

Flexible PIFA Antenna 902-928MHz

FEATURES AND BENEFITS

- Quick and easy installation
- Adhesive holds to surface during humidity exposure and hot/cold cycles
- RoHS-compliant
- Patent Number: 9450307

- Can be installed in the following ways:
 - On different non-conductive surfaces and thicknesses
 - On flat or semi-curved surfaces
 - Near metals or the human body

SPECIFICATIONS	
Frequency (MHz)	902-928
Peak Gain (dBi)	-0.1
Average Efficiency (dB)	> -3.6
VSWR (MHz)	< 2.5:1
VSWR (MHz) Impedance (Ω)	50
Polarization	Linear

MECHANICAL SPECIFICATIONS				
Antenna Type	Flexible Planar Inverted F Antenna (FlexPIFA)			
Dimensions – mm (inches)	88 x 40 x 6.2 (3.47 x 1.58 x 0.25)			
Weight – g (oz.)	11 (0.38)			
Color	Clear yellow			
Adhesive	3M 100MP			
Connector Mating Height (max) – mm	MHF1 (U.FL)	2.5		
	MHF4L	1.4		

ENVIRONMENTAL SPECIFICATIONS		
Operating Temperature – °C (°F)	-40 to +85°C (-40 to +185°F)	
Material Substance Compliance	RoHS	

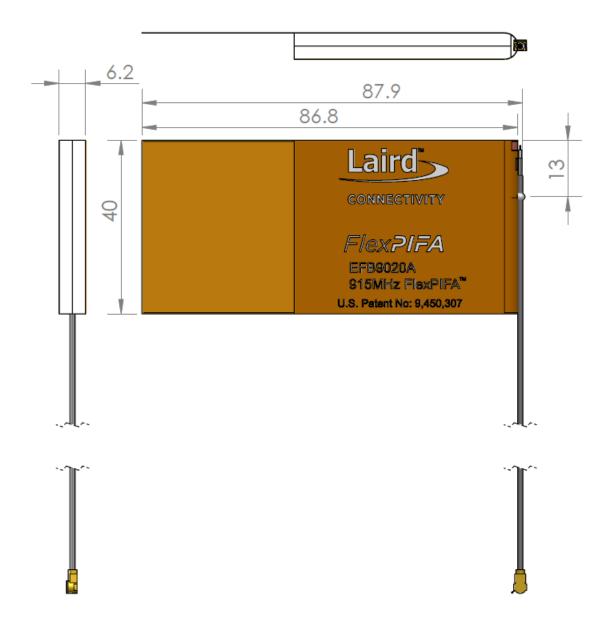
CONFIGURATION

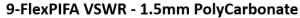
PART NUMBER	CABLE LENGTH	CONNECTOR
EFB9020A3S-15MHF1	150 mm	MHF1
EFB9020A3S-15MH4L	150 mm	MHF4L

Note: Specifications are based on the 150mm cable length, standard antenna version with MHF1 / U.FL connector. Varying the cable length or type or connector will cause variations in these antenna specifications.

MECHANICAL DRAWING

Physical Dimensions (in mm) of the EFB9020A with a 150 mm Long Cable




Figure 1: 9-FlexPIFA mechanical drawing of EFB9020A Antenna

FLAT SURFACE ANTENNA MEASUREMENTS

Flat surface measurements were performed with the antenna centered on a 1.5 mm-thick plate of polycarbonate.

VSWR

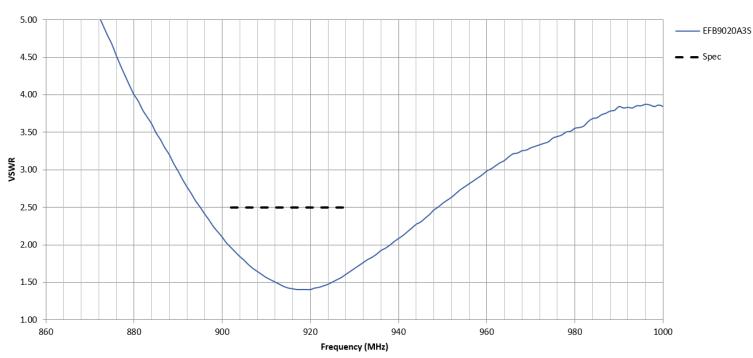


Figure 2: Antenna VSWR measured on a 1.5 mm-thick plate of polycarbonate with a nominal value of 1.56

RETURN LOSS

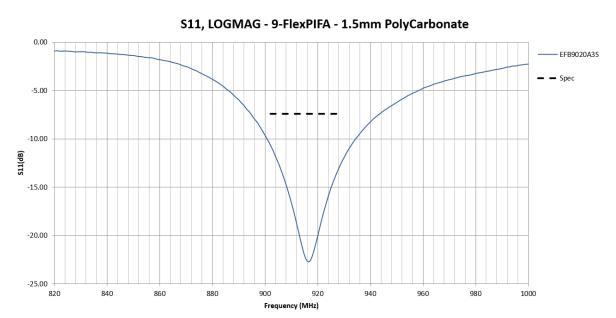


Figure 3: Antenna Return Loss measured on a 1.5 mm-thick plate of polycarbonate with a nominal value of -16.8dB

Americas: +1-800-492-2320 Europe: +44-1628-858-940 Hong Kong: +852 2762 4823

ANTENNA CHAMBER TEST SETUP

Antenna measurements such as VSWR and S11 were measured with an Agilent E5071C vector network analyzer. Radiation patterns were measured with a Rohde & Schwarz ZNB8-4PORT vector network analyzer in a Howland Company 3100 chamber equivalent. Phase center is nine inches above the Phi positioner.



Figure 4: Howland Company 3100 Antenna chamber

ANTENNA RADIATION PERFORMANCE

9-FlexPIFA centered on a 1.5 mm-thick plate of polycarbonate

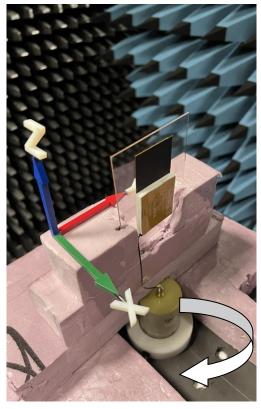


Figure 5: Flat surface setup

EFFICIENCY

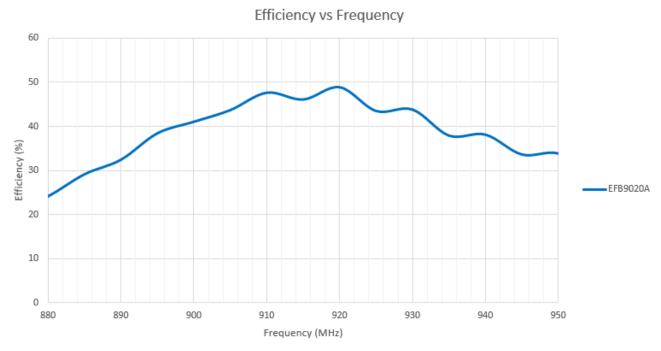
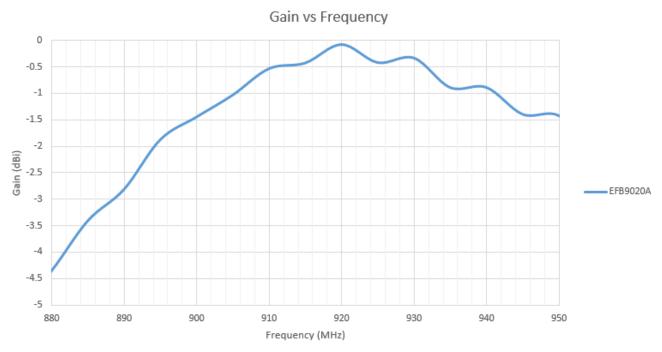
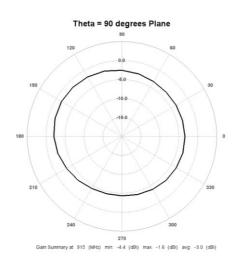
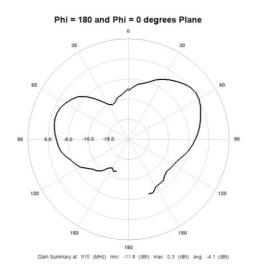
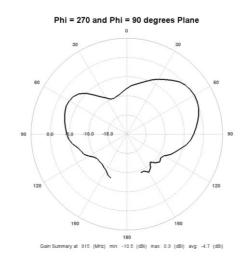


Figure 6: Antenna Efficiency measured on a 1.5 mm-thick plate of polycarbonate with a nominal value of -3.4dB across the operating frequency

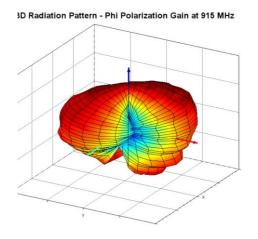
ANTENNA GAIN

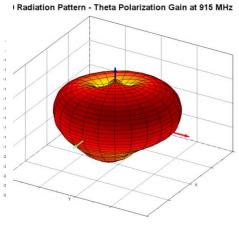




Figure 7: Antenna Gain measured on a 1.5 mm-thick plate of polycarbonate with a nominal value of -0.6dBi across the operating frequency



RADIATION PATTERNS - 2D Plots


2D Plots at 915 MHz



RADIATION PATTERNS - 3D Plots

3D Plots at 915 MHz

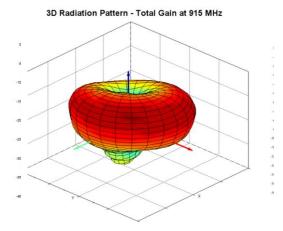


Figure 8: Phi polarization, Theta polarization and, and total gain plots – 915 MHz $\,$

Americas: +1-800-492-2320 Europe: +44-1628-858-940 Hong Kong: +852 2762 4823

ADDITIONAL ASSISTANCE

Please contact your local Laird Connectivity sales representative or our support team for further assistance:

Support Center https://www.lairdconnect.com/resources/support

Phone Americas: +1-800-492-2320

Europe: +44-1628-858-940 Hong Kong: +852 2762 4823

Web https://www.lairdconnect.com/internal-antennas

Address Laird Connectivity

50 S. Main Street, Suite 1100

Akron, OH 44308

sales@lairdconnect.com support@lairdconnect.com www.lairdconnect.com © Copyright 2023 Laird Connectivity. All Rights Reserved. Patent pending. Any information furnished by Laird Connectivity and its agents is be lieved to be accurate and reliable. All specifications are subject to change without notice. Responsibility for the use and application of Laird Connectivity materials or products rests with the end user since Laird Connectivity and its agents cannot be aware of all potential uses. Laird Connectivity makes no warrantheesas to non-integement nor as to the fitness, merchantability, or sustainability of any Laird Connectivity materials or products for any specific or general uses. Laird Connectivity or any of its affiliates or agents shall not be liable for incidental or consequential damages of any kind. All Laid Connectivity products are sold pursuant to the Laird Connectivity Terms and Conditions of Sale in effect from time to time, a copy of which will be furnished upon request. Nothing heen provides a license under any Laird Connectivity or any third-party intellectual property right.