.72	68.20	-19.48	peak	Р
2	5700	52.95	0.91	53.86	105.20	-51.34	peak	Р
3	5720	64.97	0.9	65.87	110.80	-44.93	peak	Р
4	5725	77.76	0.9	78.66	122.20	-43.54	peak	Р

UNII-3_40M_5755MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650	46.74	0.91	47.65	68.20	-20.55	peak	Р
2	5700	52.47	0.91	53.38	105.20	-51.82	peak	Р
3	5720	62.50	0.9	63.40	110.80	-47.40	peak	Р
4	5725	75.33	0.9	76.23	122.20	-45.97	peak	Р

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 24 of 143

UNII-3 40M 5795MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850	69.09	0.91	70.00	122.20	-52.20	peak	Р
2	5875	49.75	0.91	50.66	105.20	-54.54	peak	Р
3	5925	46.65	0.9	47.55	68.20	-20.65	peak	Р

UNII-3 40M 5795MHz Vertical

				_				
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5850	70.81	0.91	71.72	122.20	-50.48	peak	Р
2	5875	49.74	0.91	50.65	105.20	-54.55	peak	Р
3	5925	46.94	0.9	47.84	68.20	-20.36	peak	Р

Remark:

- 1. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 2.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. The test data shows only the worst case(802.11n(HT20) mode)

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 25 of 143

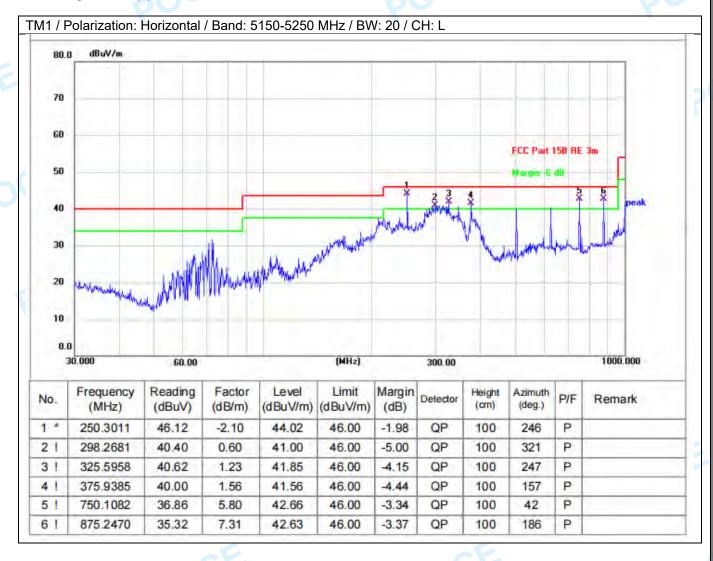
Test Requirement:	47 CFR Part 15.407(b)(9	9)					
·	1.7						
Test Limit:	Unwanted emissions be set forth in § 15.209.	low 1 GHz must comply with the	general field strength limits				
		where in this subpart, the emissi I the field strength levels specific					
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance				
	1000	,	(meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
Test Method:	ANSI C63.10-2013, sect	tion 12.7.4, 12.7.5, 12.7.6					
Procedure:	Below 1GHz:						
		EUT was placed on the top of a	rotating table 0.8 meters				
		meter semi-anechoic chamber.					
		e position of the highest radiation					
		r 10 meters away from the interfe					
	which was mounted on t	the top of a variable-height anter	nna tower.				
	c. The antenna height is	varied from one meter to four m	neters above the ground to				
	determine the maximum	value of the field strength. Both	horizontal and vertical				
	polarizations of the antenna are set to make the measurement.						
	d. For each suspected e	d. For each suspected emission, the EUT was arranged to its worst case and then					
	the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of						
	below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table						
		ees to 360 degrees to find the ma					
		em was set to Peak Detect Fund	ction and Specified				
	Bandwidth with Maximu						
		f the EUT in peak mode was 10d					
		ould be stopped and the peak va					
		emissions that did not have 10d					
		quasi-peak method as specified	I and then reported in a				
	data sheet.						
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.						
	h. The radiation measurements are performed in X, Y, Z axis positioning for						
		found the X axis positioning whi					
		ures until all frequencies measur	ed was complete.				
	Remark:						
		Cable Loss+ Antenna Factor- Pre					
		MHz, the disturbance below 30N					
		plots are the highest emissions					
		oints had been displayed. The a					
	_	ator which are attenuated more t	IIaii 2006 below the limit				
	need not be reported.	4/ 10Uz woo yon/ low and the be-	ermonico wara the bishest				
		w 1GHz was very low and the ha					
		en testing, so only the above ha	imonics had been				
	displayed.						
	Above 1GHz:						
		ELIT was placed on the ten of a	rotating table 1.5 maters				
		EUT was placed on the top of a meter fully-anechoic chamber. T					
	T above the drotting at a 3	meier iuny-anechoic chamber il	The Table was fotated 360				
		e position of the highest radiation					

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 26 of 143

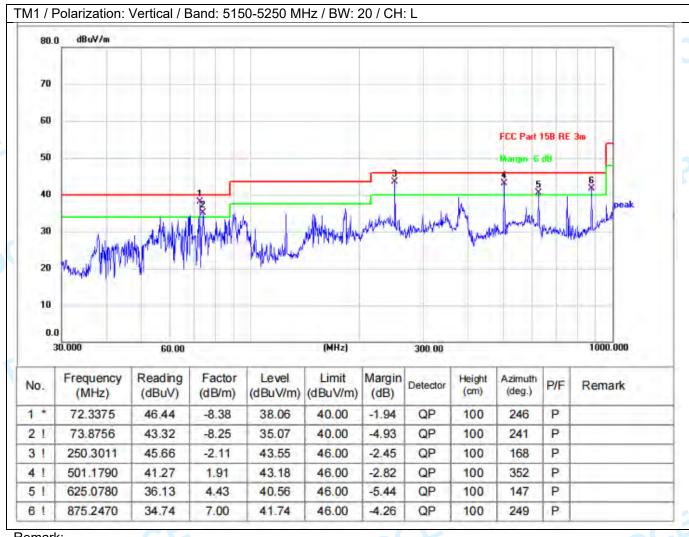
was mounted on the top of a variable-height antenna tower.

- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

4.7.1 E.U.T. Operation:


Operating Environment:							
Temperature:	22.2 °C		Humidity:	53.6 %	Atmospheric Pressure:	102 kPa	
Pre test mode:		TM1,	TM2, TM4		_		
Final test mode:		TM1,	TM2, TM4		CE		

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 27 of 143


4.7.2 Test Data:

Between 9KHz - 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Remark:

- 1. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 2.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement Correction Factor= Antenna Factor + Cable loss - Pre-amplifier
- 3. The test data shows only the worst case(802.11n(HT20) mode)

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 29 of 143

4.8 Undesirable emission limits (above 1GHz)

	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	00
To at Lineit.	l -	and the second s

Test Limit:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of –27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-	9.3-9.5
	1646.5	
74.8-75.2	1660-1710	10.6-12.7
108-121.94	1718.8-	13.25-13.4
	1722.2	
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-	2483.5-2500	17.7-21.4
156.52525		
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(²)
	16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 108-121.94 123-138 149.9-150.05 156.52475- 156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5- 1646.5 1718.8- 1722.2 123-138 2200-2300 149.9-150.05 2310-2390 156.52475- 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

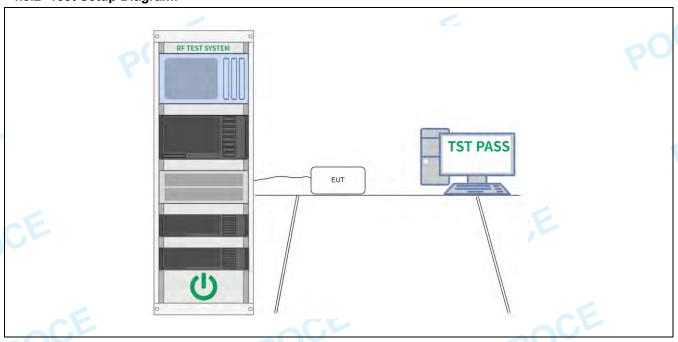
Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

	•	_
Frequency (MHz)	Field strength	Measurement
	(microvolts/meter)	distance
		(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 30 of 143

²Above 38.6

1 246 060	200 **	2
		3
ANSI C63.10-2013, section	12.7.4, 12.7.5, 12.7.6	
Above 1GHz: a. For above 1GHz, the EUT above the ground at a 3 me degrees to determine the pob. The EUT was set 3 meter was mounted on the top of a c. The antenna height is var determine the maximum val polarizations of the antenna d. For each suspected emisthe antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum Hf. If the emission level of the specified, then testing could reported. Otherwise the emitested one by one using pear a data sheet. g. Test the EUT in the lowes h. The radiation measurement Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cable 2. Scan from 18GHz to 40G points marked on above plo	T was placed on the top of a rotal ter fully-anechoic chamber. The fosition of the highest radiation. It is away from the interference-recal variable-height antenna tower. Tied from one meter to four meter ue of the field strength. Both hor are set to make the measurements is in the EUT was arranged to it is eights from 1 meter to 4 meters (was tuned to heights 1 meter) and to 360 degrees to find the maximal was set to Peak Detect Function and Mode. EUT in peak mode was 10dB to be stopped and the peak values is is in that did not have 10dB mak or average method as specificated channel, the middle channel, the ents are performed in X, Y, Z axis and the X axis positioning which it is until all frequencies measured where the highest emissions could be sare the sare the highest emissions could be sare the sare the highest emissions could be sare the	table was rotated 360 seiving antenna, which is above the ground to izontal and vertical ent. Is worst case and then for the test frequency of the rotatable table num reading. It and Specified ever than the limit is of the EUT would be argin would be rest and then reported in the Highest channel. It is positioning for its the worst case. It was complete.
3. As shown in this section, based on average limits. Ho exceed the maximum permi under any condition of moduthan the average limit, only 4. The disturbance above 18	owever, the peak field strength of tted average limits specified aboulation. For the emissions whose the peak measurement is shown 8GHz were very low and the har	any emission shall not ve by more than 20 dB peak level is lower in the report. monics were the
	Above 960 ANSI C63.10-2013, section Above 1GHz: a. For above 1GHz, the EU above the ground at a 3 me degrees to determine the po b. The EUT was set 3 meter was mounted on the top of a c. The antenna height is var determine the maximum val polarizations of the antenna d. For each suspected emis the antenna was tuned to he below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum H f. If the emission level of the specified, then testing could reported. Otherwise the emi tested one by one using pea a data sheet. g. Test the EUT in the lowes h. The radiation measureme Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cab 2. Scan from 18GHz to 40G points marked on above plo testing, so only above points emissions from the radiator need not be reported. 3. As shown in this section, based on average limits. Ho exceed the maximum permi under any condition of mode than the average limit, only 4. The disturbance above 18 highest point could be found	Above 960 ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rota above the ground at a 3 meter fully-anechoic chamber. The degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-rec was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meter determine the maximum value of the field strength. Both hor polarizations of the antenna are set to make the measureme d. For each suspected emission, the EUT was arranged to it the antenna was tuned to heights from 1 meter to 4 meters (below 30MHz, the antenna was tuned to heights 1 meter) and was turned from 0 degrees to 360 degrees to find the maxime. The test-receiver system was set to Peak Detect Function Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB to specified, then testing could be stopped and the peak values reported. Otherwise the emissions that did not have 10dB m tested one by one using peak or average method as specifie a data sheet. g. Test the EUT in the lowest channel, the middle channel, the h. The radiation measurements are performed in X, Y, Z axis Transmitting mode, and found the X axis positioning which it. Repeat above procedures until all frequencies measured w Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Pream 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz in marked on above plots are the highest emissions coutesting, so only above points had been displayed. The amplitemissions from the radiator which are attenuated more than need not be reported. 3. As shown in this section, for frequencies above 1GHz, the based on average limits. However, the peak field strength of exceed the maximum permitted average limits specified abounder any condition of modulation. For the emissions whose than the average limit, only the peak measurement is shown 4. The disturbance above 18GHz were very low and the harn


4.8.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.2 °C		Humidity:	53.6 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1,	TM2, TM4			
Final test mode:		TM1,	TM2, TM4		No.	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 31 of 143

4.8.2 Test Setup Diagram:

4.8.3 Test Data:

	ANT1802.11a mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490	46.74	9.54	56.28	68.2	-11.92	Vertical		
11490	45.84	9.54	55.38	68.2	-12.82	Horizontal		
		802.11a mode L	owest channel (A	Average Value)				
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490	32.82	9.54	42.36	54	-11.64	Vertical		
11490	32.67	9.54	42.21	54	-11.79	Horizontal		

	ANT1802.11a mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570	47.14	9.64	56.78	68.2	-11.42	Vertical		
11570	46.53	9.64	56.17	68.2	-12.03	Horizontal		
	AN	T1802.11a mod	de Middle channe	el (Average Value))			
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570	31.33	9.64	40.97	54	-13.03	Vertical		
11570	31.82	9.64	41.46	54	-12.54	Horizontal		

	ANT1802.11a mode Highest channel (Peak Value)						
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11650	46.47	9.74	56.21	68.2	-11.99	Vertical	
11650	45.58	9.74	55.32	68.2	-12.88	Horizontal	
	AN	T1802.11a mod	le Highest chann	el (Average Value	e)		
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11650	33.19	9.74	42.93	54	-11.07	Vertical	
11650	32.70	9.74	42.44	54	-11.56	Horizontal	

Remark

- 1.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 2.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. The test data shows only the worst case(802.11n(HT20) mode)

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 33 of 143

	ANT2802.11a mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490	45.79	9.54	55.33	68.2	-12.87	Vertical		
11490	47.05	9.54	56.59	68.2	-11.61	Horizontal		
	AN	T2802.11a mod	le Lowest chann	el (Average Valu	e)			
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490	33.69	9.54	43.23	54	-10.77	Vertical		
11490	33.14	9.54	42.68	54	-11.32	Horizontal		

	ANT2802.11a mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570	46.94	9.64	56.58	68.2	-11.62	Vertical		
11570	45.34	9.64	54.98	68.2	-13.22	Horizontal		
	AN	T2802.11a mod	de Middle channe	el (Average Value	e)			
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570	31.49	9.64	41.13	54	-12.87	Vertical		
11570	33.22	9.64	42.86	54	-11.14	Horizontal		

ANT2802.11a mode Highest channel (Peak Value)						
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650	46.04	9.74	55.78	68.2	-12.42	Vertical
11650	45.80	9.74	55.54	68.2	-12.66	Horizontal
ANT2802.11a mode Highest channel (Average Value)						
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650	31.77	9.74	41.51	54	-12.49	Vertical
11650	32.39	9.74	42.13	54	-11.87	Horizontal

Remark

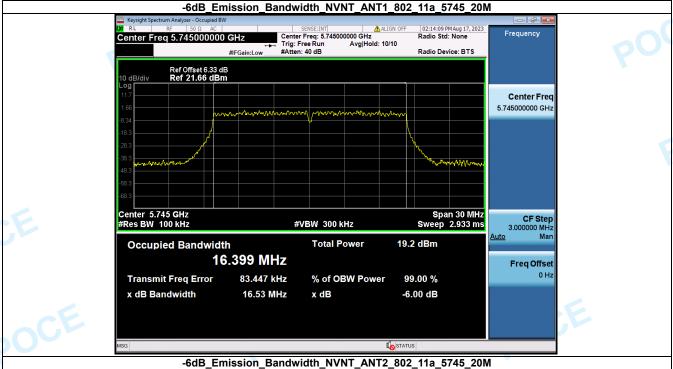
- 1. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 2.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. The test data shows only the worst case(802.11n(HT20) mode)

TEST SETUP PHOTOS

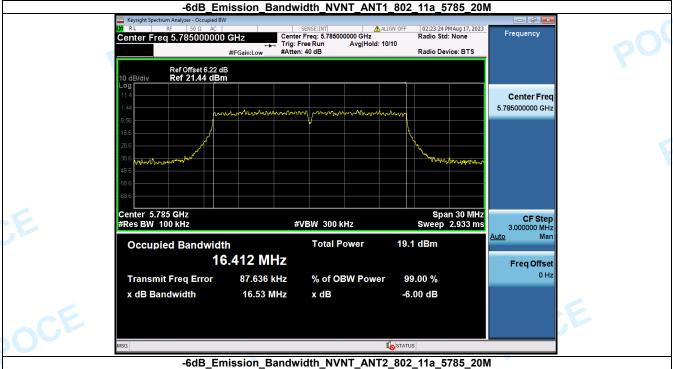
Refer to Appendix - Test Setup Photos

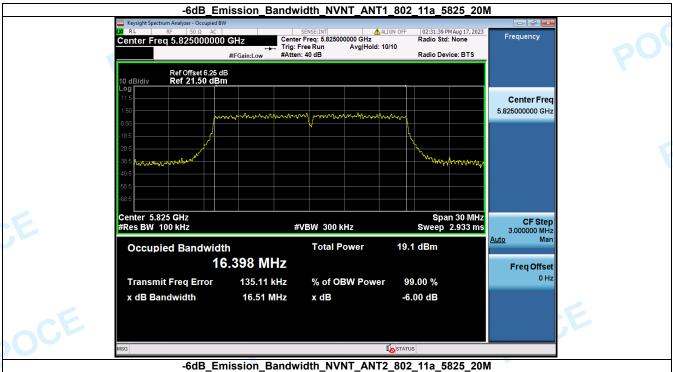
PHOTOS OF THE EUT

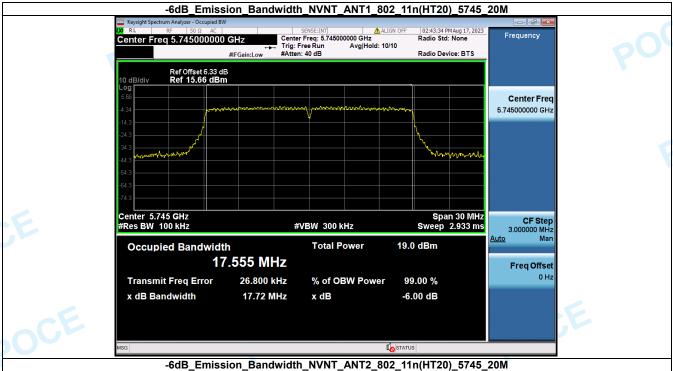
Refer to Appendix - EUT Photos

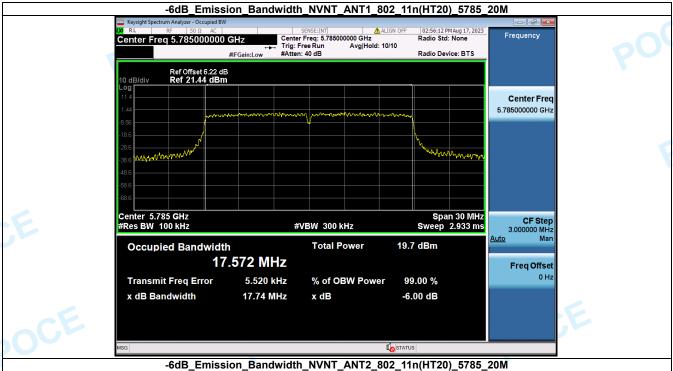

Appendix

1. -6dB Emission Bandwidth

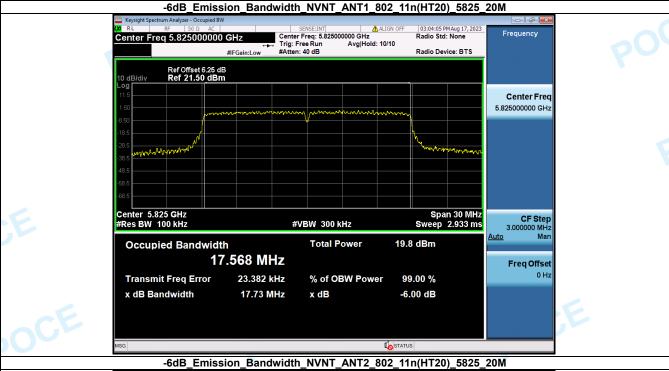

Condition	Antenna	Mode Frequency(MHz)		-6dB_Emission_Bandwidth(MHz)	Limit(MHz)	Result
NVNT	ANT1	LCH	5745.00	16.525	0.500	Pass
NVNT	ANT2	LCH	5745.00	16.511	0.500	Pass
NVNT	NT1	MCH	5785.00	16.535	0.500	Pass
NVNT	ANT2	MCH	5785.00	16.527	0.500	Pass
NVNT	ANT1	HCH	5825.00	16.510	0.500	Pass
NVNT	ANT2	HCH	5825.00	16.522	0.500	Pass
NVNT	ANT1	LCH	5745.00	17.724	0.500	Pass
NVNT	ANT2	LCH	5745.00	17.754	0.500	Pass
NVNT	ANT1	MCH	5785.00	17.739	0.500	Pass
NVNT	ANT2	MCH	5785.00	17.746	0.500	Pass
NVNT	ANT1	HCH	5825.00	17.729	0.500	Pass
NVNT	ANT2	HCH	5825.00	17.746	0.500	Pass
NVNT	ANT1	LCH	5745.00	17.728	0.500	Pass
NVNT	ANT2	LCH	5745.00	17.755	0.500	Pass
NVNT	ANT1	MCH	5785.00	17.740	0.500	Pass
NVNT	ANT2	MCH	5785.00	17.757	0.500	Pass
NVNT	ANT1	HCH	5825.00	17.730	0.500	Pass
NVNT	ANT2	HCH	5825.00	17.758	0.500	Pass
NVNT	ANT1	LCH	5755.00	36.444	0.500	Pass
NVNT	ANT2	LCH	5755.00	36.427	0.500	Pass
NVNT	ANT1	HCH	5795.00	36.444	0.500	Pass
NVNT	ANT2	HCH	5795.00	36.444	0.500	Pass
NVNT	ANT1	LCH	5755.00	36.485	0.500	Pass
NVNT	ANT2	LCH	5755.00	36.479	0.500	Pass
NVNT	ANT1	HCH	5795.00	36.478	0.500	Pass
NVNT	ANT2	HCH	5795.00	36.456	0.500	Pass
NVNT	ANT1	MCH	5775.00	76.367	0.500	Pass
NVNT	ANT2	MCH	5775.00	75.465	0.500	Pass

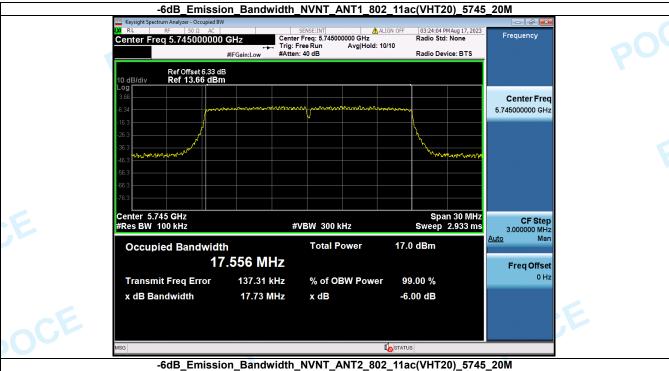


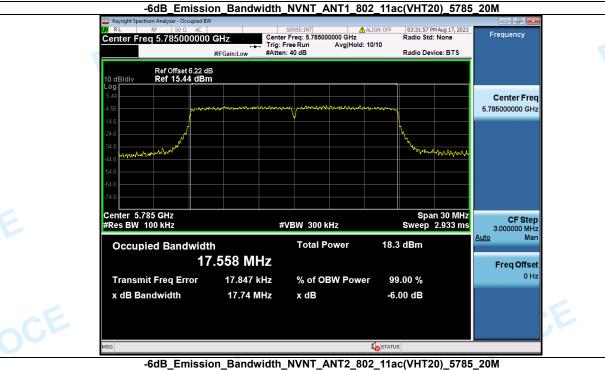


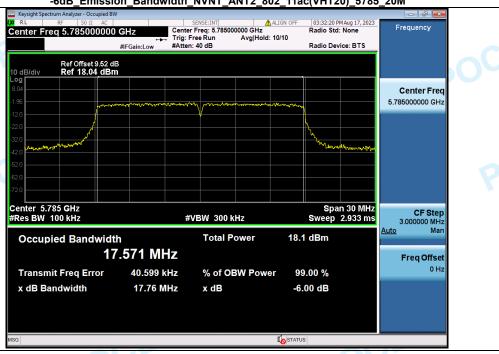


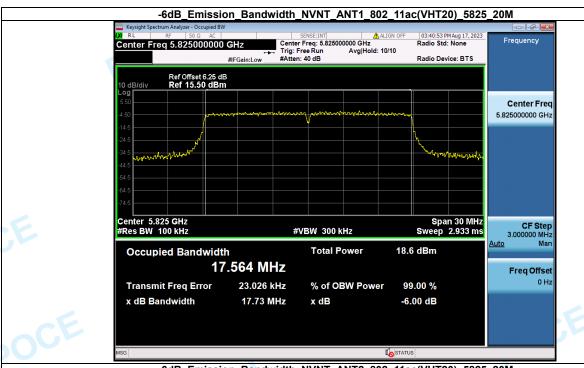


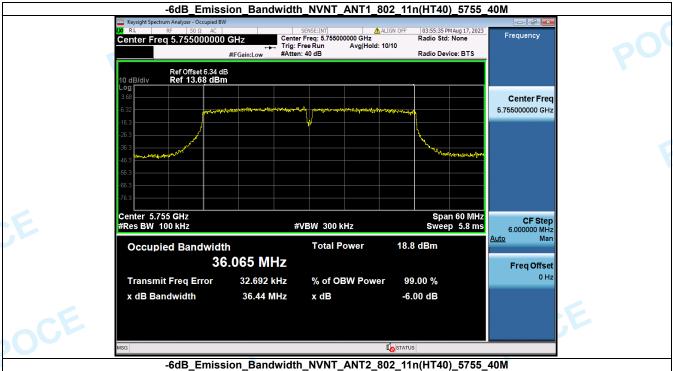


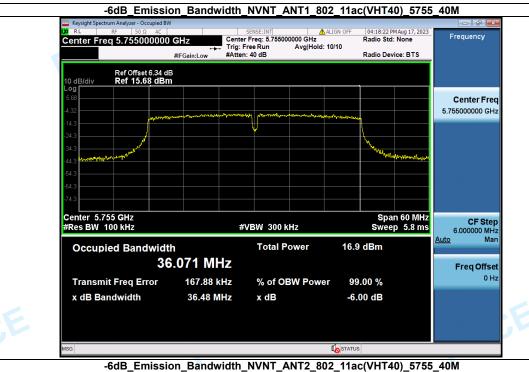


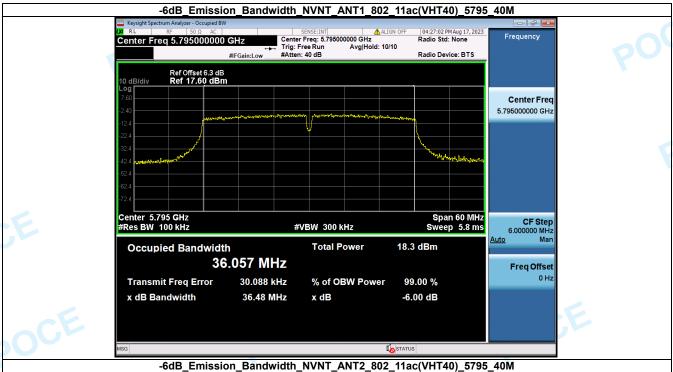


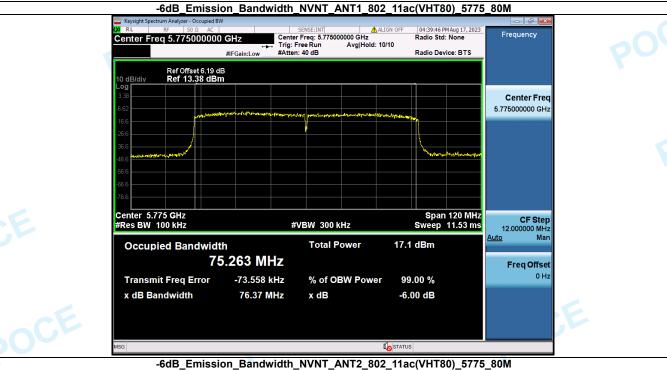




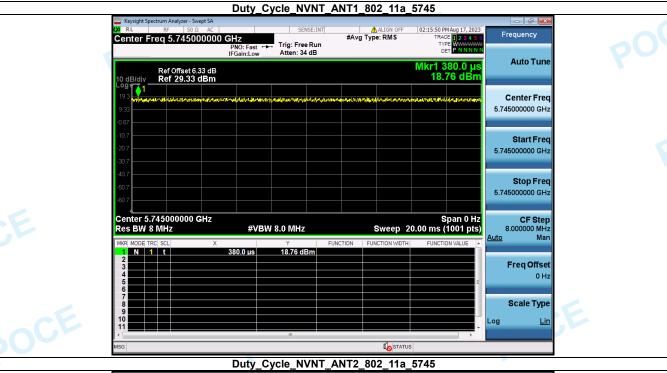


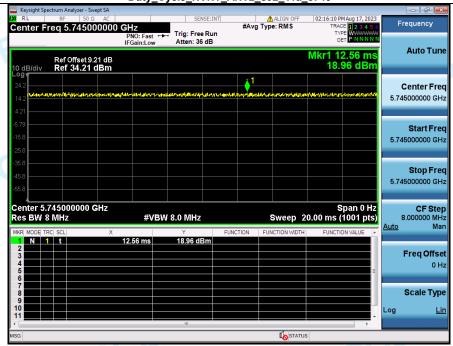




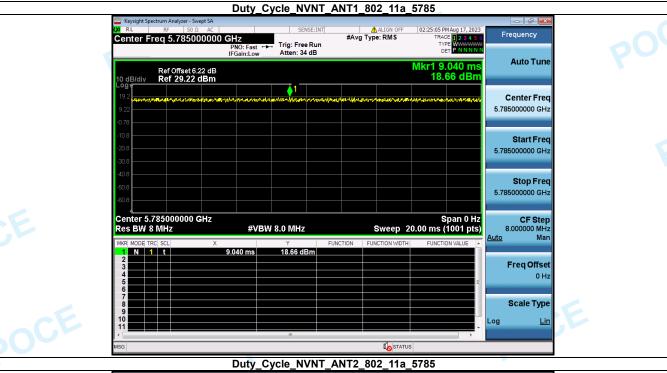


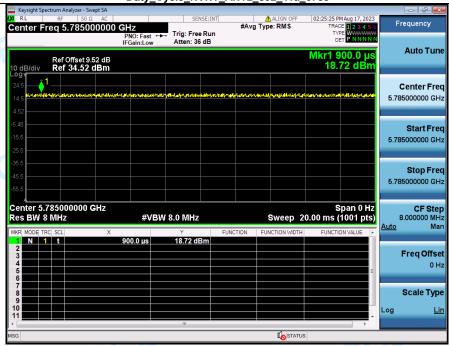


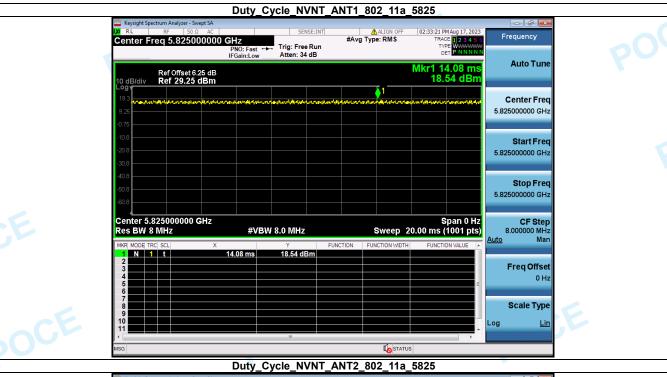


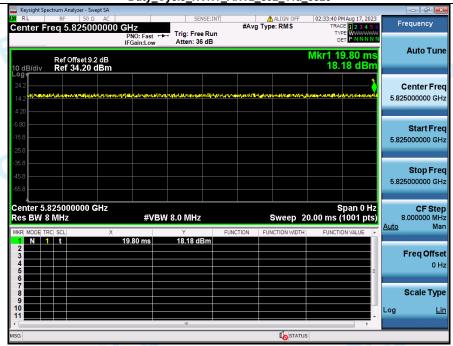


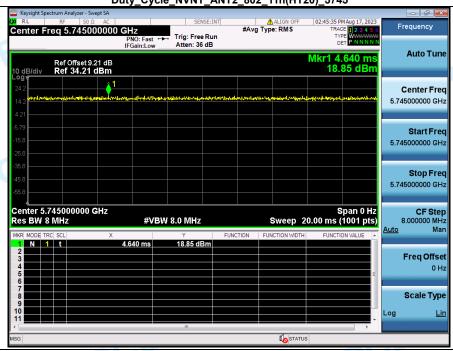
2. Duty Cycle

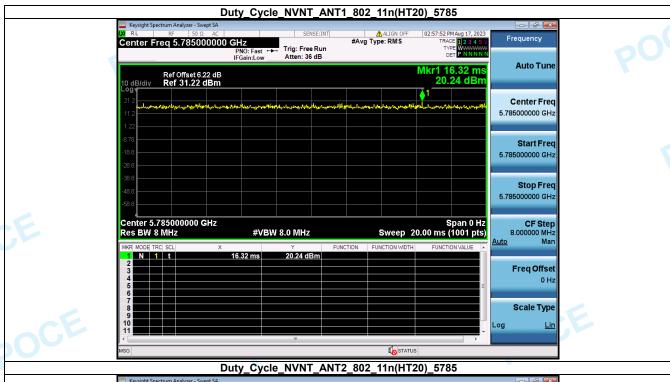

Condition	Antenna	Modulation	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	802.11a	5745.00	100	0.00
NVNT	ANT2	802.11a	5745.00	100	0.00
NVNT	ANT1	802.11a	5785.00	100	0.00
NVNT	ANT2	802.11a	5785.00	100	0.00
NVNT	ANT1	802.11a	5825.00	100	0.00
NVNT	ANT2	802.11a	5825.00	100	0.00
NVNT	ANT1	802.11n(HT20)	5745.00	100	0.00
NVNT	ANT2	802.11n(HT20)	5745.00	100	0.00
NVNT	ANT1	802.11n(HT20)	5785.00	100	0.00
NVNT	ANT2	802.11n(HT20)	5785.00	100	0.00
NVNT	ANT1	802.11n(HT20)	5825.00	100	0.00
NVNT	ANT2	802.11n(HT20)	5825.00	100	0.00
NVNT	ANT1	802.11ac(VHT20)	5745.00	100	0.00
NVNT	ANT2	802.11ac(VHT20)	5745.00	100	0.00
NVNT	ANT1	802.11ac(VHT20)	5785.00	100	0.00
NVNT	ANT2	802.11ac(VHT20)	5785.00	100	0.00
NVNT	ANT1	802.11ac(VHT20)	5825.00	100	0.00
NVNT	ANT2	802.11ac(VHT20)	5825.00	100	0.00
NVNT	ANT1	802.11n(HT40)	5755.00	100	0.00
NVNT	ANT2	802.11n(HT40)	5755.00	100	0.00
NVNT	ANT1	802.11n(HT40)	5795.00	100	0.00
NVNT	ANT2	802.11n(HT40)	5795.00	100	0.00
NVNT	ANT1	802.11ac(VHT40)	5755.00	100	0.00
NVNT	ANT2	802.11ac(VHT40)	5755.00	100	0.00
NVNT	ANT1	802.11ac(VHT40)	5795.00	100	0.00
NVNT	ANT2	802.11ac(VHT40)	5795.00	100	0.00
NVNT	ANT1	802.11ac(VHT80)	5775.00	100	0.00
NVNT	ANT2	802.11ac(VHT80)	5775.00	100	0.00

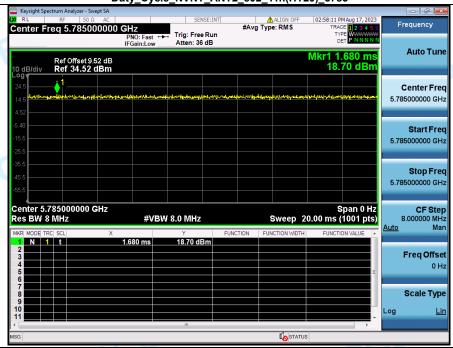


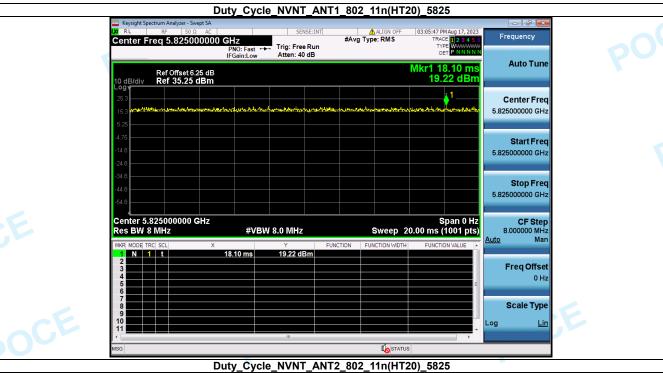


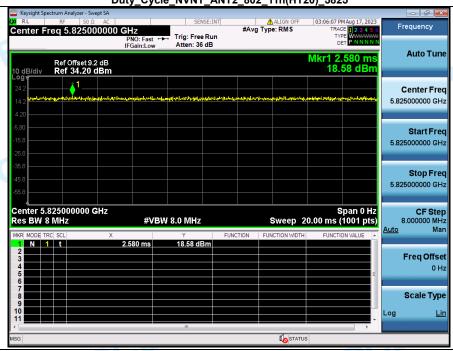


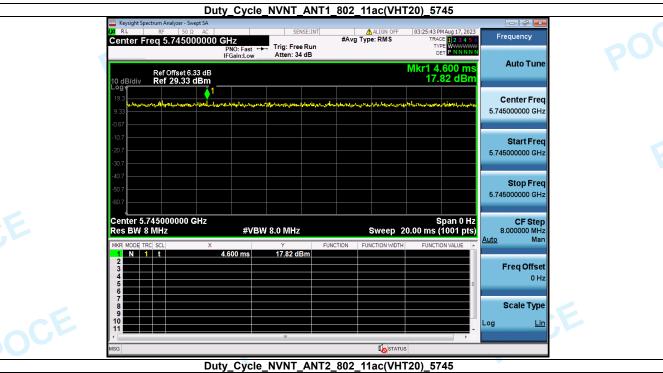


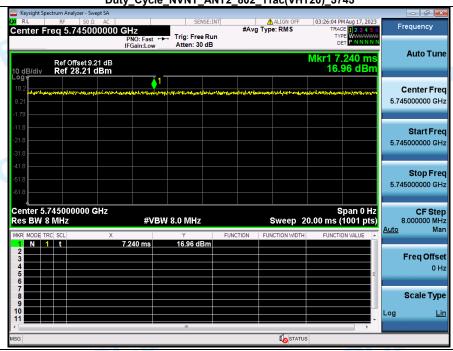


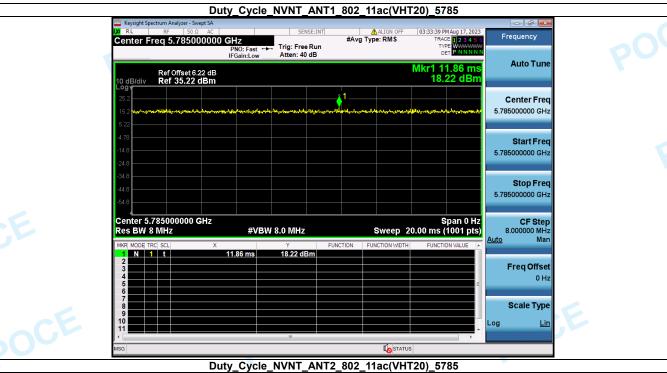


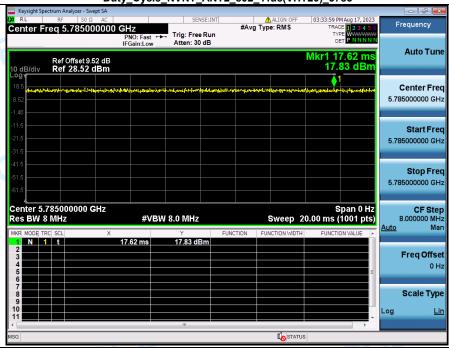


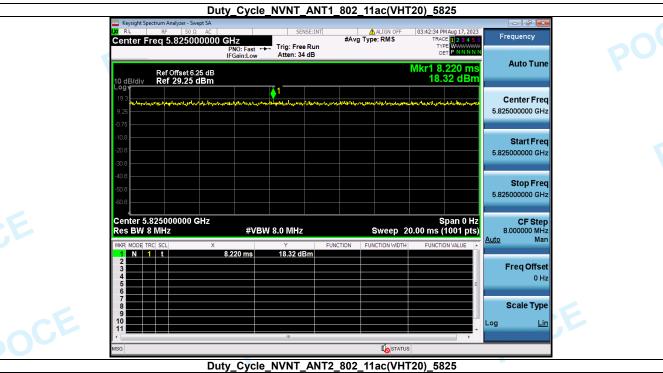


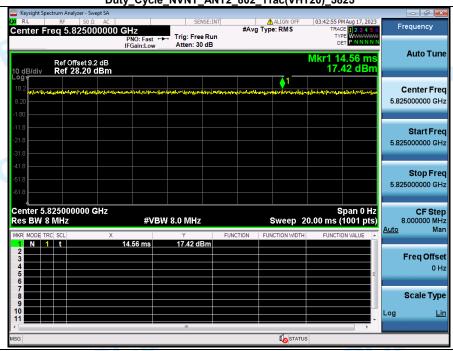


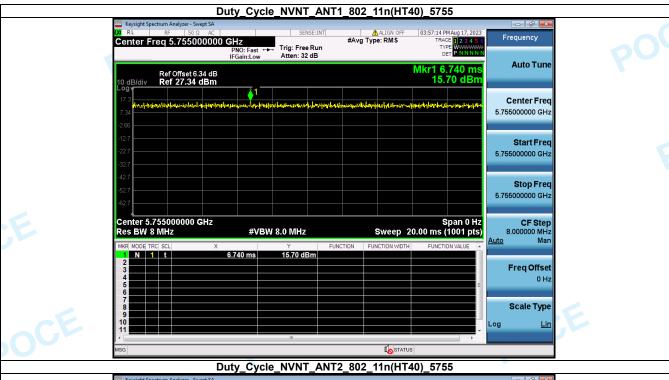


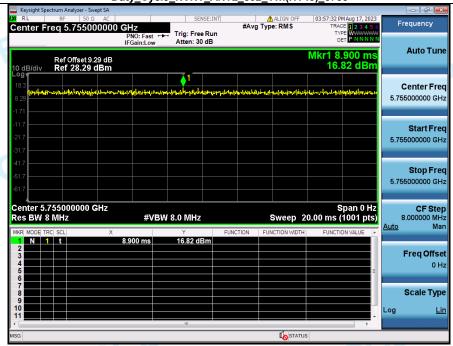


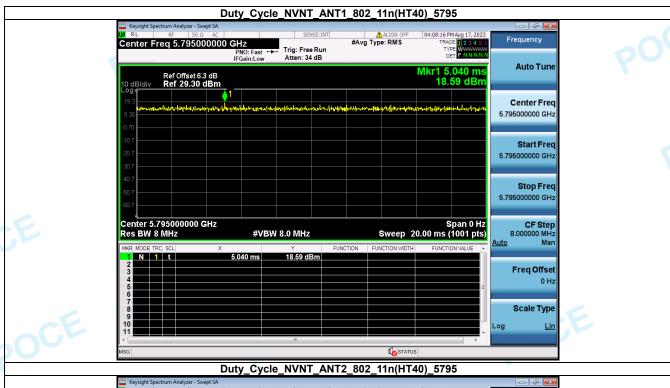


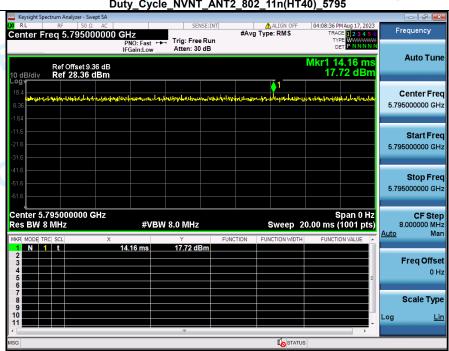


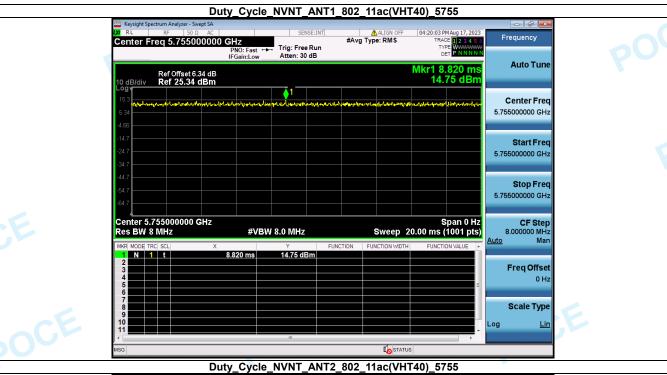


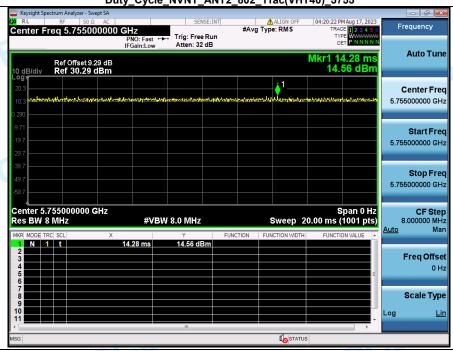


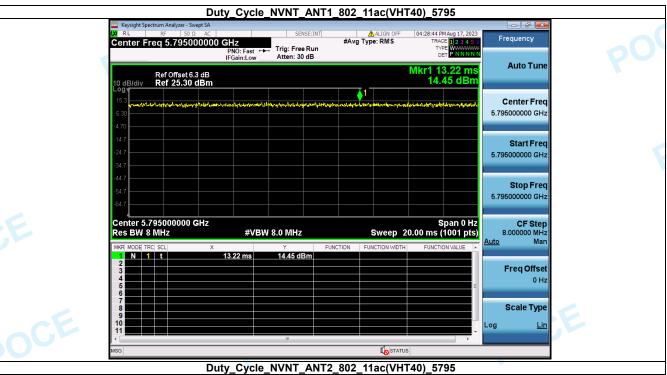


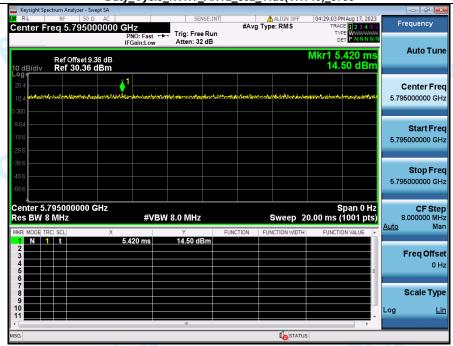


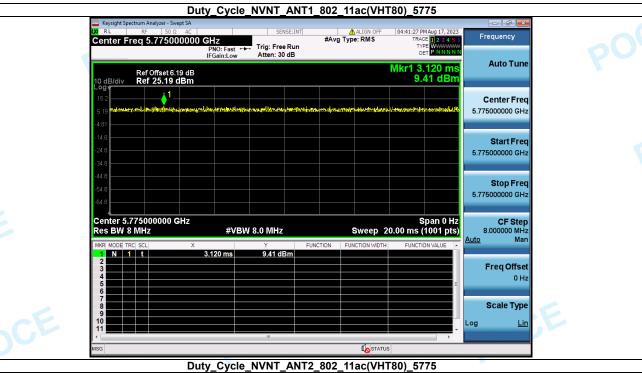


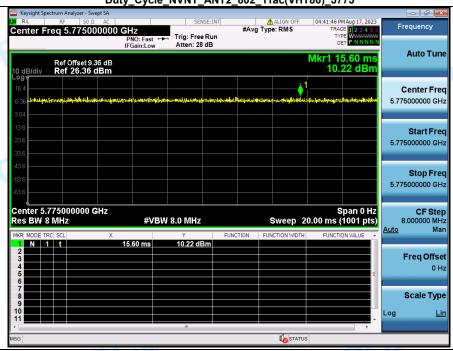


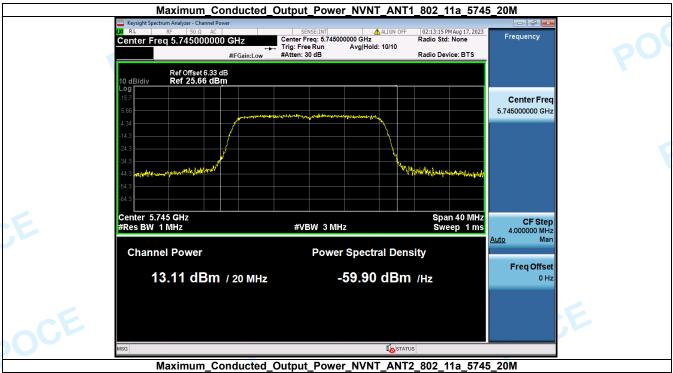






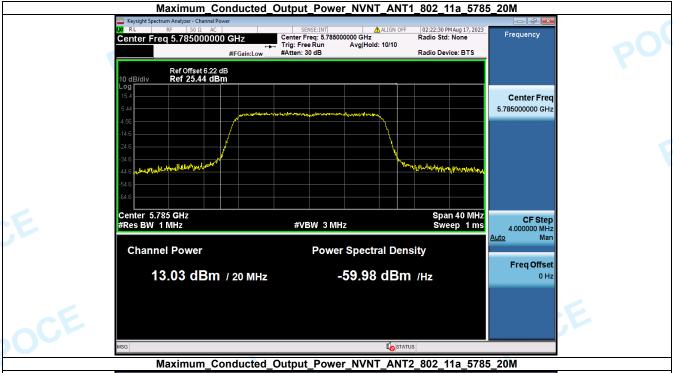


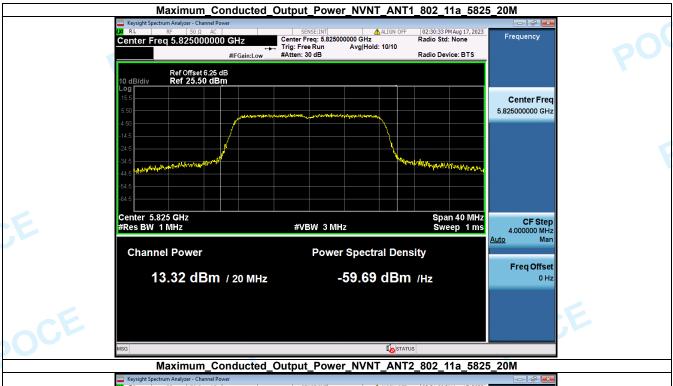


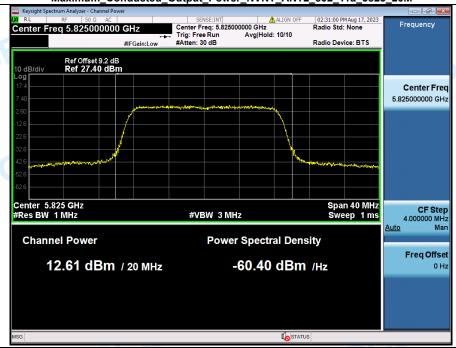


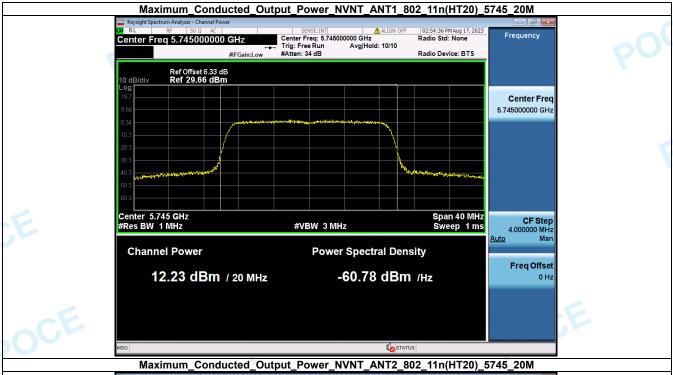


3. Maximum Conducted Output Power

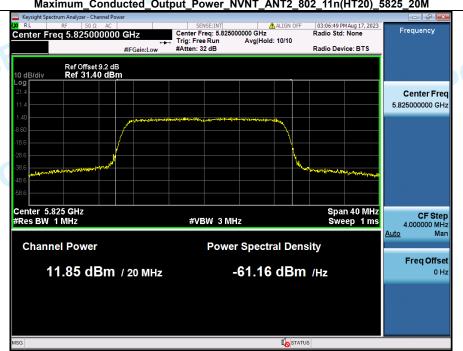

Condition Antenna		Modulation	Frequency (MHz)	Conducted Power(dBm)	limit(dBm)	Result	
NVNT	ANT1	802.11a	5745.00	13.11	30	Pass	
NVNT	ANT2	802.11a	5745.00	12.96	30	Pass	
NVNT	ANT1	802.11a	5785.00	13.03	30	Pass	
NVNT	ANT2	802.11a	5785.00	13.10	30	Pass	
NVNT	ANT1	802.11a	5825.00	13.32	30	Pass	
NVNT	ANT2	802.11a	5825.00	12.61	30	Pass	
NVNT	ANT1	802.11n(HT20)	5745.00	12.23	30	Pass	
NVNT	ANT2	802.11n(HT20)	5745.00	12.32	30	Pass	
NVNT	ANT1	802.11n(HT20)	5785.00	12.13	30	Pass	
NVNT	ANT2	802.11n(HT20)	5785.00	12.22	30	Pass	
NVNT	ANT1	802.11n(HT20)	5825.00	12.25	30	Pass	
NVNT	ANT2	802.11n(HT20)	5825.00	11.85	30	Pass	
NVNT	ANT1	802.11ac(VHT20)	5745.00	10.96	30	Pass	
NVNT	ANT2	802.11ac(VHT20)	5745.00	10.89	30	Pass	
NVNT	ANT1	802.11ac(VHT20)	5785.00	10.80	30	Pass	
NVNT	ANT2	802.11ac(VHT20)	5785.00	10.82	30	Pass	
NVNT	ANT1	802.11ac(VHT20)	5825.00	11.08	30	Pass	
NVNT	ANT2	802.11ac(VHT20)	5825.00	10.70	30	Pass	
NVNT	ANT1	802.11n(HT40)	5755.00	12.09	30	Pass	
NVNT	ANT2	802.11n(HT40)	5755.00	12.12	30	Pass	
NVNT	ANT1	802.11n(HT40)	5795.00	11.77	30	Pass	
NVNT	ANT2	802.11n(HT40)	5795.00	11.43	30	Pass	
NVNT	ANT1	802.11ac(VHT40)	5755.00	10.38	30	Pass	
NVNT	ANT2	802.11ac(VHT40)	5755.00	10.65	30	Pass	
NVNT	ANT1	802.11ac(VHT40)	5795.00	10.34	30	Pass	
NVNT	ANT2	802.11ac(VHT40)	5795.00	10.33	30	Pass	
NVNT	ANT1	802.11ac(VHT80)	5775.00	9.03	30	Pass	
NVNT	ANT2	802.11ac(VHT80)	5775.00	9.76	30	Pass	

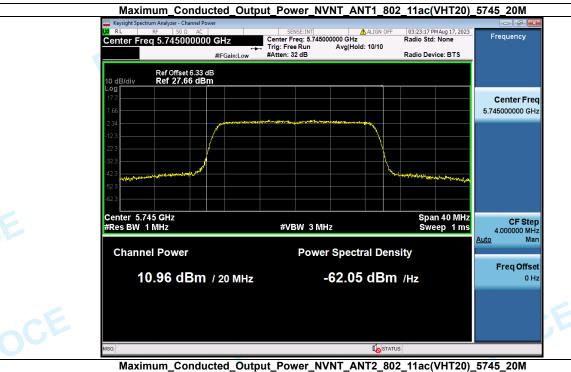


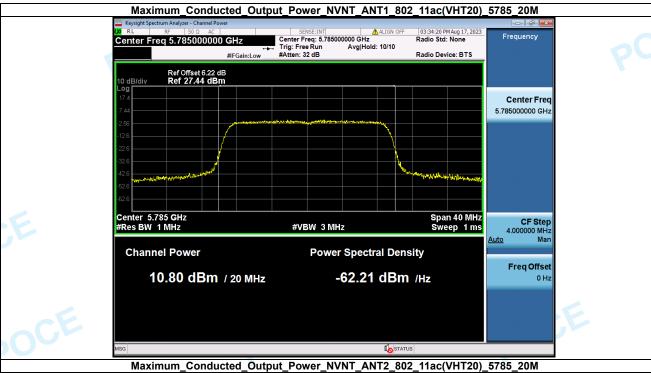


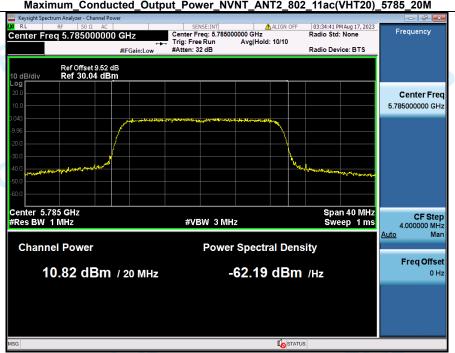


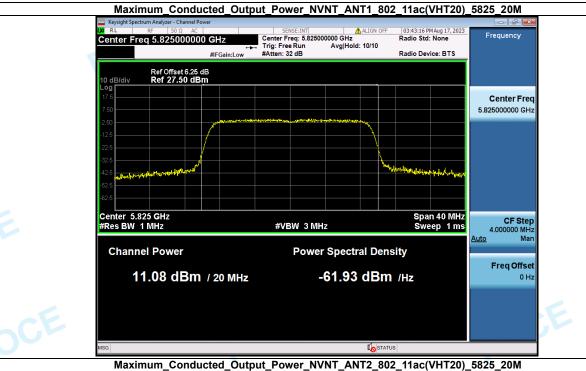


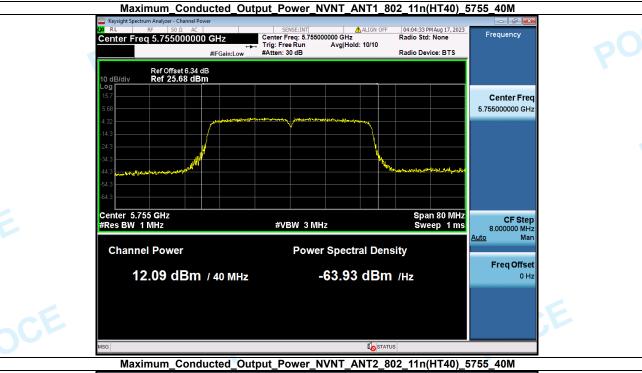


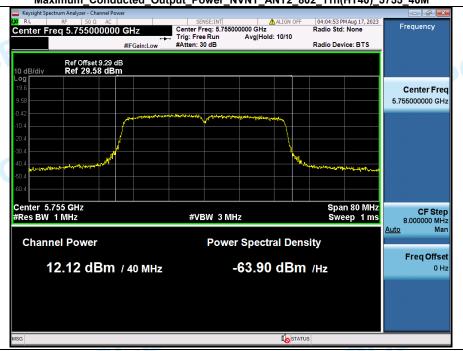


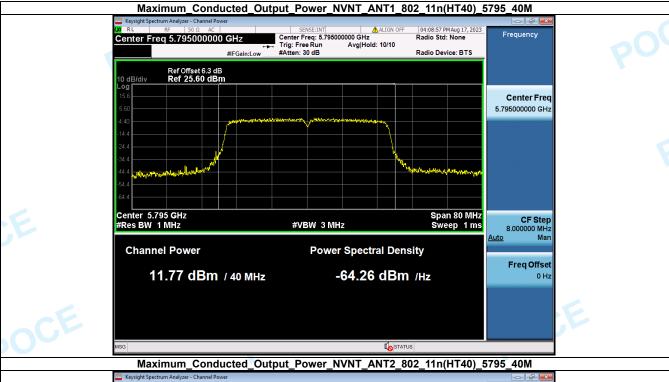


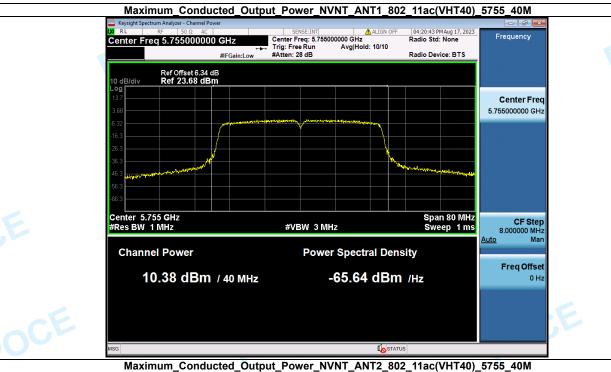


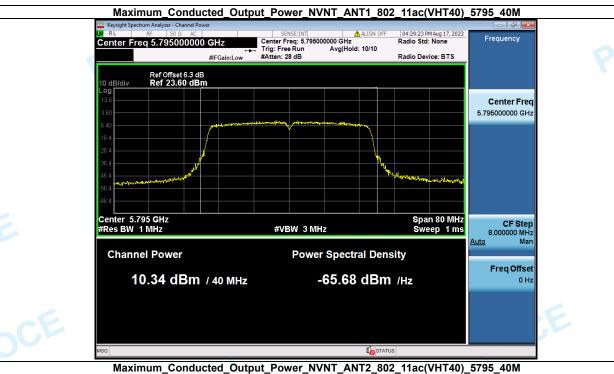


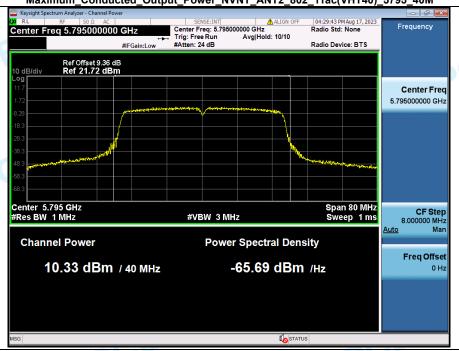


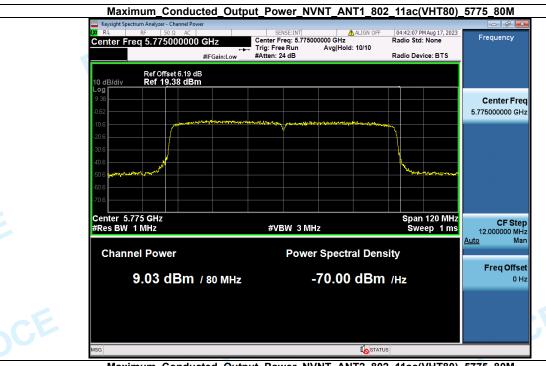


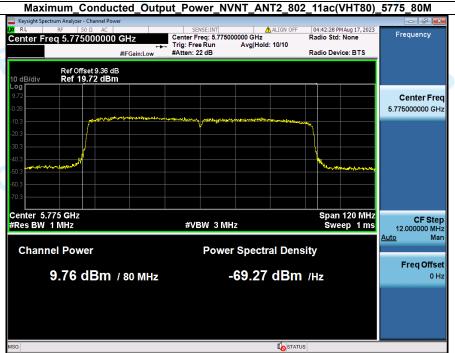












Condition	Antenna	Mode	Frequency(MHz)	MIMO_Conducted_Power(dBm)	Limit(dBm)	Result
NVNT	MIMO_TX	802.11n(HT20)	5745.00	15.29	30	Pass
NVNT	MIMO_TX	802.11n(HT20)	5785.00	15.19	30	Pass
NVNT	MIMO_TX	802.11n(HT20)	5825.00	15.06	30	Pass
NVNT	MIMO_TX	802.11ac(VHT20)	5745.00	13.94	30	Pass
NVNT	MIMO_TX	802.11ac(VHT20)	5785.00	13.82	30	Pass
NVNT	MIMO_TX	802.11ac(VHT20)	5825.00	13.91	30	Pass
NVNT	MIMO_TX	802.11n(HT40)	5755.00	15.12	30	Pass
NVNT	MIMO_TX	802.11n(HT40)	5795.00	14.61	30	Pass
NVNT	MIMO_TX	802.11ac(VHT40)	5755.00	13.53	30	Pass
NVNT	MIMO_TX	802.11ac(VHT40)	5795.00	13.35	30	Pass
NVNT	MIMO_TX	802.11ac(VHT80)	5775.00	12.42	30	Pass

4. Power Spectral Density

Condition	Antenna	Modulation	Frequency (MHz)	PSD_SA(dBm)	PSD(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5745.00	4.876	4.790	30	Pass
NVNT	ANT2	802.11a	5745.00	5.938	5.852	30	Pass
NVNT	ANT1	802.11a	5785.00	4.765	4.679	30	Pass
NVNT	ANT2	802.11a	5785.00	6.069	5.983	30	Pass
NVNT	ANT1	802.11a	5825.00	4.780	4.694	30	Pass
NVNT	ANT2	802.11a	5825.00	5.602	5.516	30	Pass
NVNT	ANT1	802.11n(HT20)	5745.00	5.334	5.248	30	Pass
NVNT	ANT2	802.11n(HT20)	5745.00	4.796	4.710	30	Pass
NVNT	ANT1	802.11n(HT20)	5785.00	5.638	5.552	30	Pass
NVNT	ANT2	802.11n(HT20)	5785.00	4.437	4.351	30	Pass
NVNT	ANT1	802.11n(HT20)	5825.00	5.801	5.715	30	Pass
NVNT	ANT2	802.11n(HT20)	5825.00	4.116	4.030	30	Pass
NVNT	ANT1	802.11ac(VHT20)	5745.00	3.551	3.465	30	Pass
NVNT	ANT2	802.11ac(VHT20)	5745.00	3.645	3.559	30	Pass
NVNT	ANT1	802.11ac(VHT20)	5785.00	4.277	4.191	30	Pass
NVNT	ANT2	802.11ac(VHT20)	5785.00	4.043	3.957	30	Pass
NVNT	ANT1	802.11ac(VHT20)	5825.00	4.399	4.313	30	Pass
NVNT	ANT2	802.11ac(VHT20)	5825.00	3.383	3.297	30	Pass
NVNT	ANT1	802.11n(HT40)	5755.00	1.157	1.071	30	Pass
NVNT	ANT2	802.11n(HT40)	5755.00	1.480	1.394	30	Pass
NVNT	ANT1	802.11n(HT40)	5795.00	2.483	2.397	30	Pass
NVNT	ANT2	802.11n(HT40)	5795.00	2.420	2.334	30	Pass
NVNT	ANT1	802.11ac(VHT40)	5755.00	0.777	0.691	30	Pass
NVNT	ANT2	802.11ac(VHT40)	5755.00	0.626	0.540	30	Pass
NVNT	ANT1	802.11ac(VHT40)	5795.00	0.528	0.442	30	Pass
NVNT	ANT2	802.11ac(VHT40)	5795.00	0.239	0.153	30	Pass
NVNT	ANT1	802.11ac(VHT80)	5775.00	-3.755	-3.841	30	Pass
NVNT	ANT2	802.11ac(VHT80)	5775.00	-3.256	-3.342	30	Pass

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 82 of 143

