

Do NOT daisy-chain multiple equipment cabinet grounds using a single ground wire. Doing so increases the overall inductance of the ground wire which can distribute surge energy among the cabinets instead of to the master ground bar.

See *Standards and Guidelines for Communications Sites* (68P81089E50) for detailed information on grounding the rack.

Connecting Power to the STR 3000 Rack

The STR 3000 rack requires a -48 VDC, which is provided by the DC power distribution. Figure 5-4 shows the typical connections for power to the STR 3000 rack.

Determining Power Connection Wire Size

Wire size recommendations contained herein reflect Motorola engineering requirements for proper system operation. Local regulations should be adhered to and will supersede any other specifications in this manual, where applicable.

Do not use wire smaller than 16 mm2 CSA (5 AWG). Cable loop voltage drop must not exceed 500 mV for cabling of the -48 VDC and DC return leads.

For a standard installation, the equipment cabinet is located adjacent to the power supply equipment with a cable loop length less than 10.67 m (35 ft.).

The "loop length" refers to the combined length of the -48 VDC lead and the DC return lead. For example, a cabinet which needs 4.87 m (16 ft.) of wire between the power supply equipment and equipment cabinets has a total loop length of 9.75 m (32 ft.).

Table 5-3 lists the required wire sizes for various installations.

 Table 5-3
 Power Connections Wire Size

Loop Length		Wire Size	
15.2 m (50 ft.) or less	16 mm2 CSA (5 AWG)		
15.2 - 24.8 m (50 - 80 ft.)	25 mm2 CSA (4 AWG)		
24.8 - 36.6 m (80 - 120 ft.)	35 mm2 CSA (2 AWG)		

Installing the Expansion Cabinets

If an expansion cabinet is required, the expansion cabinet must be located to the right of the prime cabinet (See Figure 5-5). The two cavity combiners are connected to their respective side of the phasing harness. The phasing harness bracket for the transmit combiner is mounted to the expansion rack. The power monitor unit (PMU) is connected to the post filter, which is connected to the top of the phasing harness.

Figure 5-5 Placement of Expansion Cabinets

Cabling the STR 3000 Base Radio Rack

The components of the STR 3000 Base Radio rack are shipped as one unit and do not require separate cabling during the initial installation. For more information on how to cable each component within the rack, see Volume 8, Field Replaceable Units and Entities (68P81004Y55).

From the rack, make the following connections to the system:

- "Connecting the Ethernet Cables" on page 5-12
- "Connecting the Transmit Cables" on page 5-13
- "Connecting the Receive Cables" on page 5-14
- "Connecting the V.24 Cabling" on page 5-16
- "Connecting Cables for a Co-Located Remote Site" on page 5-17

Connecting the Ethernet Cables

Table 5-4 lists the Ethernet connections from the STR 3000 rack to the system.

Table 5-4 Ethernet Connections from the STR 3000 Rack

From STR 3000 Rack		Destinati	on Device	
Port	Connector Type	Port	Connector Type	Description
Ethernet Out port on the junction panel in the first cabinet	BNC	Port 1 on Hub	RJ45	Ethernet LAN connection
Ethernet Out port on the junction panel in succeeding cabinets	BNC	Ethernet out on preceding panel	RJ45	Ethernet LAN connection
Ethernet Out port on the junction panel in the last cabinet	BNC with 50 ohm termination	Terminator on Ethernet Out	BNC	LAN termination

NOTE

Both ends of the Ethernet cabling for a rack must be terminated.

The DLN1269A base radio controller module can be configured for both 10Base-2 and 10Base-T operation. The site must be all 10Base-2 or all 10Base-T. You cannot mix configurations within a site.

Connecting the Transmit Cables

Table 5-5 lists the transmit connections from the STR 3000 rack to the system.

|--|

From STR 3000 Rack		Destinat	tion Device	
Port	Connector Type	Port	Connector Type	Description
Transmit antenna	7/16 DIN N Type	Antenna	7/16 DIN N Type	Transmit output from the STR 3000 to the transmit antenna.

Figure 5-6 shows the transmit cabling layout for a six-channel STR 3000 Base Radio rack.

Figure 5-6 Transmit Cabling in the STR 3000 Rack

Rear View

RmtSit Xmtcabling

Connecting the Receive Cables

Table 5-6 lists the receive connections from the system into the STR 3000 rack.

From STR 3000 Rack		Destination Device			
Port	Connector Type	Port	Connector Type	Description	
Rx In (Signal IN on figure)	7/16 DIN N Type	Receive antenna	7/16 DIN N Type	Receives antenna input into the STR 3000 rack	

Table 5-6 Connections for the Receive Cables

Figure 5-7 shows the receive cable connections for the STR 3000 rack.

RmtSit RCV Caling

Connecting the V.24 Cabling

Table 5-7 lists the V.24 audio connections for the STR 3000 rack.

Table 5-7 V.24 Cable Connections

From STR 3000 Rack Destination Device				
Port	Connector Type	Port	Connector Type	Description
Port PNL 1	RJ45 (V.24)	Channel Bank 1, SRU Port 1	RJ45 (V.24)	Connection to the prime site.
Port PNL 2	RJ45 (V.24)	Channel Bank 1, SRU Port 2	RJ45 (V.24)	Connection to the prime site.
Port PNL 3	RJ45 (V.24)	Channel Bank 1, SRU Port 3	RJ45 (V.24)	Connection to the prime site.
Port PNL 4	RJ45 (V.24)	Channel Bank 1, SRU Port 4	RJ45 (V.24)	Connection to the prime site.
Port PNL 5	RJ45 (V.24)	Channel Bank 1, SRU Port 5	RJ45 (V.24)	Connection to the prime site.
Port PNL 6	RJ45 (V.24)	Channel Bank 1, SRU Port 6	RJ45 (V.24)	Connection to the prime site.

Figure 5-8 shows the V.24 cabling layout for a six-channel STR 3000 rack.

Connecting Cables for a Co-Located Remote Site

A co-located remote site is installed along with the prime site or very near to it. This allows the co-located remote site to connect directly into the prime site and use the same network structures.

Connect the cables listed in Table 5-8 from the STR 3000 rack at a co-located remote site:

- Ethernet cables
- Transmit cables
- Receive cables

From STR 3000 Rack		Destinati	on Device	
Port	Connection Type	Port	Connectoin Type	Description
Ethernet In port on junction panel in the first cabinet	BNC	Port 1 on Hub	BNC	Ethernet LAN connection
Ethernet In port on the junction panel of succeeding cabinets	BNC	Ethernet out on panel	BNC	Ethernet LAN connection
Last cabinet	BNC with 50 ohm termination	Terminator on Ethernet Out	BNC with 50 ohm termination	Ethernet LAN connection
Top of cabinet	7/16 DIN N Type	Transmit antenna	7/16 DIN N Type	Transmit output from the base radio to the transmit antenna
Top of cabinet	7/16 DIN N Type	Receive antenna	7/16 DIN N Type	Receive antenna input into the STR 3000 rack

Table 5-8 Cabling Connections from the STR 3000 Rack at a Co-Located Remote Site

NOTE

Both ends of the Ethernet cabling run must be terminated.

Powering Up the STR 3000 Base Radio

Press the ON/OFF switch on the front of the power supply to apply power to the base radio. As the radio powers up, the LEDs on the front panel display the following activity:

- All LEDs initially blink.
- The SlnD LED blinks, indicating the software is initializing.
- After about 10 seconds, the V.24 and ON LEDs stay green, indicating that the power is on and the V.24 link is established.

Table 5-9 lists the LEDs, their corresponding functions, and the indications provided by various blinking states.

LED Name	Color	Solid	Blinks Once per Second	Blinks Twice per Second	Solid Then Blinks off 1/4 Second
Station Operational (ON)	Green	All	N/A	N/A	N/A
Station Failure (Fail)	Red	FRU failure	Ext Ref FailureRx Tx Unlock	Config	N/A
Service/Tx Inhibit (SVC)	Yellow	N/A	Service	SVC Tx Inh	N/A
Control (CTL)	Green	Control Ch	Failsoft	N/A	ISP Rx
Rx Active (Rx)	Green	Rx Active	Illegal Rx	N/A	N/A
PA Full/PA Low (PA)	Green	PA Active	N/A	N/A	N/A
Station Disable (StnD)	Red	FLASH	N/A	N/A	N/A
V.24 Link (V24)	Green	V24 Link	V24 Fail	N/A	N/A

Table 5-9 LED Status Indicators on the Base Radio

Status Priorities for Multifunction LEDs

Some LEDs perform multiple functions for the base radio. Table 5-10 lists these LEDs and the order in which status indications are handled.

Table 5-10	Status	Priority	for	Multifunction	LEDs
	Oluluo	1 HOIRY	101	Walthanouon	

Multifunction LED	Priority of Status (Highest to Lowest)
Fail	FRU failure External reference failure and unlock Base radio operational mode
SVC	 Transmitter inhibited Base radio operational mode
StnD	 Software download PA inhibited Receiver inhibited

General Operating Specifications

This section provides specifications for the STR 3000 rack, base radio, RFDS, transmitter, receiver, and receiver multicoupler.

Table 5-11 lists the operating specifications for an STR 3000 rack.

 Table 5-11
 General Operating Specifications for the STR 3000 Rack

Specification	Value or Range
Number of Channels	1-6
Number of Cabinets	1
Cabinet Height	211 cm (83 in.) (48 RU)
Footprint (W x D)	60 x 60 cm (24 x 24 in.)
System Weight	361 kg (795 lb)
Power Requirements	-48 VDC (43-60 VDC)
Temperature Range	0 to 50° C (32 to + 122° F)
Power Consumption	Typical: 2,700 W Maximum: 3,200 W
Antenna Connectors	Transmitter: DIN 7/16 Female Receiver: N-Female

Operating Specifications for the Base Radio

Table 5-12 lists the operating specifications for the base radio.

Specification	Value or Range		
Dimensions	Height: 22.2 cm (8.75 in.) (5 RU) Width: 48.3 cm (19 in.) Depth: 41.9 cm (16.5 in.)		
Weight	33 kg (73 lb)		
Operating Temperature Range	0 to 50° C (32 to + 122° F)		
Power Requirements	-48 VDC (41-60 VDC)		
Power Dissipation	530 W (typical) 640 W (maximum)		
Heat Dissipation	2,160 Btu maximum for 1 base radio 12,240 Btu maximum for 6 base radios See Table 5-17 for average heat dissipation for each base radio.		
Rack Spacing	 Designed for mounting in an EIA/TIA standard 19-in. (48.26 cm) rack Minimum of 15.24 cm (6 in.) between the cabinet and the wall With doors, minimum of 53.34 cm (21 in.) is required to open the back door. NOTE Because of weight considerations, the installation should allow access to the rear of the unit.		

Table 5-12 Operating Specifications for the Base Radio

Operating Specifications for the Transmitter

Table 5-13 lists the operating specifications for a transmitter.

Table 5-18 Operating Specifications for the Tower Top Amplifier

Installing the TRAK 9100 Simulcast Site Reference

The TRAK 9100 provides a composite 5 Mpps and 1 pps signal used for timing at a remote site. This section describes how the TRAK 9100 simulcast site reference is installed at a remote site.

Overview of the TRAK 9100 Simulcast Site Reference

A simulcast system uses signals from the Navstar Global Positioning Satellite (GPS) system to synchronize the audio from multiple transmitters. A GPS receiver needs to receive the 1 pps signal from at least four satellites before it can establish its exact geographical location.

The TRAK 9100 uses the satellite signal to derive a high-precision 1 pps signal used in the simulcast system for time launching. By launching signals at exactly the same time from multiple sites, destructive interference of the transmitted signals in overlap areas is minimized. In addition to controlling the launch, the use of GPS allows for variance in delay of the distribution network (T1/E1).

The TRAK 9100 simulcast site reference provides 1 pps and 5 Mpps reference signals for the following components at a remote site:

- Base radios
- Remote site channel bank
- Remote site hub

Figure 5-9 shows the modules and connections on the front view of the simulcast site reference.

Figure 5-9 Front View of the TRAK 9100 Simulcast Site Reference

Hardware Modules in the TRAK 9100 Simulcast Site Reference

Table 5-19 lists the modules that comprise the TRAK 9100 simulcast site reference.

Table 5-19	TRAK 9100 Simulcast Site Reference Modules

Module	Description
Antenna	See "Installing the GPS Antenna" on page 5-27.
GPS Receiver (A1)	This module contains a crystal oscillator and generates the 1 pps and 5 Mpps reference signals based on received GPS timing signals.
GPS Receiver (A2)	A second oscillator is included for redundancy. (Module A2 does not include a front-panel cooling fan like Module A1.)
Power Supply	Converts AC input to DC voltages used by all other TRAK 9100 modules.
Frequency Distribution Module	Outputs the 1 pps and 5 Mpps reference signals along with composite signal.
Fault Sense Unit	Detects system failures and provides control, alarm, and status information.

Installing the TRAK 9100 Simulcast Site Reference in the Rack

The TRAK 9100 simulcast site reference is installed in an EIA/TIA 19-in. (48.26 cm) rack.

Grounding the Chassis

Connect the grounding cable to the ground lug. The ground lug is a screw on the back of the power supply located to the left of the AC power receptacles.

Use 6 AWG wire and the appropriate lug connected to chassis ground through to the RGB.

Wiring for Power

The two AC outlets on the rear of the panel provide power to all of the modules in the TRAK 9100.

Installing an Expansion Rack

See "Installing TRAK 9200 Simulcast Site Reference for Expansion" on page 5-31.

Installing the GPS Antenna

The GPS antenna feeds the TRAK 9100 simulcast site reference, which provides a 5 Mpps/1 pps signal (5 Mpps signal at 1 pps repetition rate) to the base radios and other components at the remote site. This signal establishes timing functions for the transmit and receive frequencies for the base radios.

Perform Procedure 5-2 to install the GPS antenna.

Procedure 5-2 How to Install the GPS Antennas

1	Mount the GPS antenna with an unrestricted aerial down view to within 10° of the horizon in all directions.		
2	 Mount the antennas high enough to clear the peak of the site roof using the following guidelines: For systems in the northern hemisphere, mount the GPS antennas so that a clear view of the southern sky is maintained. For systems in the southern hemisphere, mount the GPS antennas so that a clear view of the northern hemisphere, mount the GPS antennas so that a clear view of the northern sky is maintained. 		
3	Isolate the GPS antennas from RF interference by mounting the antennas at a distance of at least 3.66 m (12 ft.) horizontally from the other antennas.		
4	Mount the GPS antennas to clear obstructions and provide a clear path. NOTE Adjacent structures (such as trees or buildings) are considered obstructions due to their wide and solid profiles. Adjacent antenna towers at the RF site which protrude into the required view (but have a minimal effect on GPS satellite reception due to their narrow, largely open profiles) are not considered obstructions.		

IMPORTANT

The simulcast system will not operate properly if the GPS receiver is not locked onto at least four GPS satellites. The four satellites are used to establish a three-dimensional fix (latitude, longitude, and altitude) for the site.

The TRAK 9100 will free-run for a time period defined by configuration settings. However, after the specified period while still operating without the GPS satellite signals, the simulcast system will not operate. The GPS antennas must be properly positioned, and the cables and connectors must be properly maintained to ensure operation of the simulcast system. If the TRAK 9100 is powered down, the simulcast system will not operate properly until the GPS receiver has locked onto the signals from at least four GPS satellites. **This process takes approximately 13 to 25 minutes to complete.**

GPS Antenna Line Loss

Cutting the cable below a recommended minimum length can cause problems with signal strength overload. Refer to Appendix E in the TRAK 9100 Reference book.

The maximum allowable line attenuation between the antenna and the TRAK 9100 is 6 dB. This includes a 4 dB margin for attenuation from foliage. Installations in which the antenna has an unobstructed view of the sky may have a maximum line attenuation of 10 dB.

In a typical installation using 0.5-in., low density foam coaxial cable, the length of the cable run should never exceed 45.72 m (150 ft). This is sufficient for most installations.

When considering the use of larger cables, calculate the cable lengths allowing 4.5 dB of loss at 1.5 GHz. The remaining 1.5 dB of attenuation is provided by interior site cabling and connectors.

GPS Antenna Operating Specifications

Table 5-20 lists the operating specifications for the GPS antenna.

 Table 5-20
 Operating Specifications for the GPS Antenna

Specification	Value or Range
Physical Dimensions	Diameter: 8.89 cm (3.5 in.) Height: 10.16 cm (4.0 cm)
Weight	0.32 kg (0.7 lb) (excluding mast)
Operating Temperature	-40° to +85° C (-40° to 185° F)

ALARM INDICATION (NO LOCK ON GPS SIGNAL)

A system alarm indicates when the GPS signal cannot be located and that the antenna may need to be repositioned.

Cabling the TRAK 9100 Simulcast Site Reference

All output signal connections interfacing to the network are made via the rear panel. The connections are:

- Two power supply (AC or DC) connectors
- Two GPS antenna N-type connectors
- An RJ45 connector for 10Base-T to distribute Coordinated Universal Time (UTC) through Network Time Protocol (NTP)
- An RJ45 connector for Alarm (relay contacts) reporting
- A DB9 connector for Time of Day (TOD) output
- An RS232 DB9 connector for diagnostics (VT100)
- An IEEE-488 connector for digital distribution unit (DDU) TRAK 9200
- 24 BNC connectors for:
 - 1 pps
 - 5 Mpps
 - 1 pps + 5 Mpps composite signals, framed 1.544/2.048 Mbps TTL, and IRIG-B (or 10 MHz if desired) outputs depending on the type of modules plugged at the front panel.

NOTE

All cables are connected between the BNC T-adapters, which are mounted to the appropriate module connector.

The cabinet is equipped with cables (index no. 2) and T-adapters for connection to six base radios regardless of BR complement. Unused T-adapters are left unconnected. Unless the cabinet is to be used with other RF cabinets, 5 MHz/1 pps OUT connector must be terminated with a 50 ohm terminator.

Table 5-21 lists all of the cables from the front connections on the TRAK 9100 simulcast site reference. Table 5-22 lists the cables from the connections on the back of the TRAK 9100.

From TRAK 9100		Destination Device		
Port	Connector Type	Port	Connector Type	Description
AC Input A	IEC 320	Power Outlet	Power	AC Power
AC Input B	IEC 320	Power Outlet	Power	AC Power
Ethernet IN	RJ45	Port 6 on the Remote Site LAN switch	RJ45	Path for the NTP data
Ethernet IN	RS-232	Port 2 on the MOSCAD NFM	RS-232	Path for diagnostic information to MOSCAD

Table 5-21 Cabling from the Front Connections on the TRAK 9100 Simulcast Site Reference

Table 5-22	Cabling from the Rear	Connections on the	TRAK 9100 Simulcast	Site Reference
------------	-----------------------	--------------------	---------------------	----------------

From TRAK 9100		Destination Device		
Port	Connector Type	Port	Connector Type	Description
10Base-T	10Base-T (RJ45)	Remote Site LANSwi Port 5	10Base-T (RJ45)	NTP information
RS232 I/O	RS232	MOSCAD NFM2 Port 2	RS232	Diagnostic information routed to MOSCAD
Reference Output	24-pin D	Digital Distribution Unit (DDU) (where used)		Output to DDU

Powering Up the TRAK 9100 Simulcast Site Reference

The TRAK 9100 has the following three power outputs:

- +5 VDC
- +15 VDC
- -15 VDC

All three outputs have an LED indicator that turns green after the TRAK 9100 powers up. Figure 5-10 shows the power supply LEDs.

Figure 5-10 Power Supply Module with LED Indicators

TRAK_9100_powerLEDs.jpg

Operating and Environmental Specifications

Table 5-23 lists the operating and environmental specifications for the TRAK 9100 simulcast site reference.

Specification	Value or Range
Physical Dimensions	Height: 13.34 cm (5.25 in.) (3U) Width: 48.26 cm (19 in.) Depth: 38.1 cm (15 in.)
Weight	Approximately 11.34 kg (25 lb) with all modules installed
Operating Temperature	-30° to $+60^{\circ}$ C (-22° to 140° F) with a rate of change $<2^{\circ}$ C/minute (<3.5° F/minute)
Power Requirements	100 to 240 VAC ± 10%, 48-63 Hz single-phase
Heat Dissipation	120 W at power-up, tapers to approximately 80 W within 15 minutes of power-up at 25° C (77° F)

 Table 5-23
 TRAK 9100 Operating and Environmental Specifications

Installing TRAK 9200 Simulcast Site Reference for Expansion

The TRAK 9200 is the optional expansion chassis which adds simulcast site reference ports. It provides 56 ports, arranged in four rows of 14 ports each.

Overview of the TRAK 9200 Simulcast Site Reference

The TRAK 9200 simulcast site reference differs from the TRAK 9100 simulcast site reference with respect to two modules: the power supply and the termination/fault logic unit.

The power supply has only one output (5 VDC). So the indicators differ from those referenced in "Powering Up the TRAK 9100 Simulcast Site Reference" on page 5-30. There are only two indicators, as follows:

- Green, indicating the 5 VDC power supply is operating properly.
- Red, indicating a fault with the power supply.

The fault logic unit serves the same function as the fault sense unit in the TRAK 9100. Figure 5-11 shows the rear view of the TRAK 9200.

Cabling the TRAK 9200 Simulcast Site Reference

Table 5-24 lists the cabling for the TRAK 9200 simulcast site reference expansion.

Operating Specifications

Table 5-30 lists the operating and environmental specifications for the remote site hub.

 Table 5-30
 Remote Site Hub Operating and Environmental Specifications

Specification	Value or Range
Physical Dimensions	Height: 4.32 cm (1.7 in.) (1 RU) Width: 44.1 cm (17.4 in.) Depth: 17.0 cm (6.7 in.)
Weight	2.1 kg (4.6 lb)
Operating Temperature	0° to 50° C (32° to 122° F)
Power Requirements	85-244 VAC 50/60 Hz 120 W
Heat Dissipation	103 Btu/Hour

Installing the Simulcast Remote Site Router

The remote site router routes network management traffic from a simulcast remote site to the prime site.

Overview of the Simulcast Remote Site Router

The simulcast remote site router routes network management information from the remote site to the prime site through the High Speed Unit (HSU) card.

Figure 5-20 and Figure 5-21 respectively show the front and rear views of the simulcast remote site router.

Figure 5-20 Front View of the Simulcast Remote Site Router

Figure 5-21 Rear View of the Simulcast Remote Site Router

Installing the Simulcast Remote Site Router

This section describes how to install the simulcast remote site router.

Grounding the Chassis

Some network topologies require a grounding stud, which is separate from the AC ground on the chassis of the networking equipment. If this type of grounding is required for the topology, perform Procedure 5-6 to connect the chassis ground.

Procedure 5-6 How to Connect a Chassis Ground

1	Terminate one end of a length of minimum 6 AWG wire with a compression lug.
2	Using a grounding screw, attach the lug to the rear of the chassis.
3	Terminate the other end of the wire on a permanently connected protective grounding conductor or RGB.

Wiring for Power

Power is provided to the simulcast remote site router by connecting a power cable to the power receptacle on the rear of the unit.

Cabling the Simulcast Remote Site Router

Table 5-31 lists the cable connections from the simulcast remote site router.

From Remote Site Router		Destination Device			
Port	Connector Type	Port	Connector Type	Description	
LAN 1	RJ45	Remote Site Hub	RJ45	Ethernet connection only for co-located	
LAN 2	RJ45	Remote Site Switch	RJ45	Ethernet connection between the hub and the prime site switch	
Serial 3	60-pin FlexWAN	Channel Bank	60-pin FlexWAN	Ethernet connection between the hub and the channel bank	
Serial 4	60-pin FlexWAN	Channel Bank	60-pin FlexWAN	Ethernet connection between the hub and the channel bank	
WAN 5	RJ45	not used	RJ45	not used	
WAN 6	RJ45	not used	RJ45	not used	
Console	RS232/DB9	Console/Termi- nal, Serial Port	RS232/DB9	Communications connection between the router and a console or terminal	

Table 5-31 Cable Connections from the Simulcast Remote Site Router

Powering Up the Simulcast Remote Site Router

Perform Procedure 5-7 to power up the simulcast remote site router and verify that it is working.

Procedure 5-7 How to Power Up the Simulcast Remote Site Router

1	Attach the power cable to the power receptacle.
2	Plug the power cable into the AC outlet.
3	Turn the power switch to the ON position.
4	Verify that the power LED is on.

The power-up process takes a few seconds. When the process has successfully completed, the LEDs on the front panel should be on or off, as described in Table 5-32.

LED	Status
LAN	
Link	On
Active	On or blinking
Fault	Off
FlexWAN SERIAL	
Link	On
Active	On
Fault	Off
SYSTEM	
Status	All off
Fwd	Off or blinking
Power/Fault	Green
Run	On
Load	Off
Test	Off

Table 5-32 LED Status at Successful Startup

Operating Specifications

Table 5-33 lists the operating specifications for the simulcast remote site router.

 Table 5-33
 Simulcast Remote Router Operating Specifications

Specification	Value or Range
Physical Dimensions	Height: 4.32 cm (1.7 in.) (1 RU) Width: 43.94 cm (17.3 in.) Depth: 30.48 cm (12.0 in.)
Weight	4.54 kg (10 lb)
Power Requirements	120 W
Heat Dissipation	137 Btu
Temperature	Operating: 5° to 40° C (41° to 104° F) Non-Operating: -40° to 75° C (-40° to 167° F)
Relative Humidity	Operating: 10% - 90% noncondensing Non-Operating: 10% - 90% noncondensing